[94.8] Wakker, Peter P., Ido Erev, & Elke Weber (1994), “Comonotonic Independence: The Critical Test between Classical and Rank-Dependent Utility Theories,” Journal of Risk and Uncertainty 9, 195-230.
These data were not used in the analysis.
1st pair: (.50, $2.0; .10, $2.0; .40, $2.0) (safe) versus
(.50, $2.0; .10, $0.0; .40, $3.0) (risky)
2nd pair: (.50, $1.5; .10, $2.5; .40, $2.5) (safe) versus
(.50, $0.0; .10, $0.0; .40, $3.0) (risky)
3d pair: (.60, $0.0; .20, $0.0; .20, $2.0) (safe) versus
(.60, $0.0; .20, $1.0; .20, $5.0) (risky)
4th pair: (.35, $0.5; .40, $1.0; .25, $0.5) (safe) versus
(.35, $0.5; .40, $1.5; .25, $3.0) (risky)
5th pair: (.20, $0.5; .20, $0.5; .60, $0.5) (safe) versus
(.20, $0.5; .20, $0.0; .60, $2.0) (risky)
6th pair: (.10, $1.0; .80, $2.0; .10, $1.0) (safe) versus
(.10, $1.0; .80, $0.0; .10, $4.0) (risky)
7th pair: (.00, $0.0; .20, $1.5; .80, $1.5) (safe) versus
(.00, $0.0; .20, $0.0; .80, $2.0) (risky)
8th pair: (.75, $0.0; .05, $1.5; .20, $1.5) (safe) versus
(.75, $0.0; .05, $0.0; .20, $2.0) (risky)
The stimuli were presented in exactly the same manner as those used in the
analysis, i.e., under four conditions:
------------------Condition Collapsed (C)-----------------
pair: 1 2 3 4 5 6 7 8
c01 2 0 2 2 1 0 1 0
c02 0 0 1 2 1 1 0 2
c03 0 0 2 2 1 0 0 0
c04 2 0 2 2 2 0 1 2
c05 0 0 2 2 0 0 0 0
c06 0 0 2 2 1 0 0 0
c07 0 0 2 2 0 0 0 0
c08 0 0 2 2 2 0 0 2
c09 0 0 2 2 2 0 1 2
c10 2 0 2 2 2 0 0 2
c11 2 0 2 2 2 0 1 1
c12 0 0 2 1 0 0 0 1
c13 2 0 2 2 1 1 1 2
c14 2 0 2 2 2 1 0 1
c15 0 0 2 2 0 0 0 1
c16 0 0 2 2 0 1 0 0
c17 2 0 2 2 2 0 1 0
c18 0 1 2 2 2 0 0 2
c19 0 0 2 2 1 0 0 0
c20 2 0 2 2 2 0 0 2
c21 2 0 2 2 2 0 1 0
c22 0 0 2 2 1 0 0 0
----------------Condition Not collapsed (N)---------------
pair: 1 2 3 4 5 6 7 8
n01 0 0 2 2 2 0 0 2
n02 0 0 2 2 2 0 1 1
n03 0 0 2 2 0 0 0 1
n04 0 0 2 2 2 0 0 1
n05 0 0 2 2 1 0 1 0
n06 0 0 2 2 2 0 0 1
n07 1 0 2 2 1 0 0 0
n08 0 0 1 2 0 1 0 1
n09 2 1 2 1 2 0 1 0
n10 0 0 2 2 2 2 0 2
n11 1 0 2 2 2 0 1 2
n12 2 0 2 2 2 0 1 2
n13 0 0 2 2 0 0 1 1
n14 2 0 2 1 2 0 0 1
n15 0 0 2 2 0 0 0 2
n16 0 0 2 2 0 0 0 1
n17 2 0 2 2 2 0 2 2
n18 1 1 2 2 1 0 0 0
n19 0 0 2 2 2 0 0 1
n20 0 0 2 2 0 0 0 0
n21 0 0 2 1 2 1 0 0
-------------------Condition Verbal (V)-------------------
pair: 1 2 3 4 5 6 7 8
v01 0 0 2 2 2 0 0 0
v02 1 0 2 2 2 2 0 2
v03 0 0 2 2 1 0 0 2
v04 0 0 2 2 1 0 0 2
v05 0 0 2 2 2 0 0 2
v06 0 0 2 2 0 0 0 0
v07 0 0 2 2 0 0 0 1
v08 1 0 2 2 1 1 0 1
v09 0 1 1 2 1 1 0 2
v10 2 0 2 2 1 0 0 2
v11 0 0 2 2 2 2 0 1
v12 0 0 2 2 2 1 1 2
v13 2 0 2 2 1 0 0 0
v14 0 0 2 2 0 0 0 2
v15 1 0 2 2 1 1 1 2
v16 0 0 2 2 0 0 0 0
v17 1 0 2 2 1 0 1 1
v18 1 0 2 2 1 0 2 1
v19 0 0 2 2 2 0 0 0
v20 2 0 2 2 2 0 2 2
------------------Condition Graphical (G)-----------------
pair: 1 2 3 4 5 6 7 8
g01 0 0 2 2 2 0 0 1
g02 0 0 2 2 0 0 0 0
g03 1 0 2 2 2 0 2 2
g04 0 1 2 2 2 1 0 0
g05 2 0 2 2 2 0 2 2
g06 0 1 2 2 0 0 1 1
g07 1 0 2 2 2 0 0 2
g08 2 0 2 2 2 0 0 1
g09 0 0 2 2 1 0 0 2
g10 0 0 2 2 0 0 0 1
g11 2 0 2 2 2 0 0 1
g12 2 0 2 2 2 0 2 0
g13 0 0 2 2 0 0 0 0
g14 0 0 2 2 1 0 0 2
g15 1 0 2 2 2 0 0 1
g16 0 0 2 2 0 0 0 1
g17 1 0 2 2 2 1 1 2
g18 1 0 1 0 1 2 2 1
g19 0 0 2 2 2 0 1 2
g20 0 0 2 2 0 0 0 0
g21 1 0 2 2 2 0 0 0