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Chapter 1:    Limit Distributions and Domains of Attraction 
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20 -3 … estimator of  γ (Section 3.5). 
 
   Next we show…. 

 … estimator of  γ (Section 3.5). 
     The necessary and sufficient condition for a distribution function to belong to the 
domain of attraction of an extreme value distribution is sometimes called “the 
extreme value condition”. 
     Next we show…. 

 

 

Chapter 2:    Extreme and Intermediate Order Statistics  
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40 -2 …, as we shall see. 

    The following result … 

…, as we shall see. 
    The asymptotic behavior of intermediate order statistics is important for statistics 
of extreme values since any meaningful estimator is based on (extreme and) 
intermediate order statistics (see Chapter 3). 
    The following result … 
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Chapter 3:    Estimation of the Extreme Value Index and Testing  
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Then (3.6.5) becomes  
 
and (3.6.6) becomes 

Then (3.6.5) (multiplied by f(t)) becomes 
 
and (3.6.6) (multiplied by f(t)) becomes 

113 1 The “negative Hill estimator” was 
proposed by Falk (1995). 

The “negative Hill estimator” was proposed by Smith and Weissman (1985). 

 

Chapter 4:    Extreme Quantile and Tail Estimation 
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130 -7 ... the moment estimator of  γ . We 
define… 

... the moment estimator of  γ . In order to find an estimator for the scale a (n/k) we 
use relation (3.5.3) for j = 1 and define… 

134 -12 Theorem 4.3.1 Theorem 4.3.1 (de Haan and Rootzén (1993)) 
135 -5 ( ) ( )

( )
U tx U t

a t
−

 ( ) ( )
( )0

U tx U t
a t

−
 

138 10 Theorem 4.3.8 Theorem 4.3.8 (Dijk and de Haan (1992)) 
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Chapter 6:    Basic Theory in higher dimensional space 
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Remark 6.1.8 Relations (6.1.15) does not 
hold for all Borel sets Ax,y . 
 
 
 
 
… > 0 and ν ( ∂ A) = 0, and any …  

Relations (6.1.15) can be written  
                      ( ) ( ){ }, ,expc

x y x yP A Aν= −                (6.1.15*) 

Where P is the probability measure with distribution function G0. Relation 
(6.1.15*) does not necessarily hold for Borel sets A not of the form (6.1.16) 
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217 -11 Definition 6.1.13 We call … Definition 6.1.13 A distribution function G is called a max-stable distribution if 
there are constants An, Cn >0, Bn and Dn  such that for all x,y and n= 1,2,…  
                                   Gn (An x + Bn, Cn y + Dn) = G(x,y) . 
It is easy to see that any distibution function G satisfying (6,1,25) is max-stable 
and also  G(αx + β , γ y + δ)  where  α , γ  are arbitrary positive constants and  β , δ 
arbitrary real constants. Since any max-stable distribution is in the class of limit 
distributions for (6.1.1), we get all the max-stable distributions this way. The class 
of… 

224 -8 Clearly ( )n
LG  and ( )n

UG … Clearly ( )n
LG  and ( )n

UG are max-stable distributions with marginal distributions 

( )exp c x−  where c is a generic constant and there … 
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converges to 2-1 … 
 
= - log G0(x,y) with G0  from Theorem 
6.1.1.  

converges to g(x,y) : = 2-1 … 
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r3 q (θr, r(1- θ)) . 
 
Let {r i,j}d

i, j=1   be a matrix  
 
the random vector (V d

 j=1  r1,j Vj, …,  V d
 j=1  

rd,j Vj ) 
 
two-dimensional simple distribution 
function can be 
 
∨    twice 

r3 q (θr, r(1- θ)) = q (θ, (1- θ)) (cf. Coles and Tawn (1991)). 
 
Let {r i,j}i=1,2; j=1,2,…,d   be a matrix  
 
the random vector (V d

 j=1  r1,j Vj,  V d
 j=1  r2,j Vj ) 

 
 
two-dimensional distribution function with Fréchet marginals can be 
 
 
 ∧    twice 

233 6 complement 6.14.  Let (X,Y) have a standard spherically symmetric Cauchy distribution. Show 
that the probability distribution of (|X|,|Y|) is in the domain of attraction of an 
extreme value distribution with uniform spectral measure Ψ. Show that the 
probability distribution of (X,Y) is also in a domain of attraction. Find the limit 
distribution. 

 

 

 
Chapter 7:    Estimation of the Dependence Structure 
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252 15 ... a max-stable distribution function. ... a max-stable distribution function. The marginal distribution are 

l ( )10 ( , ) exp aG x x∞ = −   and  l ( )20 ( , ) exp aG y y∞ = −  for some positive  a1 and a2  

not necessarily one. Hence l 0G  is not necessarily simple max-stable (cf. 
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Definition 6.1.13). 

261 1,2  Not all inequalities have to hold, but at least one of them 

262 13 
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( ), 0Q x ∞ = , 
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263 -12 = →  

265 18 
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… = x + y - L(x,y) . 
 
… does not imply asymptotic 
independence.  

… = x + y - L(x,y) = R (x,y).  
 
… does not imply asymptotic dependence. 

268 -2 EW (x1, …, xd) W (x1, …, xd) =  μ (R (x1, 
…, xd) ∩ R (x1, …, xd))   

EW (x1, …, xd) W (y1, …, yd) =  μ (R (x1, …, xd) ∩ R (y1, …, yd))   

269 4 and N is a standard normal random 
variable. 

and N indicates a normal probability distribution. 

 

 

Chapter 8:    Estimation of the Probability of a Failure Set 
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275 2 more detail below; cf. Theorems 8.2.1 and 
8.3.1 

more detail  in section 8.2.; cf. (8.2.7), (8,2,8) and (8,2,15)) 
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Chapter 9:    Basic Theory in C[0,1] 
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 11 First we note that this implies First we note that this assumption implies 
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Corollary 9.4.5 
 
All simple max-stable processes in 

[ ]0,1C+ can be generated in the following 
way. 

stochastic processes V1, V2,… in [ ]0,1C+   
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i
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Corollary 9.4.5 (cf. M. Schlather (2002)) 
 
All simple max-stable processes η  in [ ]0,1C+ can be generated in the following 
way. 
 

stochastic processes V1, V2,… in [ ] [ ]{ }0,1 : 0,1 : 0C f C f+ = ∈ ≥  

308 6 … Resnick (1977). … Resnick (1977). Let W* be two-sided Brownian motion:  

                                  * ( ) for  0
( ) :

( ) for 0
W s s

W s
W s s

+

−

⎧ ≥
= ⎨

− <⎩
  

where W+  and W- are independent Brownian motions. 
 
In the rest of the example change W into  W* . 

311 -5 Theorem 9.5.1 Theorem 9.5.1 (de Haan and Lin (2001)) 
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315 5 Theorem 9.6.1 (Resnick and Roy 
(1991)) 

Theorem 9.6.1 (Resnick and Roy (1991) and de Haan(1984)) 

320 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

… of the theorem is easy.  
      
      Next we turn … 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

… of the theorem is easy.                                ■ 
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=
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simple max-stable process in ( )C + \ , then there exists a family of functions 
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Conversely every process of the form exhibited at the right-hand side of (9.6.8A) 
with the stated conditions, is a simple max-stable process in ( )C + \ . 
Proof.  Let  H  be a probability distribution function with a density H` that is 
positive for all real x.  With the functions  fs from Theorem 9.6.7 define the 
functions ( ) ( )( ) ( ): 's sf t f H t H t=� .  Since for any 1 2, ,..., ds s s ∈\  and   
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14,16,20,24 
 
 

18, 22, 25 
 

 
 
 
 
[0,1] 
 
1

0
∫  

the representation of the corollary follows easily from that of Theorem 9.6.8.  ■ 

     Next we turn … 
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321 16, 18, 21, 22, 
23, 24 
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∫  

distributions. 

∞

−∞
∫  

distributions.                                              ■ 

323 -1 (2#),  
-6, -8 
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W 
 
 
… independent Brownian motions.  
 

W* 

 

 

… independent two-sided Brownian motions (cf. correction to Example 9.4.6) .  
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-6 Hence for  s1 < 0 < s2  Hence for  s1 < 0 < s2   and in fact for all real s1, s2 

326 2 
 
 
 
 
 
 
 

 
-14 

Let W be Brownian motion independent 
of Y. Consider the process… 
 
 
 
 
 
 
 
a>0 

Let W* be two-sided Brownian motion:  

                                     * ( ) for  0
( ) :

( ) for 0
W s s

W s
W s s

+

−

⎧ ≥
= ⎨

− <⎩
 

where W+  and W- are independent Brownian motions. Let Y and W* be 
independent. Consider the process… 
 
In the rest of the example change W into  W* . 
 
a>1 

326-
328 

Example 9.8.2 Remove the text of the example  Example 9.8.2 (extension of Brown and Resnick (1977))  Let ( ){ }s
X s

∈\
be an 

Ornstein- Uhlenbeck process, i.e.,  

                         
( ) { } ( )( )
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/ 2 / 2

0 0

/ 2 / 2
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1
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ss u
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ss u
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X s e N e dW u
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− −
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= +

+ +

∫

∫
 

with N, W+ and W - independent , N  a standard normal random variable and W+ 
and W -  standard Brownian motions. Since for s t≠  the random vector (X(s), 
X(t)) is multivariate normal with correlation coefficient less than 1, Example 6.2.6 
tells us that relation (9.5.1) can not hold for any max-stable process in C[0,1]: 
since Y has continuous sample paths, Y(s) and Y(t) can not be independent. Hence 
we compress space in order to create more dependence, i.e., we consider the 
convergence of  

                                   2
1

n

n i n
i n s

sb X b
b=

∈

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪−⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭
∨

\

                                 (9.8.4) 

in [ ]0 0,C s s−  for arbitrary s0 > 0, where X1, X2, … are independent and identically 
distributed copies of X and the bn  are the appropriate normalizing constants for 
the standard one-dimensional normal distribution, e.g., (cf. Example 1.1.7) 

( )( )1/ 2
2 log log log log 4nb n n π= − − . Then 
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It follows that  
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We write i ( ) ( ) i2: / . Then n nW s b W s b W±= is also Brownian motion. We have     
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Hence the limit of (9.8.4.) is the same as that of  
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                                  (9.8.5) 

      
The rest of the proof runs as in the previous example. 

      One finds that the sequence of processes (9.8.5) converges weakly in 
[ ] ( )0 0, hence in ,C s s C− \ to 

                    j ( )( )
1

log
2i i

i s

s
Z W s

∞

= ∈
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with {Zi}the point process from (9.8.1). 

      Note that the point process {Zi} and the random processes i iW  are 
independent. 

328 -7 independent of V independent of Y 

329 1 u>0 x>0 
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332 -2 Theorem 10.2.1 Theorem 10.2.1 (de Haan and Lin (2003)) 
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339 -3 Theorem 10.4.1 Theorem 10.4.1 (de Haan and Lin (2003)) 
341 -3 ζ n-k+1,n ζ n-k,n 

352 6 υn (S) υ (S) 
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Appendix B:    Regular Variation and Extensions 

page line error correction 
365 -1 and -3 (B.1.6)  (B.1.16) 

366 5 exp (integral} exp(integral)  

370 -10 ( ) [ ]exp logf t t=  ( ) [ ]{ }exp logf t t= −  

375 -10 
 
 

-9 

(B.1.23) 
(B.1.24) 
 
(B.1.24) 

(B.2.12) 
(B.2.13) 
 
(B.2.13) 

376 -9  Hence f(t) is bounded for 0t t≥  . Hence f(t) is locally bounded for 0t t≥ . 

379 3   ( ) ( )f f t∞ − =  ( ) ( )f f t∞ − ∼  

380 9  1

1

1 xδ

δ
−  (left side) 

1

1

1 x δ

δ

−−
−

 

381 -8 From Remark B.2.14(2) it 
follows  

From part 3 of the present proposition it follows 
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