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Abstract 

This article studies situations in which information is ambiguous and only part of it can be probabilized. It is 
shown that the information can be modeled through belief functions if and only if the  nonprobabilizable 
information is subject to the principles of complete ignorance. Next the representability of decisions by belief 
functions on outcomes is justified by means of a neutrality axiom. The natural weakening of Savage's sure-thing 
principle to unambiguous events is examined and its implications for decision making are identified. 
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1. Introduction 

Savage (1954) introduced the "sure-thing principle," a rationality principle for decision 
making under uncertainty, it gives a more satisfactory foundation to subjective probabil- 
ities than had been obtained before by Ramsey (1931) and de Finetti (1937). It also gives 
a more profound justification for the "independence axiom"; the latter axiom was used 
in decision making under risk to characterize expected utility maximization (see von 
Neumann and Morgenstern, 1944, and Herstein and Milnor, 1953). 

In Savage's model, all information is probabilizable. In many situations, however, it is 
not clear what the probabilities should be. Information may be vague or ambiguous. For 
that reason, alternative representations are used that do not probabilize all information; 
examples are Zadeh's (1978) possibility measures and the nonadditive probabilities in 
Schmeidler (1989). In particular, the belief functions, as introduced by Dempster (1967) 
and Shafer (1976), have proved useful in artificial intelligence and in robust statistics (see 
Huber, 1981). They are suited to represent situations where only part of the information 
can be probabilized and the rest of the information is vague or ambiguous. Examples are 
imprecise samples and incomplete data bases. 

The research of Peter Wakker has been made possible by a fellowship of the Royal Netherlands Academy of 
Arts and Sciences. 
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Given the widespread use of belief functions, it is remarkable that only recently were 
decision criteria for the above-mentioned type of situations proposed and axiomatized, 
in Jaffray (1989). He uses as a primitive axiom the independence condition with respect 
to mixtures of belief functions over the outcomes to generalize expected utility; Jaffray 
(1992) justifies this condition by means of a lower-probability interpretation of belief 
functions. 

The present article provides a more fundamental foundation for decision criteria 
based on belief functions. First, preferences and rationality requirements are formulated 
directly in terms of decisions ("acts"), rather than in terms of belief functions as gener- 
ated by the acts over the outcomes. Second, by making explicit the underlying knowl- 
edge space (see section 2), we can use Pearl's (1988) probability-of-provability inter- 
pretation of belief functions, and we can identify the "neutrality axiom" that 
underlies Jaffray's (1989) approach. This is similar to the way in which Savage (1954) 
provided a more fundamental foundation for expected utility than von Neumann and 
Morgenstern (1944). Finally, we show that the independence axiom for belief func- 
tions corresponds to a natural restriction of Savage's sure-thing principle, i.e., the 
restriction to unambiguous conditioning events. This restriction is called the weak 
sure-thing principle. 

In our setup, the decision maker uses a two-stage approach to process the information. 
The first stage deals with the probabilistic information. A deviation from the Bayesian 
approach occurs only in the second stage, where the vague information is processed. We 
assume that the vague information does not contain any meaningful structure. The 
Bayesian approach will nevertheless invoke probability measures to describe this infor- 
mation, even if this requires a subjective input. The intent of our approach, on the 
contrary, is to preserve full objectivity; entirely vague information should therefore be 
processed according to the objective symmetry principles of complete ignorance, as laid 
down in Arrow and Hurwicz (1972) and Cohen and Jaffray (1980, 1983). 

This article is organized as follows. Section 2 formally describes the two-stage model- 
ing of information and gives an example. Section 3 shows that the combination of the 
probabilizable and nonprobabilizable information naturally leads to belief functions. 
Sections 2 and 3 do not yet invoke decision-theoretic principles. These are invoked in 
Section 4 and justify the use of belief functions by means of the "neutrality principle." 
The latter shows how to combine the principles of complete ignorance with the basic 
assumption of decision making under risk, which states that the only relevant aspect of a 
random variable is its probability distribution. 

The axiomatic decision model is studied in section 5. Example 5.1 shows that Savage's 
sure-thing principle, characteristic for the Bayesian approach to decision making, and 
the belief function approach are necessarily incompatible. The experimental data of 
Cohen and Jaffray (1988) suggest that decision makers do abide by the restriction of the 
principle to unambiguous events. This weakened sure-thing principle provides a new 
foundation for Jaffray's (1989) decision model; this model satisfies linearity with respect 
to mixtures of belief functions and in this sense generalizes expected utility. 

In summary, by using a separation into a stage of probabilizable and a stage of non- 
probabilizable information, by invoking the principles of complete ignorance, and by 
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weakening Savage's sure-thing principle in a natural way to probabilizable events, this 
article obtains a foundation for the use of belief functions in decision making. 

2. Probabilizable information and complete ignorance 

Several models that deal with situations in which there is both vague and probabilistic 
information have appeared in the literature. A famous recent example in decision theory 
is Schmeidler (1989), where vague information is processed in a first stage and probabi- 
lizable information in a second. Another example is the classical approach to statistics. 
Here the vague information concerns the true parameter from a parameter set. In a 
second stage, given the parameter, the information about the value of the statistic that 
will be observed is entirely probabilized. 

In our approach, the order of stages is reversed as compared to the above models. The 
probabilistic information is processed in the first stage, and the vague information in the 
second. Obviously, our model, as well as the models of Schmeidler and of classical 
statistics, is only applicable in certain situations. It is primarily suited to deal with knowl- 
edge representations. Dempster (1967) showed that, in fact, it is a generic model for all 
belief functions. That is, whenever information can be measured by belief functions, a 
separation into stages, as in this article, is theoretically possible, although different inter- 
pretations are favored by several other authors (see, e.g., Sharer (1990)). The following 
example illustrates the separation into probabilizable information and complete ignorance. 

Example 2.1. At closing time, a TV set retailer has to decide whether or not to serve a 
last customer. If he does, he will miss the concert he plans to attend, but he is certain to 
sell one more TV. The retailer's profit depends on the price category, L(ow), M(ed- 
ium), or H(igh), of the new TV bought by the customer. The prevision of the TV set 
retailer concerning the type of TV that the customer will buy is based on two pieces of 
information (see figure 1): 

(i) 60% (or 30%, or 10%, respectively) of the customers own a low (/) (or medium (m), 
or high (h)) price TV; 

(ii) People, when buying a new TV, either remain in the same price range as in the 
previous purchase or move to the price range directly above. 

The first piece of information is dearly probabilizable. In relation to the second piece 
of information, we assume that the retailer does not possess any additional information. 
Nonetheless, the combination of these two pieces of information enables the. retailer to 
make claims such as: 10% of the customers will certainly buy H (those possessing h); 60% 
will certainly buy L or M (those possessing l); 0% of the customers will certainly buy M. 
Further, 40% of the customers may possibly buy H (those possessing m or h), 90% may 
possibly buy M (those possessing 19 r m), 100% may possibly buy M or H, and 90% of the 
customers may possibly buy L or M (those possessing I or m), etc. These numbers can 
also be interpreted as upper or lower bounds for percentages. At least 10%, and at most 
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Figure 1. (Example 2.1). We also depict the two decisions; decisions will be discussed in section 5. 

40%, of the customers will buyH, and at least 60%, and at most 90%, will buyL orM. We 
assume that the last customer arrives randomly, so that there is a .1 probability that 
he/she will certainly buy H, a .4 probability that he/she may possibly buy H; etc. [] 

The information processed in the first stage is modeled through a set f~, that, for 
reasons given below, is called the knowledge space. Its elements are called knowledge 
states. Exactly one knowledge state is the true one, the others are not true. The decision 
maker has partial information about which is the true knowledge state. We assume that 
the information on the set f~ is sufficiently well-structured to be modeled by a probability 
measure "rr, in accordance with Savage's (1954) Bayesian approach. In example 2.1, f~ 
describes the type of TV presently owned by the last customer; with probability .6, this is 
l, with probability .3, this is m, and with probability. 1, this is h. Concerning the remaining 
uncertainty, given o~ E f~, the decision maker has no information at all, and this uncer- 
tainty is not probabilizable. The nonprobabilizable information concerns the particular 
choice of a new TV (superior or the same), given the old TV. 

One of the aims of this article is to allow for complete objectivity in the processing of 
information. This will be an additional motivation for invoking the principles of complete 
ignorance in the second stage. Complete objectivity is attained if the probability measure 
on f~ is also objective, for example, if it is derived from statistical data by symmetry 
considerations, such as in example 2.1. The analysis of this article can also be invoked, 
however, if that probability measure is not objective. 

In decision theory, decisions are modeled as functions from a set S of states of nature to 
an outcome set. One of the states is the true state, the other states are not true, and the 
decision maker is uncertain about which state is the true state. Subsets of S are called 
events. The outcomes, also called prizes or consequences, describe what will result for the 
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decision maker. The knowledge space fZ cannot play the role of S because the outcomes 
of decisions are not solely determined by the ~o's; they partly depend on the nonprobabi- 
lizable information. 

In example 2.1, outcomes concern the profit that the retailer may obtain and whether 
or not he attends the concert. We assume that the profit depends on the type of TV sold, 
hence so does the outcome resulting from the decision to serve the customer. Thus we 
take S = {L, M, H}. As the probabilizable information concerns the old TV, we take f~ = 
{l, m, h}. The profit from serving the customer depends only indirectly, and partly, on the 
old TV. That is to say, the information about the true m ~ D does not suffice to deter- 
mine the true state s E S, but leaves uncertainty: all we know is that s describes either the 
same price range as m, or that directly above. In other words, all we know is that s belongs 
to a subset B~o of S; Bt = {L, M}, B m =  {M, H}, and Bh = {H}. 1 That no further 
information is available is expressed by the term "complete ignorance focused on B~0," 
and will be formalized below. 

Under risk, i.e., probabilized uncertainty, for each uncertain event a probability has 
been determined. Under complete ignorance, all that is known about an event is that it is 
certainly true, certainly not true, or that it is undetermined whether or not the event is 
true. This is expressed by the truth values: provable, impossible, and undetermined. 2 We 
also use the term "possible" for "provable or undetermined." Accordingly, complete 
ignorance focused on Bo, means that B~o and all of its supersets have truth value provable, 

and all events disjoint from B,o have truth value impossible, and all remaining events 
have truth value undetermined. 

Suppose, as an illustration, that a given ~ E f~ is true, and complete ignorance focused 
on the event B0~ = {sl, s2, s3} holds. Then the truth values of the eventsA and A'  are the 
same if: 

(i)A = {s1} andA' = {s2},  suggesting a kind of symmetry; 
(ii) A = {Sl} andA'  = {s2, s3}, showing that cardinality of sets is irrelevant; 
(iii) A = {sl} andA'  = {Sl, s2}, showing that strict inclusion does not exclude equal 
truth values. 

Let us discuss an example to further illustrate the difference between probabilizable 
uncertainty and complete ignorance. Consider the set [0,1], endowed with the uniform 
probability distribution. Usually, this is taken as an instance of total lack of information, 
related to the principle of insufficient reason as advanced by Laplace (1825). Also it can 
be obtained through the principle of maximal entropy (see Jaynes, 1968). However, the 
usual distance function is taken here as a relevant structure; for instance, the statement 
"[0, 1] is as large as [~, 41"5J is taken as meaningful. This example does not reflect complete 
ignorance as taken in this article. The information is so well-structured that it can be prob- 
abilized. It is not invariant under bijective transformations. Thus, the above-mentioned 
modeling of insufficient reason forp ~ [0,1] has often been criticized for excluding a same 
modeling of insufficient reason forp  2 E [0,1]. The model of complete ignorance is not 
open to such criticism; in particular, it is invariant under bijective transformations. 
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3. Belief functions 

Let us now turn to the description of the information concerning the state space S. This 
combines the probabilizable information concerning f~ and the information given each 
co r fk Throughout the sequel we assume that S is finite. Consider an event A C S. 
There are, in view of complete ignorance, only three possible states of information given 
eo E f~: provable (if A contains Bo,), undetermined (if A intersects Bo but does not 
contain Bo,), and impossible (ifA does not intersect B,,). We can partition fZ into three 
parts, ~ = {~o E fk A  is provable given o~}, ~ = {~o r f kA  is undetermined given oJ}, 
and ~ /  = {co E f~: A is impossible given oJ}. So the probability that A is provable is 
rr(f~p), the probability thatA is undetermined is "rr(~u), and the probability thatA is 
impossible is ,rr(f~/). We make the assumption, typical for probability theory, that 
only these probabilities matter, and not the particular sets fg ~, f~u, f~," So the infor- 
mation on S is completely described by mappingsA ++ "rr(fg~f,A ~ "rr(f~), andA 

�9 . . P c u 

"rr(f~/.). Moreover, ,t follows from the equalmes v(f~/)  = v(f~p ) and -rr(~) = 1 - 
v(f~p) - -rr(l~/) that the information on S is in fact completely described by the first 
mapping alone, henceforth denoted byf. 

Note thatf(A) = -rr(ft~) = v({~o ~ f~: B~0 C A}). If we define the function r 2 s 
[0,11 byB +-~ Tr({~o e a :  ~ = B}), then 

f(A) = ~ (b(B). (1) 
B C A  

In general, a function f :  2 s -~ [0,1] is called a belief function on S iff(O) = 0,f(S) = 1, 
andfcan  be written as in (1) for a nonnegative function qb on 2 s. We have found above 
that all the information relevant for the events is contained in the belief functionf. 

Below we also use the plausibility function F, defined by F(A) = 1 - f(AC). Note that 
F(A) is the probability thatA is possible, i.e., provable or undetermined. Obviously, the 
plausibility function also contains all information relevant for the events. 

For a general belief function f on S, a nonnegative function + as in (1) can always be 
found and it is uniquely determined (see Rota (1964), Dempster (1967), and Sharer 
(1976)). To be precise, these references show that ~b(A) = Y~BcA(- 1)IA~lf(B). The 
function qb is called the MObius transform off. Also, an underlying space ~,  w as above can 
always be constructed, and the above approach to belief functions is general. Thus, by 
the sole means of the principles of complete ignorance and of probability theory, we have 
provided a complete justification for belief functions interpreted as probabilities of prov- 
ability. Alternative justifications for this interpretation have been advanced by Ruspini 
(1987), Pearl (1988), and Halpern and Fagin (1992). 

Example 3.1. (continuation of example 2.1). Table 3.1 describes the belief function, the 
plausibility function, and the MObius transform for example 2.1. 

Belief functions are convex, i.e., f(A U B) + f(A 71 B) > f(A) + f(B), and even 
"monotonic of higher orders" (see Shafer, 1976). Convexity implies that the belief func- 
tion is the infimum of the set of all probability measures that dominate it (see Shapley, 
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Table 3.1. 

0 {L} {M} {H / {L,M} {L,H} {M,H} S 

fiB) 0 0 0 0.1 0.6 0.1 0.4 1 
F(B) 0 0.6 0.9 0.4 0.9 1 1 1 
+(B) 0 0 0 0.1 0.6 0 0.3 0 

1972). This provides an alternative interpretation of belief functions, the so-called lower 
probability interpretation. 

The analysis of this section shows where the Bayesian approach of Savage and the 
belief function approach of Dempster-Shafer part ways; see also figure 2. It is at the 
second stage, where events are considered conditional on a knowledge state ~o. The 
Bayesian approach will continue to assign probabilities, conditional given o~, to events, no 
matter what, leading to a (subjective) probability measure on S. 3 The Dempster-Shafer 
approach can be justified by invoking, conditionally given ~o, the principles of complete 
ignorance, leading to belief functions. 

4. A decision-theoretic setup and the neutrality axiom 

This section introduces a decision-theoretic approach, in addition to the set ~2, the 
probability measure w, the set S, the mapping m ++ Bo,, and the belief function f, as 
described above (see figure 3). The decision maker must choose between several deci- 
sion alternatives that we call acts. The set of outcomes that may result from acts is a finite 4 
set denoted by G. An act d is simply a function from S to G, describing for each state s the 
outcome that will result ifs is true and d is the act chosen by the decision maker. 5 As the 
decision maker is uncertain about which element of S is true, he is uncertain about which 
outcome will result from a chosen act. By > we denote the preference relation of the 
decision maker over the acts, i.e., we write d > d' if the decision maker considers d at 
least as good as d'. We assume throughout that > is a weak order, i.e., it is complete (d > 
d' or d' > d for each pair of acts d, d') and transitive. We write > for strict preferences, 
i.e., for the asymmetric part of >,  defined by d > d' if d > d' but not d' > d, and - for 
indifferences, i.e., for the symmetric part of >,  defined by d - d' if d > d' and d' > d. 
The preference relation over acts induces a preference relation over outcomes through 
the constant acts; the latter preference relation is also denoted by >.  

Given act d, we denote fd the mapping that assigns to each subset C of G the value 
f ( d -  1 (C)). Thusfd(C) is the probability that the event "the outcome ofd  belongs to C" is 
provable, i.e.,fd(C) = ~r({m ~ ft: Bo, C d-1(C)}). We denote by +d the mapping that 
assigns to each subset G of G the value .rr@o: d(Bo~) = G}) = Y~4B)=cqb(B), where d) is 
the M6bius transform off.  Thusfd(C) = rid-1(C)) = Y~cd L(c/b(B) = Y~d(B)cc(b(B) 
= Y~ccc N.d(B)=c+(B) = Y.Gcc~ba(G). This shows thatfd is a belief function on (3, with 
M6bius transform qbd. Next we justify the following axiom. 
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Figure 3. The decision model. An act d maps the state space S to the outcome space G. 

Definition 4.1. The neutrality axiom is satisfied if acts are indifferent whenever they 
generate the same belief function over the outcome space G. [] 

The neutrality axiom results from the combination of two principles. The first princi- 
ple, the principle o f  choice under complete ignorance, requires that acts d and d' be 
indifferent whenever d(Bo~) = d'(Bo~) for each o~. For the unconditional one-stage setup 
where there is only one ~o, this principle is axiomatically derived by Arrow and Hurwicz 
(1972) and Cohen and Jaffray (1980, 1983). The present condition extends the principle 
to the case of more to's. The idea of the condition is as follows. Suppose that d(B~) = 
d'(B~o) for each o~. For each o~ and d(B~) = {cl, "'", Cn}, there exist partitions S1,  " ' "  , Sn 
and S], . . . ,  Sn of B~ such that d = cj on each Sj, d' = cj on each Sj. All of the Sj and Sj 
are either undetermined if n _> 2, or they are provable if n = 1, and this is all that is 
relevant. In particular, the cardinality of the sets Sj and Sj is not accepted as relevant 
objective information. The idea of the principle of complete ignorance is that for the 

t 

evaluation of the act it is irrelevant if, for any o~, the partition $I, "'", Sn or S], " " ,  Sn of 
B~ is involved. Thus only the range d(Bo,) given each o~ is relevant. 

The neutrality principle strengthens the principle of choice under complete ignorance 
by adding the basic principle of decision making under risk: two random variables that 
assign the same probability to each element of their range are indifferent. Thus, if for 
some acts d, d', and each G C G, we have 7r({o~: d(Bo~) = G}) = rr({m: d'(Bo~) = G}), 
then d ~ d'. The last equality expresses the identity of the M6bius transforms +el and 
qba,, hence offa andfa,. So, iffd = fd', then d N d', which is exactly what the neutrality 
axiom requires. The neutrality axiom will be assumed throughout the rest of  the article. 

To discuss critically the setup of this article that builds on the principle of choice under 
complete ignorance and belief functions, let us consider an example. The deviation from 
the Bayesian approach occurs only at the second stage, given an ~o E f~. Hence, for 
maximal clarity, only this second stage plays a role in the example. We use the notation 
eB for the belief function focused on B, i.e., the function that assigns value 1 to each 
superset of B and value 0 to all other sets. 

Example 4.2. Let M > m be two nonindifferent outcomes. Let S = {Sl, $2, $3} and 
suppose that f~ contains only one element ~o; suppose Bo, = S (so the belief function 
generated on S is es). Define acts d,d' by 
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d(Sl) = M, d(s2) = m, d(s3) = m, d'(sl) = M, d'(s2) = M, d'(s3) = m. 

Then d and d' generate the same belief function on G, i.e., e{m, M}. This follows prima- 
rily because {sx} and {Sl, s2} have the same truth value, i.e., "undetermined." By the 
neutrality axiom, d - d'. [] 

In the above example there is only one o~. Hence, both under d and under d',  each 
subset C C G has a truth value, and it is the same for d as for d': provable if C contains 
both M and m, undetermined if C contains M or m (but not both), and impossible if C 
contains neither m nor M. By the neutrality axiom, even by the principle of choice under 
complete ignorance, d'  and d should be indifferent. However, d' dominates d, which may 
be taken as an argument that d' should be strictly preferred to d. The seeming violation 
of dominance is the price to pay for the complete objectivity that is attained by the 
principle of choice under complete ignorance underlying the belief function approach. 
We think that permitting such violations of dominance is not irrational. Note that the 
violation is only weak in the sense that the dominated act is considered indifferent to the 
dominating one and is not strictly preferred. Dominance of the type [d'(s) ~ d(s) for all 
s ~ d' ~ d] is never violated. Dominance violations of the weak type as above are also 
permitted in the Bayesian approach; then the set where d' dominates d is interpreted as 
a "null set," which in the Bayesian frame means it has probability 0. In the belief function 
approach it can also be said that d' dominates d on a "null set": the set {s2}, when added 
to the set {sl}, does not affect the truth value. 

An alternative approach would be to decide, by dominance, that d' > d, whereas for 
the act d", defined by d"(s l )  = m,  d"(s2) = m,  d"(s3) = M, we would accept both d'  ~ d" 
and d - d" in accordance with the principle of choice under complete ignorance. In this 
case, transitivity of indifference would have to be abandoned. This alternative approach 
is studied in detail in Cohen and Jaffray (1980). 

Next we compare our setup with the axiom that is most characteristic of the Bayesian 
approach and that is Savage's (1954) most famous invention: the "sure-thing principle." 

Definition 4.3. The sure-thingprinciple is satisfied if, for any two acts that have common 
outcomes outside a subsetA C S, the preference does not depend on the level of those 
common outcomes. [] 

In other words, the preference between two acts depends only on the restriction of the 
acts to the event where the acts are different. In the presence of some other natural 
axioms and some technical axioms, the sure-thing principle characterizes the Bayesian 
approach (see Savage, 1954). We use example 4.2 to show where our approach violates 
the sure-thing principle. The acts d and d' are identical outside {s2} C S; we chan_ge their 
common outcome m on s3 into the outcome M, so that the following acts result: d(s l )  = 
M, d ( s 2 )  = m, ~/($3) = M, ~ / ' ( S 1 )  = M, d ' ( s 2 )  = M, d'(s3) = M. According to the 
sure-thing principle, the preference between d and d' should be the same as between d 
and d', i.e., d and d' should be indifferent. Under the belief function approach, however, 
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it seems natural to strictly prefer ~t' to d. The act d' dominates d in a significant way: 
under d', the preferred outcome M is certain so that its truth value is "provable"; under 
d, this outcome is not certain and has truth value "undetermined." 

The above development has shown another way to describe the parting of ways of the 
Bayesian approach and the belief function approach: if, given any to, one wants to satisfy 
the sure-thing principle, then the Bayesian approach will result, where one is forced to 
include information of a subjective nature. If one wants to adhere to objectivity then one 
will follow the principle of choice under complete ignorance, which in the setup of this 
article leads to the belief function approach and violates the sure-thing principle. Exam- 
ple 5.1 below further illustrates this, in the richer model of section 5. 

Thus, let us turn to a weakening of the sure-thing principle that does not seem reason- 
able in the belief function approach and that will lead to a specific decision model in the 
next section. It is illustrated in Figure 4. As a preparation, an event A C S is called 
ambiguous if there exists an to E ~ such that B~o intersects bothA andA c, so that, for this 
to,A has truth value undetermined. Events which are not ambiguous are called unambig- 
uous. Note that an event is ambiguous if and only if its complement is. For an unambig- 
uous eventA, there exists a subset AC Ut such that B,o C A for all to E A, and B~o C A c 
for all to E A c. Then there is no ambiguity or vagueness aboutA;A is true if and only irA 
is true, and the truth-value undetermined never applies toA. The related probability can 
be determined as "rr(A), so the eventA is in fact probabilizable, with probability nv(A) = 
f (A)  = F(A).  It seems a natural extension of the Bayesian framework to still require the 
sure-thing principle for the unambiguous events. Violation is permitted only for events 
that are ambiguous, i.e., that are not probabilizable, and cannot fit into Savage's frame- 
work. Cohen and Jaffray (1988) propose an explanation of the Ellsberg paradox (Ells- 
berg, 1961) based on the hypothesis that people satisfy the sure-thing principle for un- 
ambiguous events. 

Thus we formalize: 

f2 S 

U@ 
Figure 4a. An unambiguous event A. 
No Bo meets both A and A c 

S C 

d=d' 

Figure 4b ( The weak sure-thing principle). 
If A is unambiguous, then the preference 
between d and d' should not be affected if 
their common part (indicated by thin ~ ) on 
A c is replaced b_y another common part, 
leading to acts d and d' respectively. 

Figure 4. The weak sure-thing principle. 
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Definition 4.4. The weak sure-thingprinciple is satisfied if, for any two acts that have 
common outcomes outside an unambiguous event A C S, the preference does not 
depend on the level of those common outcomes. [] 

5. The weak sure-thing principle to characterize a decision theoretic model 

In certain cases, the separation of information into two stages, with the set f~ appearing 
in the first stage, is naturally given. This is the case in example 2.1. In other cases, it is not 
self-evident how to make such a separation, and it requires creativity on the part of the 
decision maker. It can then be a major step in the processing of information. Examples 
and discussions of this point are given in Shafer and Tversky (1985). Also, for different 
acts, different choices of sets ~, S can be optimal. We already saw above that, by the 
neutrality axiom, for decision making the sets ~1, S can be forgotten, as soon as for each 
act the belief function generated over the outcomes is determined. We base the setup in 
this section on thatobservation, and acts are identified with, and usually described as, the 
generated belief function over G. Only a few times are sets fl, S made explicit; these sets 
may vary from one case to the other. This is entirely in the spirit of probability theory, 
where distributions of random variables are studied without explicit mention of the 
underlying probability spaces. 

We also discuss the sure-thing principle and its weakened version in this section. 
These two conditions involve the underlying information structure, i.e., the knowledge 
space [1, the space state S, the mapping m ++ B~o, and the probability measure "rr on f~. 
Then, of course, it must be assumed that for all four acts involved in the (weak) sure- 
thing principle, this information structure is the same. 

We assume here that the domain of preferences is the set of all belief functionsfover 
the subsets of a finite 6 set of outcomes O. The obtained generality of domain is needed 
for the derivation of the results below. 

The following example shows that, except for the trivial case where all outcomes are 
indifferent, the belief function approach of this section necessarily violates the sure-thing 
principle, that is, it shows that an example as in section 4 can always be found. 

Example 5.1. Take M, m, S, f~, w, d, d', and the mapping m ++ B,o, as in example 4.2. So 
d' - d. As e{M} > e{m}, at least one of the indifferences e{M} ~ e{m~} ~ e{m} must be 
violated, say the first. Define d and d' as below definition 4.3, i.e., by changing the 
common outcome m of d, d' on s3 into M, so that 

d(sl) = M, ~/(s2) = m, d(s3) = M, d'(sl) = M, ~/'($2) = M, d ' ( s3)  = M. 

Thenfa = e{m,M} andfa, = e{M}, and ar + d follows from e{m,M} + e{M}. This and d' 
d constitute a violation of the sure-thing principle. [] 
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The above example has shown that the belief function approach and the sure-thing 
principle are necessarily incompatible. Note that the event {s2} where the acts d and d', 
as well as d and d', differed, was ambiguous. We shall see below that the belief function 
approach can be compatible with the sure-thing principle for unambiguous events, i.e., 
that the weak sure-thing principle can still be respected. To this end, we first introduce 
mixtures and independence for belief functions. 

For two belief functionsf, g and 0 -< h _< 1, the mixture )tf + (1 - ?t)g is again a belief 
function. This follows from the following remark, implied by (1): 

The M6bius transform of hf + (1 - ~)g is Xqb + (1 - ;~)+, (2) 

where (b and + are the M6bius transforms o f f  and g, respectively. Thus nonnegativity of 
the M6bius transform is preserved under mixing, and mixture of belief functions are 
again belief functions. So the set of belief functions on G is a convex subset of a linear 
space (thus obviously a mixture space in the sense of Herstein and Milnor, 1953). In 
particular, it follows from (1) that 

f= Z (3) 
BCG 

i.e., each belief function is a convex combination of belief functions focused on subsets of 
C. In the literature on decision making under risk, mixing, linearity of a representing 
functional, and independence have been studied when the domain consisted of the 
probability measures on the set C, leading to expected utility. In our setup this is ex- 
tended to the larger domain consisting of the belief functions on the set G, leading to a 
more general theory. We shall obtain a '~von Neumann-Morgenstern" representation 
for preferences, i.e., a representation that is linear with respect to mixtures. First we 
derive the independence condition as used in Herstein and Milnor (1953): for all belief 
functions f, g, h, 

ifl- thenl + 
Lemma 5.2. The weak sure-thing principle implies independence. 

Proof. It suffices to show, for all belief functions f, g, h, h, that 

- 1 -  (5) 

for the following reason: From (5) it follows that: �89  + �89 > 1/2g + 1/zh ~ � 8 9  + 1/2f > 
1/2g + a/zf = 1/2f + a/2g > 1/2g + 1/2g. Then, by transitivity, 1/zf + V2h > a/zg + 1/2h ~ f > 
g. By contraposition, f ~ g ~ a/zf + �89 <~ a/2g + 1/2h, and twofold application proves the 
lemma. So we derive (5). 

The derivation consists of constructing ~, S, etc., further acts d, d', d, d' that generate 
the belief functions in (5), and an unambiguous eventA with probability �89 such that d 
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and d' coincide outside of A where they generate, "conditionally" (see below), the belief 
function h. Conditionally on A, they generate the belief functions f and g, respectively. 
The acts d, d' are obtained from d, d' by changing them outside of A into acts that 
generate, conditionally on A c, the belief function h. Then the weak sure-thing principle 
implies that the preference between d and d' should be the same as between d, d', which 
implies (5). the acts and the generated conditional belief functions have been illustrated 
in table 5.1. 

For the desired construction, take the sets g~l, $1 ($1 will play the role of the eventA 
below), the probability measure wl on ~1, the mapping o~1 ~ B,ol from ~1 to 2 sl, and the 
acts dl, d~: $1 ---> C, such thatfal = fand fd ,  = g; next take the sets ~2, $2, the probability 
measure w2 on 1"~2, the map_ping m 2 +-> B~02 from ~ 2  to  2 $2, and the acts d2, d2:$2 ~ G, 
such thatfd2 = h andf& = h. Assume ~1 (3 ~ 2  = ~ = S1 ("1 32.  Finally, define ~ = ~1 
U ~2, S = $1 U $2, ~r is the probability measure on ~ such that nv(~l) = ~r(~2) = �89 
and the conditional probabilities given ~1 and ~"~2 a r e  identical to wj and nv2, respec- 
tively. Let the mapping m +-~ B~ from ~ to 2 s coincide with ml ++ B,ol on ~1 and with 002 

B,o2 on ~2. The act d coincides with dl on $1 and with d2 on $2, sofd = l_ff + lh. 
Addition of a prime to d, res_ulting i_n d', means that dl on $1 has been replaced by d' 1, a 
bar over the act, resulting in d and d', respectively, indicates that d2 has been replaced by 
d2 on $2._So d'_generates the belief function 1/2g + 1/2h, d generates the belief function 

1 P 1 ~_ 1/2f+ Yzh, andd generates the belief function V2g + a/zh. WetakeA Sa. Bytheweak 
sure-thing principle, d > d' ~ d > d', implying (5). [] 

The following continuity condition was used in Herstein and Milnor (1953): > satis- 
fies mixture-continuity if, for each triple of belief functions f, g, h, {~. ~ [0, 1]: kf + (1 - 
k)g > h} and {k E [0, 1]: ~f + (1 - k)g ~ h} are closed. The idea is that a small change 
in the belief functionfd can be related to a small change in the probabilities nv({~o: d(B~o) 
= C)}, and that such a small change should not induce a large change in preference. By 
the theorem of Herstein and Milnor (1953), independence and mixture-continuity are 
equivalent to the existence of a representation Vfor >,  linear with respect to the mixing 
of belief functions. Hence, by (3), Vis of the form 

V : T +-~ Z qb(B)V(eB), (6) 
B c G  

where + denotes the M6bius transform off. We show below that the above form implies 
the weak sure-thing principle. 

Table 5.1. 

d d' ~l d.' 

A f g f g 
A c h h "h 
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Proposition 5.3. Under mixture-continuity, independence and the weak sure-thing 
principle are equivalent. 

Proof. That the weak sure-thing principle implies independence has already been 
shown in lemma 5.2. So we derive the weak sure-thing principle, assuming the other 
conditions of the lemma. Fix f~,S,v and the map ~o ~ B,o, and letA C S be an unambig- 
uous event. Suppose d, d', d, d' are acts such that d and d' coincide outside of A, and d, 
3' are obtained from d, d' by changing the common part outside of A into another 
common part. Iff(A) = F(A) = 0, then d and d' generate the same belief function over 
C, and so do 3 and d', so d - d' and d - d', in accordance with the weak sure-thing 
principle. Iff(_A) = F(A)_ = 1, then d and at generate the same belief function over G and 
so do d' and d', so d - d and d' - d'; again, this implies that the preference between d 
and d' is the same as between d and d', in accordance with the weak sure-thing principle. 

So we assume henceforth that 0 < f(A) = F(A) < 1. Now we define f~l, f~2, $1, etc., 
similar to the proof of lemma 5.2. That is, first we define $1 = A, $2 = A c. BecauseA is 
unambiguous, f~ can be partitioned into f~l and ~'~2 such that B~0 C Sa for all ~o E f~l and 
B,o C $2 for all ~o ~ f~2. Thus ~r(fZl) = f(A) > 0 and ~r(fZ2) = 1 - F(A) > 0. We can 
define the conditional probability distributions 71 given f~l, and "rr 2 given f~2. The belief 
function on C generated by d with respect to "rr2 is denoted as h and can be considered to 
be the belief function generated by d conditionally on f~2, or conditionally on ($2 = )A c. 
The belief functions f, g, h are defined similarly (see again table 5.1). Writing X = f(A), 
the belief function on C_generated by_d is Xf + (1 - )t)h, d' generates kg + (1 - X)h, d 
generates Xf + (1 - )t)h, and, finally, d' generates )tg + (1 - Xf .  Now Xf + (1 - X)h > 
Xg + (1 - X)h ~ Xf + (1 - X)h > )~g + (1 - X)h follows from substitution in the 
representation (6), which is implied by independence, mixture continuity, and the theo- 
rem of Herstein and Mil_nor (1953). It implies that the preference between d and d' is the 
same as between d and d', in accordance with the weak sure-thing principle. [] 

The above findings lead to the following theorem. It shows that the belief function 
approach as in (6), while necessarily incompatible with the sure-thing principle in full 
strength (see example 5.1), is compatible with the weak sure-thing principle and charac- 
terizes the latter. 

Theorem 5.4. The following two statements are equivalent: 

(i) The preference relation is representable by the form (6). 
(ii) The preference relation satisfies mixture-continuity and the weak sure-thing 

principle. [] 

Representations as in (6) have been studied in Jaffray (1989). The above theorem has 
related that representation to Savage's sure-thing principle and has used this to give a 
more fundamental foundation than Jaffray's (1989, 1992) foundation. The latter directly 
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used independence with respect to mixtures. Jaffray (1989) showed that a natural mono- 
tonicity condition (d ~ d' ifd(s) ~> d'(s) for all s, for d and d' defined on the same space) 
implies that Vis of the following form: 

V:f+-~ ~ +(B)v(mB, MB). (7) 
BcG 

Here mB is the worst outcome orB, MB is the best outcome of B, and v is a real-valued 
function such that v(m'B, M'B) >-- v(mB, MB) whenever m'B ~ mB andM~ ~ MB; ~b is the 
M6bius transform as generated b y f  on 2 c. The belief function can be interpreted as a 
description of the (partly vague) information that the decision maker possesses. To 
interpret the function v, we define a function u: C -~ IR by u(x) = v(x,x), and for each m 
~< M we define oL(m, M) such that v(m, M) = or(m, M)u(m) + (1 - oL(m, M))u(M). 
Substituting this in (6) gives 

V: f +--~ Z +(B)(oL(mB, MB)u(mB) + (1 - o~(mB, MB))u(MB)). (8) 
Bee  

Here the function u reflects the decision maker's attitude towards outcomes in the 
context of risk, the function + reflects his state of information and the ambiguity therein, 
and the function a is an index for his/her like or dislike of the ambiguity. It is well-known 
that a belief function is additive, i.e., is a probability measure, if and only if its M6bius 
transform assigns positive values only to sets B that contain exactly one element. For 
these mB and MB coincide and (6), (7), and (8) reduce to expected utility. We conclude 
that the forms in (6)-(8) are genuine extensions of expected utility to belief functions, 
i.e., to states of information where not all uncertainty is probabilizable. 
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No~s 

1. Note that the setsBo need not be disjoint. The often-studied case where the Bo,'s form a partition of S is a 
special case of the general setup of this article. 

2. We chose these terms, more customary in the literature on logic than in decision theory, to stay close to 
Pearl (1988). 

3. In a full Bayesian elaboration, S is partitioned into S • fl, andP(A)  = ~o,~P(A x {~o}). 
4. The results of this article can, without any difficulty, be extended to the case where G is infinite, due to the 

fact that, S being finite, decisions generate on 2 c "generalized" belief functions of the form (1). We prefer, 
however, not to discuss belief functions on infinite sets, hence assume that C is finite. 

5. As pointed out above (note 3), in a full Bayesian elaboration, s tatess would be split up into {(s, co): t0 E ~}. 
For assigning outcomes to acts, all elements from {(s, ~o): co E ~} are equivalent. Hence they are "lumped 
together," and the state space is reduced accordingly. The idea of explaining nonadditivity of measures by 
a lumping of states has been advanced in Gilboa and Schmeidler (1992). 

6. The generalization to the set of all "simple" belief functions over the subsets of  an infinite set C is 
straightforward, but, again, for simplicity, we prefer not to discuss belief functions on infinite sets. 
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