[94.8] Wakker, Peter P., Ido Erev, & Elke U. Weber (1994), “Comonotonic Independence: The Critical Test between Classical and Rank-Dependent Utility Theories,” Journal of Risk and Uncertainty 9, 195-230.
PRINTING THIS PAGE: When printed, the data come out best in nonproportional
fonts such as Courier.
FILLER STIMULI: This page only presents the data used in the analysis of the
paper. Filler stimuli were also used. For their results, click here.
SET 1 (Fig. 3.1 in Wakker et al.)
1st pair: (.55, $0.5; .25, $6.0; .20, $7.0) (safe) versus
(.55, $0.5; .25, $4.5; .20, $9.0) (risky)
2nd pair: (.55, $3.5; .25, $6.0; .20, $7.0) (safe) versus
(.55, $3.5; .25, $4.5; .20, $9.0) (risky)
3d pair: (.55, $6.5; .25, $6.0; .20, $7.0) (safe) versus
(.55, $6.5; .25, $4.5; .20, $9.0) (risky)
4th pair: (.55, $9.5; .25, $6.0; .20, $7.0) (safe) versus
(.55, $9.5; .25, $4.5; .20, $9.0) (risky)
SET 2 (Fig. 3.2 in Wakker et al.)
1st pair: (.65, $0.5; .20, $3.5; .15, $5.5) (safe) versus
(.65, $0.5; .20, $3.0; .15, $6.0) (risky)
2nd pair: (.65, $2.5; .20, $3.5; .15, $5.5) (safe) versus
(.65, $2.5; .20, $3.0; .15, $6.0) (risky)
3d pair: (.65, $4.5; .20, $3.5; .15, $5.5) (safe) versus
(.65, $4.5; .20, $3.0; .15, $6.0) (risky)
4th pair: (.65, $6.5; .20, $3.5; .15, $5.5) (safe) versus
(.65, $6.5; .20, $3.0; .15, $6.0) (risky)
SET 3 (Fig. 3.3 in Wakker et al.)
1st pair: (.40, $0.5; .40, $2.5; .20, $6.0) (safe) versus
(.40, $0.5; .40, $1.5; .20, $7.5) (risky)
2nd pair: (.40, $3.0; .40, $2.5; .20, $6.0) (safe) versus
(.40, $3.0; .40, $1.5; .20, $7.5) (risky)
3d pair: (.40, $5.5; .40, $2.5; .20, $6.0) (safe) versus
(.40, $5.5; .40, $1.5; .20, $7.5) (risky)
4th pair: (.40, $8.0; .40, $2.5; .20, $6.0) (safe) versus
(.40, $8.0; .40, $1.5; .20, $7.5) (risky)
SET 4 (Fig. 3.4 in Wakker et al.)
1st pair: (.70, $2.5; .10, $5.5; .20, $10.5) (safe) versus
(.70, $2.5; .10, $3.5; .20, $12.5) (risky)
2nd pair: (.70, $6.0; .10, $5.5; .20, $10.5) (safe) versus
(.70, $6.0; .10, $3.5; .20, $12.5) (risky)
3d pair: (.70, $9.5; .10, $5.5; .20, $10.5) (safe) versus
(.70, $9.5; .10, $3.5; .20, $12.5) (risky)
4th pair: (.70, $13.0; .10, $5.5; .20, $10.5) (safe) versus
(.70, $13.0; .10, $3.5; .20, $12.5) (risky)
SET 5 (Fig. 3.5 in Wakker et al.)
1st pair: (.50, $0.0; .10, $2.0; .40, $2.0) (safe) versus
(.50, $0.0; .10, $0.0; .40, $3.0) (risky)
2nd pair: (.50, $2.0; .10, $2.0; .40, $2.0) (safe) versus
(.50, $2.0; .10, $0.0; .40, $3.0) (risky)
3d pair: (.50, $4.0; .10, $2.0; .40, $2.0) (safe) versus
(.50, $4.0; .10, $0.0; .40, $3.0) (risky)
4th pair: (.50, $6.0; .10, $2.0; .40, $2.0) (safe) versus
(.50, $6.0; .10, $0.0; .40, $3.0) (risky)
SET 6 (Fig. 3.6 in Wakker et al.)
1st pair: (.50, $2.0; .10, $4.0; .40, $4.0) (safe) versus
(.50, $2.0; .10, $2.0; .40, $5.0) (risky)
2nd pair: (.50, $4.0; .10, $4.0; .40, $4.0) (safe) versus
(.50, $4.0; .10, $2.0; .40, $5.0) (risky)
3d pair: (.50, $6.0; .10, $4.0; .40, $4.0) (safe) versus
(.50, $6.0; .10, $2.0; .40, $5.0) (risky)
4th pair: (.50, $8.0; .10, $4.0; .40, $4.0) (safe) versus
(.50, $8.0; .10, $2.0; .40, $5.0) (risky)
The data were presented under four different conditions:
------------------Condition Collapsed (C)-----------------
set 1 set 2 set 3 set 4 set 5 set 6
C01 1 1 0 0 0 2 1 1 0 1 1 1 2 1 2 2 0 1 0 1 0 2 1 0
C02 1 1 2 0 1 2 2 1 0 2 1 1 2 2 1 1 2 2 2 0 1 0 0 0
C03 1 2 2 2 1 0 1 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0
C04 1 0 1 1 1 2 0 0 0 1 1 0 2 2 2 2 2 2 1 1 2 1 0 1
C05 0 0 1 2 0 2 2 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
C06 1 1 2 2 2 2 2 0 1 1 1 2 2 1 2 2 0 0 0 0 1 0 0 0
C07 1 0 0 0 0 0 0 1 0 0 0 1 2 2 2 1 1 0 0 0 2 0 0 0
C08 2 2 2 1 1 2 0 1 1 1 0 1 2 2 2 1 2 0 1 0 2 1 0 1
C09 0 1 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 1 2 1 2 2 2
C10 0 0 0 0 1 0 1 0 1 0 0 0 2 1 2 2 0 1 1 1 2 2 1 2
C11 2 0 1 0 1 2 1 1 2 1 1 0 1 1 1 1 2 0 0 1 2 0 0 0
C12 0 1 1 0 2 1 2 0 1 1 1 1 1 1 2 2 2 0 0 0 0 0 0 0
C13 1 2 1 0 2 2 2 2 1 2 2 1 1 1 1 1 0 1 1 0 2 2 2 2
C14 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 0 2 1 1 0
C15 2 1 0 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
C16 1 1 1 0 1 2 2 1 2 1 1 1 0 0 1 0 1 0 0 0 2 1 0 0
C17 2 2 2 2 1 0 0 0 1 1 2 0 2 2 2 2 2 2 1 1 2 0 1 2
C18 0 2 1 0 2 1 2 2 2 1 2 1 2 1 1 1 2 0 0 0 1 1 0 0
C19 0 2 1 2 0 2 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0
C20 1 1 1 2 2 1 1 2 1 1 0 0 1 0 0 1 2 1 0 0 2 1 2 1
C21 1 1 1 1 0 1 1 1 1 0 1 0 2 2 1 2 2 2 2 1 1 1 0 1
C22 2 1 2 2 2 2 2 2 1 2 1 2 2 1 2 1 1 0 0 0 2 1 0 1
----------------Condition Not collapsed (N)---------------
set 1 set 2 set 3 set 4 set 5 set 6
N01 2 0 0 1 1 1 0 1 2 0 0 0 2 0 0 1 0 0 0 0 0 1 0 0
N02 1 1 0 0 0 1 1 0 1 1 0 0 2 2 1 2 0 1 0 1 2 0 0 2
N03 2 1 1 1 0 0 1 1 1 1 1 0 2 2 2 2 0 0 0 0 1 1 1 1
N04 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 0 1 1 2 2 2 1 2
N05 2 2 0 2 1 2 1 2 0 1 0 0 2 2 2 2 0 0 0 0 2 2 1 1
N06 1 1 1 2 1 2 2 0 1 1 0 1 1 1 2 1 0 0 0 0 1 0 0 0
N07 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 0 0 0 2 1 2 1
N08 0 1 2 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 2 1 1 1 1 1
N09 1 0 2 1 0 0 0 1 0 0 0 0 2 1 2 2 0 2 1 1 2 2 2 2
N10 2 0 1 1 2 2 2 1 1 2 2 1 2 1 1 2 0 0 1 1 1 0 2 0
N11 2 1 2 2 2 2 2 1 2 1 0 0 2 2 1 1 0 0 0 0 0 1 0 1
N12 1 0 2 2 2 2 2 2 0 2 1 1 1 0 1 1 0 0 0 0 0 0 0 0
N13 1 1 0 0 1 1 2 2 0 1 0 0 2 2 1 2 0 0 2 2 2 1 1 0
N14 1 1 0 2 1 1 2 1 1 0 0 0 1 1 2 2 0 1 1 0 0 0 0 0
N15 2 1 1 2 1 2 1 1 0 1 2 0 2 1 1 2 0 0 0 0 0 2 0 1
N16 0 0 1 0 1 0 1 1 0 0 0 1 2 2 2 1 0 0 0 0 2 1 2 2
N17 2 2 2 2 1 0 0 1 0 0 0 0 2 2 2 1 1 2 2 2 1 2 2 2
N18 2 1 2 1 1 2 1 2 1 0 1 0 1 2 1 2 0 0 0 0 0 0 0 0
N19 0 2 1 2 2 2 2 1 1 1 0 0 2 2 2 2 0 0 0 0 2 1 1 1
N20 1 0 2 0 1 1 0 1 0 0 0 0 1 2 1 1 0 1 0 0 1 0 1 0
N21 1 0 1 0 1 1 2 1 0 0 0 1 1 1 0 1 1 0 0 1 2 2 1 1
-------------------Condition Verbal (V)-------------------
set 1 set 2 set 3 set 4 set 5 set 6
V01 1 0 1 0 0 1 1 0 0 0 0 0 2 1 1 2 0 0 0 0 0 0 0 0
V02 2 2 2 2 2 2 2 2 1 1 0 1 2 1 2 1 0 0 0 0 1 1 2 0
V03 0 0 0 1 0 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
V04 2 2 2 2 1 1 1 1 0 0 0 0 0 2 0 1 0 0 0 0 0 1 0 0
V05 2 1 2 2 1 1 0 1 0 0 0 0 2 1 2 2 0 0 0 0 1 1 2 2
V06 0 1 0 0 2 0 1 2 2 0 0 0 1 0 0 1 0 0 0 0 1 0 2 1
V07 2 2 0 1 0 2 1 1 2 2 0 0 1 0 1 0 0 0 0 0 0 1 1 1
V08 2 0 2 2 2 2 1 2 2 0 1 2 2 1 1 2 0 0 1 0 1 1 1 1
V09 0 2 1 2 2 1 2 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1
V10 2 1 2 2 1 1 0 2 2 2 1 0 2 2 0 1 0 0 0 0 0 0 0 0
V11 1 2 2 2 1 2 1 1 1 2 2 0 1 0 1 0 0 0 0 0 1 0 0 1
V12 2 2 2 2 1 1 1 2 2 1 1 2 1 0 1 1 0 0 0 0 1 0 1 0
V13 1 1 2 1 2 1 1 2 1 0 1 0 1 0 0 2 0 0 0 0 2 0 1 0
V14 2 1 1 0 1 2 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
V15 1 2 1 2 1 0 2 1 1 1 0 1 1 1 2 2 0 1 0 0 0 0 1 0
V16 2 1 2 2 0 2 1 2 2 2 1 1 1 2 2 1 0 0 0 0 1 0 0 1
V17 2 1 0 1 1 2 0 1 0 1 1 0 2 2 2 2 0 1 0 0 2 2 0 1
V18 1 1 1 0 1 1 1 1 1 1 0 1 2 2 1 2 1 0 0 2 1 1 2 2
V19 0 1 0 0 0 0 0 0 0 0 0 0 1 2 2 2 0 2 2 1 2 2 2 2
V20 2 1 2 2 0 1 2 2 0 0 1 0 1 1 2 2 0 0 0 0 1 0 0 2
------------------Condition Graphical (G)-----------------
set 1 set 2 set 3 set 4 set 5 set 6
G01 0 0 2 1 1 0 0 1 0 1 1 1 2 2 2 2 1 2 1 1 2 2 2 1
G02 0 0 1 0 0 2 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
G03 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 0 1 0 1 1 0 0
G04 2 1 0 1 1 0 1 2 0 0 0 0 1 1 2 2 0 0 0 0 0 1 0 1
G05 1 2 1 1 1 2 1 2 2 2 2 2 2 2 2 2 0 1 1 0 2 2 1 2
G06 1 1 2 2 2 0 0 0 1 1 2 0 2 1 2 2 0 0 0 0 0 1 1 2
G07 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 1 0 1 2 0 2 2 1 0
G08 2 2 1 1 2 2 2 1 2 2 2 2 1 2 1 2 1 0 0 0 2 2 2 1
G09 1 2 1 2 0 1 1 0 0 2 1 1 2 2 2 2 0 0 0 1 1 0 0 1
G10 2 1 0 1 1 1 2 1 1 0 0 0 2 0 1 2 0 0 1 0 1 1 0 0
G11 2 2 2 2 2 1 2 2 2 2 1 1 2 2 2 1 0 0 0 0 2 0 0 1
G12 2 0 0 1 2 1 1 1 1 0 1 0 2 2 2 2 0 0 0 1 2 1 2 2
G13 2 2 1 2 1 0 1 0 0 1 0 0 1 2 2 2 0 0 0 0 2 2 1 2
G14 1 1 2 1 0 2 2 1 1 0 2 0 2 2 2 2 0 0 0 0 2 1 0 2
G15 2 0 1 2 1 2 2 2 0 2 0 1 1 2 2 1 0 0 0 0 1 0 1 0
G16 1 2 1 1 1 0 2 1 0 0 1 1 2 1 1 1 0 0 0 0 0 0 0 0
G17 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 0 0 0 0 1 0 2 0
G18 2 1 1 1 1 2 1 1 1 2 1 1 1 1 0 1 1 1 1 2 0 2 2 1
G19 2 1 2 2 0 0 1 0 0 1 1 2 2 2 2 2 0 2 1 0 1 1 1 1
G20 0 0 1 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 1 0 2 1 2 2
G21 2 1 1 0 2 1 0 2 0 0 0 0 1 1 2 2 0 0 0 0 1 1 1 1