[94.8] Wakker, Peter P., Ido Erev, & Elke U. Weber (1994), “Comonotonic Independence: The Critical Test between Classical and Rank-Dependent Utility Theories,” Journal of Risk and Uncertainty 9, 195-230.
PRINTING THIS PAGE: When printed, the data come out best in nonproportional
fonts such as Courier.
FILLER STIMULI: This page only presents the data used in the analysis of the
paper. Filler stimuli were also used. For their results, click here.
SET 1 (Fig. 3.1 in Wakker et al.) 1st pair: (.55, $0.5; .25, $6.0; .20, $7.0) (safe) versus (.55, $0.5; .25, $4.5; .20, $9.0) (risky) 2nd pair: (.55, $3.5; .25, $6.0; .20, $7.0) (safe) versus (.55, $3.5; .25, $4.5; .20, $9.0) (risky) 3d pair: (.55, $6.5; .25, $6.0; .20, $7.0) (safe) versus (.55, $6.5; .25, $4.5; .20, $9.0) (risky) 4th pair: (.55, $9.5; .25, $6.0; .20, $7.0) (safe) versus (.55, $9.5; .25, $4.5; .20, $9.0) (risky) SET 2 (Fig. 3.2 in Wakker et al.) 1st pair: (.65, $0.5; .20, $3.5; .15, $5.5) (safe) versus (.65, $0.5; .20, $3.0; .15, $6.0) (risky) 2nd pair: (.65, $2.5; .20, $3.5; .15, $5.5) (safe) versus (.65, $2.5; .20, $3.0; .15, $6.0) (risky) 3d pair: (.65, $4.5; .20, $3.5; .15, $5.5) (safe) versus (.65, $4.5; .20, $3.0; .15, $6.0) (risky) 4th pair: (.65, $6.5; .20, $3.5; .15, $5.5) (safe) versus (.65, $6.5; .20, $3.0; .15, $6.0) (risky) SET 3 (Fig. 3.3 in Wakker et al.) 1st pair: (.40, $0.5; .40, $2.5; .20, $6.0) (safe) versus (.40, $0.5; .40, $1.5; .20, $7.5) (risky) 2nd pair: (.40, $3.0; .40, $2.5; .20, $6.0) (safe) versus (.40, $3.0; .40, $1.5; .20, $7.5) (risky) 3d pair: (.40, $5.5; .40, $2.5; .20, $6.0) (safe) versus (.40, $5.5; .40, $1.5; .20, $7.5) (risky) 4th pair: (.40, $8.0; .40, $2.5; .20, $6.0) (safe) versus (.40, $8.0; .40, $1.5; .20, $7.5) (risky) SET 4 (Fig. 3.4 in Wakker et al.) 1st pair: (.70, $2.5; .10, $5.5; .20, $10.5) (safe) versus (.70, $2.5; .10, $3.5; .20, $12.5) (risky) 2nd pair: (.70, $6.0; .10, $5.5; .20, $10.5) (safe) versus (.70, $6.0; .10, $3.5; .20, $12.5) (risky) 3d pair: (.70, $9.5; .10, $5.5; .20, $10.5) (safe) versus (.70, $9.5; .10, $3.5; .20, $12.5) (risky) 4th pair: (.70, $13.0; .10, $5.5; .20, $10.5) (safe) versus (.70, $13.0; .10, $3.5; .20, $12.5) (risky) SET 5 (Fig. 3.5 in Wakker et al.) 1st pair: (.50, $0.0; .10, $2.0; .40, $2.0) (safe) versus (.50, $0.0; .10, $0.0; .40, $3.0) (risky) 2nd pair: (.50, $2.0; .10, $2.0; .40, $2.0) (safe) versus (.50, $2.0; .10, $0.0; .40, $3.0) (risky) 3d pair: (.50, $4.0; .10, $2.0; .40, $2.0) (safe) versus (.50, $4.0; .10, $0.0; .40, $3.0) (risky) 4th pair: (.50, $6.0; .10, $2.0; .40, $2.0) (safe) versus (.50, $6.0; .10, $0.0; .40, $3.0) (risky) SET 6 (Fig. 3.6 in Wakker et al.) 1st pair: (.50, $2.0; .10, $4.0; .40, $4.0) (safe) versus (.50, $2.0; .10, $2.0; .40, $5.0) (risky) 2nd pair: (.50, $4.0; .10, $4.0; .40, $4.0) (safe) versus (.50, $4.0; .10, $2.0; .40, $5.0) (risky) 3d pair: (.50, $6.0; .10, $4.0; .40, $4.0) (safe) versus (.50, $6.0; .10, $2.0; .40, $5.0) (risky) 4th pair: (.50, $8.0; .10, $4.0; .40, $4.0) (safe) versus (.50, $8.0; .10, $2.0; .40, $5.0) (risky)The data were presented under four different conditions:
------------------Condition Collapsed (C)----------------- set 1 set 2 set 3 set 4 set 5 set 6 C01 1 1 0 0 0 2 1 1 0 1 1 1 2 1 2 2 0 1 0 1 0 2 1 0 C02 1 1 2 0 1 2 2 1 0 2 1 1 2 2 1 1 2 2 2 0 1 0 0 0 C03 1 2 2 2 1 0 1 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 C04 1 0 1 1 1 2 0 0 0 1 1 0 2 2 2 2 2 2 1 1 2 1 0 1 C05 0 0 1 2 0 2 2 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 C06 1 1 2 2 2 2 2 0 1 1 1 2 2 1 2 2 0 0 0 0 1 0 0 0 C07 1 0 0 0 0 0 0 1 0 0 0 1 2 2 2 1 1 0 0 0 2 0 0 0 C08 2 2 2 1 1 2 0 1 1 1 0 1 2 2 2 1 2 0 1 0 2 1 0 1 C09 0 1 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 1 2 1 2 2 2 C10 0 0 0 0 1 0 1 0 1 0 0 0 2 1 2 2 0 1 1 1 2 2 1 2 C11 2 0 1 0 1 2 1 1 2 1 1 0 1 1 1 1 2 0 0 1 2 0 0 0 C12 0 1 1 0 2 1 2 0 1 1 1 1 1 1 2 2 2 0 0 0 0 0 0 0 C13 1 2 1 0 2 2 2 2 1 2 2 1 1 1 1 1 0 1 1 0 2 2 2 2 C14 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 1 0 1 0 0 2 1 1 0 C15 2 1 0 1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 C16 1 1 1 0 1 2 2 1 2 1 1 1 0 0 1 0 1 0 0 0 2 1 0 0 C17 2 2 2 2 1 0 0 0 1 1 2 0 2 2 2 2 2 2 1 1 2 0 1 2 C18 0 2 1 0 2 1 2 2 2 1 2 1 2 1 1 1 2 0 0 0 1 1 0 0 C19 0 2 1 2 0 2 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 0 0 0 C20 1 1 1 2 2 1 1 2 1 1 0 0 1 0 0 1 2 1 0 0 2 1 2 1 C21 1 1 1 1 0 1 1 1 1 0 1 0 2 2 1 2 2 2 2 1 1 1 0 1 C22 2 1 2 2 2 2 2 2 1 2 1 2 2 1 2 1 1 0 0 0 2 1 0 1 ----------------Condition Not collapsed (N)--------------- set 1 set 2 set 3 set 4 set 5 set 6 N01 2 0 0 1 1 1 0 1 2 0 0 0 2 0 0 1 0 0 0 0 0 1 0 0 N02 1 1 0 0 0 1 1 0 1 1 0 0 2 2 1 2 0 1 0 1 2 0 0 2 N03 2 1 1 1 0 0 1 1 1 1 1 0 2 2 2 2 0 0 0 0 1 1 1 1 N04 2 2 2 2 0 0 0 0 0 0 0 0 2 2 2 2 0 1 1 2 2 2 1 2 N05 2 2 0 2 1 2 1 2 0 1 0 0 2 2 2 2 0 0 0 0 2 2 1 1 N06 1 1 1 2 1 2 2 0 1 1 0 1 1 1 2 1 0 0 0 0 1 0 0 0 N07 0 0 0 0 0 0 0 0 0 0 0 0 2 2 1 2 2 0 0 0 2 1 2 1 N08 0 1 2 1 0 1 1 1 1 1 1 1 0 1 0 1 1 1 2 1 1 1 1 1 N09 1 0 2 1 0 0 0 1 0 0 0 0 2 1 2 2 0 2 1 1 2 2 2 2 N10 2 0 1 1 2 2 2 1 1 2 2 1 2 1 1 2 0 0 1 1 1 0 2 0 N11 2 1 2 2 2 2 2 1 2 1 0 0 2 2 1 1 0 0 0 0 0 1 0 1 N12 1 0 2 2 2 2 2 2 0 2 1 1 1 0 1 1 0 0 0 0 0 0 0 0 N13 1 1 0 0 1 1 2 2 0 1 0 0 2 2 1 2 0 0 2 2 2 1 1 0 N14 1 1 0 2 1 1 2 1 1 0 0 0 1 1 2 2 0 1 1 0 0 0 0 0 N15 2 1 1 2 1 2 1 1 0 1 2 0 2 1 1 2 0 0 0 0 0 2 0 1 N16 0 0 1 0 1 0 1 1 0 0 0 1 2 2 2 1 0 0 0 0 2 1 2 2 N17 2 2 2 2 1 0 0 1 0 0 0 0 2 2 2 1 1 2 2 2 1 2 2 2 N18 2 1 2 1 1 2 1 2 1 0 1 0 1 2 1 2 0 0 0 0 0 0 0 0 N19 0 2 1 2 2 2 2 1 1 1 0 0 2 2 2 2 0 0 0 0 2 1 1 1 N20 1 0 2 0 1 1 0 1 0 0 0 0 1 2 1 1 0 1 0 0 1 0 1 0 N21 1 0 1 0 1 1 2 1 0 0 0 1 1 1 0 1 1 0 0 1 2 2 1 1 -------------------Condition Verbal (V)------------------- set 1 set 2 set 3 set 4 set 5 set 6 V01 1 0 1 0 0 1 1 0 0 0 0 0 2 1 1 2 0 0 0 0 0 0 0 0 V02 2 2 2 2 2 2 2 2 1 1 0 1 2 1 2 1 0 0 0 0 1 1 2 0 V03 0 0 0 1 0 1 1 1 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 V04 2 2 2 2 1 1 1 1 0 0 0 0 0 2 0 1 0 0 0 0 0 1 0 0 V05 2 1 2 2 1 1 0 1 0 0 0 0 2 1 2 2 0 0 0 0 1 1 2 2 V06 0 1 0 0 2 0 1 2 2 0 0 0 1 0 0 1 0 0 0 0 1 0 2 1 V07 2 2 0 1 0 2 1 1 2 2 0 0 1 0 1 0 0 0 0 0 0 1 1 1 V08 2 0 2 2 2 2 1 2 2 0 1 2 2 1 1 2 0 0 1 0 1 1 1 1 V09 0 2 1 2 2 1 2 2 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 V10 2 1 2 2 1 1 0 2 2 2 1 0 2 2 0 1 0 0 0 0 0 0 0 0 V11 1 2 2 2 1 2 1 1 1 2 2 0 1 0 1 0 0 0 0 0 1 0 0 1 V12 2 2 2 2 1 1 1 2 2 1 1 2 1 0 1 1 0 0 0 0 1 0 1 0 V13 1 1 2 1 2 1 1 2 1 0 1 0 1 0 0 2 0 0 0 0 2 0 1 0 V14 2 1 1 0 1 2 2 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 V15 1 2 1 2 1 0 2 1 1 1 0 1 1 1 2 2 0 1 0 0 0 0 1 0 V16 2 1 2 2 0 2 1 2 2 2 1 1 1 2 2 1 0 0 0 0 1 0 0 1 V17 2 1 0 1 1 2 0 1 0 1 1 0 2 2 2 2 0 1 0 0 2 2 0 1 V18 1 1 1 0 1 1 1 1 1 1 0 1 2 2 1 2 1 0 0 2 1 1 2 2 V19 0 1 0 0 0 0 0 0 0 0 0 0 1 2 2 2 0 2 2 1 2 2 2 2 V20 2 1 2 2 0 1 2 2 0 0 1 0 1 1 2 2 0 0 0 0 1 0 0 2 ------------------Condition Graphical (G)----------------- set 1 set 2 set 3 set 4 set 5 set 6 G01 0 0 2 1 1 0 0 1 0 1 1 1 2 2 2 2 1 2 1 1 2 2 2 1 G02 0 0 1 0 0 2 1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 G03 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 1 0 1 0 1 1 0 0 G04 2 1 0 1 1 0 1 2 0 0 0 0 1 1 2 2 0 0 0 0 0 1 0 1 G05 1 2 1 1 1 2 1 2 2 2 2 2 2 2 2 2 0 1 1 0 2 2 1 2 G06 1 1 2 2 2 0 0 0 1 1 2 0 2 1 2 2 0 0 0 0 0 1 1 2 G07 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 1 0 1 2 0 2 2 1 0 G08 2 2 1 1 2 2 2 1 2 2 2 2 1 2 1 2 1 0 0 0 2 2 2 1 G09 1 2 1 2 0 1 1 0 0 2 1 1 2 2 2 2 0 0 0 1 1 0 0 1 G10 2 1 0 1 1 1 2 1 1 0 0 0 2 0 1 2 0 0 1 0 1 1 0 0 G11 2 2 2 2 2 1 2 2 2 2 1 1 2 2 2 1 0 0 0 0 2 0 0 1 G12 2 0 0 1 2 1 1 1 1 0 1 0 2 2 2 2 0 0 0 1 2 1 2 2 G13 2 2 1 2 1 0 1 0 0 1 0 0 1 2 2 2 0 0 0 0 2 2 1 2 G14 1 1 2 1 0 2 2 1 1 0 2 0 2 2 2 2 0 0 0 0 2 1 0 2 G15 2 0 1 2 1 2 2 2 0 2 0 1 1 2 2 1 0 0 0 0 1 0 1 0 G16 1 2 1 1 1 0 2 1 0 0 1 1 2 1 1 1 0 0 0 0 0 0 0 0 G17 2 2 2 2 2 2 1 2 1 2 2 2 2 2 2 2 0 0 0 0 1 0 2 0 G18 2 1 1 1 1 2 1 1 1 2 1 1 1 1 0 1 1 1 1 2 0 2 2 1 G19 2 1 2 2 0 0 1 0 0 1 1 2 2 2 2 2 0 2 1 0 1 1 1 1 G20 0 0 1 0 0 0 0 0 0 0 0 0 2 2 2 2 0 0 1 0 2 1 2 2 G21 2 1 1 0 2 1 0 2 0 0 0 0 1 1 2 2 0 0 0 0 1 1 1 1