JOURNAL OF ECONOMIC THEORY 64, 486-499 (1994)

The Axiomatic Basis of Anticipated Utility: A Clarification
JOHN QUIGGIN

Centre for Economic Policy Research, Australian National University, Canberra, Australia
AND

PETER WAKKER*

University of Leiden, Medical Decision Making Unit, Leiden, The Netherlands
Received January 10, 1992; revised August 13, 1993

Quiggin (J. Econ. Behav. Organization 3 (1982), 323-345) introduced anticipated
(“rank-dependent”) utility theory into decision making under risk. Questions have
been raised about mathematical aspects of Quiggin’s analysis. This paper settles
these questions and shows that a minor modification of Quiggin’s axioms leads to
a useful and correct result, with features not found in other recent axiomatizations.
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1. INTRODUCTION

This paper discusses mathematical aspects of Quiggin [12], the paper
that introduced anticipated utility into decision making under risk.! Other
terms are “rank-dependent utility,” or, less tractable, “expected utility with
rank-dependent probabilities.” We shall use the term anticipated utility for
the special case of rank-dependent utility where the probability transforma-
tion function assigns value 1/2 to probability 1/2. The rank-dependent
stream is currently the most popular one in nonexpected utility. Indepen-
dently from [12], essentially the same form was developed by Schmeidler
[14—first version 19827, Yaari [18], Luce [8], and Allais [3]. The special
case considered by Yaari (with linear utility) had been developed and
axiomatized before in welfare theory by Weymark [17]. The importance of
the form is based on the possibility to express risk attitudes by ways to deal
with probabilities, without violating basic requirements such as stochastic

* To whom correspondence should be addressed. The research of Peter Wakker has been
made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences.
! The form had already appeared in Quiggin [11].
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dominance or transitivity. A recent account has been given in Quiggin
[13]. Tversky and Kahneman [15] adopted the rank-dependent form to
obtain a new version of prospect theory.

Given the historical importance of Quiggin [12], a new study of the
mathematics in the paper seems appropriate. Examples 4.1-4.3 below show
some complications for that mathematics. There have been some discus-
sions and misunderstandings about Quiggin’s main theorem, and this
paper aims to clarify the issues. As we shall see, only a minor modification
of the axioms is needed. Yaari { 18, p. 113] already suggested that Quiggin’s
Axiom 2 should be strengthened. Indeed, it suffices to strengthen Quiggin’s
Axiom 2 to stochastic dominance or, as we shall do, to a weaker version
that only considers two-outcome prospects. The proof of the result will
be entirely rewritten and will not invoke continuity with respect to
outcomes.

Recently, variations on the axiomatization of Quiggin have been
developed. Chew [4] generalized Quiggin’s model by deleting the restric-
tion that the probability transformation assign value { to probability 1; he
still required continuity both in outcomes and in probabilities. In Wakker’s
[16] axiomatization the probability transformation need not be con-
tinuous, while Nakamura [9] relaxed the requirement that the utility func-
tion be continuous. So in a structural sense these results are more general
than [127. Still, in a logical sense none of these resuits is a complete
generalization of Quiggin’s; ie., Quiggin’s result cannot be obtained as a
corollary. First, his independence Axiom 4 uses only 33 mixtures, whereas
the bisymmetry/commutativity axioms of Chew and Nakamura use
mixtures with other probabilities, and Wakker’s tradeoff consistency
axiom, in isolation, is logically independent. Second, Quiggin’s dominance
Axiom 2 and continuity Axiom 3 are only imposed on two-outcome
prospects.” So Quiggin’s result still stands as a useful axiomatization.

An additional advantage of Quiggin’s result is that concavity of utility
can be characterized as easily as in expected utility: For $-1 prospects the
model coincides with expected utility. Hence, given the usual continuity
conditions, preference of expected values over 3—1 prospects is necessary
and sufficient for concavity of utility, as it is in expected utility.

2. DEFINITIONS AND NOTATIONS, AND A DiscussioNn THEREOF
The notations and terminology of this paper will as much as possible
follow Quiggin [12]. X is a set of outcomes, and may at this stage be any

2 A research question is whether other existing axiomatizations can be generalized by
similar weakenings of continuity and dominance.
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general set. We shall see, at the end of the Appendix, that X is isomorphic
to a connected topological space; the analysis in [12] implicitly used con-
tinuity with respect to a connected topology on X at several places. Our
analysis will not use such an assumption, and the isomorphism to a con-
nected topological space will be a consequence of the other assumptions
rather than a presupposition.

By Y we denote the set of prospects, 1., of all probability distributions
over X with finite support. By >= (rather than by P as in [12]) we denote
a binary (“preference”) relation on Y. We write > for strict preferences and
~ for indifferences. Outcomes x are identified with degenerate prospects.
This induces a binary relation > on the outcome set X through the
degenerate prospects. By {(x, .., x,); (P, .. P.)} we denote the prospect
assigning probability p; to outcome x;, j=1, .., n Of course, the p’s are
nonnegative and sum to one; p, =0 is permitted. We write x for (x,, ... x,)
and p for {p,, .., p,). In all results of this paper, = will be a weak order.
So we can, and do, assume without further mentioning that x, < --- <x,,
i.e., the outcomes are rank-ordered. Let us emphasize that this assumption
1s essential to the analysis; the rank-ordering of outcomes is central in
rank-dependent utility.

A function V:Y—R represents = if {x;p}={x;p}<=V{x:p}=
V{x’;p'}. If a representing function V exists, then > is a weak order, ie.,
it is complete (for all {x;p} and {x';p'}, {x;p}={x’;p'} or {x;p'} =
{x;p}) and transitive; completeness implies reflexivity. Rank-dependent
utility holds if there exists a representing functional V of the form

V(X e X5 (Prs e PR} = D, <f< )y p,)—f( Z p,)) U(x;) (2.1)

i=1 j=1 j=1

for a function U: X — R and a nondecreasing function f: [0, 1] — [0, 1]
with f(0)=0, f(1)=1. Let us recall here that x, < --- <x,; X)_, p, is
conventionally defined as 0. Anticipated utility (AU) is the special case
where f(3)=1

In the remainder of this section we discuss identities such as x;=x,, |,
which we permit in the notation {(x,, .., x,); (p,, .., p,)} for a prospect.
For instance, the prospect {(a, %, 8); (5, 3, 3)} is identical to the prospect
{(x, B); (1, 1)}. A form applied to 2n-tuples {(x,, .., x,}; (P, - p,)} must
respect these identities and assign the same value to {(a, , 8); (3, 5, 1)} as
to {(«, B); (3, 3)}. From this it can be derived that a form

Y k(s pa) Ulx)), (2.2)

j=1
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with A, depending only on the vector of “rank-ordered” probabilities, must
satisfy the equation

By e pn)=f(>i p,-) —f(izl p,,-)‘ (23)

j=1 i=1

That is, the “decision weight” h,(p,,..,p,) can only depend on the
“cumulative probabilities,” so that rank-dependent utility results; the
derivation of (2.3) is obtained by considering {(x,, .., x,); (p;, .., p,)} With
x;=--=x;and x;,,,= --- =x, for j=i—1 and j=4i and is not
elaborated here. In [12, Sect. 2] an alternative derivation is given that is
discussed in further detail below.

The form (2.2) had already been proposed by Allais [2-first version
1953; see Formula 1V in Sect. 417 where, however, no rank-ordering of
outcomes was imposed. Note that, in the absence of rank-ordering, this
form must reduce to expected utility! Only in Allais [3, Formula (1)] was
rank-ordering imposed on the outcomes, and the above result was
derived—-Allais’ form (5) is equivalent to (2.2).

It is easily derived that, in the notation of this paper, the form
27 #¢(p,;) U(x;) reduces to expected utility. The form was often studied
for prospects where all outcomes should be distinct; then it can really
deviate from expected utility. See [10;6; 7, p. 283]. If, however, minimal
continuity or dominance conditions are imposed, the form must reduce to
expected utility after all. This was discovered relatively late, by Fishburn
[6] and some others; see also Kahneman and Tversky [7, p. 283].

Let us give some elucidation to the analysis of Quiggin [12]. In line 6
of Section 2 there, it is suggested that the outcomes in the notation
Hxys o x,); (P45 - )} are to be distinct at that moment; they are not yet
rank-ordered at that stage. Thus some “non-rank-ordered” functionals
from the literature can be discussed. It is shown in Eq. (1)}-(5) there
that those functionals violate monotonicity. In that derivation, continuity
is used implicitly. Above Eq. (6) the outcomes are assumed to be
rank-ordered. Equation (6) defines the functional as in (2.2) above
(with A(3, $)=(3,1)). Then (2.3) is derived from monotonicity, where
again continuity is used implicitly. Given that, the equalities x;= x,, , can
be permitted in the notation. This is indeed done in the remainder of
Quiggin’s paper. Formally, it was already permitted in the notation intro-
duced above Eq. (6); it is repeated in Assumption R.1. This also shows
that the general form ((2.2) above) as found in Quiggin’s Proposition 1 is
identical to the AU form ((2.1) above} as derived in Quiggin’s proof in the
Appendix.
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3. THE MAIN THEOREM

This section presents the modification of Quiggin’s [ 12] axiomatization
of anticipated utility. We use the following structural assumption of [12],
ensuring that for each prospect there exists a “certainty equivalent™

R.2. For each prospect {x;p} there exists an outcome x such that
x~{x;p}

Now we turn to the axioms:
Axiom 1. The binary relation = is a weak order.

The dominance axiom of Quiggin will be adapted as follows. Both
axioms below are implied by strict stochastic dominance when restricted to
two-outcome prospects. The first imposes weak monotonicity with respect
to probabilities, the other strict monotonicity with respect to outcomes for
fixed probabilities 3, 3. Remember that in our notations for prospects, out-
comes are assumed to be rank-ordered.

Axiom 2'a. U p'=p, then {(x,, x;); (1—p', p")} = {(x,, x2); (1 =p, p}}.

Axiom 2'b. {(x}, x3); (3, $)} = {(x,, x3); (4, 3)} whenever x5 > x,,
x| = x,, where the former preference is strict if one of the latter two is
strict.

For the sake of comparison, we give Quiggin’s Axiom 2, which is the
restriction of Axiom 2’a to the case p' =1:

Axiom 2Q. x,={(x, x5); (1 —p, p)} for all p.

Axiom 3 (Continuity). If x,, x5, x3€ X, x, < x, =< x5, then there exists
p* such that

Xy~ {(xy, X3); (1= p*, p*)}.

Note that under AU, with f(3}=14, in (3, 3) prospects it does not matter
which outcome is substituted first in the form (2.1), since each outcome
receives weight 3. This suggests that for (4, 1) prospects the rank-ordering
of outcomes is immaterial. We introduce an additional notation for (1, §
prospects: {{x, x'}; (3, 1)} denotes the prospect {(x, x'); (1, )} if x<x,
and {(x', x); (3, 3)} if x’ <X x. The notation is useful in Axiom 4, where the
rank-ordering of each pair x;, x;, and of x and x’, is undetermined. The

notation will also be useful in proofs.

Axiom 4 (Independence). See Figure 1. Whenever x ~ {x;p}, X'~ {x'; p},

ci~{{x,x/};(3, 5)} for all i, then {e;p} ~{{x, x'}; (3, D}
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{(X] v v Xj veees Xn) s (PLve s Pisoes PP ~ X
c -
foralliic - MCLvoea € son Ca) s (PLov s Piovoes Po)} € f(xux 1(172,172))
Hx ok 1 (1/2,1/2))
X[ v oes X{ vees X0) 3 APy v s Piov s P)} ~ X
implied by
independence

F1G. 1. (Jndependence) Every c-outcome is a “midpoint” between the x-outcome above,
and the x'-outcome below. The bold-printed indifference is implied by the other indifferences.
In other words, midpoints can be taken as well before as after the taking of certainty
equivalents.

The result of the lemma below is implied by Quiggin’s [12, top of
p.- 3277 assumption that indifferent outcomes are identical.

LemMma 3.1, If R2 holds, as well as Axiom 1, 2'b, and 4, then
{x;p} ~ {x':p} whenever x,~ x| for all i.

Proof. By Axiom 2'b, ¢;~ {{x,, x/}; (3, 3)} for both ¢,=x; and ¢, = x].
By R.2, x and x' as in Axiom 4 exist. Now apply Axiom 4 both with ¢=x
and with e=x". ||

The following modification of Quiggin’s characterization of AU is the
main result of the paper; its proof is given in the Appendix.

THEOREM 3.2. Let = be a binary relation on the set Y of prospects. Then
the following two statements are equivalent:

(i) Condition R.2 and Axioms 1, 2’a, 2'b, 3, and 4 are satisfied.

(1) AU holds (so f(3)=13), where [ is continuous and nondecreasing,
and the range of U is an interval.

Further, f in (i) above is uniquely determined and U is unique up to scale and
location. [

Note that, if X is an interval in the above theorem and U is non-
decreasing, as it will be under traditional dominance, then U must be
continuous, as its range is an interval.

4. EXAMPLES

The following examples discuss mathematical complications in Quiggin’s
[12] analysis. The first example is, strictly speaking, a counterexample to
Quiggin’s Proposition 1. However, it only applies to a degenerate case. The
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second example shows another complication, ie., for the general form
provided in Quiggin’s Proposition 1, the function /' may not be monotonic
in probability. Finally, in Example 4.3 we discuss an example given in
Yaari [18].

ExampPLE 4.1. Let X = {x;, x,}; i.e, there are only two outcomes. Sup-
pose x, > x; and {(x,, x;); (1 —p, p)} ~x, for all p< 1. There does exist a
rank-dependent utility representation for >, with U(x,)=1, U(x,)=0,
and f(p)=1 for all 0 <p < 1. Here f is uniquely determined. Thus there
does not exist an AU model for 3> because f(3) # 1. The preference relation
satisfies all conditions in Statement (i) of Theorem 3.2, with the exception
of Axiom 2'b. We only discuss Axiom 4. Nonindifference in the conclusion
can only occur if either {¢;p} or {{x, x'}; (3, 3)} is maximal, i.e., is x,. But
this straightforwardly implies that all other prospects are maximal, ie., are
x5, as well. So Axiom 4 is satisfied. In particular, Axiom 2’a is satisfied,
which for the special case p’ =1 gives Axiom 2Q, i.e., Quiggin’s Axiom 2.
So all of Quiggin’s conditions are satisfied, and formally this is a counter-
example to Quiggin’s Proposition 1.

ExaMpPLE 4.2. Let X =R, let U be the identity, and let AU hold, with
one exception: the function f: [0, 1] — R is not necessarily nondecreasing;
it does satisfy f(0)=0, f(3)=1, and f(1)=1. Neccessary and suflicient for
verification of Axiom 2Q, ie., Quiggin’s [12] Axiom 2, is that f(p)=0
for all p. Necessary and sufficient for verification of Axiom 3, is that
f([0,1])= [0, 1]. Condition R.2 and Axiom 4 are satisfied. Thus f does
not have to be nondecreasing and may even take values larger than 1.

ExaMPLE 4.3. Yaari [18] suggested, for X =R and U the identity, the
form Y w(p,) x, with w continuous and w(p)+ w(l —p) <1, as a counter-
example to Quiggin’s [12] characterization of AU in his Proposition 1.
Yaari did not make explicit which notational conventions he followed.
Under the notational conventions of this paper, Yaari's form must be iden-
tical to expected value maximization, which obviously would not provide
a counterexample to Quiggin’s result.

If his form is only to be applied to prospects {(x,, .., X, (P}, s P.)}
with distinct outcomes, then a violation of Axiom 4 can be derived unless
w is linear (substitution of n =3, 0 < x, < x, < x; < x| = x5 < x} shows that
w(p, + p.)=w(p,)+w(p,), etc.), so again the form does not provide a
counterexample to Quiggin’s result. Finally, if not only this form, but
also Quiggin’s axioms and form, would only be applied to prospects
{(xy, s x,}; (Py, . P,)} with distinct outcomes, then Yaari’s form (with
w(3) =1, to satisfy Axiom4) is a special case of the form in Quiggin’s
Proposition 1. So then it still does not provide a counterexample to
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Quiggin’s result. Note that, under such a notational convention, the
general form in Quiggin’s Proposition 1 would be strictly more general
than AU. This, finally, shows that, if outcomes in the notation would be
required to be distinct, then the axioms in Theorem 3.2 would not imply
AU and would not discard the form }’ ¢(p;) U(x;); the observation that
this form violates stochastic dominance, motivated Quiggin to develop AU.

5. CONCLUSION

The aim of this paper has been to clarify some discussions in relation to
the classic paper by Quiggin [12]. We have shown that, by a strengthening
of the stochastic dominance Axiom 2 in [12], a characterization of
anticipated utility can be obtained. The main restriction of this charac-
terization in comparison to later characterizations by Chew [4],
Nakamura [9], and Wakker [16] is that the probability transformation
function f should assign value § to probability 1. This restriction, however,
has some advantages. First, the independence Axiom 4 only invokes -4
mixtures. Second, the dominance Axioms 2, as well as the continuity
Axiom 3, need only be imposed on two-outcome prospects. Because of this,
Quiggin’s axiomatization continues to be of interest to date and still offers
features not found in other axiomatizations.

APPENDIX: PROOF OF THEOREM 3.2

Necessity of the conditions is straightforwardly verified; we only mention
that R.2 is implied by the assumption that the range of U is an interval. So
we assume Statement (i), and derive Statement (ii). In the major part of the
proof we make the following assumption; only at the end of the proof, the
assumption will be relaxed.

Assumption Al. There exists a best outcome x' and a worst outcome
x% x>0

Stage 1 (Construction of Binary Values of U). Define U(x')=1,
U(x°)=0. By R.2, there exists x"?~ {(x% x'):(},3)}. By Axiom 2'b,
x'> x> x% Define x'*~{(x%x"?);(, D}, A~ {(x" x5, 0
and similarly define x'®, x**, ., and inductively every x“*". To each x**"
we assign U value a/2". By repeated application of Axiom 2b and
transitivity, U is representing on the set of all x*2".

Stage 2 (An Application of Axiom 4). We derive the following
condition:

(2 X2 (4, 4~ xt2me o2, (A1)
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By multiplying by a large 27, it suffices to derive the result only for n=m
and a— b even. For such n, m, a, b the resuit is derived by induction with
respect to m. For m=1 it holds true. Suppose, as induction hypothesis,
that it holds true for 1, .., m— 1, where m > 2. We show, for all appropriate
a, k, that

— kyi2m kyi2my, 1 2m
{(X(a ) ’X.(tl+ ) )a (%a 5)}~xa2' (Az)

Below, Axiom 4 is applied several times. The indifferences needed for that
always follow from the induction hypothesis (and the definition of the
x%). To verify that, it must be checked that several integers, and differen-
ces of these integers divided by 2, are even. This will not be made explicit.
In each application of Axiom 4, the left prospect in (A2) plays the role of
{c;p} in Axiom 4, and x“?" the role of the outcome ¢ in Fig. 1.

Case 1. a and k are even. Then the indifference follows from the induc-
tion hypothesis.

Case 2. ais odd, k is even. Then, by Axiom 4, (A2) follows from the
two indifferences below:

1 kym Y L | ~ 1)2m
O TR R
I -k J“Z"‘ 1+ k)2m 1 1 1)/2m
{(x(u+ ) \,(u+ + k) ) (5 5)}~x(a+ ) .
Case 3. a is odd, &k is odd. Then either a—k>=2 or, if a=k, then

a+k<2m—12, given that m>2 and a+ k= 2a is not a multiple of 4. If
a—k =2 then, by Axiom 4, (A2) follows from the two indifferences below:

{(x(a—Z—k);'Z’", x(a+k)§‘2”‘); (%’ %)} ~X(a —1)2"

{(x(a+27kl,r“2’" x(a+k)2’") (% %)f r(a%—l)f‘?"'
s - .

If a+k <2™—2 then, by Axiom 4, (A2) follows from the two indifferences
below:
{(x(a-—k),"z’" (a— 2+k)/2’") (2’ ! } (afli2'"

{(x(a—k)‘fZ”" x(a+2+k)’2"‘ % % } (u+1)/2’"
Case 4. a is even, k is odd. Then, by Axiom 4, (A2) follows from the
two indifferences below:
— 1 —k)y2m + 1+ 4&)2My, (1 1 /2
{(x(a ) ,x“‘ ) ),(5, 5)}~xa

{(x(a+l—k)/2"" x(a71+k)/2’") (2, %) ;2 )
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Stage 3 (Definition of U on Entire X). We define
U: x—sup{U(x“?"): x*?" < x}.
This is indeed a true extension of U, and it follows straightforwardly that
x' z=x=U(x")2 U(x). (A3)

This implies in particular that U is constant on ~ indifference classes of
the outcome set, which will be crucial for several definitions below. We
cannot conclude at this stage that U/ would represent > on outcomes, as
the implication x'>x= U(x')> U(x) has not yet been derived. This
implication will only be established below, and its derivation will invoke
the definition of f below and Axioms 3 and 4. For a prospect {x;p}, we
define V' {x; p} as the U value of an outcome x for which x ~ {x; p}; by R.2
such an x exists and, by constancy of U on ~ outcome indifference classes,
Vix;p} is independent of the particular x that we choose. Obviously,
by (A3),

X5p = {xph=V({x;p' )= V({xip}) (A4)
Next we derive the following variation of (A2), for all x, = x,:
V{(xi, x2); (5, 1)} =3U(x) + §U(x,). (A5)

First we prove this for x°<x, <x,<x'. By the implication U(x')<
U(x)=>x'< x as following from (A3), the inequalities ¢/2™ < U(x,) < a'/2™
and b/2" < U(x,)<b’/2™ imply the preferences vc“"'< X, =< x7* and

x??" < x, < x*"?" Hence, by Axiom 2'b, {(x“77, x%7"); (3, a)} < {(x

[a
L)< {( X (53 }m By (A4), V{(’(“ x5 (3 %)} <
V (‘xl’x2) 29 2)}<V{(x“ 2 b 2 27 2)} SO by Al) V{(A]9'x2) (%’ %)}
lnes between (a/2™ + b/2™)/2 and (a /27" +b'/2™)/2 for all m, a, b, a', b’ as

above. This can only be if (AS5) holds true.

Next we consider the case in which x, ~x° or x,~x'. The result is
immediate if x; ~ x° and x, ~ x'. For the case where x, ~ x* and x, <x/,
b2m < U(x,) < b’ /2"‘ implies x%?" < x, < x*"*". By Axiom 2'b, {(x,, x"*");
(5 2);< {(x1, %205 (3, %)}< {(x, X" 7); (5, %)}. By (A4), V{(x,,x"*");
(2, 3 <V{(xy, x2) (2, <V {(xy, x*7), ( 3)}. So, by (A1), V{(x,, x,);

i 2)} lies between (0 + b/2™)/2 and (0+ b'/2™)/2 for all m, b, b’ as above.
This can only be if (AS) holds true. The case x, > x% x,~x! is treated
similarly.

Stage 4 (Construction of Continuous and Nondecreasing /). For every
0<p<1 we define f(p):=1— V{(\ (p, [ —p}}. Obviously, f(0)=
f(1)=1, and, by definition of x'?, f(3 )= +. Further fis nondecreasmg, by
Axiom 2'a and (A4). Also fis continuous: For every x%?" there exists, by
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Axiom 3, a p such that {(x, x,);(p, 1 —p)} ~x%, ie, f(p)=1—a/2"
This shows that the range of f is dense in [0, 1]. The nondecreasing f
cannot make “jumps,” and must be continuous.

Stage 5 (Surjectivity of U). We show now that U(X)=1[0,1]. Let
ue[0,1]. Take p such that 1 —pu=f(1—-p)=1=-V{({(x° x');(1 —p, p)};
so V{(x% x");(1—p,p)}=u. Then, by R2, there exists x~ {(x° x');
(1—p,p)}. By (Ad), V(x)=y; so U(x)=pn

Stage 6 (U and V are Representing). The derivation in this stage will
not be elementary. Of course, if U is representing for > on X, then V is
representing for = on Y, so we only derive the former. By (A3), it suffices
to assume that there are x’, x” such that x”" > x' and U(x")= U(x’'), and
derive a contradiction. We define u= U(x") = U(x').

Note that there does exist a function, say U’, that represents > on X:
Choose for each indifference class {x' € X : x" ~ x} a probability equivalent,
ie., a p such that {(x° x'); (1 —p, p)} ~ x. By Axiom 3 there exists at least
one such p. Then define U'(x’')=p for all x’' from the indifference class. By
Axiom 2'a, x” > x" must imply U’(x")> U’(x’). This, and constancy of U’
on outcome ~ indifference classes, shows that U’ is representing. The
existence of a representing U’ excludes the existence of an uncountable
number of disjoint preference intervals {xe X : x" 2= x2>x'} for x" > x', as
the latter would lead to uncountably many distinct rational numbers, one
from each interval JU’'(x"), U'(x")[. So it suffices, for contradiction, to
derive an uncountable number of such preference intervals.

Either 4 # 0 or p # 1; say the latter. Take any p <v < 1. By Stage 5, there
exists x, such that U(x,)=v. Now, by (AS), V{(x", x,); (3,3} =
(L+v)2=V{(x,x,); (3 1)}, whereas, by Axiom 2'b, {(x", x,); (1, 1)} >
Hx, X0 G, D)) We take x{,, 0~ {(x" x,); (5, 3)} and x|, ~
(0, x0i (L D Then 7, > Xy ayze Ut UL 1y2) = UGXp, 1y2)
Such outcomes can be constructed for each v between x4 and 1, and
HxeX X n2=<X<X/,s2/)venr gives an uncountable number of
mutually disjoint preference intervals.

Stage 7 (Jensen’s Equation). Fix p={(p,, .., p,) in this stage. Because
U represents = over outcomes, and because of Lemma 3.1, we can write
V{(xy, .. x,);p}=W(U(x,), .. Ulx,)) for a function W. For simplicity of
notation, from now on we identify outcomes with their U values in this
stage. The domain of W is the set [0, 1]} of all x=(x,, .., x,)e[0,1}"
with 0 < x, < .- <x,< 1. We show that W satisfies Jensen’s equation; i.e.,
for all x, ye [0, 1]7,

W(x + y> _ Wix)+ Wl(y)
2 2
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Define ¢;~ {{x,,y;}; (3, 3)} for all i. Then, by (A5) and the definitions,
c;=(x;+1;)/2 for ail i As ¢, <---<ec,, c€{0,1]]. Let x~{x;p},
y~1{y;p}. By Axiom 4, {c;p} ~ {{x, ¥}; (3, 3)}. So, substituting (AS5), we
get W(c)=(U(x)+ U(y))/2. The latter is equal to {x+y)/2 and to
(W(x)+ W(y))/2, and W(e)=W((x+y)/2). Thus Jensen’s equation
follows.

Stage 8 (W is Linear and Gives the AU Form). By standard techni-
ques it can be shown that W as obtained in Stage 7, must be linear. In
general, solutions of Jensen’s equation exist that are nonlinear, but these
are very irregular. As will be elaborated below, the monotonicity of W
excludes those irregular cases. From the definition of f, it follows that
the weights employed in the linear W are exactly what they should be
according to AU. The remainder of this stage gives a formal derivation of
linearity of W for a fixed {p,, .., p,).

Define e, := (1, .., 1), ..., e,:=(0,1,.., 1), .., ¢, :=(0, ... 0, 1). On a rank-
ordered cone it is convenient to take e,,.., e, as basis, because then
standard results of Aczél [1] can be applied literally. The details are as
follows. Define #W’: R, — R in the following way. If 3.7_, v, <1, W'(y) =
W _, ve;). On the domain covered so far, W' satisfies Jensen’s equa-
tion; in particular, given W'(0, .., 0)=0, W’'(x/2")= W’ (x)/2™ for all m.
For a general x = (x,, ..,x,) e R"_, find any 2™ large enough to ensure that,
for y,:=x;/2", 37_, y;< 1. Next define W’'(x) :=2"W'(y). From Jensen’s
equation on the domain covered before, it follows that the definition of
W'(x) does not depend on the particular choice of m and y, and that in
fact W satisfies Jensen’s equation throughout its domain. For the fixed p
we get, by the definition of f, f(p,+ - +p,.)=Wie,)=W'(1,0, .., 0),
flpo+ - +p)=We,)=W'(0,1,0,..,0),.., f(p,)= W, =W{(0,..,01).
The proof is complete if a contradiction is derived from nonlinearity
of W'.

This follows from Aczél [1, Sect. 2.1 and 2.2.3, extended in Sect. 5.1.1].
Because W'(0,..,0)=0, W’ satisfies Cauchy’s equation (W'(x+y)=
W’'(x)+ W’'(y)). Functions satisfying Cauchy’s equation, but nonlinear, are
very “irregular,” and for instance must be unbounded from both sides. The
function W”, however, is nonnegative, so bounded from below. It follows
that W’ is linear. This completes the proof of Stage 8.

A rereading of the proof, plus substitution of AU, shows that any choice
of U(0)=0, U(l)=1, for general t> ¢ instead of 1=1, 6 =0, could be
made and would uniquely determine a positive affine transform of the
function U as in the proof above, and that the function f is uniquely
determined.

Finally, we relax Assumption Al. If all outcomes are indifferent then,
by R.2, all prospects are indifferent and the result is trivial. So suppose
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there are nonindifferent outcomes. We fix some x'>x° For each
y2=x'>x">:z we can construct an AU representation for prospects
with outcomes {xeX:y=x3}>z}, similar to the construction under
Assumption Al. By the uniqueness results for U and f as established
above, this AU representation for outcomes {xeX:yx=x2>z} can be
made to coincide with the AU representation established above, which
uniquely determines the extended AU representation. As the outcomes
involved in any prospect are finite, thus bounded, the AU representation is
uniquely determined for all prospects. This completes the proof of Theorem 3.2.

Note that the set of ~ indifference classes of the outcome set is
isomorphic to an interval; the set X, when endowed with the order
topology, is a connected topological space.
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