Curriculum vitae
Laurens de Haan
(PDF
version)
Overview
-
Born
January 15, 1937
-
1960-1966
-
Study of Mathematics, University of Amsterdam.
-
1966-1972
-
Theoretical and applied work in probability and statistics at the Mathematisch
Centrum, Amsterdam
-
1970
-
Doctorate in Mathematics, University of Amsterdam (Thesis: "On regular
variation and sample extremes", advisor: Prof. J. Th. Runnenburg).
-
1971-1972
-
Visiting assistant professor, Stanford University.
-
1973-
-
Professor of probability and mathematical statistics, Economische Faculteit,
Erasmus Universiteit (emeritus, since 1998).
-
1977-
-
Fellow I.M.S.
-
1994
-
Guest Professor (a honorary degree), Peking University.
- 1999-
- Member research team University of Lisbon, Department of Statistics.
-
2000
-
Doctor honoris causa, Universidade de Lisboa.
- 2008-2011
- Professor of Statistics (part time), University of Tilburg.
- 2010
- Medallion lecture, I.M.S. annual meeting, Gothenburg.
Doctoral students
E. Omey (1982, partially), J.B.G. Frenk (1983), J.L. Geluk (1983), S. Schim
van der Loeff (1987, partially), H. Brozius (1989), A. Dekkers (1991),
Huang Xin (1992),
A.K. Sinha (1997),
L. Peng (1998), G. Draisma (2001),
T. Lin (2002), A. Ferreira (2002),
D. Li (2004), C. Neves (2006,
partially), C. Zhou
(2008), J. Cai (2012).
Publications
-
L. de Haan and J.Th. Runnenburg (1969). Some remarks concerning the quotient
of sample median and sample range for a sample of size 2n + 1 from a normal
distribution. Statistica Neerlandica 23, 227-234.
-
L. de Haan (1970). Note on a paper by H.G. Tucker. Annals Math. Statist.
41, 729-732.
-
L. de Haan (1970). On regular variation and its application to the weak
convergence of sample extremes. Thesis, University of Amsterdam / Mathematical
Centre tract 32.
-
L. de Haan (1971). A form of regular variation and its application to the
domain of attraction of the double exponential distribution. Z. Wahrscheinlichkeitstheorie
17, 241-248.
-
L. de Haan and A. Hordijk (1972). The rate of growth of sample maxima.
Annals
Math. Statist. 43, 1185-1196.
-
A.A. Balkema and L. de Haan (1972). On R. von Mises' condition for the
domain of attraction of $exp(-e^{-x})$. Annals Math. Statist. 43,
1352-1354.
-
L. de Haan and S.I. Resnick (1973). Almost sure limit points of record
values. Journal of Appl. Prob. 10, 528-542.
-
L. de Haan (1974). On sample quantiles from a regularly varying distribution
function. Annals of Statistics 2, 815-818.
-
A.A. Balkema and L. de Haan (1974). Residual life time at great age. Annals
of Probability 2, 792-804.
-
L. de Haan (1974). Equivalence classes of regularly varying functions.
Stochastic
Processes and Appl. 2, 243-260.
-
L. de Haan (1974). On random indices and limit distributions. Annals
of Probability 2, 181.
-
L. de Haan (1974). Weak limits of sample range. Journal of Appl. Prob.
11, 836-841.
-
L. de Haan (1976). An Abel-Tauber theorem for Laplace transforms. J.
London Math. Soc. (2) 13, 537-542.
-
L. de Haan (1976). Sample extremes: an elementary introduction.
Statistica
Neerlandica 30, 161-172.
-
L. de Haan (1977). On functions derived from regularly varying functions.
J.
Austr. Math. Soc. 23 (series A), 431-438.
-
L. de Haan and S.I. Resnick (1977). Limit theory for multivariate sample
extremes. Z. Wahrscheinlichkeitstheorie 40, 317-337.
-
A.A. Balkema and L. de Haan (1978). Limit distributions for order statistics.
Theoria
Veroatnostei i primenenia 23, I 80-96, II 358-375.
-
L. de Haan and E. Taconis-Haantjes (1978). Asymptotic properties of a correlation
coefficient type statistics connected with the general linear model. Journal
of Econometrics 7, 15-21.
-
L. de Haan (1978). A characterization of multidimensional extreme-value
distributions. Sanky\`a, The Indian Journal of Statistics 40, series
A, 85-88.
-
L. de Haan and G. Ridder (1979). Stochastic compactness of sample extremes.
The
Annals of Probability 7, No. 2, 290-303.
-
L. de Haan and S.I. Resnick (1979). Conjugate $\pi$-variation and process
inversion. The Annals of Probability 7, 1028-1035.
-
L. de Haan and E. Taconis-Haantjes (1979). On Bahadur's representation
of sample quantiles. Ann. Inst. Statist. Math. 31, part A, 299-308.
-
L. de Haan and S.I. Resnick (1979). Derivatives of regularly varying functions
in $IR^d$ and domains of attraction of stable distributions. Stochastic
Processes and their Applications 8, 349-355.
-
A.A. Balkema, J.L. Geluk and L. de Haan (1979). An extension of Karamata's
tauberian theorem and its connection with complementary convex functions.
Quart.
J. Math. Oxford (2) 30, 385-416.
-
L. de Haan and S.I. Resnick (1980). A simple asymptotic estimate for the
index of a stable distribution. Journal of the Royal Stat. Soc.
B 42, 83-87.
-
L. de Haan (1981). Estimation of the minimum of a function using order
statistics.
Journal of the American Stat. Ass. 76, 467-469.
-
J.L. Geluk and L. de Haan (1981). On functions with small differences.
Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen,
series A, 84, 187-194 and Indigationes Mathematicae 43.
-
L. de Haan and S.I. Resnick (1981). On the observation closest to the origin.
Stochastic
Processes and their Applications 11, 301-308.
-
L. de Haan and S.I. Resnick (1982). Local limit theorems for sample extremes.
The Annals of Probability 10, 396-413.
-
L. de Haan and E. Omey (1983). Integrals and derivatives of regularly varying
functions in $R^d$ and domains of attraction of stable distributions II.
Stochastic
Processes and its Applications 16, 157-170.
-
L. de Haan (1984). A spectral representation for max-stable processes.
Annals
of Probability 12, 1194-1204.
-
L. de Haan, E. Omey and S.I. Resnick (1984). Domains of attraction and
regular variation in $IR^d$ III. Journal Multivariate Analysis 14,
17-33.
-
L. de Haan and S.I. Resnick (1984). Asymptotically balanced functions and
stochastic compactness of sample extremes. Annals of Probability
12, 588-608.
-
L. de Haan and S.I. Resnick (1984). Stochastic compactness and point processes.
Journal
Australian Mathematical Society, (Series A) 37, 307-316.
-
L. de Haan and U. Stadtm\"uller (1985). Dominated variation and related
concepts and Tauberian theorems for Laplace transforms.
Math. Analysis
Appl. 108, 344-365.
-
L. de Haan (1986). A stochastic process that is autoregressive in two directions
of time.
Statistica Neerlandica 40, 39-45.
-
J.L. Geluk, L. de Haan and U. Stadtm\"uller (1986). A Tauberian theorem
of exponential type and related results. Canadian J. Math. 38, 697-718.
-
L. de Haan and J. Pickands (1986). Stationary min-stable stochastic processes.
Probab.
Th. Rel. Fields 72, 477-492.
-
L. de Haan and S.I. Resnick (1987). On regular variation of probability
densities. Stoch. Processes and Applic. 25, 83-93.
-
J.L. Geluk and L. de Haan (1987). Regular variation, extensions and
Tauberian theorems. C.W.I. Tract 40. Centrum voor wiskunde en informatica
/ Mathematisch Centrum, Amsterdam.
-
H. Brozius and L. de Haan (1987). On limiting laws for the convex hull
of a sample. J. Applied Probability 24, 852-862.
-
L. de Haan and E. Verkade (1987). On extreme value theory in the presence
of a trend. J. Applied Prob. 24, 62-76.
-
L. de Haan and I. Weissman (1988). On the index of the outstanding observation
among $n$ independent ones. Stoch. Proc. and Applic. 27, 317-329.
-
A.A. Balkema and L. de Haan (1988). A.s. continuity of stable moving average
processes with index $<$ 1. Annals of Probability 16, 333-343.
-
L. de Haan and S.T. Rachev (1989). Estimates of the rate of convergence
for max-stable processes. Annals of Probability 17, 651-677.
-
A.L.M. Dekkers and L. de Haan (1989). On the estimation of the extreme-value
index and large quantile estimation.
Annals of Statistics 17, 1795-1832.
-
A.L.M. Dekkers, J.H.J. Einmahl and L. de Haan (1989). A moment estimator
for the index of an extreme-value distribution. Annals of Statistics
17, 1833-1855.
-
L. de Haan, S.I. Resnick, H. Rootz\'en, C. de Vries (1989). Extremal behaviour
of solutions to a stochastic difference equation with applications to ARCH-processes.
Stochastic
Processes and Applications 32, 213-224.
-
L. de Haan and R.L. Karandikar (1989). Embedding a stochastic difference
equation in a continuous-time process. Stochastic Processes and Applications
32, 225-235.
-
L. de Haan (1989). A Brownian bridge connected with extreme values.
Sankhy\`a, series A 52, 157-165.
-
A.A. Balkema and L.de Haan (1990). A convergence rate in extreme-value
theory. J. Applied Probability 27, 577-585.
-
L. de Haan (1990). Fighting the arch-enemy with mathematics. Statistica
Neerlandica 44, 45-68.
-
V. Dijk and L. de Haan (1992). On the estimation of the exceedance probability
of a high level. Order statistics and nonparametrics: Theory and applications.
P.K. Sen and I.A. Salama (Editors), 79-92. Elsevier, Amsterdam.
-
L. de Haan and H. Rootz\'en (1993). On the estimation of high quantiles.
J.
Statist. Planning and Inference 35, 1-13.
-
A.A. Balkema, L. de Haan and R.L. Karandikar (1993). The maximum of $n$
independent stochastic processes. J. Applied Probability 30, 66-81.
-
L. de Haan and S.I. Resnick (1993). Estimating the limit distribution of
multivariate extremes. Communications in Statistics - Stochastic Models
9, 275-309.
-
J. Einmahl, L. de Haan and Huang Xin (1993). Estimating a multidimensional
extreme-value distribution. J. Multiv. Analysis 47, 35-47.
-
A.L.M. Dekkers and L. de Haan (1993). Optimal choice of sample fraction
in extreme-value estimation. J. Multiv. Analysis 47, 173-195.
-
L. de Haan and S.I. Resnick (1994).Random transformations for Poisson processes
and sup-integral processes. Communications in Statistics - Stochastic
Models 10, 205-221.
-
L. de Haan, D.W. Jansen, K. Koedijk and C.G. de Vries (1994). Safety first
portfolio selection, extreme value theory and long run asset risks. Extreme
value theory and applications (J. Galambos et al., eds.) 471-487.
Kluwer, Dordrecht.
-
L. de Haan and S. Resnick (1994). Estimating the home range. J. Appl.
Prob. 31, 700-720.
-
L. de Haan (1994). Estimating exceedance probabilities in higher-dimensional
space. Communications in Statistics - Stochastic Models 10, 765-780.
-
K. Aarssen and L. de Haan (1994). On the maximal life span of humans.
Mathematical
Population Studies 4 (4), 259-281.
-
L. de Haan (1994). A unified criterion for the domain of attraction of
extreme value distributions. Th. Prob. Appl. 39, 323-328.
-
L. de Haan and X. Huang (1995). Large quantile estimation in a multivariate
setting. J. Multiv. Anal. 53, 247-263.
-
A.A. Balkema, J.L. Geluk and L. de Haan (1995). Measuring asymptotic convexity.
Publ.
de l'Inst.Math. (Beograd) 58(72), 106-116.
-
L. de Haan (1996). Von Mises conditions in second order regular variation.
J.
Math. Analysis Appl. 197, 400-410.
-
G. Draisma and L. de Haan (1996). An estimator for the extreme-value index.
Communications
in Statistics - Theory and Methods 25, 685-694.
-
L. de Haan and S. Resnick (1996). Second order regular variation and rates
of convergence in extreme value theory. Annals of Probability 24,
97-124.
-
S. Cheng, L. de Haan and J. Yang (1996). Asymptotic distributions of multivariate
intermediate order statistics. Th. Prob. Appl. 41, 840-853.
-
L. de Haan and U. Stadtm\"uller (1996). Generalized regular variation of
second order. J. Australian Math. Soc. (Series A) 61, 381-395.
-
S. Cheng, L. de Haan and X. Huang (1997). Rate of convergence of intermediate
order statistics. J. Theoretical Probability 10, 1-23.
-
L. de Haan and L. Peng (1997). Rate of convergence for bivariate extremes.
J.
Multivariate Analysis 61, 195-230.
-
J. Einmahl, L. de Haan and A. Sinha (1997). Estimation of the spectral
measure of an extreme-value distribution.
Stoch. Proc. Appl. 70,
143-171.
-
J. Geluk, L. de Haan, S. Resnick and C. Starica (1997). Second order regular
variation, convolution and the central limit theorem.
Stoch. Proc. Appl.
69, 139-159.
-
L. de Haan and L. Peng (1997). Slow convergence to normality: an Edgeworth
expansion without third moment.
Prob. and Math. Stat., 17, 395-406.
-
L. de Haan and L. Peng (1998). Comparison of tail index estimators. Statistica
Neerlandica, 52, 60-70.
-
L. de Haan and J. de Ronde (1998). Sea and wind: multivariate extremes
at work. Extremes, 1, 7-45.
-
L. de Haan and S. Resnick (1998). On asymptotic normality of the Hill estimator.
Stoch.
Models, 14, 849-867.
-
Holger Rootz\'en, M.R. Leadbetter and Laurens de Haan (1998). On the distribution
tail array sums for strongly mixing stationary sequences. Annals Appl.
Probab, 8, 868-885.
-
L. de Haan and T. Themido Pereira (1999). Estimating the index of a stable
distribution. Statistics and Probability letters, 41, 39-55.
-
H. Drees and L. de Haan (1999). A note on conditions for quantile process
approximations.
Stoch. Models, 15, 485-502.
-
L. de Haan, L. Peng and H. Iglesias Pereira (1999). Approximation by penultimate
stable laws. Probability and Mathematical Statistics, 19, 105-121.
-
L. de Haan and A.K. Sinha (1999). Estimating the probability of a rare
event. Annals of Statistics, 27, 732-759.
-
L. de Haan and L. Peng (1999). Exact rates of convergence to a stable law.
J.
London Math. Soc. , 59, 1134-1152.
-
M.I. Gomes and L. de Haan, (1999). Approximation by penultimate extreme-value
distributions. Extremes, 2(1), 71-85.
-
G. Draisma, L. de Haan, L. Peng and T. Themido Pereira (1999). A bootstrap
based method to achieve optimality in estimating the extreme-value index.Extremes,
2, 367-404.
-
H. Drees, L. de Haan and S. Resnick (2000). How to make a Hill plot, Annals
of Statistics, 28, 254-274 .
-
J. Geluk and L. de Haan (2000). Stable probability distribution and their
domains of attraction: a direct approach, Prob. and Math. Stat. 20,
169-188.
-
L. Canto e Castro, L. de Haan and M.G. Temido (2000). Rarely observed maxima.
Th.
Prob. Appl. 45, 779-782.
-
P. Embrechts, L. de Haan and X. Huang (2000). Modelling multivariate extremes.
In: Extremes and integrated risk management, P.L. Embrechts ed.,
59-70, Risk books, Risk Waters Group.
-
J. Danielsson, L. de Haan, L. Peng and C.G. de Vries (2001). Using a bootstrap
method to choose the sample fraction in tail index estimation. J. of
Multivar. Anal., 76,226-248.
-
L. de Haan and T. Lin (2001). On convergeance towards an extreme value
distribution in C[0,1]. Annals of Prob. 29, 467-483.
-
S. Cheng and L. de Haan (2001). Penultimate approximation for Hill's estimator.
Scand. J. Stat.28, 569-575.
-
J. Einmahl, L. de Haan and V. Piterbarg (2001). Non-parametric estimation
of the spectral measure of an extreme value distribution.
Annals of
Statistics, 29,1401-1423.
-
D. Dietrich, L. de Haan and J. Huesler (2002).
Testing extreme value conditions.
Extremes 5, 71-85.
-
J. Geluk and L. de Haan (2002). On bootstrap sample size in extreme value theory.
Publ. de l'Inst. Math., Nouvelle serie, 71(85), 21-25.
-
L. de Haan, D. Li, L. Peng and H. Pereira Iglesias (2002).
Alternative conditions for attraction to stable vectors. Probability
and Mathematical Statistics, 22, 303-317.
-
M.Ivette Gomes, Laurens de Haan and Liang Peng (2002). Semi-parametric
estimation of the second order parameter in statistics of extremes.
Extremes, 5, 387-414.
-
M.I. Fraga Alves, M.I. Gomes and L. de Haan (2003). A new class of semiparametric
estimators of the second order parameter. Portugalia Mathematica 60, 193-213.
-
Holger Drees, Laurens de Haan and Deyuan Li (2003).
On large deviations for extremes. Stat.Prob.Letters, 64, 51-62.
-
A. Ferreira, L. de Haan and L. Peng (2003). On optimizing the estimation of high
quantiles of a probability distribution. Statistics, 37, 401-434.
-
M.I. Fraga Alves, L. de Haan and T.Lin (2003).
Estimation of the parameter controlling the speed of convergence in extreme
value theory. Math.Methods of Stat. 12, 155-176.
-
Laurens de Haan and Tao Lin (2003).
Weak consistency of extreme value estimators in C[0'1]. Annals of
Statistics 31, 1996-2012.
-
G. Draisma, H. Drees, A. Ferreira and L. de Haan (2004).
Bivariate tail estimation:
dependence in asymptotic independence. Bernoulli 10, 251-280.
-
H. Drees, A. Ferreira and L. de Haan (2004).
On maximum likelihood estimation of the extreme value index. Ann.of Appl.Prob
14, 1179-1201.
-
I.Gomes, L. de Haan and D. Pestana (2004).
Joint exceedances of the ARCH process. J. Appl. Prob. 41, 919-926.
-
L. de Haan and T.T. Pereira (2006). Spatial
Extremes: Models for the stationary case. Ann. Statist. 34, 146-168.
-
L. de Haan and A. Ferreira (2006). Extreme Value Theory: An Introduction. 417
pages. Springer.
-
H. Drees, L. de Haan and D.Li (2006).
Approximations to the tail empirical distribution function with application
to testing extreme value conditions. J. Stat. Planning and Inference 136,
3498-3538.
-
L. Canto e Castro and L. de Haan (2006).
A class
of distribution functions with less bias in extreme value estimation. Stat.Prob.Letters,
76, 1617-1624.
-
J. H. J. Einmahl, L. de Haan and D. Li (2006).
Weighted Approximations of Tail Copula Processes with Application to Testing the
Multivariate Extreme Value Condition.
Ann. Statist. 34, 1987-2014.
-
M. I. Fraga Alves, L. de Haan and T. Lin (2006).
Third order extended regular variation. Publ. de l'Institut Mathématique
(PIMB), Nouvelle Série 80, 94, 109-120.
-
M.I. Barao, L. de Haan and D. Li (2007).
Comparison of estimators in multivariate EVT. International J. Statistics and Systems,
2, 75-91.
-
M. I. Gomes, L. de Haan and L. Henriques (2008). Tail index estimation through
the accommodation of bias in the weighted log-excesses. JRSS-B,
70, 31-52.
-
L. de Haan and C. Zhou (2008). On extreme value analysis of a spatial process.
Revstat, 6, 71-81.
-
L. de Haan, C. Neves and L. Peng (2008). Parametric tail copula estimation and
model testing. J. Multivariate Anal. 99, 1260-1275.
-
A. Buishand, L. de Haan and C. Zhou (2008). On
spatial extremes; with application to a rainfall problem. Annals of Applied
Statistics, 2, 624-642.
-
M. I. Fraga Alves, L. de Haan and C. Neves (2009).
A test procedure for detecting super-heavy tails.
J. Stat. Planning and Inference, 139, 213-227.
-
M. I. Fraga Alves, M. I. Gomes, L. de Haan and C.
Neves (2009). Mixed moment estimator and location invariant alternatives. Extremes,
12, 149-186.
-
L. de Haan, C. G. de Vries and C. Zhou (2009).
The expected payoff to Internet auctions. Extremes, 12, 219-238.
-
Z. Kabluchko, M. Schlather and L. de Haan (2009). Stationary max-stable fields associated to negative definite functions.
Annals of Probability, 37, 2042-2065.
-
L. de Haan and C. Zhou (2011). Extreme
residual dependence for random vectors and processes. Adv. in Appl. Probab.,
43, 217-242.
-
J. Cai, J. Einmahl and L. de Haan (2011). Estimation of extreme risk
regions under multivariate regular variation. Annals of Statistics, 39,
1803-1826.
-
A. Ferreira, L. de Haan and C. Zhou (2012).
Exceedance probability of a stochastic process. J. Multiv. Analysis,
105, 241-257.
-
L. de Haan, C. G. de Vries and C. Zhou (2013). The number of active bidders
in Internet auctions, Journal of Economic Theory, 148, 1726-1736.
-
J.H.J. Einmahl, L. de Haan and A. Krajina (2013). Estimating extreme
multivariate quantile regions. Extremes, 16, 121-146.
-
J. Cai, L. de Haan and C. Zhou (2013). Bias correction in extreme value
statistics with index around zero. Extremes, 16, 173-201.
-
A. Ferreira and L. de Haan (2014).
The Generalized Pareto Process; with application. Bernoulli, 20(4),
1717-1737.
- J. Cai, J.H.J. Einmahl, L. de Haan and C.
Zhou (2014). Estimation of the marginal expected shortfall: the mean when
a related variable is extreme. Journal of the Royal Statistical Society,
Series B, 77, 417-442.
- A. Ferreira and L. de Haan (2015). On the
block maxima method in extreme value theory. Annals of Statistics,
43, 276-298.
- A.-L. Fougères, L. de Haan and C. Mercadier
(2015). Bias correction in
multivariate extremes. Annals of Statistics, 43, 903-934
- L. de Haan (2015). Convergence of heteroscedastic extremes.
Statistics and Probability Letters, 101, 38-39.
- H. Drees and L. de Haan (2015). Estimating failure probabilities. Bernoulli,
21(2), 957-1001.
- L. de Haan, A. Klein Tank and C. Neves (2015). On tail trend detection: modeling
relative risk. Extremes, 18, 141-178.
- J.H.J. Einmahl, L. de Haan and C. Zhou (2016) Statistics of heteroscedastic
extremes. Journal of the Royal Statistical Society, Series B, 78,
31-51.
- L. de Haan, C. Mercadier and C. Zhou
(2016) Adapting extreme value statistics to financial time series: dealing
with bias and serial dependence. Finance and Stochastics,
20, 321-354.
Published Invited Lectures etc.
-
A.A. Balkema and L. de Haan
-
"Limit laws for order statistics", Colloquia Math. Soc. J\'anos Bolyai
11 (1974), 17-22.
-
Haan, L. de
-
"Slow variation and characterization of domains of attraction", J. Tiago
de Oliveira (ed), Statistical Extremes and Applications, (1984), 31-48,
Reidel, Dordrecht, Holland.
-
Haan, L. de
-
"Extremal processes", J. Tiago de Oliveira (ed), Statistical Extremes and
Applications, (1984), 297-309, Reidel, Dordrecht, Holland.
-
Haan, L. de
-
"Multivariate regular variation and applications in probability theory",
P.R. Krishnaiah (ed), Multivariate Analysis - VI, (1985), 281-288, Pittsburgh.
-
Haan, L. de
-
"Extremes in higher dimensions: the model and some statistics ", Proceedings
45th Session of the I.S.I. 26.3 (1985), Amsterdam.
-
Haan, L. de
-
"Review of "Regular variation" by N.H. Bingham, C. Goldie and J.L. Teugels
(Cambridge Univ. Press) in: Bulletin of the Amer. Math. Society 19 (1988),
329-332.
-
Haan, L. de
-
"Statistics of extreme values", CWI Quarterly 2 (1989), 101-115.
-
Haan, L. de
-
"Extreme value statistics", in: Extreme Value Theory and Applications (J.
Galambos et al., eds.) (1994), 93-122. Kluwer, Dordrecht.
- Haan, L. de
- "On extreme value theory, or how to learn from almost disastrous events.",
Gulbenkian lecture, DEIO, FC Universidade de Lisboa, 2006.
- Haan, L. de
- "Discussion of 'Copulas: Tales and facts', by Thomas Mikosch", Extremes
(2006), 9, 21-22.
- Haan, L. de
- "Plotting Positions in Extreme Value Analysis", J. Appl. Meteor. Climatol.
(2007), 46, 396.
-
J. L. Geluk, L. de Haan and C. G. de Vries
- "Weak & strong financial fragility", Tinbergen Institute Discussion Paper
(2007), TI 2007-023/2.
Extended visits (1-3 months) for research purposes
-
1975 summer
-
CSIRO, Canberra, Australia.
-
1979, 1987 summer
-
Colorado State University, Fort Collins.
-
1982, 1984, 1988, 1996 summer
-
Center for Stochastic Processes, University of North Carolina at Chapel
Hill.
-
1988 winter
-
I.S.I. at New Delhi.
-
1990, 1991, 1993, 1994, 1995 summer,
-
1990, 1991, 1992 fall
-
Cornell University, Dept. of Operations Research.
-
1992 winter
-
University of Ulm (Germany).
-
1992, 1999 summer
-
ETH (Zuerich).
-
1993 winter
-
Univ. Claude Bernard, Lyon 1.
-
1994 summer
-
Peking University.
-
1995 winter
-
Institut Mittag-Leffler, Stockholm.
-
1997, 1999, 2000 etcetera.
-
University of Lisbon.
-
1998 summer
-
Chalmers University Goeteborg.
-
1999-
-
Universidade de Lisboa
-
2000
-
University of Berne
-
2001
-
Universite de Marne-la-Vallee
-
2002
-
Georgia Institute of Technology
-
Teaching activities
-
Regular undergraduate courses in Probability and Statistics, including
Stochastic Processes.
-
Some optional courses taught:
-
Time series analysis
-
Sufficient statistics
-
Fundamental probability (including measure theory)
-
Stochastic methods in finance
-
Reliability theory
-
Insurance mathematics
-
Extreme value theory
Graduate course (AIO-cursus, najaar 1999) on empirical
processes and extreme values, jointly with John Einmahl.
There are also other lectures
notes.
Other activities
-
"Overschrijdingslijnen", a project based on extreme-value analysis, meant
to provide new standards for the Dutch sea defenses. Joint project with
people from "Rijkswaterstaat" (the Dutch government agency overseeing the
sea defenses, among other things), the Royal Netherlands Meteorological
service and CWI (Centre for Mathematics and Computer Science in Amsterdam).
Commissioned by the Ministry of Public Works (1984-1992).
Report: Dillingh, D. L. de Haan, R. Helmers, G.P. Können
and J. van Malde, 1993: De basispeilen langs de Nederlandse kust; statistisch
onderzoek (in Dutch). Rijkswaterstaat, Dienst Getijdenwateren /RIKZ, Report
DGW-93.023.
-
"Neptune",
a larger scale but similar project, sponsored by the European Union via
the MAST program and in cooperation with BMT Port \& Coastal Limited;
Delft Hydraulics; Rijkswaterstaat; GKSS-Forschungszentrum Geest\-hacht
GmbH; University of Lancaster; University of East Anglia. Novel aspects
are: firstly the wide-ranging set-up starting from climatological data
going down to the water levels and movements near the British and Dutch
coasts and secondly the higher-dimensional statistical set-up in the extreme-value
analysis (1995-1997). Finished March 1997.
-
I have been Associate Dean of the School of Economics (1990-1992).
-
NATO collaborative research grant (1991-1995) with Sidney Resnick, Cornell
University.
-
European Union grant "Training through research" (cat. 40) in the "Training
and Mobility of Researchers" program. University of Lisbon, January through
June 1997.
-
"Extreme interest rates", a project for ING insurance company; jointly
with H. Drees, Heidelberg (1999-2000).
06-11-2014