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The only examples available in the literature to show that the Weak Axiom of
Revealed Preference does not imply the Strong Axiom of Revealed Preference, the
examples of Gale and Shafer, apply only to the case of three commodities. This
paper constructs examples for four or more commodities. Journal of Economic
Literature Classification Numbers: D11, C60. ¢ 1994 Academic Press. Inc

1. INTRODUCTION

One of the most famous open questions in the history of economics was
the question of whether the Weak Axiom of Revealed Preference (WARP)
for consumer demand functions, as introduced by Samuelson [10], was
sufficient to guarantee maximization of a utility function. Here the usual
regularity conditions (continuity, efficiency) are assumed to be satisfied;
WARP is the condition that excludes cycles of length 2 in the revealed
preference relation. Ville [12] and Houthakker [4] independently proved
that an apparently stronger condition, the Strong Axiom of Revealed
Preference (SARP; excluding cycles of any length) was necessary and suf-
ficient to construct a utility function, as if maximized by the consumer. As
pointed out for instance by Arrow [1], this did not completely settle the
question. It was still unclear whether the weaker WARP condition would,
in the presence of the usual regularity conditions, nevertheless suffice to
imply SARP. Some hope for equivalence of WARP and SARP came {rom
the result of Rose [9], who showed that for two commodities indeed
WARP is strong enough to imply SARP. For three or more commodities
the question remained open. Finally, Gale [3] constructed an actual coun-
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terexample, i.e., an example where WARP was satisfied, but SARP was
violated ; see Example | below. The question seemed to be settled, WARP
does not imply SARP, and the subject was laid to rest. What has often
been overlooked is that Gale’s construction (as well as Shafer’s, [117])
applies only to the case of three commodities and leaves the question open
for more commodities. Indeed, for more commodities no counterexamples
have yet been constructed in the literature. This paper provides such.

A theoretical argument to show that also for more than three
commodities WARP does not imply SARP has already been provided by
Kihlstrom, Mas-Colell, and Sonnenschein [5]. They showed that, for a
demand function with a negative definite matrix of substitution terms, there
exists an open neighborhood such that all demand functions in the open
neighborhood satisfy WARP. For most of these the matrix of substitution
terms i1s not symmetric; that symmetry is known to be a necessary condi-
tion for SARP. This does not show how to actually construct a counter-
example of a (smooth!} demand function with a nonsymmetric matrix of
substitution terms within that open neighborhood. It does formalize the
intuition, ascribed to Samuelson by Gale, that it should be possible to
perturb a demand function maximizing a utility function in such a way that
it continues to satisfy WARP, but no longer satisfies SARP.

This paper shows in a constructive way that WARP cannot imply
SARP, by giving actual counterexamples. These examples are obtained by
a nontrivial embedding of Gale's counterexample in higher dimensions. As
an intermediate tool, demand functions defined on convex compact non-
linear budget sets are used. These have recently been studied in Peters and
Wakker [7].

2. PREPARATIONS

Let X =R" be the set of commodity bundles, with X" the collection of
budget sets B of the form

B=|{xeR" :p-x<a}

”

for some price vector pe R”, | and income 20, and D the demand func-
tion assigning to each budget set the commodity bundle chosen from the
budget set. It is implicitly assumed that for each commodity j there exists
a budget set B with D (B)>0. Otherwise commodity j could be sup-
pressed, and D would essentially be of lower dimension. R is the (directly)
revealed preference relation, i.e., xRy if there exists a budget set from which
x is chosen whereas also y is contained in the budget set. Conversely, if =
is a binary relation on X, then > rationalizes D if for every budget set 8
we have

{D(B)}={xeB:xxy for every y in B}, (1)



154 PETERS AND WAKKER

ie., D uniguely maximizes > on B. Obviously, not every binary relation
rationalizes a demand function, and not every demand function can be
rationalized by a binary relation. Revealed preference theory has studied
the question which demand functions can be rationalized by a weak order.
A weak order is a binary relation that is transitive and complete (every pair
of commodity bundles is comparable), hence reflexive. Under the usual
continuity conditions a weak order is represented by a utility function, thus
the corresponding demand function maximizes the same utility function.
We write xPy if xRy and v+ y. P is called the directly revealed strict
preference relation. For x=(x,, .., x,), y=(¥;, ... ¥,), we write x= v if
x;zy fori=1,..,n; x< ris similar.

EFF(B):={xeB: there is no ye B with y»>x, y#x} denotes the
efficient subset of B. Throughout, D is assumed to satisly efficiency, ie.,
D(B)e EFF(B) for every budget set B. D satisfies the SARP if there does
not exist a cycle x = x°Px!P..Px* = x, where k >0 is the length of the cycle.
D satisfies the WARP if there exist no cycles of length two. WARP has
recently been characterized by [6, Section 7] and [2, Section 3. Ville [12]
and Houthakker [4] showed that D can be rationalized by a weak order
if and only if it satisfies SARP; Richter [8] extended this to multi-demand
functions. We say that xe X is indirectly revealed preferred to y € X, nota-
tion xRy, if there exists a sequence x = x°Rx'R..Rx* = y. We write xPy if
xRy and x # y. Obviously, SARP holds if and only if P is irreflexive, ie.,
xPx for no xe X.

We first present Gale’s example, slightly modified to allow restriction
to R ,.

ExaMpLE 1 (The example of Gale for linear budget sets). Let 4 be the
matrix

-3 4 0
0 -3 4
4 0 -3

For each price vector p for which Ap is nonnegative, (a/pAp) Ap is the
demand vector of the three-dimensional budget set associated with price p
and income «. Gale [3, Section4] shows how to extend this demand
function, which we denote by D’ to the remaining budget sets: The
preferences as revealed by the price vectors with 4p nonnegative together
with WARP turn out to completely determine D°. Since the details of
this extension of D* play no role in our analysis, they are omitted. Gale
shows that WARP is satisfied by D°. The following cycle shows that
SARP is violated. It is a small modification of Gale’s cycle and has been
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constructed in [7] to show that zero coordinates can be avoided.' Let
x'=(1,0.001, 0.001), x*> = (0.6, 0.001, 0.3), x* = (0.3, 0.001, 0.6), x* = (0.001,
0001, 1), and let p' =(9.028, 16,021, 12.025), p? =(10.212, 13.209, 9.916),
pP=(12.312,12.009,9.016), and p*=(16.021, 12.025,9.028). Define B :=
{x: p'x < p'x'}. Because, by construction, each x' is a multiple of Ap’ and is
efficient in B, D¥(B')=x' for all i This and x'*'e B implies x'Px'*'
for i=1, 2, 3. Consequently, x'Px*, ie., (1,0.001,0.001) P(0.001,0.001,1).
By interchanging the appropriate numbers one similarly shows
(0.001, 0.001, 1) P(0.001, 1,0.001) and (0.001,1,0.001) P(1,0.001,0.001).
A cycle has been revealed: D3 violates SARP. |

The following example, extending Gale’s example to nonlinear budget
sets, will be needed 1n Section 3.

ExaMPLE 2 (The example of Gale extended to convex compact
generalized budget sets). This example considers the collection X of
convex compact subsets of X, for n=3. In [7] it was shown that the
demand function D* as constructed in Example | can be extended to a
generalized demand function F* on X¥, such that F? still satisfies efficiency
and WARP. First it is shown that for each B'e X" there is an element
x' that is the D’ solution of a budget set tangential to B’ at x’, thus
containing B’ as a subset. Then WARP implies F*(8')=x". The existence
of x' follows from an application of Kakutanis fixed point theorem.
Further details are omitted here. We only mention that continuity and
surjectivity of D* are essential in this construction. Obviously, F* also
violates SARP, as the cycle constructed in Example ! is also a cycle
for F*. ]

3. EMBEDDING GALE'S EXAMPLE IN HIGHER DIMENSIONS

In this section and Section 4 (see Proposition 1) the following theorem is
proved.

THEOREM. For every dimension n=3 there exists a continuous demand
Sunction that satisfies WARP but not SARP.

' An alternative way to transform a demand function D on X' generating a cycle with
nonnegative coordinates into a demand function D’ generating a cycle with strictly positive
coordinates is as follows. Choose any «> 0. If a budget set B has a nonempty intersection
B with [%, > [? then D'(B)=D((B —(x, o %)) ~nR® )+ («, «, «); otherwise, D'(B) is the
intersection of B with the line segment connecting the origin and (x, 2, x). Then D’ contains
ali cycles that D does, and D’ does not contain other cycles.
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To prove this theorem, first Gale’s example i1s embedded in higher
dimensions. In the next section we derive continuity.

Suppose n> 3. F? is the demand function of Example 2, defined on the
generalized three-dimensional budget sets in 2*. D" is the n-dimensional
demand function yet to be constructed, with domain 2. With every
n-dimensional budget set B we will associate a three-dimensional convex
nonlinear set f(B)< R’ ; D"(B) will be the (unique, as will be
demonstrated) element of B related to F*(f(B)).

Let h: R, — R, be any surjective strictly increasing (hence continuous)
and strictly concave function; obviously, #(0)=0. For example,
h(u)=In(1 +p) can be taken. Let f:R" —R, fi(x;, ., x,)—
(xy, X5, X5+ h(xy)+ - +h(x,)). For every Bel” the set f(B) is
comprehensive, ie., for each xef(B) and ye R’ , if y<x, then yef(B).
Further, f(B) is convex, as follows from comprehensiveness and the
fact that the f value of a convex combination dominates the convex
combination of f values.

So f(B) is in the domain of F?*, and there exists an element of B, denoted
D"(B), with £ value F}(f(B)). Lemma | below implies uniqueness:

D"(B) is the unique element of B with f(D"(B))= F*(f(B)). (2)

So indeed D" defines a map from X" to X, with D"(B)e B.

LEMMA 1. Let z,,2.€R,, and suppose that the set fzeB:z, =:Z,,

122 + 4 1 1 1
z,=2Z,} is nonempty. Then f; atiains its maximum over that set at a unique
point.

Proof. Because {zeB:z, =2, z;=2,} is nonempty and compact, and
/5 1s continuous, the maximum exists. Suppose =z =(Z,, Z,, =3, .., Z,,} and
2’ =(Z,, I, o4, ... 2,) are points with f3(z)=/f3(z"). If z;#:z; for some
j=4, then, by the strict concavity of h, f,(z/2+z/2)=z,/2+4+:25/2+
Mzy /24 24/2Y+ -+ h(z,/2+2,/2) > 24/2+ 2572+ Bz )2+ (202 + -
+ h(z,)/2+ h(z,)/2 = f5(z)/2+ [3(2')/2 = f3(z). Hence the fourth up to nth
coordinates of a maximum location of f; are uniquely determined. Given
these, so is the third: a maximum location of f; must be unique. |

= = ’

D"(B) can be obtained by choosing the first two coordinates equal to
those of F*(f(B)) and next finding the unique maximum of f; given those
first two coordinates. D” inherits efficiency and WARP from F*:

LEMMA 2. D" satisfies efficiency and WARP.

Proof. To derive efficiency, suppose x € B and x 2 D"(B). Then, because
f(x)e f(B), because f(x)=f(D"(B))=F(f(B)), and because F?* is
efficient, we must have f(x) = f(D"(B}). If one coordinate of x were strictly
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greater than that of D"(B) then, since x = D"(B) and # is strictly increasing,
one coordinate of f(x) would be strictly greater than that of f(D"(B))); this
is impossible. So x = D"(B).

To derive WARP, suppose for contradiction there were two budget sets
B and B’ containing x# y with D"(B)=x, D"(B’)=y. Then, by (2),
F3(f(B)) = f(x)# f(v)= F3(f(B")), contradicting WARP of F*. |

We construct a cycle “isomorphic” to the one of F?, thus obtaining a
violation of SARP. Our construction is such that it can also be applied if
the domain is restricted to R”, |

LemMa 3. D" violates SARP.

Proof. Fix z,>0,..,z,>0 so small that p:=h(z)+ - +h(z,)<
0.001. Let /. be the restriction of f to R® x {(z4, .., z,)}. Once coordmates
4 to n have been fixed at -, .., z,, the restriction f. becomes an affine
bijection from R* x {(z4, .., z,)} to B + (0, 0, ). Observe that the points
Z4» - 2, have been chosen sufficiently small to ensure that R? +(0, 0, u)
contains the entire cycle for F* as constructed in Example 1. To make this
possible, the cycle of Gale was modified into one with strictly positive
coordinates. This (adapted) cycle will be embedded in dimension n by
means of the inverse mapping f__ ’. Let, for j=4, ... n, A;: R — R be affine
and tangential to h at z,, ie, h(z,)=h(z;) for all j, h,>h elsewhere.
So h;(x,)=h/x,+h, (0) where h >0 1s the derivative of h at z;, ie, the
slope of h.2 Lel / Xy \’")H(’(,,.\2,.\3+/14(\4)+ -+ h,(x,)); this
function is affine. Consider the first two points, x',xz, of the cycle in
Example 1, with x'Px? revealed by a linear budget set B <R’ .

Let (p,, p-, p;) and « be the price vector and income corresponding to
B*. Then (f) "(B*)={(x, ..., x,)€R" : p X;+ p3Xs+ p3X;5+ p3hy(x4) +

4 pih(x,)<a) = {(x,, e X,)ER" 1 p X, +p,\ + paxat pihixg+

P, S —he(0) = =, (0)}. On B X {(zg. w2y)) = /= .
so /. Nx") £ (xP)e(f) ' (B?) (note that /. '(x ) £ '(x?) exist because
i is sufficiently small). Elsewhere f3> f, hence, for each ye(f) '(8°),
S(3)= f(y). Since f(y) is an element of B, so is f(y); f{ (f "(B*)) < B?
follows. Because FUS) 1 (BY) comdms ff. '(Y ))=x', it contains
F(B*)=x". Therefore, by WARP, x'=F*(f((f) '(B*))). It follows by
(2) that D"((ﬁ_’ "(B))y=f.x"). So the linear n- dimensional budget set
(/) '(B?), which also contains f_ '(x?), has revealed f_ '(x )Pf Hxd).
Similarly, the entire cycle of Gale’s example can be embedded by /. 'in the
n-dimensional space. |}

21If h is not differentiable at z,, take the right derivative. This always exists because / is
concave.
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Note that the above proof in fact showed that a cycle of length & for F*
generates a cycle of length k for D”". Preservation of WARP means that the
absence of cycles of length 2 for F* implies the same for D”. Similarly it can
be shown that absence of cycles of length k for F? implies the same for D"
Shafer [11] provides examples to show that absence of cycles of length &k
does not ensure absence of longer cycles, for any & and dimension 3.
Unfortunately, the technique of this paper does not apply to the examples
of Shafer because surjectivity of the demand function is essential for our
construction technique. Shafer’s demand functions are not surjective, so for
the extension of these demand functions to higher dimensions a different
construction must be invoked.

Note that, by fixing coordinates 4, ..., n at z,,.., z,,, F* is “embedded” in
D". A simpler embedding could be obtained by setting -, ..., =, equal to 0
and 4 =0. Then, however, commodities 4, ..., » would never be bought, and
the example would be essentially three-dimensional.

4, CONTINUITY AND VARIATIONS IN DOMAIN

This section concludes the proof of the theorem and gives some
additional results.

PROPOSITION 1. The demand function D" as constructed in Section 3 is
continuous.

Proof. We first show that for a sequence B¢ X", converging to B € 2",
for which also D"(B’) converges to some Z, we have D"(B') = 3. Obviously,
Ze B’. For nonlinear compact convex sets, we use the Hausdorff metric; for
the linear budget sets this complies with the usual notions of convergence
and continuity. Now every step in 8+ f(B)— F*(f(B)) is continuous:
Continuity of the first step follows mainly because one can restrict
attention to a restriction of f to a compact set, which is uniformly
continuous. The second step, continuity of F?3, was established in [7]. So
B+ F*(f(B)) is continuous. This and (2) imply f(D"(B'))=F((B')) =
lim,_ , F(f(B’)). The latter is identical to lim,  , f(D"(B’)) which, by
continuity of f, equals f(3). f(D"(B’)) = f(Z) and Ze B imply by (2) that
D'(B')=:.

Now continuity of D" follows by a standard argument: Any converging
sequence B’ is contained within a compact set, hence for every subsequence
there is a sub-subsequence for which the D" solutions converge; as
established before, that convergence must be to the D" value of the limiting

budget set. |
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Kim and Richter [6] introduce the C-axiom, which can be considered a
continuous extension of WARP. It is defined as follows. If ¥*Py* for all
keN, x* - x, v* >y, and x# y, then not yPx. We show in the proof
below that the function D" as constructed above satisfies the C-axiom.

PROPOSITION 2. For every dimension n>=3 there exists a continuous
demand function that satisfies the C-axiom but not SARP.

Proof. 1t suffices to show that the demand function D" as constructed
in the previous section satisfies the C-axiom. We first consider the demand
function constructed by Gale, i.e., D Let x*, 1%, x, v be as in the definition
of the C-axiom. As demonstrated in Gale [3, Section 4], x*Py* is revealed
by the price vector 4 'x*, where the matrix 4 is as in Example 1.
These price vectors converge to 4 'x. Continuity of D? implies xPy, in
accordance with the C-axiom. So D? satisfies the C-axiom. The C-axiom
now also follows for F?, the extension of D? to nonlinear sets, because all
revealed preferences can be revealed by linear budget sets; see the end of
Example 2. Finally, for n >4, a violation of the C-axiom would, through
the mapping f, generate a violation of the C-axiom for F*. |

The following variations in domain are possible. The function D" as con-
structed in Section 3 can be extended to all compact convex subsets of R”
without any problem. The construction for linear budget sets immediately
extends to arbitrary convex compact comprehensive subsets, thus, by
efficiency and WARP, to any convex compact subset. Also the derivation
of continuity and the C-axiom remains unaffected. These observations also
hold if the domain is restricted to the compact convex subsets within R, |
{see also Footnote 1 in Example 1).

ACKNOWLEDGMENTS

An anonymous referee gave helpful comments.

REFERENCES

1. K. J. ArRrOw, Rational choice functions and ordering, Economica, N.S. 26 (1959),
121-127.

2. S. A. CLARK, An extension theorem for rational choice functions, Rev. Econ. Stud. 58
(1988), 485-492.

. D. GALE, A note on revealed preference, Economica, N.S. 27 (1960), 348--354.

. H. S. HOUTHAKKER, Revealed preference and the utility function. Economica, N.S. 17
(1950}, 159-174.

5. R. KiHLSTROM, A. Mas-CoteLL. anp H. F. SONNENSCHEIN, The demand theory of the
weak axiom of revealed preference, Econometrica 44 (1976), 971-978.

£



160 PETERS AND WAKKER

6.

7.

T. Kim axp M. K. RicHTER, Nontransitive-nontotal consumer theory, J. Econ. Theory 38
{1986), 324-363.

H. J. M. PeTERS AND P, P. WAKKER, Independence of irrelevant alternatives and revealed
group preferences, Econometrica 59 (1991). 1787 1801.

M. K. RICHTER, Revealed preference theory, Econometrica 34 (1966), 635--645.

. H. Rost, Consistency of preference: The two-commodity case, Rev. Econ. Stud. 35 (1958),

124-125.

. P. A, SAMUELSON, A note on the pure theory of consumer’s behaviour. Economica, N.S.

S (1938). 61-71, 353- 354,

. W. J. SHarEr, Revealed preference cycles and the Slutsky matnx, J. Econ. Theorv 16

(1977), 293-309.

. J. VL, Sur les Conditions d’Existence d'une Ophélimité Totale et d'un Indice du

Niveau des Prix. Ann. Univ. Lyon 9 Sec. A(3), (1946), 32-39. Translated into English by
P. K. Newman, The existence-conditions of a total utility function, Rer. Econ. Stud. 19
(1951-1952), 123-128.



