[94.8] Wakker, Peter P., Ido Erev, & Elke Weber (1994), “Comonotonic Independence: The Critical Test between Classical and Rank-Dependent Utility Theories,” Journal of Risk and Uncertainty 9, 195-230.
These data were not used in the analysis.
1st pair: (.50, $2.0; .10, $2.0; .40, $2.0) (safe) versus (.50, $2.0; .10, $0.0; .40, $3.0) (risky) 2nd pair: (.50, $1.5; .10, $2.5; .40, $2.5) (safe) versus (.50, $0.0; .10, $0.0; .40, $3.0) (risky) 3d pair: (.60, $0.0; .20, $0.0; .20, $2.0) (safe) versus (.60, $0.0; .20, $1.0; .20, $5.0) (risky) 4th pair: (.35, $0.5; .40, $1.0; .25, $0.5) (safe) versus (.35, $0.5; .40, $1.5; .25, $3.0) (risky) 5th pair: (.20, $0.5; .20, $0.5; .60, $0.5) (safe) versus (.20, $0.5; .20, $0.0; .60, $2.0) (risky) 6th pair: (.10, $1.0; .80, $2.0; .10, $1.0) (safe) versus (.10, $1.0; .80, $0.0; .10, $4.0) (risky) 7th pair: (.00, $0.0; .20, $1.5; .80, $1.5) (safe) versus (.00, $0.0; .20, $0.0; .80, $2.0) (risky) 8th pair: (.75, $0.0; .05, $1.5; .20, $1.5) (safe) versus (.75, $0.0; .05, $0.0; .20, $2.0) (risky)The stimuli were presented in exactly the same manner as those used in the analysis, i.e., under four conditions:
------------------Condition Collapsed (C)----------------- pair: 1 2 3 4 5 6 7 8 c01 2 0 2 2 1 0 1 0 c02 0 0 1 2 1 1 0 2 c03 0 0 2 2 1 0 0 0 c04 2 0 2 2 2 0 1 2 c05 0 0 2 2 0 0 0 0 c06 0 0 2 2 1 0 0 0 c07 0 0 2 2 0 0 0 0 c08 0 0 2 2 2 0 0 2 c09 0 0 2 2 2 0 1 2 c10 2 0 2 2 2 0 0 2 c11 2 0 2 2 2 0 1 1 c12 0 0 2 1 0 0 0 1 c13 2 0 2 2 1 1 1 2 c14 2 0 2 2 2 1 0 1 c15 0 0 2 2 0 0 0 1 c16 0 0 2 2 0 1 0 0 c17 2 0 2 2 2 0 1 0 c18 0 1 2 2 2 0 0 2 c19 0 0 2 2 1 0 0 0 c20 2 0 2 2 2 0 0 2 c21 2 0 2 2 2 0 1 0 c22 0 0 2 2 1 0 0 0 ----------------Condition Not collapsed (N)--------------- pair: 1 2 3 4 5 6 7 8 n01 0 0 2 2 2 0 0 2 n02 0 0 2 2 2 0 1 1 n03 0 0 2 2 0 0 0 1 n04 0 0 2 2 2 0 0 1 n05 0 0 2 2 1 0 1 0 n06 0 0 2 2 2 0 0 1 n07 1 0 2 2 1 0 0 0 n08 0 0 1 2 0 1 0 1 n09 2 1 2 1 2 0 1 0 n10 0 0 2 2 2 2 0 2 n11 1 0 2 2 2 0 1 2 n12 2 0 2 2 2 0 1 2 n13 0 0 2 2 0 0 1 1 n14 2 0 2 1 2 0 0 1 n15 0 0 2 2 0 0 0 2 n16 0 0 2 2 0 0 0 1 n17 2 0 2 2 2 0 2 2 n18 1 1 2 2 1 0 0 0 n19 0 0 2 2 2 0 0 1 n20 0 0 2 2 0 0 0 0 n21 0 0 2 1 2 1 0 0 -------------------Condition Verbal (V)------------------- pair: 1 2 3 4 5 6 7 8 v01 0 0 2 2 2 0 0 0 v02 1 0 2 2 2 2 0 2 v03 0 0 2 2 1 0 0 2 v04 0 0 2 2 1 0 0 2 v05 0 0 2 2 2 0 0 2 v06 0 0 2 2 0 0 0 0 v07 0 0 2 2 0 0 0 1 v08 1 0 2 2 1 1 0 1 v09 0 1 1 2 1 1 0 2 v10 2 0 2 2 1 0 0 2 v11 0 0 2 2 2 2 0 1 v12 0 0 2 2 2 1 1 2 v13 2 0 2 2 1 0 0 0 v14 0 0 2 2 0 0 0 2 v15 1 0 2 2 1 1 1 2 v16 0 0 2 2 0 0 0 0 v17 1 0 2 2 1 0 1 1 v18 1 0 2 2 1 0 2 1 v19 0 0 2 2 2 0 0 0 v20 2 0 2 2 2 0 2 2 ------------------Condition Graphical (G)----------------- pair: 1 2 3 4 5 6 7 8 g01 0 0 2 2 2 0 0 1 g02 0 0 2 2 0 0 0 0 g03 1 0 2 2 2 0 2 2 g04 0 1 2 2 2 1 0 0 g05 2 0 2 2 2 0 2 2 g06 0 1 2 2 0 0 1 1 g07 1 0 2 2 2 0 0 2 g08 2 0 2 2 2 0 0 1 g09 0 0 2 2 1 0 0 2 g10 0 0 2 2 0 0 0 1 g11 2 0 2 2 2 0 0 1 g12 2 0 2 2 2 0 2 0 g13 0 0 2 2 0 0 0 0 g14 0 0 2 2 1 0 0 2 g15 1 0 2 2 2 0 0 1 g16 0 0 2 2 0 0 0 1 g17 1 0 2 2 2 1 1 2 g18 1 0 1 0 1 2 2 1 g19 0 0 2 2 2 0 1 2 g20 0 0 2 2 0 0 0 0 g21 1 0 2 2 2 0 0 0