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This paper studies continuous additive representations of transitive preferences on connected 
subdomains of product sets. Contrary to what has sometimes been thought, local additive 
representability does not imply global additive representability. It is shown that the result can 
nevertheless be established under some additional connectedness conditions. This generalizes 
previous results on additive representations on (subsets of) product sets. 

1. Introduction 

The modern interest in additive representations on subsets of product sets 
stems from developments in decision making under risk/uncertainty, and 
welfare theory. There one wishes to deviate from the classical expected 
utility/utilitarianism paradigm [see Fishburn (1988) and Chew and Epstein 
(1989a), respectively] by weakening the independence axiom and requiring it 
to hold only on certain subsets of the space. Already Krantz, Lute, Suppes 
and Tversky (1971), hereafter abbreviated KLST, pointed out the importance 
of additive representations on subsets of product sets (see section 6.13 there). 
Fishburn (1976) studied additive representations on subsets of product sets, 
linear with respect to a mixture operation. 

Necessary and sufficient conditions for general additive representation on 
arbitrary countable subsets of product sets were provided by Jaffray (1974b) 
for two dimensions, and Jaffray (1974a) for arbitrary finite dimensions. 
Fishburn (1992) extended these results and showed their relevance for many 
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related problems. We study the special case of additive representations that 
are continuous with respect to a connected topology, without any assump- 
tion of linearity. For this case, a first approach was given in Wakker (1986 - 
chapter VI, 1989a, 1989b - chapter VI), where implicitly additive represen- 
tation results were derived on ‘rank-ordered sets’ (defined in Assumption C.2) 
in order to derive Choquet expected utility. Choquet expected utility, 
introduced by Schmeidler (1989) is one of the recent nonexpected utility 
models. 

Green and Jullien (1988) used the same technique to generalize rank- 
dependent utility as introduced by Quiggin (1982), and Chew and Epstein 
(1989b) used it for further generalizations. Problems for these approaches 
were pointed out by Wakker, for instance in Wakker (1993). The latter paper 
explicitly derived results for rank-ordered sets within connected topological 
spaces. Primarily to help correcting the results of Chew and Epstein (1989b), 
Segal (1991) gave results for connected domains which satisfy some addi- 
tional connectedness conditions [(2) and (3) below], for the special case of 
open subsets of Euclidean spaces; for this case his domains are considerably 
more general than rank-ordered sets. Segal dealt with the case of three or 
more dimensions. When his additional connectedness conditions are adapted 
to the, simpler, case of two dimensions, then already Blaschke and Bol (1938) 
obtained such results for domains that are simply connected (which is less 
general than connected). Segal also gave some results for closed sets. 

This paper uses the same additional connectedness conditions, and 
generalizes Segal’s results as follows: 

- First, Segal’s results for nonopen domains are generalized. All problems 
that may occur on nonopen domains are identified. 
- Second, the domain is generalized to connected topological spaces. This 
includes multi-dimensional commodity bundles, and nonquantified outcomes. 
Further, also the case of two dimensions is enclosed, generalizing Blaschke 
and Bol’s (1938) results to connected instead of simply connected domains. 
- Third, it is observed that the characterizing conditions need only be 
required locally. Indeed, this paper first shows how local additive representa- 
bility implies global additive representability. Next representation results are 
obtained by establishing local additive representability. For full product sets, 
Wakker (1990) showed that local additive representability implies global 
additive representability; Chateauneuf subsequently found a simpler proof. 
See also Vind (1987 - Corollary IV.2.6, 1991 - p. 134). He obtained that 
result when local additive representability of 3 can be extended to a local 
mean groupoid operation on the set of equivalence classes. Note that some 
uniformity or restriction to compact domains is needed for that extension. 

Lemmas C.l and C.3 show that full product sets, as well as rank-ordered 
sets, satisfy all connectedness conditions required for our results. Note also 
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that the discussion of nonopen domains in section 3 includes the nonopen 
rank-ordered sets. Thus the present paper provides a joint generalization of 
Wakker (1993) and Segal (1991). Proofs will be simplified as compared to 
these references. Increased generality of results often concurs with increased 
simplicity of proof; we hope that the present paper can serve as an 
illustration. 

2. Elementary definitions, and results for open domains 

Let, for nz2, XI ,..., X, be nonempty sets; alternatives are elements of 
n;= 1 Xi, denoted as x=(x1,. .,x,,), etc. By yiX we denote the alternative (x 
with xi replaced by yi). Let 3 be a weak order on a subset E of fly= 1 Xi, i.e., 
a binary relation that is transitive and complete (thus reflexive). As usual, > 
denotes the asymmetric part, - the symmetric part, and < and < denote 
reversed binary relations. We write ]x,z[ for {y e:E: x<y<z), Ix, -+[ for 
{y~E:x<y}, ]t,z[ for {y~E:yiz}, and [x,z] for {y~E:x<y=$z). Similar 
notations are [x,z[ and Ix, z] and [x, -+[ and I+, z]. Note that - is an 
equivalence relation, with sets [x,x], or [x] for short, as equivalence classes. 

We assume that on each Xi a weak order pi is given. For the pi relations 
we use notations >; etc., similar to those for 3. It is assumed that the @i’s 
are nontrivial, i.e., x,>~Y, for some xi,yi. Further $ is assumed to satisfy 
(strong) monotonicity, i.e., 

[VI’: x,$~Y,] * x$y and ([V~‘:X&=~Y~] and [3i: Xi>iyi]) * X>Y. 

Each Xi is endowed with the order topology of +i, i.e., the smallest topology 
containing all sets of the form ]xi, -+ [ and ] +-, Zi[, thus also sets of the form 
]Xi, Zi[. JJl= 1 Xi is endowed with the product topology, E with the restriction 
thereof; the binary relation 3 is assumed continuous, i.e., for each XEE, 
{y E E: y+x} and {ye E: y<x> are closed within E. As usual, int denotes 
topological interior, and cl denotes topological closure. 

Cubes are subsets that are products of ‘order intervals’ ]xi,Zi[ or ]Xi, +[ 
or ] t, zJ. A function I/: E-tR (globally) represents + if [Vx, ye E: 

zr$y.* V(x) 2 V(y)]. It is additive if there exist ‘coordinate functions’ (V.)‘f= 
containing the projections of E on Xj in their domain, and such ‘that 
V(X)=C;=1 I/;:(Xj) f or all x. If I/ is additive and represents 3, then the Vis 
are called additive value functions. We say that + is locally additively 
representable if for each element in the domain of 3 there exists an open 
neighborhood on which there exists an additive representation. A function is 
resealed if it is multiplied with a positive real number, and a real number is 
added to it. An additive representation is usually cardinal, i.e., another 
function is an additive representation if and only if it can be obtained by 
resealing the first function. 
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For easy reference, let us display the assumptions that we use in the main 
results: 

Assumption 2.1 (Structural Assumption). (X,);= 1 are nonempty sets 
endowed with nontrivial weak orders +i and their order topologies; nz 2. 
nl= r Xi is endowed with the product topology. A monotonic continuous 
weak order + is given on a set E cn;= 1 Xi. The following sets are 
connected: 

int (E); (1) 

all sets of the form: {x E int (E): Xi = si} for some i, si; (2) 

all - equivalence classes in int (E). (3) 

Next we give the representation theorem on open domains. It will be proved 
in Appendix A. 

Theorem 2.2. Assume the Structural Assumption 2.1, and suppose E is open. 
Then local additive representability implies global additive representability. The 
gobal additive representation is continuous and cardinal. 

The idea of the proof is to start with the additive representation on one 
open cube, and then add, one by one, new cubes. On the overlap with the 
area already covered, the local additive representation on a new cube can be 
fitted together with the function as already constructed; thus an extension of 
domain has been obtained. The process stops when the entire domain has 
been covered. As pointed out already in KLST (subsection 6.5.5), in this 
reasoning several consistencies must be established. Condition (1) above 
guarantees that indeed the process will only stop if the entire domain has 
been covered (see Stage 3 in the proof in Appendix A). Condition (2) implies, 
for any i, that from different (remote) local domains never contradictory 
requirements result for the additive value function I$ (see Step 2.2 in the 
proof). Thus the function as constructed remains additively decomposable. 
This uses the idea of Lemma 1 in Segal (1991) (adapted to our more general 
context by Lemma B.3). Condition (3) guarantees that the function as 
constructed is constant on - equivalence classes; it then readily follows that 
the function is representing; see Stage 4 in the proof. 

In the literature, conditions for preference relations + have been studied 
that imply, in the presence of other conditions, additive representability on 
full product sets. Before presenting them, let us mention that in definitions 
below we omit quantifiers; these should be: for all alternatives in the domain. 
The most well-known condition for preference relations, mainly useful for 
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n 2 3, is independence: uix+uiy o wix+wiy. For the case n =2, other 
conditions must be used, such as the Thomsen condition: 

C(~~,a,)-(x,,b,)&tx,,c,)-(~,,a,)~(y,,c,)-(u,,b,) [or ‘triple cancel- 

lation’, or the ‘hexagon condition’, see KLST, or Wakker (1989b)]. These 
conditions can be weakened, e.g., by the famous result of Gorman (1968). We 
shall summarize conditions as above as ‘additivity axioms’. So we say the 
additiuity axioms are satisfied if: 

for n =2, the Thomsen condition holds, or triple cancellation, or the 
hexagon condition, 

for nz3, independence is satisfied, or one of the weakenings of 
independence, derivable from Gorman (1968), that still imply indepen- 
dence on full product sets. 

These conditions, in the presence of the other conditions of Theorem 2.2, 
straightforwardly imply local additive representability: Each alternative is 
contained in an open cube within the domain. This cube is a connected [see 
Lemma B.~(c)] full product set, with all coordinates essential by nontriviality 
of the +i relations and monotonicity. So on this cube the additivity axioms 
imply additive representability by standard results, see for instance Debreu 
(1960), Gorman (1968), KLST, or Wakker (1989b). This gives the most 
important implication of Theorem 2.2: 

Corollary 2.3. Assume the Structural Assumption 2.1, and suppose E is open. 
Then the additiuity axioms for 3 imply additive representability. The global 
additive representation is continuous and cardinal. The additiuity axioms can be 
weakened to hold only locally. 

Segal (1991) pointed out that the above connectedness conditions are 
mutually independent. They may be taken as formalization of ‘something 
resembling a convex region’ as it was formulated by KLST in subsection 
6.5.5. Indeed, on a convex region conditions (1) and (2) are immediately 
satisfied; condition (3) may still be violated, and examples can show that the 
above results need not hold on convex domains. Since the problem is 
essentially topological, no central role should be expected for linear-space 
structures such as convexity. 

Note that we can always restrict attention to the case where, for each i, Xi 
is the projection of E. Then, if an additive representation exists, we take for 
the pi relations the relations represented by the additive value functions, and 
thus have monotonicity always satisfied. This shows that our assumption 
about the presence of the +i relations, and monotonicity with respect to 
these, is not a restriction in a structural sense: it is necessary for additive 
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7igure la. Let prefe- 
rences be represented 
my W. W is not additi- 
le. There exists a lo- 
xl additive reoresen- 
:ation,i.e., V = X1+X2 
J is not globally re- 
,resenting,V(-1.4.1.6) 
= V(1.6,~1.4) but 
(-1.4,1.6)+(1.6,-1.4). 
3y uniqueness, no glo- 
Ial additive represen- 
:ation exists. The - 
equivalence classes of 
(-1.4.1.6) and of 
(1.6,-1.4) are not 
:onnected. 

(2,-4) 

Figure lb. Let prefe- 
rences be represented 
CIY V. V is a local ad- 
ditive representation, 
but V is not "globally 
sdditive.By uniqueness 
no global additive re- 
presentation exists. 
The subset with second 
Eoordinate l/4 is not 
zonnected. 

l-2,-4) 

?igure lc. Let prefe- 
rences be represented 
3y V. Here PI= S, 
S2= +. Again, V is a 
local additive repre- 
sentation, but no "glo- 
sal" additive represen. 
:ation exists, and the 
subset with second co- 
Irdinate l/4 is not 
:onnected. 

Fig. 1. [Necessity of Conditions (2) and (3)]. In all figures, the domain is the interior. Fig. lc 
results from la by interchanging second coordinate and the representing function (W or V), lb 

results from lc by multiplying x1 by - 1. 

representability. That the connectedness conditions (2) and (3) cannot be 
omitted is shown in fig. 1. Comments and references concerning these 
examples are given in section 4. If condition (3) were omitted, then E could 
be partitioned into connected components. On each of these an additive 
representation can then be obtained. The separate components then do not 
have any equivalence class in common, and neither any coordinate, by (2) 
and (3); this excludes certain kinds of inconsistencies. There may, however, 
occur problems about ‘driven to infinity’ [see Segal (1991, Example 2)] or 
cardinality-in-the-set-theoretic-sense (more equivalence classes than real 
numbers). Also cardinality-in-the-measurement-uniqueness sense of this paper 
would change. For brevity we do not elaborate. 

3. Nonopen domains 

In this section we assume again that the Structural Assumption 2.1 holds. 
Note that the restriction of + to int (E) is again continuous. We assume that, 
as in Theorem 2.2, an additive representation V is given on int (E). Extension 
of the additive representation from int (E) to the boundary points of E that 
are limits of interior points is straightforward by continuity, as we shall see. 
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(0.0) V(X1&) =log(Xl)-log&+_) gives an additive 

w=-"' Iv representation on E\I(O,O)). At (0.0) the 

x2 
additive value functions log@,),-log(-x,) 

E are driven tom and-m respectively. 
Nevertheless, due to the particular shape of 
E. 'cutting away' from (O,O) all straight 
lines through (0.0) except X1=-3, we can set 
V(O,O)=O. This gives a continuous represen- 
ting function. 

Figure 2b. 

V(x,x,) =log(xl) +logP$) gives an additive 

representation on E\{(O,O)). At (O,O) the 
additive value functions log(xl),log(~), as 
well as v, are driven to-m. 

1 
W is a 

monotonic 
Figure 2c. 

additive 

x is maximal but must have a finite value 
because it is interior-matched. 

x (1.1) 
z 

D- 
w 1s an 
arbitrary Figure 2d. 

continuous 
monotonic 
additive 

x and y are interior-matched, z is second- 
(0.0) y funrri"" order matched, (O,O) is third-order matched. 

Fig. 2 (Driven to infinity). Preferences are represented by the function W, l - points on the 
boundary are included in the domain E. 

Only one problem can occur: the representing function, or some of the 
additive value functions, may be ‘driven to infinity’. This was first shown by 
Wakker (1991, Example 25); see also Wakker (1993, Example 3.8). A small 
variation on this example is given in fig. 2b. The driven-to-infinity phenome- 
non is particularly problematic if it leads to summation of cc and -cc; see 
the ‘Eiffel-Tower’ example in fig. 2a.’ For boundary points that are no 
limits of interior points, little can be said. Fig. 3 illustrates. Hence we assume: 

All boundary alternatives are limits of interior alternatives. 

We first show how to extend the definitions of the functions V and 
V I,..., V, from int (E) to E. The extended functions will be denoted by the 
same characters. They may take values co or -co. Later we will establish 
continuity, and the additivity equation V(x) = V,(x,) + . . . . + V”(x,). Let ni 
denote projection on the ith coordinate. It is continuous, so assigns 

‘This example was actually found with a view on the Eiffel Tower, and the form of the 
domain was inferred from the form of the Eiffel Tower. 
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(1.1.21 
(0.0.2) 

v=23+x2+x3-1 a J - 
/ 

(0,O.O) v=x,+xJ+x, 

Figure 3.~. Local additive 
reDresentabilitv holds. 

(0.0.0 1 

Figure 3b. Independence holds, but no 
additive representation exists on the 
"upper plane", where the Thomsen condi- 
tion is violated: (1.0,1.3,2) - (1.1.1.1.2) 
and !1.1,1.5,2) - (1.2,1.3,2), but 
(1.0,1.5,2) * (1.2,1.1,2). 

Fig. 3 (Boundary points that are no limits of interior points). Preferences are represented by the 
function V. 

connected images to int (E); also it is well-known that ni assigns open images 
to open sets, so rci(int (E)) is open. 

Lemma 3.1. Zf xi$lri(int(E)), then xi is extreme, and either xi>iyi for all 
y, E zi(int (E)), or Xi<iyi for all yi E n,(int (E)). 

Proof. Suppose Xi is not extreme, i.e., Ui<iXi<iyi for some u,~EE. Since u 
and y are limits of elements of int (E), and topologies are generated by the 
relations >j, there are u’, y’~int(E) with U:iiXiiiy:. By connectedness and 
openness of ni(int (E)) and Lemma B.~(c), xi E rc,(int (E)). 

Also, if there were a UiE ni(int (E)) with 0 i_iXi, then, because ni(int(E)) is 
open with respect to the order topology of +i, XiE ni(int (E)) would 
follow. 0 

If xi>iyi for all yie q(int (E)) then we call xi maximal, if x,-$y, for all 
y,~q(int (E)) then we call Xi minimal; these terms are relative to 71i(E) (not 
necessarily to Xi). For maximal Xi we define &(xi):=sup(K(ni(int (E)))), for 
minimal Xi, I: = inf (F(n,(int (E)))). 

Lemma 3.2. On q(E), y represents pi and is continuous. 

Proof. In the proof of Theorem 2.2, it is shown (in Step 4.3, and Stage 5, in 
Appendix A) that each q is continuous and representing on ni(int(E)). We 
first show that q is representing on the entire set n,(E). 

If xi and yi are both maximal, then Xi>iyi would contradict the extremity 
of yi, obtained in Lemma 3.1. So xi and yi are equivalent; indeed they also 
have the same < value. Next consider the case of a maximal Xi and a 
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nonmaximal, possibly minimal, yi. We have xi>iyi SO, by continuity, 
Xi>iUi>iWi~iyi for some Ui, Wi E 7Ci(int (E)), giving v(Xi) 2 v(Oi) > K(Wi) 2 <(yi)* 

A similar reasoning applies to the case of xi,yi where xi is minimal. It follows 
that F is representing. 

Continuity of v on ni(E) follows as the range of v contains no gaps, and 
the represented +i is continuous on the connected space q(E). The latter 
connectedness follows because q(int (E)) is connected and open, so is a 
preference interval by Lemma B.~(c). It still is a preference interval if the 
maximal and minimal coordinates are added, after which q(E) results. By 
Lemma B.~(c), q(E) is connected. 0 

Next we turn to the extension of the function V. As this is similar to the 
extension of the functions r/;., we shall describe it more briefly. If x-y for 
some y~int (E), then we define V(x): = V(y). If no such interior ‘matching’ 
point y exists, then by connectedness and continuity either x>y for all 
interior y (x is maximaZ), or x<y for all interior y (x is minimal). In the 
former case we define V(x): =sup( V(int (E))), in the latter case V(x): = 
inf(V(int (E))). It straightforwardly follows that V represents + and is 
continuous (its range containing no gaps). 

Now suppose that V(x), as well as all I/(xj)‘s, are finite, and that x is a 
limit of interior xi’s.’ Then 

V(x)= lim V(x’)= lim i 5(x:)% i lim 5(x:)= f Vj(xi), (4) 
i-co i-r02 j=l j=l iem j=l 

as desired. 
Now we turn to the only problem for extendability to the boundary: Some 

of the n + 1 values V(x), I/l(x,), . . . , Vn(xn) may be infinite. In particular, if in 
(4) some terms of the right-hand side of ‘2 are co and others are -co, the 
summation at the right-hand side of ‘2 is not well defined. The reasoning in 
(4) also shows that never only one of V(x), Vr(x,),. . ., Vn(xn) can be infinite. 
So, if for an alternative x, at least n of the values Vr(x,), . . ., V,,(x,), V(x) are 
finite, then in fact all n+ 1 of these values are finite. It follows inductively 
that all functions Vi,..., V,, I/ are finite, so an additive representation is 
obtained, at boundary points of the following kind: 

(1) The interior-matched alternatives x, i.e., of [x1,x,, . . .,x,, at most one 
does not occur for an interior alternative, so is maximal or minimal. 
(2) The second-order matched alternatives x, i.e., of [xl, x1,. . .,x,, at most 
one does not occur for an interior, or interior-matched, alternative. 

‘We may, and will, assume that x is the limit of a countable sequence (x’),?~. This follows 
because, after the collapsing of - ,. -” equivalence classes, the mapping (xl,. ,x,)H 
( Vl(xl), . , V,(x,)) is a homeomorphism from int (E) to a subset of R”. 
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(3) The third-order matched alternatives X, i.e., of [x], x1,. . . , x,, at most one 
does not occur for an interior, interior-matched, or second-order matched 
alternative. 

(2n + 2). The (2n +d)th-order matched alternatives x, i.e., of [xl, x1,. . . ,x,, at 
most one does not occur for an interior, interior-matched, second-order 
matched,. . . , or (2n + l)th-order matched alternative. 

We call an alternative matched if it is interior, interior-matched, or 
matched of any order. Interior-matched alternatives, second-order matched 
alternatives, and third-order matched alternatives, are illustrated in fig. 2d. 
Note that every new order of matched alternatives shows finiteness of at least 
one new maximal or minimal coordinate or N equivalence class. Hence no 
more than 2n+2 orders will include new coordinates or alternatives. 

Segal (1991) proposed (for compact domains with Euclidean spaces) the 
following condition: For each extreme coordinate Xi there exist y, z, w such 
that yi = zi = wi=xi, and for each j# i, Yj>jZj>jWj. This condition implies 
that z is interior-matched, and that each alternative is second-order matched, 
so that Segal’s result is implied by the results of this section. Wakker (1991, 
1993), for rank-ordered sets, gave alternative conditions to rule out the 
driven-to-infinity problem. The conditions were strengthenings of the 
‘Archimedean axiom’. Their meaning is sensitive to the form of the domain, 
and we are not aware of an adaptation to more general domains such as 
considered in this paper. 

We summarize the results obtained in this section: 

Theorem 3.3. Assume the Structural Assumption 2.1. Suppose that int(E)c 
E c cl (int (E)). Then: 

(a) Local additive representability on int (E) implies global additive represen- 
tability on the set of matched alternatives, thus obviously on any of its subsets. 
The global additive representation is continuous and cardinal. 
(b) The additivity axioms for 3 on int (E) imply additive representability on 
the set of matched alternatives (or any of its subsets). The global additive 
representation is continuous and cardinal. The additivity axioms can be 
weakened to hold only locally. 

4. Further remarks, examples, and a useful symmetry 

As demonstrated in Wakker (1993, Example 3.9), continuity of an additive 
representing function need not imply continuity of the additive value 
functions, if the domain is a general subset of a product set. By Lemma 3.2, 
all additive value functions in this paper are continuous and representing. 
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Note that it is essential for our analysis that the topologies on the sets Xi 
are generated by the orders >i. This is necessary because the open 
neighborhoods on which an additive representation is given should contain a 
connected cube of the form nl=r ]ai, bi[. No topological separability has 
been assumed, Topological separability of the order topologies does hold, it 
is implied by representability, thus is implied by the other conditions in 
Theorem 3.3. 

Topological connectedness and the absence of ‘holes3 has played a 
central role in the proof. This suggests that a generalization to the algebraic 
set-up of KLST, with an Archimedean axiom and restricted solvability 
instead of continuity with respect to a connected topology, will not work. In 
such a generalization, neighborhoods would be replaced by cubes of the form 
nl=i Jxi,yi[* We h ave neither a proof nor a counterexample to such a 
generalization. The generalization can of course be obtained by adding as 
additional assumptions the implications of topological connectedness that are 
used in the proof, i.e., the several usages of linkedness. 

The reader will have noted that the conditions for the sets of the form 
{xEE:xi-si), f or some i,si, were the same as for the - equivalence classes. 
Also it will be noted that the derivation of representability of V resembled 
the derivation concerning consistency of Vi,. . . , V,. Same symmetries 
occurred at the extension to boundary alternatives. Indeed, there is an 
underlying symmetry between the n + 1 binary relations + i, . . . , +., >, 
similarly between the subsets where some coordinate is fixed, and the - 
equivalence classes. 

A first understanding of this symmetry can be obtained from the way in 
which web theory results from Blaschke and Bol (1938) have been used in 
additive representation theory, for instance in Debreu (1960). To illustrate 
this, take R2 as domain. Web theory considers three families of curves in the 
plane, and transforms them into families of parallel curves. The role of these 
families is entirely symmetric. For application to additive representation 
theory, the curves of one of the three families are transformed into lines 
where the first coordinate is constant, the curves of a second family are 
transformed into lines with constant second coordinate, and, finally, the 
curves of the third family are the equivalence classes of the preference 
relation. This symmetry has been explicated in KLST (subsection 6.5.6). 

The main result of this paper could have been reformulated as a result 
where in an (n+ 1)-dimensional product set [the (n+ 1)th dimension describ- 
ing N equivalence classes] a subset E is obtained for which there exist n+ 1 
coordinate functions that sum to zero throughout E. Then the (n+ 1)th 
function corresponds to the additive function V, the first n functions to 
(minus) the additive value functions. This explains the symmetry of the 

%Q\{O} has a hole by the absence of 0. 
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conditions used in Theorem 2.2. By this same symmetry, Step 4.1 in the 
proof in Appendix A could be obtained as a corollary of Step 2.2. A similar 
approach can be found in Vind (1991), who characterized sets where the sum 
of coordinate functions is positive. 

Wakker (1989b, Remark 111.7.8) and the more appealing fig. 2 in Wakker 
(1993) showed, for three dimensions, that (3) cannot be omitted in Theorem 
2.2. (All other conditions are satisfied by the interior of the domain in these 
examples.) Fig. 1 adapts these examples to two dimensions. The examples are 
also easily adapted to dimensions higher than three. By the described 
symmetry argument one can reformulate them to show that also (2) cannot 
be omitted in Theorem 2.2, not even for one coordinate (say the nth): One 
maps, with W a continuous representing function that obviously is not 
additive, each x=(x1,. . . , x,_ l,x,) to (xi,. . . ,x,-1, W(x)), and orders the 
latter according to x,. That way we constructed fig. lc (thus lb) from la. 
The necessity of condition (2) has been illustrated before by Segal (1991, 
Example 1); he obtained his example and conditions independently from the 
symmetry argument as presented here. 

Appendix A: Proof of Theorem 2.2 

This appendix will make use of results concerning connected order 
topologies. These results are presented in Appendix B. 

The projections of E on the coordinates are all connected (Lemma B.2). 0” 
denotes the open neighborhood of x where 3 is represented by the additive 
I/” with additive value functions VT. We may and will assume that all 
neighborhoods 0” are cubes, so of the form nl= I 07, where each 07 is of the 
form ]yi,Zi[ or ]yi, +[ or ] +,Zi[ or Xi.4 We first construct the additive 
function V without establishing that it is representing. The latter is shown 
subsequently. 

Stage 1. Choosing scale and location of the additive representation of starting 
cube 0’ 

We take some (‘reference’) cube 0’ as starting domain, and define I’ on o’, 
still to be extended, as the additive representation V’ given there. This will 
turn out to uniquely determine the entire function I/. 

Stage 2. Extending V consistently to a cube 0” not yet covered (see jig. 4) 

Step 2.1. Extending V to a cube 0” not yet covered 

4Note that, for maximal xieXi, this includes ]yi,xi], as it is identical to ]vi, +[; for minimal 
xieXi, [xi,zi[=] t,zi[ is included. Also note that, by nontriviality of $e the form [xi] cannot 
occur. This and strong monotonicity imply that all coordinates are ‘essential’. 
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Fig. 4 (Stage 2). aa: Ob n O”,EZl : link from s,d to sla. 

Suppose we have covered a connected open domain D c E that is a union 
of (possibly uncountably many) sets of the form O”, and have resealed all 
additive functions on these cubes 0” so that they tit together as one function 
V on D that is additive. 

Suppose there is a cube 0” that intersects D, but is not entirely contained 
in D. As pointed out in Wakker (1993), the additive functions Va on 0” and 
V on D cannot immediately be fitted together on the intersection of 0” and 
D, because this intersection does not have to be a product set, and does not 
have to be connected. All uniqueness results in the literature require such 
conditions. What we do instead is tit together Va with only one (V=) Vb on 
the intersection of 0” and Ob, where Ob is one of the open cubes constituting 
D that intersects 0”; from now on we assume that V” and Vb coincide on 
their common domain. 

The most difficult part of the proof will be the demonstration that now V” 
fits together with V on the entire common domain, not just on Ob. In other 
words, independence from the particular choice of Ob must be established. 
Actually, we must show more, we must show that V can be extended to 0” 
while still being additive. For the latter it is necessary (and sufficient) to show, 
stronger, that all separate additive value functions fit together on common 
domains. We show this for VI and VO;. KLST (subsection 6.5.5) already 
pointed out that consistency requirements must be fulfilled. Nevertheless this 
has often been overlooked in the literature. 

Step 2.2. Consistency of the extension 
VI and VT coincide on 0; n 07; this contains a nonempty subset of the 
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form lo,, w,[ (also if Ob, n 0; itself is ‘unbounded’). It suffices to show that 
Vi and VT coincide at an arbitrary ~r$~ui in their common domain, the 
case zi <i wi being similar. Obviously, the entire set S: =]v,,z,] is contained 
in the domain of I’:. But also it is contained in the domain of V,, i.e., rrl(D), 
because the latter is connected and open, so we can apply Lemma B.~(c). S 
itself is also connected by Lemma B.~(c). Let 

S’: = {si ES: V, and Vy coincide on IV,, s,]}. 

We show that S’ is open and closed within S, thus by connectedness of S is 
that entire set. Let si be contained in the closure of S’ within S. We show it 
is contained in the interior of S’ within S. Obviously, s,a is contained in the 
cube 0”. Take an s,dE D. We may assume Osld c D. Since the cubes 
constitute an open cover of E, they obviously give an open cover of 
{xEE: x1 =si}. The latter set being connected by (2), we can, by Lemma B.3, 
extract from the latter cover a link 0”’ , . . . ,O”” from s,d to s,a. On the open 
intersection U1:=O~dnO~‘n...nO;“nO~, the respective additive value 
functions Vi, Vf ‘, . . . , VT”, Vy differ only be scale and location, by standard 
uniqueness results applied to the intersections of respective cubes. Note that, 
by nontriviality of pi and strong monotonicity, openness of these inter- 
sections implies essentially of all coordinates. Since Vi and Vy actually 
coincide on Iv,, si [, they coincide on the ‘left part’ of the open neighborhood 
Ui of si, thus on the entire U,, so in particular on ]o,,s’J for an s;>,s, (or 
s; =sl if s1 is maximal in Xi). So si, if contained in the closure of S’, is 
actually contained in the interior of S’ within S, and the nonempty S’ is open 
and closed within the connected S. It must be identical to the latter. Indeed 
Vi and VT coincide at zi ES. Since z1 was chosen arbitrarily, V, and I’: 
coincide on their entire domain. We conclude that V can be extended 
additively to 0”. Note that by Lemma B.l the new domain is again 
connected. 

Stage 3. Covering the entire domain E 

Intuitively, the additive function can be extended as long as there are open 
0” on which V has not yet been defined, and that intersect the domain 
already covered. In general, existence of a maximal domain is guaranteed by 
the Lemma of Zorn from the set-theoretic axiomatics. Elaboration is omitted. 
By connectedness of E, and Lemma B.3, this process will only stop if the 
entire domain E has been covered. 

Stage 4. The additive function is representing 

Step 4.1. If an additive function V is locally representing, then it is constant on 
equivalence classes 
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Consider an equivalence class [xl. Let the set SC [x] be the set of 
alternatives that have the same V/-value as x, and take y in the closure of S 
within [xl. Within Oy, the open neighborhood of y on which I/ is 
representing, V is constant on [xl. Because y is in the closure of S, there is 
an element of S in Oy; I’, constant on [x] n Oy, must be V(x) there. So, as 
soon as y is contained in the closure of S, there is actually an open 
neighborhood [x] n Oy relative to [x] of y that is entirely contained in S. 
Apparently, the nonempty S is both open and closed within [xl: it must be 
the entire [x]. So V is constant on equivalence classes. 

Step 4.2. V is globally representing 
In view of Step 4.1, it s&ices to show for any x that on S:=]x, -+[, V is 

strictly larger than V(x). S’= {y E S: for all z in Ix, y]: V(z) > V(x)}. Let s be 
in the closure of s’, relative to Ix, +[. On O”, V is representing. Since s is in 
the closure of s’, 0” also contains an element s’ of S’. We take s’=s (so s’<s) 
if s itself is contained in s’, otherwise one can derive s’<s from the form of 
S’. The open 0” contains an alternative t>s (unless s is maximal in the open 
E, which may happen if the Xi’s have maximal coordinates; then take t =s). 
By Lemma B.~(c), 0” is connected, and contains an element of every 
equivalence class between s’ and t. Apparently, on all these equivalence 
classes V has a value at least as large as V(s’), so strictly greater than V(x). 
So as soon as an alternative s is contained in the closure of s’, there exists an 
open neighborhood lx, t[ (Ix, s] if s is maximal) entirely within S’. S must be 
open and closed, from 0” we see that it is nonempty, so S is identical to S, 
the latter being connected by Lemma B.~(c). Indeed V is strictly larger than 
V(x) on Ix, +[. 

We also show, briefly: 

Step 4.3. Each k$ represents >j on nj(E) 
This follows since 5 represents +j locally, Xj [thus nj(E)] is endowed 

with the >j order topology, and zj(E) is connected (use Lemma B.3). 

Stage 5. Continuity and uniqueness 
By Theorem 3.1 in Wakker (1988), the local additive representations are 

continuous, so that the ranges of the local VT’s are connected. Continuity of 
all Vis (thus of V) now follows since their ranges are a union of nondisjoint 
intervals, so are connected and contain no gaps. Cardinality follows from 
cardinality of V’ on the starting domain 0’, and the uniqueness of the 
extension of V from there on. 0 
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Fig. 5. (Proof of Lemma B.3). Assume connectedness. Then all points are linked to x: Let y be in 
the closure of L, the set of points linked to x. For yeOyo 0, Oy contains a ZGL. Oy links y, as 
well as any other of its elements, to z, thus to x. So L is both open and closed. By 
connectedness, L= Y. Note that the roundabout part of the link (to the right of x) can be 

omitted. 

Appendix B: Elementary topological results 

This appendix lists some elementary properties of connected topologies. 
The first two are well-known, so are given without proof. 

Lemma B.I. If two connected subsets intersect, their union is again connected. 

Lemma B.2. Zf f is a continuous mapping and Y is connected then f(Y) is 
connected as well. 

The lemma below gives a characterization of connected topological spaces; 
it may serve to motivate the term connected. 

Lemma B.3. Let Y be a connected topological space. Let 0 be an open 
covering. Then every pair of elements x, y of Y is linked, meaning there exists a 
link, i.e., finitely many open O,, . . . ,O,E 0 such that XE O,,y~0,, and each 
subsequent pair of Oj’s intersects. Further Oi n Oi-k can be taken empty for 
every k 2 2. Conversely, for a topological space, if for every open covering each 
pair of elements is linked, then the space is connected. 

Proof. See fig. 5. (The reversed implication is an immediate consequence of 
the definition of connectedness.) 0 

The proof of the following elementary result is omitted. The result has 
been used several times without explicit mention. 

Lemma 8.4. Suppose that $ is a weak order that is continuous with respect 
to a connected topology. Let x>z. Then there exists a y such that x>y>z. 

The following result is given as Proposition 1 on p. 81 in Bourbaki (1971, 
Chapter I). 
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Lemma B.5. Let D be a connected set. Then so is its closure cl(D), and, 
more generally, any set D’ with D c D’ccl(D). 

Lemma B.6. Let Y be endowed with a weak order 3 and the order topology; 
suppose Y is connected. Then: 

(a) Sets [x, y] are compact. 
(b) SC Y is connected if and only zf, for every X<ZES, and x<y<z, there 

exists a y’ E S with y’- y. 
(c) lf SC Y is open or closed, then it is connected zf and only if it is a 

preference interval, i.e., a set of the form *, #, where for * one either 
substitutes ] t, or Ix, or [x, and for # either +[, or y[, or y] (note that 
Y can be denoted as ] c, + [). 

Proof Part (a) is obtained from Lemma B.3 by linking endpoints; (b) and 
(c) are derived below. Assume, for nontriviality, that @ # Sf Y and that S 
contains two nonequivalent elements a<b. 

First suppose that S is connected, and let xiz be elements of S. Suppose, 
for x<y<z, that S contains no element equivalent to y. Then the sets 
(1 t, y[) n S and (1 y, +[) n S give a violation of connectedness of S. 

Next we show that the condition described in (b) above implies connected- 
ness of S. Define [S]:={YE Y:y-s for an SES}, and define S:={XE Y:x<s 
for all s E [S]}. S- is an intersection of closed sets, so is closed again. 

Suppose that S- is nonempty. S- # Y because b$S-. So, by connectedness 
of Y, S- cannot be open, and S- # USES- {YE Y: y<s}. There must exist an 
element s- of S- that is best, i.e., s-&s for all SES-. It follows straightfor- 
wardly that [S] contains Is-,x] for each x E [S]. 

If S- is empty, then from the condition in (b) it follows that [S] contains 
1+,x] for each XE[S]. 

Define S+: = {x E Y: x+s for all s E [S]). It is demonstrated similarly that 
either S+ is nonempty, in which case it contains a worst element s+ and [S] 
contains [x,s’[ for each XE [S], or S+ is empty, in which case [S] contains 
[x, + [ for each x E [S]. 

By distinguishing cases5 it now follows straightforwardly that [S] is a 
preference interval. It is well-known that such sets are connected; see for 
instance Lemma VI.7.4 in Wakker (1989b). This implies connectedness of S. 

As openness or closedness of S implies that S= [S], the above reasoning 
also gives (c). 0 

Appendix C: Applications to rank-ordered sets and other cases 

We next present some special cases of the results obtained above. The 

%I the notation of(c), for [S] instead of S, *=I+- if S- is empty, *=]x=]s- ifs- $[S] and 
the latter is not empty, * = [x = [s- if s- E [S], similarly for # and S+ and s+. 
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following lemma shows that on full product sets all connectedness require- 
ments of this paper are satisfied. The only nontrivial condition is connected- 
ness of equivalence classes. 

Lemma C.l Suppose that 3 is a weak order on nlzI Xi, monotonic with 
respect to binary relations +i on Xi that generate a connected order topology, 
and continuous with respect to the product topology. Then its equivalence 
classes are connected. 

Proof. We first consider some special cases. 

Case 1. Suppose that each +i is an order, i.e., equivalent coordinates are 
identical. For connectedness of an equivalence class [x], it suffices to show 
that each pair of elements y # z is contained in a connected subset S c [xl. 

Case 1.1. Let y,>,~,,y,<~z~,y,=z, ,..., yn=zn. We define S:=[x]n 

(CZl~YJ x CY,,Zzl x {Y3) x . . * x {y,}), and show S is connected. Consider the 
restriction of n, to S; it is continuous. To see that x1(S) = [zl, y,] we suppose 
u1 E [zl, y,], and show there exists v2 E [y2, zz] such that (vr, u2, z3,. . . , z,J -x: 
The sets {w2~Cy2,z21: (v~,w~,Y~,...,Y,,)+x} and {w2~C~2,zzl: 
(bW*,Y3,..., y,)<x} are closed [this is straightforward from continuity of 
$; elaboration is given in Lemma 0.2.1 of Wakker (1989b)], they are 
nonempty for containing z2 and y, respectively, and their union is [y2,zz], 
so by connectedness of the latter they must intersect; v2 is taken from that 
intersection. 

From monotonicity and the assumption that +2 is an order it follows that 

~2, thus (vi, ~2, ~3,. . . , z,,), is uniquely determined. So rci is a bijection from S 
to [z,,y,]. Continuity of 7c1, and compactness of its domain S (being a 
closed subset of the compact [z,, yl] x [y2, z2] x [y3] x . . . . x [y,], by Lemma 
B.6(a) and the fact that a product of compact spaces is again compact), 
implies that also n;’ is continuous. S is the continuous image of a connected 
domain, so is again connected. 

Case 1.2. Here the remainder of Case 1 is considered, i.e., now y and z are 
general. S will be a union of sets S’, . . . ,Sk, constructed by means of 
alternatives y = y”, y’, . . . , yk = z. Ther e exists a coordinate i such that y,~iZi 
and a coordinate j such that yj<jZj. 

If zi(zjy)<x, then, analogously to the reasoning in the beginning of Case 
1.1, there exists zi between zi and yi such that zi(zjy) -x, and y’: =zi(zjy) is 
defined. 

If zi(zjy)+x, z; between yj and zj is found to give Zi(ZJy)-XT and 
y’: =z,(ziy) is defined. 

In any case, we have found y’ -x, differing from y by only two 
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coordinates, and with one more coordinate identical to the coordinates of z, 
than y. We can define a connected set S’ c [x] containing the pair y, y’ as 
constructed in Case 1.1. Next we construct, similarly, an alternative y2 from 
y’ that differs from y’ by only two coordinates, and that has at least one 
coordinate more identical with z, than y’, and subsequently we obtain again 
a connected set S2c[x] containing both y’ and y2. We continue this way, 
after at most n steps (actually n- 1) we obtain fl=z. 

All sets S’,S’,... as constructed above are connected, each subsequent pair 
intersects, so their union S is again connected. 

Case 2. The general case, where not all +i relations are orders, now follows 
by means of the map (x1 ,..., x,)H([x,] ,..., [x,]). The image space is 
endowed with the naturally generated structures. Connectedness of equiva- 
lence classes in the image space, as established above, then implies the same 
in the original space; note here that in the original space equivalent 
coordinates are not ‘separated’ topologically. 0 

Next we turn to ‘rank-ordered’ sets. We use below the following structural 
assumption. 

Assumption C.2 (a). E is a rank-ordered set, i.e., there is given a weak order 
>’ on a nonempty set X, and E: = {(xl,. . . ,x,) E X”: x1 p’. . .)/Ix,,}. The order 
topology generated by 3’ is connected. 
(b) The binary relation > on E is a weak order, monotonic with respect to 
+‘, and continuous with respect to the product topology. Further nz2. 

Lemma C.3. Under Assumption C.2, the equivalence classes of 3 are 
connected. So are E, and each set of the form {X E I? xi= Si> for some i, Si. Also 
the intersections of these sets with int (E) are connected. 

Proof. The proof that equivalence classes are connected is analogous to 
that of Lemma C.l. Only one adaptation is needed. In Case 1.2 there, Zi(Zjy) 
may not be contained in E. It may happen that Zii’yi+l, or Zj>‘yj_i. 
This is avoided by choosing i as the largest coordinate for which yi>‘Zi, 
and j as the smallest coordinate for which yj<‘zi. Then, if is n- 1, 

Yi>‘zi+‘zi+l+‘Yi+13 and if j ~2, yj<‘zj~‘zj_ l~‘yj_ 1. Also the proof that 
intersections of equivalence classes with int (E) are connected, is analogous. 
The derivation of Case 1.1. in Lemma C.l does not need modification, 
primarily because the set S is contained in int (E) if y and z are. The 
derivation of Case 1.2 does not need further modification, other than 
described above, and neither does the derivation of Case 2 there. 

Next we prove that E itself is connected. Let y, ZE E. We construct a 
connected set S=S’ v . . .u Sk within E that contains both y and z. Define 
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y’:=y. Let i be the largest coordinate for which y,~‘zityi#zi. The set 
S’:={oiy:yi~‘~i~‘zi> is entirely contained in E (since Zi~‘Zi+l~‘yi+l if 
il n- 1) and is homeomorphous with [Zip yi], thus is connected. Define 
y? = ziy; it has one more coordinate in common with z than y. We continue 
inductively, until a y“’ has been obtained for which no coordinate is weakly 
preferred to, but different from, coordinates of z. Then we take the smallest 
coordinate j for which yj”‘<‘zj but J$’ #zj and we construct yk’+ ’ and Sk’+ ’ 
in the same way as we constructed S’. Since each time one more coordinate 
becomes identical to one of z, the process will stop with yk=z. Each 
subsequent pair S”, S”+ ’ intersects, hence their union can be defined as the 
connected set S containing y and z. The demonstration that int (E) is 
connected is similar, if y and z are contained in int (E) then so are S’, . . . , Sk, 
and yl,...,y“. 

The reasoning used to prove connectedness of E, can also be used to prove 
connectedness of sets {x EE: xi = si), as well as their intersections with int (E). 
If yi=zi =si then the set S constructed above is entirely contained in 
(xEE:xi=Si). 0 

Lemma C.4. Under Assumption C.2, all alternatives other than the extreme 
ones are matched. 

Proof. Note that, by rank-orderedness, an alternative (xl,. . . ,x,) always 
has, for some 05 kg 15 n, its coordinates x1,. . . , xk maximal, xk+ 1,. . . , xl 
neither maximal nor minimal, and xl + 1,. . . , x, minimal. 

Suppose that p EX is a maximal outcome with respect to +‘, and that all 
coordinates of XEE are neither maximal nor minimal. Then (HX,, . . .,x,) is 
interior-matched, because by continuity and connectedness it is equivalent 
to some ($,xi,x, ,..., x,)~int (E) with ,u>‘,u’>‘x;>‘x~. Inductively, 
(PT... , p, xk + l,. . . , x,) is kth order matched for each k 4 n - 1, being equivalent 
to some (k- 1)th order matched alternative (p,. . . ,p,p”,x;+ l,. . . ,x,,) with 
+‘$‘>‘x;+ 1 >‘xk + 1. Similarly, if v E X is minimal with respect to +‘, then, 
with all coordinates of xeE neither maximal nor minimal, 

(x 1 )...) x,-k,v )...) v) is kth order matched for each kin- 1. 
So maximal x1,. . . , x, _ 1 and minimal x2,. . . , x, occur in matched alterna- 

tives. It shows that all non-extreme alternatives are matched. 0 

From the above results, the inclusions int (E) c Eccl(int (E)) for rank- 
ordered sets E, and Theorem 3.3, we conclude: 

Corollary C.5. Under Assumption C.2, additivity axioms for 3 imply the 
existence of continuous additive value functions for 3 on E\(extreme 
alternatives}. 
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Next we turn to the product of rank-ordered sets. These are important in 
cumulative prospect theory, the new version of prospect theory developed in 
Tversky and Kahneman (1992) and Wakker and Tversky (1991). Besides 
rank-dependence also ‘sign-dependence’ is important here, and additivity 
axioms hold on subsets that are products of two rank-ordered subsets. A 
typical example of such a set is {(x~,...,x~)ER’: x,2x 2x 202x 2x }, a 2- 3- - 4- 5 

product of a rank-ordered subset of R: and one of R?. Its elements do not 
only induce the same ordering of coordinates (x1 2.. .z x,), but also have 
the same ‘sign profile’. Note that E below is at least two-dimensional. No 
further restriction is imposed on the dimension of E. 

Theorem C.6. Let 3 be a weak order on E’ x E2, a product of two 
rank-ordered sets, each of which satisfies Assumption C.2(a) with nontrivial 3” 
and p2*, Suppose 3 is a weak order on E’ x E2 that satisfies monotonicity 
with respect to 3” and +2’, is continuous with respect to the product 
topology, and satisfies the additivity axioms. Then there exists a continuous 
real-valued additive representation for 3 that is cardinal. 

Proof. On int(E) all conditions of the Structural Assumption 2.1 are 
satisfied. The derivation of this is similar to the derivation on rank-ordered 
sets, and will not be repeated. Hence there exists, by Theorem 2.3, an 
additive representation on int (E). For the extension to boundary alternatives, 
note that int (E)c E ccl(int (E)) is direct. By Corollary 3.3 it suffices to show 
that all alternatives are matched. 

To this end, take any interior r1 E E’ and interior r2 E E2, with nonextreme 
coordinates. By ((ri,ri,ri,. . .),(r’ r2 r2 lr 2, 3 ,... )), or (r’,r2), we denote the related 
element of E. Let p be a maximal outcome related to the rank-ordered set 
E’. To see that there exists a matched alternative with ,u as kth coordinate, 
for each k, note, by continuity and connectedness, that there exist non- 
extreme outcomes Z-Q and r’<r: such that 

((~L,...,~,r:+l,...),(Z’,r:,r:,...))~((Z, . . . . Z,r:+l,...),(r:,rf,r: ,... )). 

First, for k= 1, this shows that there exists an interior-matched alternative 
with p as first coordinate. Next, inductively, it shows that for each k there 
exists a kth order matched alternative with p as kth coordinate. 

A similar reasoning shows that, in relation to E2, maximal outcomes also 
occur as kth coordinate for matched alternatives within E2, for each k. 
Similar observations hold as well for minimal outcomes. This proves that all 
alternatives are matched. 0 

Finally, we add a topological observation. 
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Remark C.7. Suppose we modify Assumption C.2(a) by replacing the 
topology on X generated by 3’ by any connected topology. Suppose we 
then require continuity of 3’ with respect to this topology, and continuity of 
3 with respect to the product topology of the new topology. Then Corollary 
C.5 and Theorem C.6 remain valid. 

Proof. We derive continuity of + with respect to the product of order 
topologies. Say x>y. Take, by connectedness and monotonicity [similarly to 
Wakker (1989, proof of Lemma VI.7.6)], 1, such that either 2. =xn if x, is 
minimal, or f,<x, (we write < for <’ or <” or <2’) and still I,x>y. Next 
take f,_, such that either &, =x”-~ if x,-~ is minimal, or Zn<Z~-l<~n-l 
and still I,_,(%,x)>y; etc. One thus ends up with a 5-y, and through f 
constructs a set of alternatives strictly preferred to y, open with respect to the 
product of order topologies, and containing x; etc. 0 
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