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RISK ATTITUDES AND DECISION WEIGHTS!

By AMOS TVERSKY AND PETER WAKKER

To accommodate the observed pattern of risk-aversion and risk-seeking, as well as
common violations of expected utility (e.g., the certainty effect), we introduce and
characterize a weighting function according to which an event has greater impact when it
turns impossibility into possibility, or possibility into certainty, than when it merely makes
a possibility more or less likely. We show how to compare such weighting functions (of
different individuals) with respect to the degree of departure from expected utility, and we
present a method for comparing an individual’s weighting functions for risk and for
uncertainty.
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1. INTRODUCTION

THE CLASSICAL THEORY OF DECISION under risk and uncertainty combines the
principle of mathematical expectation with the assumption of decreasing
marginal utility, which jointly imply risk aversion. Three clusters of phenomena
reflecting risk attitudes have challenged the descriptive validity of the classical
theory. First, although risk aversion is prevalent, there are situations in which
risk seeking is commonly observed. Gambling is a case in point. Second, there is
a considerable body of evidence that preferences between risky prospects are
not linear in the probabilities. The certainty effect, demonstrated by Allais, is
the best-known example of this phenomenon. Third, people’s preferences de-
pend not only on the degree of uncertainty but also on the source of uncer-
tainty. For instance, people sometimes prefer to bet on known rather than
unknown probabilities, as demonstrated by Ellsberg.

There have been many attempts to explain risk attitudes that are inconsistent
with expected utility. Much recent work has been devoted to theories that
extend expected utility by introducing nonadditive decision weights (Kahneman
and Tversky (1979), Quiggin (1982), Yaari (1987), Gilboa (1987), Schmeidler
(1989), Luce and Fishburn (1991)). In these models, preferences are determined
jointly by the utility function that measures the subjective value of the outcomes,
and by the decision weights that capture what may be called chance attitude.

In this article we present a theoretical analysis of decision weights that is
motivated by the observed pattern of risk seeking, nonlinear preferences, and
source dependence. This pattern suggests an S-shaped weighting function that
overweights small probabilities and underweights moderate and high probabili-
ties (Section 2). The theoretical framework used in this paper is introduced in
Section 3. Section 4 establishes the properties of the preference order that are
necessary and sufficient for an S-shaped weighting function. This analysis is
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extended to uncertainty in Section 5. In analogy to the Pratt/Arrow analysis of
comparative risk aversion, Section 6 introduces the relation more-SA-than
between the weighting functions of different individuals, which reflects depar-
ture from expected utility. Section 7 introduces a method for comparing the
weighting function of the same individual for different sources of uncertainty.
This method is used to analyze the observed relation between risk and uncer-
tainty. Proofs are deferred to the Appendix.

2. THE FOURFOLD PATTERN

In order to motivate the present development, we first illustrate some com-
mon features of people’s attitude toward risk. Consider simple prospects of the
form (x, p) that offer $x with probability p, and nothing otherwise. The study of
choice between simple risky prospects has given rise to the fourfold pattern
illustrated in Table I. These data are taken from a study by Tversky and
Kahneman (1992) in which each subject made a series of choices between a risky
prospect and various cash offers. The value of C(x, p) is the median cash offer
(in dollars) that was indifferent to the prospect (x, p).

Table 1 exhibits risk seeking for gains and risk aversion for losses of low
probability combined with risk aversion for gains and risk seeking for losses of
high probability. This pattern has been observed in numerous studies, with and
without contingent payoffs (Fishburn and Kochenberger (1979), Kahneman and
Tversky (1979), Hershey and Schoemaker (1980), Payne, Laughhunn, and Crum
(1981), Cohen, Jaffray, and Said (1987), Wehrung (1989), Tversky and Kahne-
man (1992)). Extreme risk seeking for long shots has recently been reported by
Kachelmeier and Shehata (1992) in an experiment conducted in China with real
payoffs that were considerably higher than the subjects’ normal monthly income.
Risk seeking for small probabilities of gains is consistent with common observa-
tions of gambling and risky ventures, whereas risk seeking for high-probability
losses is consistent with the tendency to accept a risk in order to avoid a sure
loss.

Friedman and Savage (1948) and Markowitz (1952) have attempted to explain
the combination of risk seeking and risk aversion in terms of a utility function
with both concave and convex regions. However, because the fourfold pattern
arises over a wide range of payoffs, it cannot be explained by the utility function
for money. Instead, it suggests a nonlinear transformation of the probability
scale.

TABLE I
THE FOURFOLD PATTERN OF RISK ATTITUDES

Gain Loss
- C(100,.05) = 14 C(-100,.05) = -8
Low probability (Risk Seeking) (Risk Aversion)
€(100,.95) =78 C(-100,.95) = —84

High probability (Risk Aversion) (Risk Seeking)
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Suppose the value of the prospect (x, p) is given by w( p)v(x), where v is the
value function for gains and losses, and w is a nonlinear weighting function.
Figure 1 presents a typical weighting function obtained by Tversky and Fox
(1994). This function exhibits diminishing sensitivity: it is steepest near the
endpoints and shallower in the middle, yielding overweighting of small probabili-
ties and underweighting of middle and high probabilities. Thus, people underes-
timate the impact of an increase in probability from 20% to 25% in comparison
to an increase from 0% to 5% or from 95% to 100%. Such a weighting function
gives rise to the fourfold pattern described above, under plausible assumptions
concerning the value function.

3. BASIC CONCEPTS

We first introduce terminology and notation, and then describe the theoreti-
cal framework used in the paper. We distinguish decision under risk, where the
probabilities are assumed to be known, and decision under uncertainty, where
the probabilities associated with the various outcomes are not given in advance.

1.0
’.'

08 "':'
:;: ./‘,.l'
S 06 ~®
K]
o .
£ .
=
=) 04 | »
=
2 _,.o'"’.

»
Y
02 B l."‘
...d’f.
o.o : 1 1 1. 1
0.0 0.2 0.4 0.6 0.8 1.0

Probability (p)

FIGURE 1.—The points represent median estimates, across subjects (N = 40), obtained in Tversky
and Fox (1994). The smooth curve is obtained by fitting the parametric form w(p) = 8p”/(Sp” +
(1 -p)"), suggested by Lattimore, Baker, and Witte (1992). The estimated values of the parameters
are y=.69, 6 =.77.
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In both cases, the decision maker has to select between prospects that are
described as positive or negative changes with respect to the status quo. To
simplify matters, we assume that the outcomes are real numbers designating
money, and interpret 0 as the status quo. Gains refer to positive outcomes, and
losses refer to negative outcomes. In decision under risk a prospect is described
by a finite probability distribution. Thus (x;, ps;...; X, p,) is the risky prospect
yielding outcome x; with probability p;, j=1,...,n; the p/’s are nonnegative
and sum to one. If there is only one nonzero outcome then the zero outcome is
suppressed; for example, (Z,1/2) is the prospect that yields Z with probability
1/2 and 0 with probability 1/2.

Decision under uncertainty is described in terms of a set S, called the state
space. We assume that exactly one state obtains, but the decision maker is
uncertain about this state. Subsets of S are called events; S —A is the comple-
ment to A. In decision under uncertainty, prospects are functions from S to R,
taking finitely many values. If state s obtains, then prospect f yields the
outcome f(s). An uncertain prospect is described as (x;, 4;;...; x,,, A,), where
(A,,..., A,) is a partition of S and x; is the outcome associated with the states
in A4;. As above, the zero outcome is suppressed if there is only one nonzero
outcome; thus (x, A) is the prospect that yields x if A obtains, and 0 if it does
not.

Risk can be considered as a special case of uncertainty where probabilities are
given for the events in S, and prospects that generate the same probability
distribution over the outcomes are treated as identical. In this case, each
prospect is described by the probability distribution it induces over the out-
comes, with no reference to the state space.

We identify outcomes with degenerate prospects. Thus x can be viewed as a
constant function assigning outcome x to all states or as a degenerate probabil-
ity distribution assigning probability 1 to that outcome. Let > denote the
preference relation over prospects; the relations >, ~ are defined as usual.

Cumulative Prospect Theory

This article adopts the theoretical framework of cumulative prospect theory,
or CPT for short (Tversky and Kahneman (1992)). This theory is more general
than the rank-dependent utility model because it permits a different treatment
of gains and losses.? It assumes a continuous strictly increasing value function v:
R - R satisfying v(0) =0. For choice under risk, it invokes two weighting
functions, denoted by w* and w™, for gains and losses respectively.> A weighting
function w is a strictly increasing function from [0,1] to [0, 1] with w(0) = 0 and
w(1) = 1. For uncertainty, the weighting functions for gains and losses are
denoted by W' and W~. Here a weighting function (or a capacity) W on S is a

2 Closely related models were proposed by Starmer and Sugden (1989) and Luce and Fishburn
(1991).
% In following sections the superscript + is often suppressed.
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function on 25 such that W(&) =0, W(S)=1, and W(A)> W(B) whenever
A DB. Obviously, if W is additive, i.e., W(AUB)=W(A)+ W(B) for all
disjoint events A, B, then it is a probability measure.

According to CPT, the value of a prospect (xy,py;...;x,, p,) in which
X< =%, 0<x, 1< <x,, 18

k n
3.1 Yamux)+ Y wiulx),

j=1 j=k+1

where the decision weights are defined by =, =w~(p;+ - +p) —w (p,
+ - +p;,_)and 77 =w*(p;+ - +p,) —w*(p;,, + -+ +p,).* Note that these
weights do not necessarily sum to one. For uncertainty, the value of a prospect
(xy,A45;...5x,,A,), in which x; < -+ <x, <0<x,,, < <x,is

k n
(3.2 Y mux)+ Y wiulx),

j=1 j=k+1

where now decision weights are defined by @7 =W~ (A4, U - UA;) - W (4,
U UA; ) and mf =WH(A4;U - UA,) W (A4;,,U-UA,)°

CPT generalizes rank-dependent utility, introduced by Quiggin (1982) and
Yaari (1987) in the context of risk, and by Schmeidler (1989) in the context of
uncertainty. Rank-dependent utility corresponds to the special case where the
weighting function for losses is the dual of the weighting function for gains, i.e.,
w (p)=1-w*(1 —p), and W (A)=1— W*(S — A). For prospects with non-
negative outcomes, rank-dependent utility coincides with CPT. Tversky and
Kahneman (1992) considered another special case of CPT, where wt=w"~ or
W+*=W-", which provided a reasonably good fit for risk choice. Preference
conditions for this property, called reflection, are presented in Appendix B.

We assume that the weighting function for risk is continuous, and that the
weighting function for uncertainty satisfies solvability,’ i.e., for all events A € C
and W(A4) <p < W(C) there exists an event B such that W(B)=p and A CBC
C. The assumptions made throughout this paper are summarized below; they
have been axiomatized in Wakker and Tversky (1993, Section 8.4):

ASSUMPTION 3.1: Risky prospects are probability distributions over R. Uncertain
prospects are functions from the state space S to the outcome set R. Prospects have
finitely many outcomes. Preferences between prospects are represented by (3.1) or
(3.2). The value function is continuous and strictly increasing. The weighting
function for risk is continuous and strictly increasing; for uncertainty it satisfies
solvability.

* Here we follow the usual convention that, for j=0, py+ - +p;=0, and for j=n, p;.,
4 +p,=0.

SForj=0, A, U UAd;=Q; for j=n, A;, ;U UA, =Q.

® Gilboa (1987) introduced this condition under the name convex-ranged.
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FIGURE 2.—Illustration of SA.

4. SUBADDITIVITY IN CHOICE UNDER RISK

In this article we focus on the weighting function for gains. The analysis for
losses is essentially identical and, with few exceptions, will not be discussed
separately. Thus we restrict attention to nonnegative outcomes, and suppress
the superscript in w* and W*. This section discusses risk; uncertainty is
discussed in following sections.

The weighting function presented in Figure 1 is S-shaped: It is steepest near 0
and 1 and shallower in the middle. The experimental evidence is generally
consistent with such a weighting function (Camerer (1992), Cohen and Jaffray
(1988), Tversky and Kahneman (1992)). Thus, in Figure 1 a “lower” interval
[0, g] has more impact than a middle interval [p, p + g] provided the middle
interval is bounded away from the upper endpoint 1 (e.g., p + g <.9). Similarly,
an “upper” interval [1 — g, 1] has more impact than a middle interval [p, p + g1
provided the middle interval is bounded away from the lower endpoint 0 (e.g.,
p = .1). The following definition formalizes this notion (see Figure 2): w satisfies
bounded subadditivity, or subadditivity (SA) for short,” if there exist constants
£>=0and £’ >0 such that

4.1 w(q) =w(p+q) —w(p) whenever p+g<l-—e¢

and

4.2) 1-w(l—-gq)=w(p+q)—w(p) whenever p>e¢’'.

Conditions (4.1) and (4.2) are called lower SA and upper SA, respectively. Lower
SA entails the inequality w(p +¢q) <w(p)+w(q) on the interval [0,1 —¢].
Upper SA implies the same inequality on the interval [0,1 — &'] for the dual
weighting function w(p) =1—w(1 —p), as can be seen by substitution. The

constants ¢, &’ are called boundary constants, and do not depend on p, q. They
serve to ensure that we always compare an interval that includes 0 or 1 with an

" For convenience, we use the terms bounded SA or SA instead of the more accurate term
e, e'-SA.
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interval that does not. Naturally, they may vary from one individual to the other.
We are primarily interested in lower SA near 0, say on the interval [0,0.4], and
in upper SA near 1, say on the interval [0.6,1]. This corresponds to ¢ =&’ = .6.
Since w is fairly linear in the middle region, lower and upper SA usually hold for
larger intervals, and for most functions found in the literature &= .1 and even
¢’ =0 can be chosen. For instance, for the weighting function depicted in
Figure 1, SA holds for boundary constants ¢ =.07 and &' = 0, and hence for any
larger boundary constants.

Preference Conditions

Next we present conditions for preferences that are necessary and sufficient
for bounded subadditivity. These conditions are independent of the value
function, and thus separate what we have called chance attitude from marginal
utility. Previous work assumed a linear value function (Yaari (1987), Chateauneuf
(1991)) or a concave value function (Chew, Karni, and Safra (1989), Chew
(1989)). Furthermore these papers investigated convex, rather than subadditive,
weighting functions.

We begin with the certainty effect, which leads to upper SA (4.2). As
demonstrated by Allais, people commonly exhibit the following preferences,
where M denotes one million dollar:

(1M, .11) < (5M,.10) and
1M > (0,.01; 1M, .89; 5M, .10).
The certainty effect suggests the preference condition that is needed to charac-
terize upper SA. To illustrate, let us shift probability mass from 5SM to 0 in the
upper right prospect until the decision maker is indifferent between the upper
prospects. Suppose we find
(1M, .11) ~ (5M,,.08).
Obviously, from the second preference above it follows by dominance that the
same probability shift (.2 from 5M to 0 on the right) yields
1M > (0,.03; 1M, .89; 5M, .08).
In general, upper SA requires that
4.3) (z,1-¢q) ~(Z,p) implies
z220,1-p~q;2,4;Z,p)
for 0<z<Z, and p> &’ where &' >0 is the boundary constant® To interpret
the condition, recall that in CPT prospects are evaluated in terms of cumulative
events, e.g., receiving z or more. According to (4.3), an increase of g in the
probability of that event has more impact on the left, where it makes that event

certain than on the right where it merely makes the event more probable. It is
instructive to note that the CPT difference between the left prospects in (4.3) is

8 Segal (1987) proposed a similar generalization of the Allais example which implies a convex
weighting function.
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(1 —w( - g)uv(z), and between the right prospects is (w(p + q) — w(p)v(z);
hence (4.2) implies (4.3) since v(z) > 0.

Next we turn to the overweighting of small probabilities. Consider the
following preferences.

40 < (0, .35, 40, .05; 100, .60)
(40, .95;100,.05) > (100,.65).
Let us shift probability mass from $100 to 0 in the upper right prospect until the
decision maker is indifferent between the upper prospects. Suppose we find

40 ~ (0, .45; 40, .05; 100, .50).

From the second preference above it follows by dominance that the same
probability shift (.10 from 100 to 0 on the right) yields

(40, .95;100,.05) > (100,.55).
In general, lower SA requires that
(4.4) z~(0,1-p—q;2,q9;Z,p) implies

(z2,1-9;Z,9) =(Z,p+ ),
for 0<z<Z and p+¢q<1-— ¢, where £>0 is the boundary constant. Thus a
g probability shift from z to Z has more impact on the left, where it makes
the receipt of (at least) Z possible, than on the right where it merely increases
the probability of receiving (at least) Z. Note that for the right prospects
the extreme outcomes, 0 and Z, did not change, whereas for the left prospects
the best outcome changed from z to Z. To see that lower SA implies (4.4), note
that the CPT difference between the left prospects in (4.4) is w(g)(v(Z) — v(2)),
and between the right prospects it is (w(p +g) — w(p)Xv(Z) — v(2)).

PROPOSITION 4.1: Under Assumption 3.1, the weighting function w satisfies SA if
and only if the preference relation satisfies (4.3) and (4.4).°

Actually, lower SA is equivalent to (4.4), and upper SA to (4.3).

Applications

With the exception of convex weighting functions, explored by several authors,
the parametric weighting functions proposed in the literature are generally
consistent with bounded subadditivity. Setting £¢=.1 and &’ =0 is sufficient to
accommodate most of these functions.

There are two approaches for testing SA, axiomatic and parametric. Wakker,
Erev, and Weber (1994) found that in its general form the comonotonic
independence axiom, which underlies all rank-dependent models, did not fare
better than the independence axiom of expected utility, but “CPT with its
S-shaped w-function provides the best description of the choice patterns ob-

° The same boundary constant & applies to (4.1) and (4.4), and the same boundary constant &' to
(4.2) and (4.3).
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served in this experiment. However, the improvement in prediction does not
reach statistical significance” (p. 214). Stronger support for the preference
conditions for an S-shaped weighting function was obtained by Wu and Gonza-
les (1994).

Most studies have estimated decision weights on the basis of various paramet-
ric assumptions about the value or the weighting function. The resulting weight-
ing functions generally supported SA (Hogarth and Einhorn (1990), Birnbaum,
Coffey, Mellers, and Weiss (1992), Lattimore, Baker, and Witte (1992), Tversky
and Kahneman (1992), Gonzales (1993), Camerer and Ho (1994), Tversky and
Fox (1994)); for a recent review that includes some earlier literature, see
Camerer (1994).

Violations of SA are rare. One of the four subjects in Allais (1988) exhibits a
convex (“pessimistic’”) weighting function, which violates lower SA. In Latti-
more, Baker, and Witte (1992), only five out of 114 subjects yielded estimates
that were inconsistent with SA. Karmarkar (1978) and Karni and Safra (1990)
also considered S-shaped weighting functions.

It is noteworthy that lower SA accounts for the observed tendency (Kahne-
man and Tversky (1979)) to undervalue probabilistic insurance that reduces the
probability of a loss, say from p to p/2, relative to regular insurance that
reduces it from p to 0.

In order to characterize the degree of departure from expected utility theory,
it is useful to devise a measure of the degree of SA. To this end, define for given
p, q satisfying p + g <1 and the appropriate boundary conditions,

D(p,q) =w(p)+w(q) —w(p+q) and
D'(p,g) =1-w(l—q) +w(p)—w(p+q).

Under SA, both D and D’ are positive for all p,q that satisfy the boundary
conditions, whereas under expected utility D and D’ are both zero. Let d and
d' denote, respectively, the average values of D over all p+g<1— ¢ and of
D' overall p>¢’'.

Simple graphical interpretations are possible whenever the weighting function
is approximately linear except near the endpoints; see Figure 3. In this case, for
all p,q in the linear middle range, D and D' are independent of p and g, and
D is the lower intercept, D' the upper intercept, of the linear function. Thus the
averages d and d’' provide estimates for the lower and upper intercepts, and
s=1-d—d'is an estimate of the slope; s can be interpreted as an index of
sensitivity to probability changes. It equals 1 for expected utility, and it is less
than 1 under SA. If expected utility is accepted as a standard for rational choice,
then s could be interpreted as an index of rationality.

Tversky and Fox (1994) estimated the values of d, d’, and s for three studies
of risky choice. The median estimates were .07, .16, and .76, in accord with both
lower and upper SA. The observation that d' exceeds d suggests that upper SA
is generally more pronounced than lower SA. Further discussion of the empiri-
cal evidence appears in the final section.
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FIGURE 3.—A weighting functior& that is linear except near the endpoints.

5. SUBADDITIVITY IN CHOICE UNDER UNCERTAINTY

The above definitions of SA naturally extend to uncertainty: W satisfies
bounded subadditivity, or subadditivity (SA) for short,! if there are events E, E’
such that

.1 W(B) >W(AUB) —W(A) whenever W(AUB) <W(S—E)
and
(5.2) 1-W(S—-B)>W(AUB) —W(A) whenever W(A) = W(E").

Conditions (5.1) and (5.2) are called lower SA and upper SA, respectively. Lower
SA implies that an event B has a greater impact when added to the null event
than when it is added to a nonnull event 4. Upper SA implies that an event B
has a greater impact if it is subtracted from certainty than when it is subtracted
from an event A4 U B. Upper SA for W is equivalent to lower SA for the dual
weighting function W(A)=1— W(S —A). The events E,E' are called lower
and upper boundary events. They are “small” events that do not depend on A
and B. Under SA, an event B has greater impact when it turns impossibility into
possibility or possibility into certainty than when it merely makes a possibility
more likely. That is, a change from & to B, or from §—B to S, is more
noticeable than a change from A to 4 UB.

Preference Conditions

The preference conditions for uncertainty are similar to those for risk, but
require one further preparation; because the probabilities are not given, in-
equalities such as W(A4) = W(E') must be defined in terms of preferences. This
‘is commonly done by defining A > B if there exists a gain Z such that

10 Again, we use the terms bounded SA or SA instead of the more accurate E, E'-SA.
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TABLE II

A DEMONSTRATION OF SA. OUTCOMES DEPEND ON THE TEMPERATURE ¢
AT 4 PM ON APRIL 1, 1991 IN NEW YORK CITY. THE PERCENTAGE OF RESPONDENTS
(113 STOCK BROKERS) WHO SELECTED EACH PROSPECT IS GIVEN IN BRACKETS,
SEPARATELY FOR GAINs (K = $1000) AND FOR LosSEs (K = —$1000).

A A A Ay

Problem if ¢ >1 80 if 80 > f =70 if 70 > : > 60 if 60 > ¢ Gains Losses
I f 0 0 0 5K [65] [34]
g' 2K 2K 0 0 [35] [66]

11 f 5K 0 0 0 [58] [29]
g 0 0 2K 2K [42] [71]

I f 5K 0 0 5K [32] [72]

g 2K 2K 2K 2K [68] [28]

(Z, A) = (Z, B), that is, winning on A is preferred to winning on B.!' Clearly,
A =B if and only if W(A4) = W(B). The following two conditions characterize
SA:
5.3) z~(0,S-(AUB);z,B;Z, A) implies

(z,§-B;Z,B)=(Z,AUB)
whenever 0 <z<Z and AUB<S—E, and
(5.4 (z,§-B)~(Z,A) implies

z2=(0,S-(AUB);z,B;Z, A),

whenever 0 <z<Z and A4 >=E’; here E and E’ are the boundary events. The
interpretation of (5.3) and (5.4) is similar to that of the corresponding conditions
for risk. To see that lower SA implies (5.3), note that the CPT difference
between the left prospects in (5.3) is W(BXv(Z) — v(z)), and between the right
prospects is (W(A UB) — W(A)Xv(Z) —uv(z)). To derive (5.4) from upper
SA, note that the CPT difference between the left prospects in (5.4) is (1 —
W(S — B))u(z), and between the right prospects it is (W(A U B) — W(A))v(z).

PROPOSITION 5.1: Under Assumption 3.1, the weighting function W satisfies SA if
and only if (5.3) and (5.4) are satisfied."?

We conclude the section with several empirical observations. Table II illus-
trates both upper and lower SA, and provides a novel counterexample to
expected utility that does not involve independence or substitution.

Table II shows that for the gain prospects the majority choice favored f’ over
g', " over g”, and g over f, although f=f'+f" and g =g’ + g". Furthermore,

" For losses a dual definition should be used. That is, A4 is more likely than B if there exists a
loss —Z such that (—~Z, A) <(—Z, B).

'2 The same boundary event E applies to (5.1) and (5.3), and the same boundary event E’ applies
to (5.2) and (5.4).
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(f', f", &) was the single most popular pattern for gains, exhibited by 31% of the
subjects. This pattern violates expected utility, but is consistent with SA. To
verify this, note that lower SA implies W(A, UA,) < W(A4,) + W(A,). Further-
more, if upper SA exceeds lower SA (i.e., E' = J can be taken), as is commonly
the case, then 1> W(A; UA,) + W(A, UA,) follows. Therefore, V(f) < V(f')
+ V(f") but V(g) > V(g') + V(g"), where V(f) denotes the value of prospect f
according to CPT. Hence the observed pattern is consistent with CPT. Because
the data exhibit SA in a strict sense, they are inconsistent with expected utility
theory, in which (setting the utility of 0 to 0) all the above inequalities should be
equalities.

Note that the modal preferences for the loss prospects are the mirror image
of the preferences for the gain prospects, again exhibiting SA in the strict sense
contrary to expected utility. Here, (g',g", f) was the single most popular
pattern, exhibited by 35% of the subjects. This pattern is consistent with the
reflection assumption (W*=W~), characterized in Appendix B.”

Although SA is a plausible condition for decision under uncertainty, it is
unlikely to hold in some special circumstances in which the union of disjoint
events is less “vague” than its constituents. For example, consider an urn with
one hundred green and red balls in unknown proportion, which are numbered
from 1 to 100. Then the events “even and red” and “even and green” are vague,
but their union “even” is no longer vague. If, as suggested by Ellsberg (1961),
people prefer to bet on known probabilities, defined by the numbers, rather than
on the unknown probabilities involving colors, then SA may not hold in such
situations.

6. COMPARATIVE SUBADDITIVITY

The relation more-concave-than or more-risk-averse-than between utility
functions of different individuals was introduced and characterized by Pratt
(1964) and Arrow (1965). This relation orders individuals by their departure
from the (objective) expected value. In this section we develop a similar analysis
for weighting functions. Specifically, we introduce and characterize the relation
of more-SA-than between the weighting functions of different individuals, which
orders them by their departure from expected utility theory. If this theory is
taken as the standard of rational behavior, then the more-SA-than relation can
be interpreted as an ordering by departure from rationality.

As in Section 4, the present treatment extends previous work (Yaari (1987),
Chew, Karni, and Safra (1989), Chew (1989), Chateauneuf (1991), Chateauneuf
and Cohen (1994), Wakker (1994)) by considering S-shaped rather than convex
weighting functions, and by comparing weighting functions independently of the
value functions.

> The modal choices in Table II are also at variance with additive regret models (Bell (1982),
Loomes and Sugden (1982), and Fishburn (1982)), which are violated by the strict form of (5.3) and
(5.4).
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A transformation ¢: [0,1] — [0,1] is called SA if it has the same mathematical
properties as an SA weighting function, i.e., $(0) =0, ¢(1) =1, ¢ is continuous
and strictly increasing, and ¢ satisfies (4.1) and (4.2). One weighting function is
more SA than another, if the first is obtained from the second by an SA
transformation. This definition applies to both risk and uncertainty, where the
weighting functions for uncertainty are defined on the same domain. Figure 4
illustrates this relation.

Decision under Risk

It is readily verified (see Proposition 6.1) that w, is more SA than w, if and
only if the following two conditions hold:

(6.1) wi(r) =w,(p+q) —w,(p) implies
wo(r) 2w,(p+q) —w,(p)

and

(6.2) 1-w(1-r)=w(p+q)—w,(p) implies
1-w,(1-r)=w,(p+q)—w,(p);

the boundary condition for (6.1) is p+g<1—¢ for £>0, and the boundary
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FIGURE 4.—The weighting function w, is less additive than w,.
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condition for (6.2) is p > &', where &’ > 0. The proof is based on the observa-
tion that, under (6.1), w, satisfies lower SA “when its arguments are measured
in w, units.” The same logic applies to (6.2). The relation of ¢ and &’ to the
boundary constants for the transformation carrying w; into w, is given in
Appendix A; see (A1) and (A2). According to the above conditions, w,(r)
and W,(r) =1—w,(1 —r) are overweighted more than w,(r) and w,(r) =1 —
wy(1 —r), respectively.

Next we present the preference conditions for the proposition that =, is
more SA than =, , defined for the preference orders of two individuals. We
impose no restrictions on the value functions of the two individuals, so their
value functions may be different. Two conditions are required, one for upper
and one for lower SA. First we consider lower SA:

(6.3) If x~,(0,1-p—gq;x,q; X, p) and
(x,1-r; X,r) ~,(X,p+gq), then
y~,(0,1-p—gq;y,q;Y, p) implies
(y,1-r;Y,r)=,(Y,p+q),

whenever 0 <x <X, 0<y<Y, and p+q<1—¢ for the boundary constant
£>0. This condition states that if, for >;, the improvement on the left (r
probability for receiving X instead of x) matches the corresponding improve-
ment on the right, then for >, the comparable improvement on the left (r
probability for receiving Y instead of y) outweighs the corresponding improve-
ment on the right. To further illustrate the condition, we show how it follows
from (6.1). The first two indifferences imply, by comparing the CPT difference of
the left prospects to that of the right prospects, that w (rXv(X) —v(x)) =
w(p+ @-w (pPv(X) —vy(x)), i.e., wi(r) =w,(p + q) —w,(p). By (6.1), w,(r)
>w,(p+q)—w,(p). This implies that w,(rXv,(Y)—v,(y)), ie., the CPT
difference between the left prospects in the lower two lines in (6.3), is at least as
large as (w,(p + q) — w,(pP)Xv,(Y) —v,(y)), which is the difference between
the right two prospects. Hence (6.1) implies (6.3).
Second, we consider upper SA:

(64) I (x,1-r)~,(X,p)and
x~0,1-p—gq;x,q; X, p) then
(y,1—r) ~,(Y, p) implies
y>0,1-p—q;y,4;Y,p),

whenever 0 <x <X, 0<y<Y, and p > ¢’ for the boundary constant &' > 0.
This condition states that if, for >, , the improvement on the left (yielding x
with certainty) matches the corresponding improvement on the right, then for
>, the comparable improvement on the left (yielding y with certainty) out-
weighs the corresponding improvement on the right. In other words, the cer-
tainty effect is more pronounced for the second decision maker than for the
first.
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PROPOSITION 6.1: Under Assumption 3.1 (for both >, and =,), the following
three statements are equivalent:**

(D) w, is more SA than w;

(ii) conditions (6.1) and (6.2) are satisfied,

(iii) conditions (6.3) and (6.4) are satisfied.

Decision under Uncertainty

We first extend (6.1) and (6.2) to uncertainty. W, is more SA than W, if and
only if (see Proposition 6.2) W, is a strictly increasing transform of W,, and

6.5 WwW(C)=w,(AUB)—W,(A) implies
W,(C) = W,(AUB) — W,(A)

and

(6.6) 1-W(S—-C)=W(AUB)—W(A) implies
1—W,(S —C) > Wy(AUB) — W,y(A).

The boundary condition for (6.5) is: W(A U B) < W,(S — E) for some boundary
event E; the boundary condition for (6.6) is: W (A) > W,(E’) for a boundary
event E’. The relation of E and E’ to the boundary constants for the
transformation carrying W, into W, is given in (A3) and (A4) in the Appendix.
Next we present the corresponding preference conditions for the proposition
that >, is more SA than >>; . We require three coaditions.
First, for all events A, B,

(677 A> B ifandonlyif A >, B.

This condition guarantees that W, is a strictly increasing transform of W;. The
second condition ensures that W, is more lower SA than W;:

(6.8) If x~,(0,S —(AUB);x,B; X, A) and
(x,§-C; X,C) ~,(X, AU B) then
y~,(0,S—(4UB);y,B;Y, A) implies
(y,8—-C;Y,C) »,(Y,AUB)

whenever 0 <x <X, 0<y<Y, and 4 UB<; S —F for the boundary event E.
Third, we require that W, be more upper SA than W;:

(6.9) If (x,§ — C) ~,(X, A) and
x~1(0,5—-(AUB);x,B; X, A) then
(y,8 - C) ~,(Y, A) implies
' The same boundary constants &, &' apply to conditions (6.1) and (6.2), and to conditions (6.3)

and (6.4). Their relation to the boundary constants for the transformation carrying w, into w, is
described in (A1) and (A2) in the Appendix.
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whenever 0 <x <X, 0<y<Y, and A4 >, E' for the boundary event E’. The
interpretation of (6.8) and (6.9) is essentially identical to that of (6.3) and (6.4).

PROPOSITION 6.2: Under Assumption 3.1 (for both =, and =, ), the following
three statements are equivalent:"

() W, is more SA than W,;

(ii) conditions (6.5), (6.6), and (6.7) are satisfied,

(iii) conditions (6.7), (6.8), and (6.9) are satisfied.

7. SOURCE DEPENDENCE

Perhaps the most persistent objection to expected utility theory concerns the
distinction between risk and uncertainty. The expectation principle, it has been
argued, can be applied to decision under risk where probabilities are known but
not to decision under uncertainty or ignorance where the probabilities are
unknown. This view, advanced by several authors, notably Keynes (1921) and
Knight (1921), has been underscored by Ellsberg (1961), who argued convinc-
ingly that people prefer to bet on an urn that contains an equal number of green
and red balls than on an urn that contains red and green balls in an unknown
proportion. Numerous experiments have confirmed this hypothesis; see Camerer
and Weber (1992) for a review. More generally, there is evidence that people’s
preferences depend not only on their degree of uncertainty but also on the
source of uncertainty. This phenomenon has been called source dependence.

In this section we distinguish two aspects of source dependence, which we call
source preference and source sensitivity. Let & and % be two distinct families
of events. For example, one family may be generated by spinning a roulette
wheel, the other by the possible outcomes of a horse race. We shall refer to such
families as sources. We assume that the families are closed under union and
complementation, and are rich in the sense that they both satisfy solvability. In
decision under risk, we interpret the uncertainty as generated by a standard
random device. Although probabilities could be realized by various random
devices, we do not distinguish between them and treat risk as a single source.

Source Preference

In the domain of gains, the decision maker exhibits a general preference for
source s/ over source A if, for any event A in & and B in &, W"(A)=W"(B)
implies W*(S —A) > W*(S — B). Expressed in terms of preferences, this means
that (x, A) ~ (x, B) implies (x, S —A4) > (x,S — B) for all x> 0. Ellsberg’s ex-
ample of preference for the known over the unknown urn illustrates this
relation.

To extend source preference to negative outcomes, we start with the prefer-
ence condition. A preference to bet on source & rather than % means that

' The same boundary events E, E’ apply to conditions (6.5) and (6.6), and to conditions (6.8) and
(6.9). Their relation to the boundary constants for the transformation carrying W, into W, is
described in (A3) and (A4) in the Appendix.
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(=x, A) ~ (—x, B) implies (—x,S —A) > (—x,S — B) for any x > 0. In terms of
the weighting function, therefore, source & is preferred to source & if W (A)
= W~(B) implies W~ (S —A4) < W~ (S — B). Note that the inequality for losses is
the opposite of the inequality for gains. Hence source preference reduces the
weighting function for losses and enhances the weighting function for gains.
Indeed, it can be shown that if reflection holds, then source & is preferred to
source & for gains if and only if % is preferred to & for losses. Consequently,
reflection cannot be satisfied if .« is preferred to % for both gains and losses.

Source Sensitivity

We next examine the concept of source sensitivity (SS). In the domain of
gains, the decision maker exhibits less SS to source & than to source & if the
following two conditions hold:

(7.1)  if W' (A, =W*(B)) and W*(A,) = W (B,),
then W* (A, UA,) > W* (B, UB,);

(72) i W (S—A,)=W*(S—B,) and W*(§ —A4,) =W*(S—B,),
then W* (S — (A4, UA,)) <W" (S - (B; UB,))

for all disjoint events A4;, A, in & and disjoint events B,, B, in & satisfying the
following boundary conditions. In (7.1), W*( A4, UA,) < W*(S — E) for some
boundary event E; in (7.2), W*(S§ — (A4, UA,)) > W*(E’) for some boundary
event E’. Conditions (7.1) and (7.2) are dual in the sense that one condition
holds if and only if the other holds for the dual weighting function.

To appreciate the above definition, suppose W* is SA on & and on .
Equation (7.1) means that the union of disjoint & events “loses” more than the
union of the matching disjoint & events. Hence the decision maker is less
sensitive to an increase in likelihood in source & than in source &. Equation
(7.2) imposes the dual condition. The comparative SS relation between sources

-for the same decision maker is reminiscent of the more-SA-than relation
between different decision makers for the same source. Both relations reflect
departure from expected utility, but they are formally and conceptually differ-
ent.

Expressed in terms of preferences, (7.1) is equivalent to:

(7.3) (x,A;) ~(x,B;) and (x, 4,) ~ (x, B,) implies
(x, A, UA,) = (x, B UB,) for any x > 0,

and (7.2) is equivalent to:

(7.4) (x,8§—A4,) ~(x,8—-B;) and (x,S —A4,) ~ (x,S — B,) implies
(x,8§—-(A4,UA4,)) <(x,S— (B, UB,)) for any x >0,

for disjoint A,, A, and disjoint B,, B,, and under the boundary conditions for
(7.1) and (7.2), respectively. The relations of source preference and comparative
SS are logically independent. If people prefer one source to another, they can
exhibit more or less SS for one source than for the other, or neither.
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Turning to losses, we say that the decision maker exhibits less SS to source #
than to source & if conditions (7.1) and (7.2) hold for the weighting function for
losses. The preference conditions are obtained from (7.3) and (7.4) by inter-
changing x>0 and x <0, as well as > and <.

Empirical Evidence

We conclude this section by discussing some experimental demonstrations of
SA and source preference. We define, for any disjoint events A, B satisfying the
appropriate boundary condition,

D(A,B) =W(A) +W(B)-W(AUB) and
D'(A,B)=1-W(S—B) —W(AUB) + W(A).
Unlike the case of risk, there is no obvious way to define the global measures d
or d’, because there is no natural prior measure on the event space with respect
to which the averages could be taken. However, for any given experiment one
can compute the average of the indices d,d’ over all disjoint event pairs A4, B.
Again, s =1—d —d' is a measure of correspondence with expected utility.

Tversky and Fox (1994) estimated decision weights for six sources, including
risk. The risky events were generated by drawing a ball from an urn with known
composition. The other sources consisted of the following uncertain quantities:
the point spread in a playoff basketball game, the point spread of the 1992
Superbowl, the difference between the closing values of the Dow Jones on
successive weeks, San Francisco temperature, and Beijing temperature. Table
IIT presents the median values of d, d’, and s, for all sources of uncertainty in
each of the three studies.

All values of d and d’ in Table III, which measure lower and upper SA
respectively, are significantly greater than zero, confirming SA for all sources
including chance. Furthermore, d and d’ are greater (and hence s is smaller) for
uncertainty than for chance, indicating that people are less sensitive to uncer-
tainty than to chance.

Figure 5 displays, for each subject in one study (N = 40), the average s value
for the two uncertain sources (Super Bowl and Dow Jones) against the s value
for chance. Three features of Figure 5 are noteworthy. First, all values of s for
the uncertain sources, and all but two values of s for the risky source are less

TABLE III

MEDIAN VALUES OF d AND d’, AND s, ACROSS SUBJECTS, MEASURING THE DEGREE
OF LOWER SA, UPPER SA, AND GLOBAL SENSITIVITY RESPECTIVELY.

Study 1 Study 2 Study 3
Source d da’ K d d’ s d d' s
Chance .06 .10 81 .05 .19 15 11 14 72
Basketball 21 .19 .61
- Super Bowl 15 23 57
Dow Jones 12 22 .67
S.F. temp. .20 .26 51 27 23 .50

Beijing temp. 28 32 &
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FIGURE 5.—Joint distribution for all subjects in study 2 of the sensitivity measure s for risk and
uncertainty.

than 1, as implied by SA. Second, the sensitivity measure s is significantly
smaller for uncertainty (mean = .61) than for risk (mean =.75); 32 out of 40
points lie below the identity line. Third, there is a significant correlation
(r = .53) between the sensitivity measure for risk and for uncertainty, suggesting
that the degree of SA (as measured by s) is an important attribute that
distinguishes among decision makers.

In addition to the indirect comparisons in terms of s described above, Tversky
and Fox also tested the preference conditions for comparative SS. The ordinal
analysis confirmed the previous conclusion: subjects exhibited less SS for all five
uncertain sources than for chance in the sense that (7.3) and (7.4) were satisfied
significantly more often in the predicted than in the opposite direction.

Finally, the evidence indicated that some sources were preferred to risk. For
example, Stanford students (who lived near San Francisco) preferred to bet on
San Francisco temperature than on risk, but they preferred to bet on risk than
on Beijing temperature.

In summary, it appears that the characteristics of the weighting function,
which have been observed in studies of risk, tend to hold for uncertainty as well.
Hence SA emerges as an important descriptive principle for decision under both
risk and uncertainty. Furthermore, the finding that people are less sensitive to
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uncertainty than to risk indicates that uncertainty enhances the departures from
expected utility. Studies of choice under risk therefore provide a lower bound
for the departure from expected utility caused by nonadditive weights. Finally,
the observation that people often prefer to bet on unknown rather than known
probabilities calls for a reassessment of the conclusion commonly drawn from
Ellsberg’s example. It appears that people prefer risk to uncertainty when they
are made to feel ignorant or incompetent. However, in other situations people
often prefer betting on an uncertain source (e.g., sports or weather) than on risk
(Heath and Tversky (1991)). A comprehensive analysis of the causes and
consequences of source dependence awaits further theoretical and experimental
research.

Psychology Dept., Stanford University, Stanford, CA 94305, U.S.A.
and
Medical Decision Making Unit, Uhiversity of Leiden, P.O. Box 9600, 2300 RC
Leiden, The Netherlands
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APPENDIX A: PROOFs

PrOOF OF PROPOSITION 4.1: That the preference conditions are implied by the corresponding
properties for weighting functions, was already explained in the text. Next we assume that (4.4) holds
and derive (4.1). Let p,q be such that p+g<1-—e.

Case 1: p =0. Then (4.1) is trivially satisfied.

Case 2: p> 0 and p + g < 1. Then, by continuity of v, outcomes Z >z > 0 can always be found to
give the antecedent in (4.4). For any such outcomes, the CPT difference between the left prospects
in (4.4) is w(g)(w(Z)—v(z)), the CPT difference between the right prospects is (w(p +q)—
w(p)(w(Z) — v(2)). By positivity of v(Z) —uv(z), the consequent preference in (4.4) holds iff
w(q) =w(p +q) — w(p). Thus (4.1) follows.

Case 3: p>0, p+g=1. (Note that p +g =1 can only occur if £=0.) Define p;=p —1/j for j
so large that p; > 0. By Case 2, w(g) = w(p; +q) —w(p,) for all such p;; obviously, p; +g<1-e.
By continuity of w, (4.1) follows for p.

Before turning to the implication (4.3) = (4.2), let us briefly comment on the duality between (4.3)
and (4.4). It can be seen that (4.4), when formulated in a perfectly dual manner, would lead to the
preference condition z ~ (0,1 —p —gq; z,q; Z, p) = (2,1 — q) < (Z, p) (under appropriate boundary
condition). This condition could have been used instead of (4.3) to characterize upper SA of w. We
think, however, that the slightly different condition in (4.3) (logically equivalent under Assumption
3.1) is more transparent. Therefore the proof below is not a complete dual to the proof of the
implication (4.4) = (4.1).

Let us now assume that (4.3) holds and derive (4.2). Let p,q be such that p > &'.

Case 1: p=1—gq. Then (4.2) is trivially satisfied.

Case 2: 0 <p <1 —q. Here outcomes Z >z >0 can always be found to give the antecedent in
(4.3). For any such outcomes, the CPT difference between the left prospects in (4.3) is (1 —w(1 —
g@)v(z), the CPT difference between the right prospects is (w(p + g) — w(p))v(z). By positivity of
- v(z), the consequent preference in (4.3) holds iff 1 —w(1 — ¢) = w(p +g) — w(p); (4.2) follows.

Case 3: 0=p <1—gq. (Note that p =0 can only occur if &' =0.) Define p;=1/j for j so large
that p; <1—g. By Case 2, 1 —w(1 —q) = w(p; + q) — w(p;) for all such p;. By continuity of w, 4.2
follows for p = 0. Q.E.D.
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PROOF OF PROPOSITION 5.1: That the preference conditions are implied by the corresponding
properties for weighting functions, was already explained in the text. Next we assume that (5.3) holds
and derive (5.1). Suppose that W(A UB) < W(S —E), i.e., AUB<S—E. We may assume that
A, B are disjoint (the general case follows by substituting 4 — B for A4).

Case 1: W(A) >0 and W(A U B) < 1. Then outcomes Z >z > 0 can always be found to give the
antecedent in (5.3). For any such outcomes, the CPT difference betwen the left prospects in (5.3) is
W(BXv(Z) — v(z)), the CPT difference between the right prospects is (W(A U B) — W(A)Xv(Z) —
v(z2)). By positivity of v(Z) — v(z), the consequent preference in (5.3) holds iff W(B) > W(A4 U B) —
W(A). (5.1) follows. .

Case 2: W(A) =0 and W(A U B) = 1. (Note that W(A4 U B) =1 can only occur if W(S —E)=1.)
In this case the antecedent in (5.3) trivially holds, and the consequent preference in (5.3) implies
W(B) = 1. This implies (5.1).

Case 3: W(A) =0 and W(A UB) < 1. This case is derived from Case 1 by a limiting argument
and solvability of W. If W(A4 U B) = 0 then (5.1) is immediate; therefore we assume W(A U B) > 0.
By solvability there exist, for all n sufficiently large, events A, such that 4 cA4,cAUB and
W(A,)=1/n; define B, =B —A,. By Case 1, W(B,) > W(A4, UB,) — W(A,), note here that the
boundary condition is satisfied for A4, U B,(=A U B). Since W(B) > W(B,), it follows that W(B) >
W(A UB) — W(A4,). In the limit (5.1) follows.

Case 4: W(A)>0 and W(AUB)=1. If W(A)=1 then (5.1) trivially holds; assume therefore
W(A) < 1. By solvability, for all » sufficiently large there exist B, C B such that W(A) < W(A UB,)
=1-1/n. By Case 1, W(B,) > W(A U B,) — W(A); note that the boundary condition is satisfied
for A UB,. Because W(B) = W(B,), W(B) > W(A UB,) — W(A). In the limit, W(B) > W(A U B)
— W(A) follows, i.e., (5.1) holds.

Finally, we assume that (5.4) holds and derive (5.2). Suppose that W(A4) > W(E'), i.e., A = E'. We
may assume that 4, B are disjoint (the general case follows by substituting B —A for B). Note for
the cases below that, by monotonicity of weighting functions, always W(S — B) > W(A).

Case 1: W(S — B) = W(A). Then (5.2) trivially holds.

Case 2: W(S —B)>W(A)>0. Then outcomes Z>z>0 can always be found to give the
antecedent in (5.4). For any such outcomes, the CPT difference between the left prospects in (5.4) is
(1 — W(S — B))u(z); the CPT difference between the right prospects is (W(A U B) — W(A))v(z). By
positivity of v(z), the consequent preference in (5.4) holds iff 1 — W(S — B)) > W(4 U B) — W(A).
(5.2) follows.

Case 3: W(S — B) > W(A) = 0. (Note that W(A) = 0 can only occur if W(E') = 0.) By solvability
there exist, for all n sufficiently large, events A,, such that 4 cA4, S —B and W(A,) =1/n. Note
that W(A,)= W(E')=0. By Case 2, 1 — W(S —B) > W(A, UB) — W(A,). Because ACA,, 1 -
W(S —B) > W(A UB) — W(A,). In the limit 1 — W(S — B) > W(A U B) — W(A) follows, i.., (5.2)
holds. Q.E.D.

PROOF OF PROPOSITION 6.1: We show how this result can be derived from the similar result for
uncertainty, i.e, Proposition 6.2 (the proof of which is given below). Our proof thus illustrates the
close relation between risk and uncertainty, and does not take much space. The disadvantage is, of
course, that this proof of Proposition 6.1 is not self-contained but relies on Proposition 6.2.

Proposition 6.1 follows from Proposition 6.2 by setting S = [0, 1], P is the Lebesgue measure,
W, =w; ° P, and W, =w, o P. The only aspect that needs further discussion concerns the boundary
constants. It was pointed out in the text that w, being more SA than w; can be viewed as w,
satisfying SA “when its arguments are measured in w; units.” Similarly, the boundary constraints for
the SA transformation ¢ such that w,=¢ow, are simply the original boundary constraints,
“measured in w, units.” For an elaboration, denote by z the boundary constant for condition (4.1),
and by 2’ the one for (4.2), for transformation ¢. Then p > &', the boundary condition for (6.2) and
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(6.4), corresponds with w,(p) = w(&'X= W,(E")) (“the values of w, serve as arguments of ¢”), and
we get:

(A1) g =wy(e’).

The boundary constraint for (6.1) and (6.3), i.e., p + g < 1 — &, corresponds to w{(p +q) <w{(1 — &)
(= WS — E)); therefore

(A2) 1-2=w,1-¢2). Q.E.D.

PROOF OF PROPOSITION 6.2: In this proof we use the notation (B, A) for W(A4 UB) — W(A),
where it is implicitly assumed that 4 and B are disjoint; 7B, A) and (B, A) are similar.
Condition (6.7) is equivalent to W, = ¢ o W, for a strictly increasing transformation ¢, so that will be
assumed from now on, and (6.7) is no more discussed. Note also that, because of solvability of both
W, and W,, the transformation ¢ is surjective, hence it must be continuous. Conditions (6.5) and
(6.6) can be restricted to disjoint A, B, by replacing B by B — A; this will be assumed below without
further mention.

To derive equivalence of (i) and (ii) in the proposition, we first show that condition (6.5) is
equivalent to condition (4.1) for the transformation ¢—the other conditions for ¢, #(0)=0,
¢(1) =1, and continuity and strict increagingness, have already been established. Condition (4.1)
means that ¢(b) > ¢(a +b) — $p(a) (“the value of the difference is at least as large as the difference
of values”) whenever a +b <1 — &; here z denotes the boundary constant for ¢, and is related to
the boundary event E in (6.5) by the equation

(A3) 1-2=W(S-E),

as we shall see.

The proof is by substituting, along with (A3), a +b=W,(AUB) (for ANB =), a=W(A),
b =W,(C); by continuity of ¢ and solvability of W;, these substitutions can always be realized. The
equality W,(C) = w,(B, A) corresponds with b =a + b — a, the inequality Wi(4 UB) < WS —E)
corresponds with a +b <1 — %, and W,(C) > m,(B, A) corresponds with ¢(b) > ¢(a +b) — ¢(a).
These substitutions show that (4.1) for ¢ is equivalent to (6.5) for Wy, W,. It is demonstrated in a
dual manner that (6.6) for Wy, W, is equivalent to (4.2) for ¢ (now Wy(S — C) = 1 — b). The relation
between the boundary event E’ and the boundary constant ' for the upper SA transformation ¢
is: 16
(A4) &' =W,(E".

Thus the equivalence (i) < (ii) has been established.

Next we turn to the equivalence (ii) < (iii). First we derive equivalence of (6.5) and (6.8). That
(6.5) implies (6.8) follows from substitution of CPT. So we assume (6.8) and derive (6.5). Suppose
WA UB) <W(S - E) and

Wi(C) = m (B, A).
We show that W,(C) = m,(B, A).

Case 1: Wi(A U B) < 1. Because W, and W, order events the same way, Wy(F U G) = W(G) if
and only if W,(F UG) =W,(G), so a decision weight 7(F,G) = 0 if and only if 7,(F,G) = 0. This
holds in particular for G =, i.e., Wi(F)=0 if and only if W,(F)=0. Hence, in view of the
assumed W,(C) = 7 (B, A), either all of W|(C), 7w (B, A), W,(C), m,(B, A) are 0, or none. If they
are all 0, then W,(C) = m,(B, A) and we are done. So assume, from now on:

w,(C), m(B, A),W,(C), m,(B, A) are all positive.
If W(A) =0 then also W,(A4) = 0, further by (6.5) then W,(C) = W,(A U B) which implies W,(C) =
W,(A U B); from these equalities the consequent inequality in (6.5) follows as an equality. Therefore
assume also that

wi(A4) > 0.

16 For this compatibility of boundary constraints it is essential that the boundary constants & and
&' for upper and lower SA can be different, and that similarly the boundary events E and E’ can be
different.
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Since also Wy(4 UB) <1, 0 <x <X can be found such that

x~1(0,S-—(AUB);x,B; X, A).
Then also

(x,8$-C;X,C) ~,(X,AUB)
by the antecedent equality in (6.5), because the CPT difference between the left prospects is the
same as between the right, i.e.,

W (C)(w(X) —vy(x)) = (W (A UB) — W (A))(v(X) —vy(x)).
Now W,(A) >0 and W,(AUB) <W,(S)=1 follow from the corresponding inequalities for W;;
therefore 0 <y <Y can be found such that

y~,(0,S—(4UB);y,B;Y, A).
Condition (6.8) implies

(y,$-C;Y,C) >,(Y,AUB).
Comparing the CPT difference of the left prospects to that of the right prospects, we get
Wy (CXvy(Y) = v5(y)) = (W,(A U B) — Wo(ANvy(Y) —vy(y)), e, Wy(C)=W,(AUB)—W,(A),
(6.5) has been demonstrated.

Case 2: W(A UB)=1.1If also W(A) =1, then W,(A U B) = W,(S) = 1 = W,(A4) follows, imply-
ing (6.5). Hence assume W(A) < 1. By solvability we can find, for n sufficiently large, events B,
such that B, cB and W(4 UB,)=1—1/n> W,(A), and (recall that Wy(C) = W(A U B) — W(A)
> 0) events C,, C C such that Wy(C,) = W(C) — 1/n. Then W{(C,) = W(A UB,) — W(A). By Case
1, Wy(C,) = W,(A UB,) — W,(A). By continuity of ¢, W,(C,) tends to W,(C), and W,(4A UB,)
tends to W,(A U B), hence the inequality W,(C) > W,(A UB) — W,(A4) follows: (6.5) has been
proved.

Next we turn to the equivalence (6.6) < (6.9). That (6.6) implies (6.9) follows from substitution of
CPT. So we assume (6.9) and derive (6.6). Suppose Wy(A) > W(E’) and

7(C,§—C)=m(B, A).

We show that 7,(C,S — C) > m,(B, A).

Case 1: Wi(A) > 0. Because W, and W, order events the same way, and m(C, S — C) = 7 (B, 4),
either all of 7(C,S — C), m(B, A), w,(C,S — C), w,(B, A) are 0, or none. If they are all 0, then
7,(C, S — C) = w,(B, A) and we are done. So suppose, from now on:

7(C,S—-C),m(B,A),m,(C,S — C),w,(B, A) are all positive.

By monotonicity of capacities, Wi(S —C) > W, (A4). Now, by the antecedent equality in (6.6),
Wi(S — C) =Wy(A) if and only if Wy(AUB)=1=W(S); because W, and W, order events the
same way, similar equalities then hold for W,, which implies the consequent inequality in (6.6).
Therefore we assume that

Wi(S —C) > W (A4).

Since also W;(A4) >0, 0 <x <X can be found such that
(x,§-C)~ (X, A).

Then also
x~,(0,S~(4UB);x,B; X, A),

by the antecedent equality in (6.6), because the CPT difference between the left prospects is the
same as between the right, i.e.,

[1 - WI(S - C)]Ul(x) = [Wl(A UB) — WI(A)]vl(x).

The inequalities W,(S — C) > W,(A4) > 0 follow from the corresponding inequalities for W;; there-
fore 0 <y <Y can be found such that

(y,S -C) "’2(Y,A).
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Now (6.9) implies
y=,(0,S—(AUB);y,B;Y, A).

This and the ~, indifference imply, by taking CPT differences between left and right prospects and
dividing by v,(y), that 1 — W,(S — C) = W,(A4 U B) — W,(A). (6.6) has been demonstrated.

Case 2: W(A)=0. If W;(AUB)=0, then W,(4 UB) =0, and (6.6) follows. Suppose therefore
that W;(A4 U B) > 0. By solvability we can find, for # sufficiently large, A4, such that A cA4,cAUB
and W,(A,) = 1/n, and next (noting that 1 — Wy(S — C) = Wy(4 U B) — W;(A) > 0, hence W\(S -
C)<1) we can find C, cC such that Wy(S — C,) = Wy(S — C) + 1/n. Setting B,=(AUB)—-A4,,
we get 1—W(S—C,)=W(4,UB,)—W{(A4,). By Case 1, 1=Wy(§—C,)=Wy4,UB,)—
Wy(A,) follows, i.e., 1 — W,(S — C,) = Wo(A U B) — W)(A,). This inequality implies, by continuity
of ¢, 1—W,(§ — C) = Wy(A4 U B) — W,(A), and (6.6) has been established. Q.E.D.

APPENDIX B: REFLECTION

This section presents preference conditions for reflection under risk, ie., wr=w".

PRropPoSITION B1: Reflection is satisfied if am} only if = satisfies the following condition:
(B1) Ifx~(0,1-p—q;x,q9; X, p) and
(x,1-r; X,r)~(X,p+q), then
-y~ (=Y,p;-y,q;0,1—p —q) implies
(-Y,r;-y,1-r)~(=Y,p+gq),
forall —=Y< —y<0<x<X, and p,q,r€]0,1[.

Proor: First we demonstrate necessity of (B1). The first two indifferences in (B1) imply that
wH(PW(X) — v(x) =W (p +q) —w(PW(X) - v(x), ie, wH(r)=wt(p+q)—w*(p). By
reflection then w=(r) = w™(p +¢) —w~(p). This implies w~(rXov(—y) — (=YD =w (p+q) —
w=(p)w(—=y) —v(=Y)); the left-hand side is the CPT difference between the lower pair of
prospects left of ~, the right-hand side is the CPT difference between the lower pair of right
prospects. Therefore the third indifference in (B1) implies the fourth. We conclude that reflection
implies (B1). _

Next we assume that (B1) holds, and derive reflection. Take py,..., p, such that w*(p;)=j/n
for all j. Then take, for all 2 <j <n —1, X/ >x/ > 0 such that

X/~ (0,1=p;; x, = pj-15 X, pj-1)-

The following indifference is obtained by substitution of CPT, where the CPT value of both
prospects is increased by (v(X/) — v(x/)) /n:

(x/,1-py; X7, py) ~ (X4, pp).

Next take, for all 2 <j <n—1, =Y/ < —y/ <0 such that
—y! ~ (=Y, pi_1; =y, p;—p;-130,1-p)).

It follows from the above three indifferences and (B1) that
(=Y, pi; =y/,1=p) ~ (=Y, pp).

The two loss-indifferences, and CPT, -imply that w™(p,) =w™(p;) —w~(p;_1). As this holds for all
2<j<n—1,w (p)—w (p;_1)=w(py) for all such j. So, for a positive constant A, w~ = awt
on {py,..., p,_1}, which set is the inverse under w* of {1/n,...,1—1/n}. It follows that A is
independent of n (for k # m, compare to i = k-m). As n tends to infinity it follows, firstly, that p,_,
tends to 1, next, that A must be 1, then, finally, that the continuous strictly increasing functions wt
and w~ must be identical. This establishes reflection. Q.E.D.
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Because the weighting function is S-shaped, it is similar to its dual; hence the qualitative
predictions of CPT and rank-dependent utility are not very different. The key difference is that
reflection implies w*(1/2) <1/2 < w™(1/2) <1/2, whereas rank-dependent utility implies
wt(1/2)<1/2w (1/2)> 1/2. In the study of Tversky and Kahneman (1992), the estimated
weighting functions for all 25 subjects satisfied the inequalities w*(1/2) <1/2 and w(1/2) <1/2,
in accord with CPT.

Much less is known about the relation between the weighting functions for gains and losses in the
context of uncertainty. We suspect that the close correspondence observed in the domain of risk may
not always hold for uncertainty.
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