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Abstract

An operational method is presented for deriving a linear ranking of alternatives from
repeated paired comparisons of the alternatives. Intransitivities in the observed preferences
are cleared away by the introduction of decision errors of varying importance. An observed
preference between two alternatives that causes an intransitivity in the course of the
procedure will be reversed if it is of lesser importance. The method is applicable in case
one wants to take account of intensities of preference and assume these to be monotone
with the probability that an observed choice coincides with a fixed underlying true choice.

Keywords: Intransitivities; Paired comparisons; Linear rankings

1. Purpose and motivation

Transitivity is a fundamental, if not the most fundamental, notion in decision
theory. It is almost universally assumed in disciplines of decision theory and
generally accepted as a principle of rationality. Yet, it is often violated in actual
choice, particularly in pairwise choices. A first task for decision science is thus the
resolution of intransitivities. This is the subject of the present paper. We shall
present an algorithm for solving intransitivities in repeated choices.

In many practical decision problems a set of options is given at the outset and it
is required that one single option finally emerges from the decision process as ‘the
best’. Here, the decision process may be of various kinds but we only consider
pairwise choices. As, in general, any option may be embedded in an (intransitive)
cycle of pairwise preferences, the requirement of one single option emerging as
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‘the best’ asks for a decision process in which such cycles are broken and
transformed into linear orders.

The method we present was developed in the framework of a medical decision
analysis in which treatments for patients of laryngeal cancer (Maas and Stalpers,
1992) had to be determined. To be maximally useful for practical applications, we
based our method on two intuitive assumptions:

(i) More intense preferences are more trustworthy.

(ii) Preferences that are invariant over replications are to be preserved.
These assumptions serve to get our method to be transparent, tractable in its
details, and mathematically simple.

2. Introduction

In the method of paired comparisons, pairs from a set Z={x,y,z,...} of
n =3 objects are presented to one judge. The method is very popular in the social
sciences and is used primarily when the objects to be compared cannot be
measured in a physically meaningful way. In practical applications ties are often
not permitted, that is, each judgment consists of a choice or strict preference (in
some sense) for one of the two compared objects. Let us consider the simple case
of three objects x, y, and z to be judged once by one person, so that there are
three pairs to be compared: {x, y}, {y,z} and {x,z}. Let > denote a binary
preference relation on Z, where x >y means that x is strictly preferred to y, i.e. x
(and not y) is chosen from {x,y}. As each comparison has two possible
outcomes, this yields eight possible experimental results. In six of these results
one object is chosen twice, a second object is chosen once, and the third object is
not chosen at all. In the other two results each object is chosen once, that is,

either[x >y, y>z, z>xjor[y>x,x>z,z>y]

has been observed. Such results are called circular triads (Kendall and Smith,
1940). Obtaining a linear order from such results is a problem that occurs in
several fields.

A circular triad may be regarded as an inconsistency of the judge, and several
explanations for the occurrence of a circularity can be given (e.g. Tversky, 1969;
David, 1988). It should be noted that circularities are not restricted to the case of
three objects: m objects may give rise to a circular m-ad; we refer to any circular
m-ad as an intransitivity (m =3). However, while intransitivities may occur,
researchers are often interested in establishing a transitive order. This may be the
case if a prespecified model (e.g. unfolding, conjoint measurement) or a
prescriptive application (e.g. in decision analysis) requires transitive data. One
widely known procedure (Slater, 1961) consists of finding a linear order on the
basis of the observations such that the number of preference reversals is as small
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as possible; this number is known as Slater’s i. Given intransitive data, all linear
orders obtained from the data by exactly i preference reversals are called nearest
adjoining orders. Algorithms for finding all nearest adjoining orders can be found
in Remage and Thompson (1966) and Phillips (1969); an efficient algorithm for
finding i and one nearest adjoining order for n <10 objects is given by
Bezembinder (1981). See also Goddard (1983), Ali et al. (1986), and Barthélemy
(1990).

Slater’s procedure has been formulated for the case where one judgment is
obtained for each of the (%) unordered pairs {x, y}, x # y, that may be formed
from the set Z of alternatives under scrutiny. Moon (1968) and, more recently,
Delver et al. (1991), mention some other ranking methods for that case.
However, in Moon’s (1968, p. 42) judgment, none of the methods he considers is
‘entirely satisfactory’ while none of the methods considered by Delver et al.
satisfies all of the properties they deem desirable for these methods.

We present a method that reckons with the extent to which a judge is stable in
his/her preferences over repeated trials; this stability will henceforth be inter-
preted as a measure of the intensity of preference. A natural starting point under
replicated choices is the majority preference relation: x is majority preferred to y
if x has been chosen from {x, y} in the majority of the presentations of {x, y}.
Given an odd number of replications, preferences are thus dichotomized: x is
strictly preferred to y, or y to x. Problems arise if the resulting majority
preference relation turns out to be intransitive. Then, in applications, often an ad
hoc nearest adjoining order is taken with respect to the majority preference
relation. Yet, the dichotomization has led to a loss of information. Our method
reckons with all the information of replicated choices. In this respect our method
contrasts with dichotomization and all procedures such as Slater’s and the ones
mentioned above in Moon (1968) and Delver et al. (1991), where all observed
choices are implicitly assumed to be of equal importance; see Example 6.2 below.
There also exists a large literature on the scaling of a set of objects from a set of
pairwise relative choice frequencies (here interpreted as intensities of preferences)
that may or may not violate transitivity of majority choice. Often a goal function
is chosen that should be maximized. For a survey of related theories, and many
sophisticated procedures, see Hubert (1976).

This paper proposes a new method for solving intransitivities. Our method aims
at being tractable and natural in practice, and will be tested as such in a computer
simulation. Simplicity and appeal, rather than mathematical sophistication, are
our primary aims. The method will not consist of maximizing a function. In
contrast to Slater (1961), and most other methods such as the ones in Moon
(1968) and Delver et al. (1991), our method can be applied to incomplete
digraphs representing, for example, the ordinal information embedded in a
conditional proximity matrix. We describe our method for the general case of
incomplete digraphs, and given some examples and applications, such as to
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Guttman’s scalogram model, and social choice theory. Incidentally, for the latter
application a feature of our method is that the unanimity principle is satisfied.

We consider stable preferences, i.e. preferences that remain the same through-
out all replications, as particularly important. They contain all preferences of high
reliability and intensity. Hence they will not be confounded with unstable
preferences, which evidently cannot be highly reliable. Stable preferences can be
confounded with unstable ones if a nearest adjoining order with respect to
majority preferences is chosen, or if a function is maximized. Cycles derived from
stable preferences are more likely to represent genuine cycles than those derived
from unstable preferences. Imposing a transitive order on a cycle of stable
preferences may very well be inappropriate. Hence, in that case our method
stops, and reconsideration of the data is recommended. Then, in particular, the
data may be reconsidered in the light of decision models that allow genuine
intransitivity such as Tversky (1969), Loomes and Sugden (1982), Bell (1982),
and Fishburn and LaValle (1987).

Section 5 shows that our method requires polynomial computation time. This
reflects the simplicity and tractability mentioned above. About Slater’s procedure,
David (1988, p. 24) wrote that . . . the calculation of i (and a nearest adjoining
order) continues to present a formidable challenge except when [the number of
objects] is small”. The methods presented in Remage and Thompson (1966) and
Phillips (1969) require exponential computation time. Of course, tractability is
especially important for dealing with many objects, and for the programming of
the method. It does not allow for indifferences; inter alia, Singh and Thompson
(1968) deal with indifferences. Our method preserves completeness, i.e. if the
data satisfy completeness, then so does the solution. The method can be applied
to incomplete preferences, and usually gives a unique transitive order.

After the preliminaries in Section 3, the method is explained in detail in Section
4. Section S shows that the computation time of the method is polynomial.
Section 6 gives examples and Section 7 a Monte Carlo study. Section 8 contains
the discussion.

3. Preliminaries

Let Z={x,y,z,...} be a nonempty set of n objects with x, y, z possibly

subscripted. A binary relation R on Z is
(i) asymmetric if xRy =>not yRx, for all x, y € Z;

(ii) transitive if xRy, yRz=> xRz, for all x, y,z € Z;

(iii) complete if xRy or yRx, for all x #y € Z;

(iv) acyclic if, for all m =1, [x,Rx,,x,Rx,...,x,_,Rx,]=>[notx, Rx,].

R is a linear order if it satisfies (i), (ii) and (iii), a tournament if it satisfies (i)
and (iii) and a partial (or transitive) order if it satisfies (i) and (ii). Obviously, a
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transitive tournament is a linear order. The fransitive closure of R, denoted by R',
is defined by xR'y if xRy or xRz ,R ... Rz, Ry for some z,,...,z,, €EZ. We let
Z&Z denote the set of the unordered pairs {x, y}, x, y € Z, x # y, that we plan to
present to a subject in a particular experiment. Note that Z&Z may, but need
not, equal the set of all unordered pairs that may be formed from Z. Note also
that R is transitive if it satisfies (i), (iii), and (iv).

Let — be an asymmetric binary relation on Z. D = (Z,—) is a directed graph,
or digraph for short, with objects called nodes, and a relation between nodes is
called an arc. We will frequently refer to an arc xy meaning an arc from x to y. A
walk in a digraph is an alternating sequence of nodes and arcs, where the nodes
before and after an arc are its beginning and endnodes, respectively. A path is a
walk in which all nodes are distinct. A cycle is a walk with at least three nodes,
where all nodes are distinct except the first and the last. A cycle containing m
nodes is called an m-cycle.

The indegree id(x) of a node x is the number of incoming arcs yx, the outdegree
od(x) is the number of outgoing arcs xy. Obviously, the sum of in- and outdegree
of a node never exceeds n — 1.

A tournament 7 of n nodes contains N = (%) arcs, and may be used to
represent all N pairwise preferences within a set of n objects. We call s =
(od(1), ..., 0d(n)) with od(1) =" - - = od(n) the score vector of T, where od(!) is
the outdegree of node / for /=1, ..., n. A tournament T is transitive if and only
ifs=(mn—-1,n-2,...,1,0); see Moon (1968, Theorem 9).

An observed choice between two objects, made by a judge, can be called a
manifest choice or manifest preference; usually we drop manifest, and simply
write ‘choice’ or ‘preference’. Hence, from now on, ‘choice’ and ‘preference’
without any specification will refer to manifest choice and manifest preference.
We assume that for each {x, y} € Z&Z there exists a fixed true or latent choice,
denoted by #(x, y), and that a manifest choice in {x, y}, denoted by m(x, y),
reflects #(x, y) but may be distorted by error. A probabilistic assumption could be
that m(x, y) coincides with #(x, y) with a fixed probability m,, >1/2, and that
errors on different choices are mutually independent; see Coombs et al. (1967).

Since an observed choice does not necessarily coincide with its underlying true
choice, paired comparisons are usually replicated a number of times. Accordingly,
we assume throughout that each pair {x, y} € Z&Z is presented to the subject
exactly k times, with k=1 odd; i.e. there have been k replications. Common
values in experiments involving one judge are k =3 and k = 5. We write xPyif x
is preferred to y in precisely k —j replications, where P denotes the majority
preference relation, i.e. xPy if xP,y for some j < (k —1)/2. Because k is odd, x is
majority preferred to y, or y to x, for every pair {x, y} presented to the judge.

Of special interest are the szable choices, i.e. those paired comparisons in which
the same choice is made in all replications. For instance, in an experiment on the
seriousness of crimes, a judge generally will have no difficulty in choosing the
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most serious crime from murder and driving through a red light. In other words, if
x 1s murder, and y is driving through a red light, then =, is very high and xP,y
very likely.

4. The construction of a transitive order

Our method has been motivated by the following assumptions; comments are
given below.

Assumption 4.1. True preferences are acyclic.

Assumption 4.2a. The more intense an observed preference is, the more likely it
is to coincide with its corresponding true preference.

Assumption 4.2b. Stable preferences have priority over unstable preferences.

Assumption 4.1 requires no explanation. As regards Assumption 4.2a, under the
probabilistic assumption described above it is plausible to interpret the intensity
of a choice to be monotone with 7., and to consider a majority preference as
more intense the larger k —j (the number of replications showing the majority
choice in {x, y}) is. For Assumption 4.2b, think of choosing the most serious
crime from murder and driving through a red light. Here, there will be no (or
exceptionally small) random errors in preferences, and observed preferences will
be stable. Obviously, stability of preferences does not preclude random errors.
Instability of preferences, however, does ensure random errors. Hence, stable
preferences should have special priority over unstable ones. Indeed, under the
probabilistic assumption described above, for m, =0.6,0.7,0.8, the likelihood
ratio w5, /(1 —m,)* is, respectively, 3.4, 12.7, 64.0 for k=3, and 7.6, 69.2,
1024.0 for k =5. These values support the priority of stable preferences but, of
course, there is no certainty that a stable majority preference coincides with its
corresponding true choice.

As a consequence of Assumption 4.1, transitive closure will be applied after
every step in the algorithm. As a consequence of Assumptions 4.1 and 4.2a, a
preference will be overruled by the transitive closure of more intense preferences.
As a consequence of Assumption 4.2b, stable preferences will never be reversed.
If stable preferences contain cycles, we reckon with a genuine intransitivity.
Rather than imposing transitivity, we then recommend reconsidering Assumption
4.1 or the data. The possibility of revealing genuine intransitivities is in our
opinion an advantage of binary choices over the direct ranking of the objects.
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Practise shows that the direct ranking of objects is problematic, probably because
this is more remote from everyday experience than binary choices.

If stable preferences are acyclic, the method is applied. It constructs a sequence
of transitive digraphs

Dy,....D,....,D;, f<nn-1)/2, (4.1)

with an increasing number of arcs. The final result D, gives the solution, i.e. a
transitive relation. Under completeness (all pairs of objects have been presented
to the judge) D, will be a tournament; thus the constructed transitive relation has
preserved completeness. For D,, the starting digraph, we take the digraph
corresponding to the transitive closure of the stable preferences.

For the remainder of the procedure, see the flowchart in Fig. 1. A majority
preference xP,y is called incorporated in D, if either the arc xy or the arc yx is
present in D,. In the latter case (yx present) we say a preference reversal has
occurred. Now suppose that some D, has been constructed. If all majority
preferences have been incorporated in D;, the method stops. Therefore, suppose
some majority preference has not yet been incorporated. The method then
proceeds by selecting one of the most intense of these majority preferences, say
xP,y, inserting the arc xy, and extending by transitive closure. The particular
choice from these most intense majority preferences is motivated by considera-
tions of efficiency. Details are as follows.

Take the minimal j such that a majority preference xP;y has not yet been
incorporated. (Note that this integer j must be increased in comparison with the
similar j* used in the construction of D, , only if all majority preferences P,.
have been incorporated in D,) Determine the score vector s(D,)=
(od(1),...,0d(l), ..., od(n)), where nodes x,, . . . , x, have been reordered such
that od(1)=---=od(n). For the moment, the ranking of nodes with equal
outdegrees is arbitrary (this arbitrariness will be dealt with below). An ordering
based on outdegrees is also used in Rubinstein (1980), Roberts (1990), and
Delver et al. (1991). We will often refer to x,, the node corresponding to od(/), as
[. Note that x; in s(D;) need not refer to the same node as x, in s(D,. ), because
the ordering of outdegrees depends on D,. Pairs of nodes are written with the
highest outdegree first, and are subsequently ranked in a reversed lexicographic
way, ie. as (1,2), (1,3),...,(1,n), (2,3),...,(2,n),...,(n—1,n). In this
order we choose the first pair (x, y) in which the P-relation has not yet been
incorporated in D;. Note that the search for the pair xy can often be done faster;
for instance, if id(/) + od(!) =n — 1, node [ can be ignored because, then, arcs
with all other nodes are already present in D,. If xP,y, the arc xy is inserted; if
yPx, the arc yx is inserted. Note that inserting xy (or, similarly, yx), cannot
create a cycle: the remainder of that cycle would constitute a path from y to x in
D;, and, hence, by transitivity of D,, an arc yx. This cannot be. Hence transitive
closure can be applied, resulting in the digraph D, ,.
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Select first pair of
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!

Add arc xy
Apply transitive

A closure
STOP Di+1 results

Fig. 1. Flowchart of the method.

After a finite number of steps the method stops, and all majority preferences
have been incorporated. Note that the selected pair of nodes is always ordered in
accordance with the majority preference. Reversals only occur through transitive
closure, in agreement with the consequence of Assumptions 4.1 and 4.2a as
described below those assumptions. As an example, if xP,y, yP,z, and zP,x, then
x— z will result.

Let us now deal with the arbitrariness of the ordering of outdegrees as
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mentioned above. Suppose some nodes have an identical outdegree. Then these
are ordered by increasing indegrees. Of course, in a computer program the score
vector s(D,) can immediately be constructed in this way. Now there will be an
unambiguous ordering of nodes in most cases, and x and y are selected. If there
still does not exist an unambiguous ordering, the method may select one pair at
random. Then possibly the solution is not unique, though often the solution will
be not be affected by the particular choice of a pair. This completes the
description of the method.

Uniqueness can be further increased by a modification which has been used in
the simulations. The price for this greater uniqueness is that the computation time
is nonpolynomial. Roberts (1990) emphasizes that uniqueness is a problem for
many combinatorial optimization procedures. Let us now describe the modi-
fication. All pairs of nodes that can be selected are considered. One of those pairs
is selected and the solution is determined. Next another pair is selected, and again
the solution is determined. This is done for all possible pairs. Finally, the solution
with the minimal number of majority preference reversals is chosen. If there are
two or more such solutions, then no unique solution has been obtained. However,
such occurrences are rare (see Section 7). Note that if od(1)>o0d(2) >0d(3) =
od(4) = 0od(5), then the ordering of x;,x,, and x; need not be determined
immediately because the first selection may concern nodes 1 and 2. If by this
selection 12 or 21 is incorporated, then this will usually affect the ordering of
x5, Xx,, and x5.

The procedure is greedy, i.e. it makes the best possible choice at each single
step. This does not guarantee the finding of optimal solutions, but will usually
lead to solutions close to optimal solutions. The solution is locally optimal in the
sense of Assumption 4.2, i.e. reversals of arcs (‘pairwise interchanges’) will not
improve the fulfillment of Assumption 4.2.

Finally, in order to reduce calculations, it is convenient to partition the
digraph representing the majority preferences (arc xy if and only if majority
preference xPy) into ‘strong components’. A digraph is strong if it contains a
walk through all nodes with the same beginning and endnode. A subdigraph of
a digraph D is a digraph whose nodes and arcs are nodes and arcs of D. A
strong component D, of a digraph D is a maximal strong subdigraph, i.e. there
is no strong subdigraph D,(#D,) of D that contains all nodes and arcs of D;.
Obviously, cycles in majority preferences only occur within strong components
of the digraph that represents the majority preference relation. Between strong
components all majority preferences have the same direction, and the strong
components can be ordered correspondingly. Hence it suffices to apply the
method to each single strong component; next the solutions of all these
separate strong components are embedded in one overall transitive solution in
an obvious way.
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5. Polynomial computation time

As mentioned in the introduction, David (1988) qualifies the computation of all
nearest adjoining orders as a ‘formidable challenge’. The procedures of Remage
and Thompson (1966) and Phillips (1969) require exponential computation time
(see Phillips, 1969, p. 100). For many procedures it is not known whether or not
they are NP (Even, 1979). Roberts (1990) expresses a strong suspicion that the
‘linear ordering problem’ is NP. Our method will now be shown to require only
polynomial computation time. If, as in our method, the number of operations to
arrive at a solution varies, the order of the polynomial is to be determined for the
case in which the number of operations is maximal. Below, for each step in the
method as shown in Fig. 1, the highest number of operations required to move to
the next step is determined.

In the appendix it is shown that adding one arc to a transitive digraph, followed
by transitive closure, requires a calculation time proportional to n”/4, i.e. is an
n’-algorithm. Thus, the construction of D, (add one arc after the other, and apply
transitive closure each time) is an n*-algorithm. Let us now consider the extension
of D, to D,,,, with symbols as in Section 4. Finding j, establishing s(D,), and
selecting x and y are all n’-algorithms. Adding the arc between x and y plus
transitive closure is, according to the appendix, an n’-algorithm. Hence the
extension of D, to D,,, is an n’-algorithm. Such an extension of a digraph occurs
at most n(n—1)/2 times (see formula (4.1)). Hence the method is an n'-
algorithm, i.e. it is polynomial. Indeed, our method has been programmed in
FORTRAN with a fixed number of n-dependent (nested) loops, with no
transitions between loops. It is well known that this ensures a polynomial
computation time (Garey and Johnson, 1979).

6. Examples

Example 6.1. Fig. 2(a) shows observed preferences which form the 4-cycle of
majority preferences wPxPyPzPw; Slater’s { is 1 (reverse zw). The relations P,
and P, are given in Fig. 2(b). D, can be created on the basis of P,, as shown in
Fig. 2(c). Note that transitive closure does not result in any more arcs. Now,
s(Dy)=(2,0,0,0), in which the first 0 is the outdegree corresponding to node w,
because of its lowest indegree (id(w) = 0). The ordering of pairs to be selected is
(x,w), (x, y), (x,2),(w, ), (W,2),(y, z), where it is noted that the ordering of
(x, y), (x, 2), and (w, y), (w, 2) is arbitrary. It is easily verified that an arc between
x and w is not yet present, so (w, x) is selected. The preference wP,x (see Fig.
2(b)) is incorporated as the arc wx. On the basis of transitive closure, wy and wz
are added, resulting in digraph D, (see Fig. 2(c)). Now the only P,-preference not
yet incorporated is yP,z; this is incorporated subsequently. Note that the
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w y z w X w, X
wi{ - |2 2 1
X 1 - 3 3
ylilo |- |2
z 2 10 1 - y z y z
(a) (b)
W, X
y z
©

Fig. 2. (a) Preference matrix of Example 6.1. The values of the cells represent the number of times
the row object is preferred over the column object in three replications. The solution of our method is
wxyz. This is a nearest adjoining order. (b) Preference relations P, (left) and P, (right). (c) Digraphs
D, (left) and D, (right).

ambiguity in the ordering of y and z in s(D,) does not affect the uniqueness of the
solution. A nearest adjoining order has been obtained. One majority preference
zPw has been reversed into the arc wz. [

Example 6.2. Suppose we have observed all preferences between every pair of
four objects w, x, y and z in three replications. The resulting preference matrix is
given in Fig. 3. Note that the matrix can be represented by a 4-cycle wPxPyPzPw.
Slater’s i is 1, and there is only one nearest adjoining order, namely the one that
can be created by reversing the majority preference zPw, hence constituting the
linear order wxyz. However, applied to majority preferences, Slater’s procedure
does not reckon with the intensities of the preferences, i.e. all arcs are taken as
equal intensity. From a psychological standpoint this is debatable. After all, the

w y z
wl| - |2 2 10
X 1 - 3 3
yj1]0 - 3
z 3]0 ]0 -

Fig. 3. Preference matrix of Example 6.2. The values of the cells represent the number of times the
row object is preferred over the column object in three replications. The solution of our method is
xyzw, involving two (unstable) preference reversals. The nearest adjoining order is wxyz, involving
one (stable) preference reversal; Slater’s i = 1.
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judge has three times preferred z over w, i.e. the majority preference zPw is
highly intense. If our method is applied, then it is easily seen that, because there
is a path xyzw in D,, the linear order xyzw emerges from transitive closure. This
implies that we reverse wPy and wPx. In both {w,x} and {w, y} the observed
preferences are not the same in all replications. Hence the majority preferences in
these pairs show more uncertainty than does the majority preference in {w, z}.
Our method thus reckons with intensities of preferences, and is appropriate if
priority is given to the higher reliability of more intense preferences. In this case
the solution is a transitive tournament, but not a nearest adjoining order.

Let us consider the above preferences according to the model of Tversky
(1969). Suppose the objects have two dimensions, which are ordered a priori with
respect to their importance, and a judge uses the following decision rule (see Fig.
4). If the difference between two objects on the first dimension is strictly greater
than 2g, choose the object with the higher value. If no decision based on
dimension I can be made, choose the object with the higher value on dimension
II, provided that the difference is strictly greater than e. If, according to this
decision rule, no preference between objects can be stated, then choose at
random. This rule yields the stable preferences zP,w (based on dimension I),
xPyz,xP,y and yP,z (based on dimension II), while in the pairs {w,x} and
{w, y} a random choice is made. This decision rule could result in the preference
matrix given in Fig. 3. In this case it would be undesirable to change the stable
preferences. [

Example 6.3. The matrix in Fig. 5 results in majority preferences between 12
objects enclosed in one single strong component. This strong component com-
prises the cycle [PkPjPiPgPfPcPaPbPePdPhPI. Slater’s i is 4. P, contains no
cycles, hence D, can be created and our method can be applied. In- and
outdegrees of D, are given in Fig. 6. It is left to the reader to verify that, after
application of our method, the linear order lkjihgefdcab results. This order is a
nearest adjoining order (i.e. contains four preference reversals). The small digits
in the cells of Fig. 5 indicate which edges have been directed in the same ‘run’
(i.e. resulting from a selection of nodes and subsequent transitive closure).

This example has been taken from a medical study of ours in which patients are

Dimensions
1 i

w & 4
x 2 5S¢
y 3& 3
z 4e €

Fig. 4. The description of the objects in Fig. 3, based on three dimensions; dimensions I and II are
important for the decision rule.
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a b c d e f g h i j k { [e
a | - 2190 0 |0 0|0 0|0 01]0 0 1
b |1 - 1 1 2 0 1 0 1 010 0 1
c |3 2 9] - 1 1 010 0 1 010 0 2
d |3 2 8127 - 0 010 2 |0 0|1 0 4
e |3 162963 - 260 1 0 1|1 0 4
f13 3 13 3 1 - 10 1 ]2 010 0 5
g |3 2143 3 3 3 - 1 (0 0|0 0 6
h |3 3 13 152512525 -10 110 2 7
i |3 2112143 3 113 3 - 1 11 0 7
Jj 13 3 |3 3 2 13 3 2424 -10 0 9
k|3 3 13 2 42 3 3 31233 ]- 1 10
! |3 3 |3 3 3 3 3 1 Y3 3 (1273 - 10
i 10 10 9 7 7 6 5 4 4 2 1 1

Fig. 5. (Example 6.3: A preference matrix with 12 nodes, each cell represents the number of times the
object in the row is preferred to the object in the column). A cell marked with *, where x is a number
between 1 and 10, means that the edge representing this cell was directed in digraph D,, either by
adding an arc or due to transitive closure. The arc is directed from row object to column object. The
preference reversals are underlined.

to choose between two treatments for laryngeal cancer, namely radiotherapy and
surgery. To help patients in choosing, they are given paired comparisons of
possible outcomes of treatments in which one treatment has a higher life
expectancy and a worse speech quality than the other. This finally leads to a
preference for one of the two treatments (Maas and Stalpers, 1992). Our
procedure can be used to establish a transitive order if, after three replications,
intransitivities are present.

So far, paired comparisons have been presented to nine patients. One of them
stopped cooperation after one replication. From the remaining eight patients,
three were lexicographic and two more were completely transitive. Hence three
patients were intransitive. Judging by a measure developed by Maas (1993), one
of them was ‘too’ intransitive. That is, the percentage of circular triads was higher
than five. From one of the remaining two intransitive patients, the above example
has been taken. The other patient had seven objects comprised in a single strong
component. The solution based on our method requires four preference reversais,

nodes a b ¢ d e f g A i j i
od(x) 0 0 1 1 2 4 6 3 8 7 9 10
id(x) 10 7 7 7 5 5 4 3 1 2 0 0

Fig. 6. Example 6.3: Out- and indegrees in D, i.e. after transitive closure of the stable preferences.
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yielding a nearest adjoining order. (For the corresponding preference matrix of
this patient, see Maas and Stalpers, 1992.) O

Example 6.4. Suppose there are 101 objects {x,,...,x o, w}, and there are
k =11 repetitions. The preferences x, > x,,; are stable for all i>0, j>0. For
i>1,x;Pw, i.e. x, is chosen over w six times, suggesting that w should be the
least preferred object. However, suppose that wPx,, w is preferred over x, seven
times; this suggests that w should be the most preferred object. Our algorithm
first establishes the transitive ordering x,>--:>Xx,y,, and next incorporates
w > x,. By transitive closure, the final ordering is w>x, > --->x,,,.

Discussion. The example clearly illustrates that our method assigns priority to
intenser preferences, irrespective of the number of less-intense preferences that
must be reversed subsequently. In this example, the outcome of our method
seems questionable, and the final ordering x, > -->x,,>Ww seems more
plausible.

A more sophisticated variation of our method could be developed to provide a
more plausible ordering. Then at each stage a new preference to be incorporated
would not necessarily be the most intense preference, but would rather be
determined in some sense by the number of less-intense preferences that might be
reversed by incorporating the preference and transitive closure. However, such a
method would be much more cumbersome, and would require subjective choices
concerning tradeoffs between numbers of preference reversals and intensities of
preferences. This would necessarily introduce some subjective interpretation of
the importance of reversals and intensities. We have developed our method to be
tractable and transparent, at the price of giving nonoptimal results in some
extreme cases. Note that the above example is not natural, and that similar
phenomena will occur only rarely. [

Our method can be applied to social choice, where there are k individuals and
each individual expresses a preference, leading again to k observed preferences
for each pair of objects. The ordering to be constructed is now interpreted as a
group preference relation. A feature of our method is that it ensures the
unanimity principle, i.e. if all persons agree on a preference between two objects,
then so will the group preference. Our method is, however, not strategy-proof,
i.e. it may be in a subject’s interest to represent his or her preference incorrectly.
This is illustrated in the following example.

Example 6.5 (strategic behavior in a social choice). Suppose, as in Example 6.4,
that there are 101 objects {x,, ..., x4, w}. There are k =11 persons, and the
preferences x; >x,,; are unanimous (i.e. stable) for all i>0, j>0. The first
person has a transitive preference relation x, > w >x, > -+ - >x .. Suppose that
wPx,, x,Psw for i=2,...,99, and x,,,P,w. Our algorithm first establishes
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Xy > X, > > X 00, thenincorporates x, o, > w; by transitive closure, x; >x, > -+ - >
X100 > W finally results. If the first person were to know this, then he or she might
prefer revealing the preferences w>x, >x, > -+ >Xx,,,. In that case, again our
algorithm first establishes x, >x, > - >x,,; in the next step, either wP,x, or
X,00Psw is to be incorporated, and because x, has a higher outdegree than X,
the preference w > x, is incorporated. By transitive closure, w>x, >x, >+ >
X100 Tesults, which person 1 may well prefer over the ordering x, >x,>--->
X190>w. It is then to person 1's advantage to misrepresent his/her true
preferences. [

7. Monte Carlo study

We assume that the true latent preferences are represented by a real function f,
i.e. x is preferred to y if and only if f(x) > f(v). Manifest choices, denoted by >,
are probabilistic in accordance with Luce’s (1959) model, i.e.

W
==+ )

where 7(x >y) is the probability of choosing x over y in a single choice. Scale
values f(x), f(y) are chosen such that for all x, y with consecutive scale values the

probabilities 7(x >y) are equal. Hence, for objects x,y,z,...,v,w (with
decreasing scale values), the following equations need to be solved:
1) ) ) )

O+ - (O +f@) ) +fw)

Without loss of generality, f(x), being the highest scale value, can be fixed at 1.0.
The lowest scale value, f(w), is fixed at 0.001 (not at 0, because (x> w) = 1.0 is
not allowed in Luce’s model). Now, (7.1) becomes

1 0 ) 72

A+ f)+fz)  ~~ fv)+.001

With n objects, the solution of (7.2) is f(y)= [fom]""™ P, and f(z)=
O f0) =[F T2

The results of the Monte Carlo study are given in Table 1. It is obvious that,
especially for low values of n, our method almost always produces a nearest
adjoining order. This is partially due to the fact that probabilities are rather high.
The proportion of nearest adjoining orders gradually decreases with increasing n,
and is around 0.50 when n =15. Proportions do not vary much over 3 and 5
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Table 1
Results of the Monte Carlo study with Luce’s choice model
n k Proportion Interval® Cyclic Not unique
5 3 0.971 0.85-1.0 0 0
7 3 1.0 0.93-1.0 0 0
7 5 1.0 0.90-1.0 0 0
9 3 0.893 0.82-0.94 0.016 0
9 5 0.938 0.86-0.97 0.004 0
11 3 0.818 0.76-0.87 0.015 0.005
11 5 0.811 0.73-0.87 0 0
13 3 0.606 0.51-0.69 0.033 0.008
13 5 0.614 0.52-0.70 0.008 0
15 3 0.501 0.40-0.60 0.101 0
15 5 0.462 0.36-0.56 0.010 0

Notes: n=number of objects, kK = number of replications, proportion = proportion nearest adjoining
orders resulting from solution; Interval® = 5% confidence interval for proportions of previous column;
Cyclic = proportion of digraphs showing cyclic stable preferences; and Not unique = the proportion of
matrices in which no unique solution could be determined.

* For this interval the usual formula p * 1.96Vp(p — 1)/n is used.

replications. The number of cyclic P, is low; the number of digraphs with
nonunique solutions with an equal number of preference reversals is very low.

8. Discussion

It has been shown that the method presented gives a solution that often is
unique, and often coincides with a nearest adjoining order, especially for n < 10.
The Monte Carlo study supports the method. It will be of use in practice if
researchers and/or judges adhere to a formal decision, or want to prepare data, in
the context of a prespecified model that assumes transitivity. In contrast to the
algorithms for finding all nearest adjoining orders of Remage and Thompson
(1966) and Phillips (1969), our method is polynomial and therefore suitable for
large numbers of objects. In practice the method is straightforward and can be
done by hand, even with 15 objects. It has not been our aim to arrive at nearest
adjoining orders because, as shown in Example 6.2, a nearest adjoining order
need not be a proper solution if intensities of preferences are relevant.

As we have seen, the number of arc reversals in one empirical case (Example
6.3) coincides with Slater’s i. For otner methods such an example, consisting of a
strong component with 12 nodes, is complex We have collected more real data as
in Example 6.3, and until now our method always produced a nearest adjoining
order. The method fairly often gives one solution established in a few minutes
without a computer.

The requirement of replications can be modified by asking respondents to
directly state intensities of preferences on a, say, 3- or S-point scale. The
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applicability of the method to social choice was described in Example 6.5 and the
text above.

If high numbers of replications are involved, then the method can be modified.
It can then be made more tractable by collapsing the P;-relations. For example,
let P§:= Py, let P} be the union of Py, ..., P, , P; the unionof P, .,,..., P,
etc. Another possibility is to enlarge the class of preferences to be treated as the
stable preferences in our method. For instance, if the relative choice frequency
for a particular choice significantly exceeds randomness (Coombs et al., 1967),
then this may be treated as a stable choice. The remaining choices are then
treated as the unstable preferences in Section 4.

All examples and applications given so far concerned tournaments. We give two
examples of incomplete preference structures to which our method can be
applied.

Example A. If we collect dominances of similarities between pairs {x, y}, with x
fixed, y #x, then these could be interpreted as meaning that if {x, y} > {x, z},
then x and y are judged to be more similar than x and z. With n nodes, there are
M = ("31) such paired comparisons with fixed x. These M comparisons form a
tournament 7,. We similarly obtain 7, 7,,..., yielding n tournaments al-
together. Such dominances of similarities are typically derived from a ‘conditional
proximity matrix’, or result directly from ‘conjoint paired comparisons’ (Bezem-
binder, 1991). Such data may easily show cycles, in particular between tourna-
ments. For instance, it is possible that {y,x}— {x,z} within T, and
{x,z}—>{z, y} within T, but {z, y} — {y, x} within T,. As for distinct x, y, z, w,
no arc between {x, y} and {z,w} is given in the data, methods for solving
intransitivities are called for that, like our method, do not require completeness in
the data.

Example B. Complete bipartite digraphs. These are denoted by D(V,,V,), in
which V, and V, are disjoint sets of objects such that there is an arc connecting
every node of V, with every node of V,, while there are no other arcs. An
example is Guttman’s (1944) scalogram with n subjects and m items, which can
be represented by such a structure. Here our method can also be applied.
Relations between nodes of the same set should then not be inserted as a result of
transitive closure.

The main motivation for developing our method has been to provide a solution
that is widely applicable because:
@® It is easily obtained in little (polynomial) time, can easily be programmed, and
can even be calculated by hand for numbers of objects that are not too large.
@® It has a transparent psychological basis because it reckons with stability/
intensity of preference, and avoids the confounding of stable preferences with
the, evidently unreliable, unstable preferences.
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Appendix: The maximum number of directed arcs resulting from transitive
closure

Say D is a transitive digraph with n nodes. An arc between x and y is not yet
present in D, and the arc xy is to be added. Let A be the set containing x and all
nodes from which an arc goes to x. Let B be the set containing y and all nodes b
such that an arc goes from y to b. A and B are disjoint because yzx forz€ AN B
together with [not yx] would violate transitivity of D. Say A contains s nodes, B
contains ¢ nodes. Transitive closure will generate at most st-1 new arcs, i.e. all
nodes from A to B except xy. This is maximal for s =¢=n/2. So all together, at
most n’/4 arcs are added.
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