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Chapter 1: Limit Distributions and Domains of Attraction

page line error/unclear/missing
8 -0 (complement)
12 14 ,
b = (2 log )" - loglogn+lol§/g2(47z)
(2logn)
20 -3 |... estimator of vy (Section 3.5).

Next we show....

Chapter 2: Extreme and Intermediate Order Statistics

page line error/unclear/missing
40 -2 ..., as we shall see.

The following result ...
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correction
Corollary 1.1.3A  For x>0
lim A _ _y
loglogn+log(4r)
2(2logn)"?

b, =(2logn)"* -

... estimator of y (Section 3.5).

The necessary and sufficient condition for a distribution function to belong to the
domain of attraction of an extreme value distribution is sometimes called “the
extreme value condition”.

Next we show....

correction

..., as we shall see.

The asymptotic behavior of intermediate order statistics is important for statistics
of extreme values since any meaningful estimator is based on (extreme and)
intermediate order statistics (see Chapter 3).

The following result ...

\/E ( nU;(wl,n _ 1]
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Chapter 3: Estimation of the Extreme Value Index and Testing

page line error/unclear/missing
77 6 A
PC,
104 L ()| <ex
111 7 Then (3.6.5) becomes

10 and (3.6.6) becomes

113 1 The “negative Hill estimator” was
proposed by Falk (1995).

Chapter 4: Extreme Quantile and Tail Estimation

page line error/unclear/missing
128 | label yeﬁical log (1+ 7X) / X
axis
Fig.4.2(b)
130 -7 ... the moment estimator of y. We
define...
134 -12 Theorem 4.3.1
135 -5 U (tx)-U(t)
a(t)
138 10 Theorem 4.3.8
140 8 1+4y+5y° +2y° +2y°
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A

PC,

v, (x)‘ <ex
Then (3.6.5) (multiplied by f(t)) becomes

and (3.6.6) (multiplied by f(t)) becomes
The “negative Hill estimator” was proposed by Smith and Weissman (1985).

correction

log(1+yx)/ y

... the moment estimator of . In order to find an estimator for the scale a (n/k) we
use relation (3.5.3) for j = 1 and define...

Theorem 4.3.1 (de Haan and Rootzén (1993))
U (tx)-U (t)
3, (t)
Theorem 4.3.8 (Dijk and de Haan (1992))
L+dy+577 +2p° = (1+y) (1+2y)
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Basic Theory in higher dimensional space

line
-8

-12

1to9

-11

error/unclear/missing

U, ([n]) etc.

Remark 6.1.8 Relations (6.1.15) does not
hold for all Borel sets Ay .

...>0and v(0A)=0,and any ...
(6.1.24) ...

”Jp ( cos@ sind
i V.
X y

j‘l’(de).

0

Definition 6.1.13 We call ...

Clearly G" and G{" ...
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correction

U,(n) etc.

Relations (6.1.15) can be written
P(Ai,y)=eXp{—v(Ax,y)} (6.1.15%)

Where P is the probability measure with distribution function Gg. Relation
(6.1.15%) does not necessarily hold for Borel sets A not of the form (6.1.16)

...>0,and any ...

(6.1.24)

., S

cosf sind

/2 .
_ I (cos@vsmﬁjq](de).
o L X y

Definition 6.1.13 A distribution function G is called a max-stable distribution if
there are constants A,, C, >0, B, and D, such that for all X,y and n=1,2,...

G" (An X+ B, Chy+Dp) =G(X,y) .
It is easy to see that any distibution function G satisfying (6,1,25) is max-stable
and also G(ax+ f, yy+ 0) where «, y are arbitrary positive constants and S, &
arbitrary real constants. Since any max-stable distribution is in the class of limit
distributions for (6.1.1), we get all the max-stable distributions this way. The class
of...

Clearly G,(_n) and GS‘) are max-stable distributions with marginal distributions

exp(—C/x) where C is a generic constant and there ...
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Chapter 7:

page
252
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15

16

18

converges to 2t

= - log Go(x,y) with Gy from Theorem
6.1.1.

r’ q(or, r(1-9)).
Let {r i,j}di,j=1 be a matrix

the random vector (V% -y 115 Vj, ..., V3

Faj Vi)

two-dimensional simple distribution
function can be

Vo twice

comptem@wt

Estimation of the Dependence Structure

line
15

error/unclear/missing

... a max-stable distribution function.
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converges to g(x,y) 1 =27 ...

= ”{s>x}U{t>y} g(s,t)dsdt forx,y eR.
r’ q (6r, r(1- 8)) =q (6, (1- 6)) (cf. Coles and Tawn (1991)).
Let {rij}i=12:j-12,..4 bea matrix

the random vector (V- r1j Vi, V%1 12 V)
two-dimensional distribution function with Fréchet marginals can be

A twice

6.14. Let (X,Y) have a standard spherically symmetric Cauchy distribution. Show
that the probability distribution of (|X|,|Y|) is in the domain of attraction of an
extreme value distribution with uniform spectral measure V. Show that the
probability distribution of (X,Y) is also in a domain of attraction. Find the limit
distribution.

correction

... a max-stable distribution function. The marginal distribution are
éo(x,oo) = exp—(%) and éo(oo, y)= exp—(%) for some positive a; and a,
not necessarily one. Hence Go is not necessarily simple max-stable (cf.
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Chapter 8:
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273
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1,2

13
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18

-10

Estimation of the Probability of a Failure Set

line
-0
2

-7

=X+ Y-LXY) .

... does not imply asymptotic
independence.

EW (X1, ..., Xa) W (X, .. Xa) = 2 (R (X1,
e Xd) NR (X, ..., Xq))

and N is a standard normal random
variable.
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Definition 6.1.13).

Not all inequalities have to hold, but at least one of them
Q(x,2)=0,

Q(o,y)=0.

N

.. =X+Yy-LXY) =R XYy).

... does not imply asymptotic dependence.

EW X, oo X)) WY1, ., Vo) = (R (X1, ..., Xa) N R (Y1, ..., Yd))

and N indicates a normal probability distribution.

error/unclear/missing correction
complement i.e. Qn = Cpn S (assumption), where ...
more detail below; cf. Theorems 8.2.1 and more detail in section 8.2.; cf. (8.2.7), (8,2,8) and (8,2,15))
8.3.1
log® (c,X) log® (c,X)
2Jk
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Chapter 9: Basic Theory in C[0,1]

page line error/unclear/missing correction
301 11 >0 and v(6A)=0,andany a>0, >0 andany a>0,
304 -1’-2’ -3 §19§29§35"' (Zlaﬂ.l)9(22:7[2):(237”3):-'-
lI))e fa realization of the point process. pe g realization of the point process where Z, € (0,00]and 7, € C;"[0,1]. Define
efine
: =V Z7, .
=V g =Y A
306 7 to19 These lines should be indented (belong to (2)).
11 First we note that this implies First we note that this assumption implies
307 -12 d k k
n(s)=y, ¢i(s) n(s)=v, ¢(5)
-6
Corollary 9.4.5 Corollary 9.4.5 (cf. M. Schlather (2002))
All simple max-stable processes in All simple max-stable processes 77 in C*[0,1]can be generated in the following
C*[0,1] can be generated in the following way.
4 way.
stochastic processes Vi, Vz,... in C*[0,1] stochastic processes Vy, Va,... in C*[0,1]:={f e C[0,1]: f >0}
308 6 ... Resnick (1977). ... Resnick (1977). Let W be two-sided Brownian motion:
: W*(s) for s>0
Wi(s)= V(& for
W~ (-s) fors<0
where W™ and W™ are independent Brownian motions.
n the vest of the example change W into W
311 -5 Theorem 9.5.1 Theorem 9.5.1 (de Haan and Lin (2001))
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5

Theorem 9.6.1 (Resnick and Roy
(1991))

... of the theorem is easy.

Next we turn ...
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Theorem 9.6.1 (Resnick and Roy (1991) and de Haan(1984))

... of the theorem is easy. [ |

Corollary 9.6.8A Let {(Zi,Ti )}Oil be a realization of a Poisson point process on

(0,0]x R with mean measure (dr/rz)xd/l (A Lebesgue measure). If 7 isa
simple max-stable process in C*(IR), then there exists a family of functions
f(t)(s,t eR) with
1. for each t e R we have a non-negative continuous function
f (t) ‘R— [0,00),
2. foreach seR

T fo(t)dt=1, (9.6.7A)

—00

3. for each compact interval 1 e R

0

Isup fo(t)dt <o,

sel
—00

such that {U(S)}SERi {\jzi fS(Ti)} . (9.6.8R)

i=1
Conversely every process of the form exhibited at the right-hand side of (9.6.8A)
with the stated conditions, is a simple max-stable process in C* (R)

Proof. Let H be a probability distribution function with a density H' that is
positive for all real X. With the functions fs from Theorem 9.6.7 define the

functions f, (t) = f, (H (t)) H'(t). Since forany s,s,,...,5;,€R and

Xi» Xy,...s X pOSItive

© fo(t f.(t
maxﬁ dt = | max Y) 4
-0 [<i<d Xi

b
0 1<i<d X
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14,16,20,24

18, 22,25

16, 18, 21, 22,
23,24

26

-12#),
-6, -8

-6

5,6

1 (3#)
2 (24)
3 (34)
11 2#)
12,13

-5

10 (2#)
11 (2#)
12 (2#)

[0,1]
!
!

distributions.

W

... independent Brownian motions.

WU y—x
¢ q{?‘TJ
W
X
W
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the representation of the corollary follows easily from that of Theorem 9.6.8. B

Next we turn ...

I
T;

distributions. [ |

*

W

... independent two-sided Brownian motions (cf. correction to Example 9.4.6) .

[ VU L y—x
e Q(TJFTJ

*

W
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-6 Hence for s; <0<5,

2 Let W be Brownian motion independent
of Y. Consider the process...

-14 a>0
Example 9.8.2 [Remove the text of the example
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Hence for s; <0 <S5, and in fact for all real s;, S

Let W' be two-sided Brownian motion:
. W+ fe >0
W (s) = (s) fors
W (-s) fors<0

where W™ and W are independent Brownian motions. Let Y and W be
independent. Consider the process...

n the vest of the example change W into W

a>1

Example 9.8.2 (extension of Brown and Resnick (1977)) Let {X (s)}__bean

Ornstein- Uhlenbeck process, i.e.,
X (s)=1 e‘S/Z(N +IOSGU/2dW+ (u))

{s>0}

{s<0}

+1 eS/z(N+IOSe“/2dW‘(u))

with N, W™ and W ~ independent , N a standard normal random variable and w*
and W~ standard Brownian motions. Since for S #t the random vector (X(S),
X(1)) is multivariate normal with correlation coefficient less than 1, Example 6.2.6
tells us that relation (9.5.1) can not hold for any max-stable process in C[0,1]:
since Y has continuous sample paths, Y(S) and Y(t) can not be independent. Hence
we compress space in order to create more dependence, i.e., we consider the

convergence of
{V b, (xi (bin—bn ]} (9.8.4)
=l n seR

in C [—SO, So] for arbitrary sp > 0, where X;, Xy, ... are independent and identically

distributed copies of X and the b, are the appropriate normalizing constants for
the standard one-dimensional normal distribution, e.g., (cf. Example 1.1.7)

b, = (2 logn—loglogn— log(47z))l/2 . Then

11/21/2010
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_ e—\S\/(zbﬁ) (bn (N _bn)_l_an'(\)SVbnz RIERYYE (U)—l—(l— 5‘/(2" )jsz

where W*(s) is W*(s) for s>0 and W™ (s) for s <0. Note that uniformly for
|s|<s,

Further, since e/ :1+O(1/b§) for |u|<s, /b7,

b, [ e 20w (u) = (1+o(bizj]bnvvi (L%']

Finally, for |S| <S,,

(1—e3/(2b“2)jb§ _Blof 1),
2 b?

It follows that

|
-+ D s (1)) o)

We write W (|s]):=b,W*(|s|/b;

HOEN)
T o

11/14 11/21/2010

Then W is also Brownian motion. We have




328 -7 independent of V
329 1 u>0

Chapter 10: Estimation in C[0,1]

page line error/missing
332 -2 |Theorem 10.2.1
336 3 ~ 1<
1—Fns (X) = H 2 I{Xi(s)>x}
339 -3 |Theorem 10.4.1
341 -3 C n-k+1,n
352 6 UL (S)

12 /14
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Hence the limit of (9.8.4.) is the same as that of

{\n/l(bn (N —bn)+VVi(ISI))—§} : (9.8.5)

The rest of the proof runs as in the previous example.

One finds that the sequence of processes (9.8.5) converges weakly in
C[-S,,5,] hencein C(R),to

(toez i)

with {Z;}the point process from (9.8.1).

Note that the point process {Z;} and the random processes W, are
independent.

independent of Y

x>0

correction
Theorem 10.2.1 (de Haan and Lin (2003))

~ 1a
1—Fns (X) ::_Zl{xj(s)>x}'

n j:1
Theorem 10.4.1 (de Haan and Lin (2003))
C n-k,n
v (S)
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Appendix B: Regular Variation and Extensions
page line error correction
365 |-1and-3 (B.1.6) (B.1.16)
366 5 exp (tntegral} exp(integral)
370 -10 f (t):exp[logt] f (t):exp{—[logt]}
375 -10  (B.1.23) (B.2.12)
(B.1.24) (B.2.13)
9  |(B.1.24) (B.2.13)
376 -9 Hence f(t) is bounded for t>t, . |Hence f(t) is locally bounded for t >t,.
379 3 f(oo)—f(t): f(oo)—f(t)~
380 9 — x4 _ x4
L2 X0 et <ine) 1=x
1 _51
381 -8 From Remark B.2.14(2) it From part 3 of the present proposition it follows

follows
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