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1. INTRODUCTION

In Chew and Epstein [2], two of us attempted to provide a unifying
axiomatic framework for a number of generalizations of expected utility
theory. Our approach was to weaken the independence axiom by requiring
its associated separability to hold only on suitable subsets of the domain
of state-contingent outcomes. Then we invoked Theorem A of Appendix 3
which extended the additive utility representation results of Debreu [3]
and Gorman [5] from the case of full Cartesian products to more general
domains. Theorem A claims, given a continuous and strictly increasing
preference ordering, that the Debreu~Gorman additive representation
can be extended to connected subsets of RV when indifference sets are
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connected. Unfortunately, as was first pointed out by Wakker [7],
Theorem A is false.

Segal [6] proves that Theorem A holds under the additional restrictions
that the domain is open, and its intersections with translations of coor-
dinate hyperplanes are connected. Here, we use Segal’s result to prove that
the central unifying proposition [2, Theorem 2] is nevertheless valid with
minor modifications. Wakker [8, 9] provided earlier additive representa-
tion theorems for rank-ordered subsets of a Cartesian product. These
papers also provided examples to demonstrate that the question of
existence of additive representations is a delicate one when the domain 1s
not a full Cartesian product. In addition, these papers contain references to
the literature where errors similar to Theorem A occur.

2. THE UNIFYING REPRESENTATION

Let the set of prizes X be an open interval and denote by D®(X) the set
of c.df’s with compact support in X, ie, D(X)=U) {D(K): K< X is a
compact interval }. Modify Theorem 2 by requiring that the axioms for >
are satisfied and that the desired representations apply on D®(X), rather
than on D(X). Difficulties with utility being driven to infinity at the
boundary (see [9, Example 3.87) are avoided in this way.

We provide the additional arguments needed to show that in (the
modified) Theorem 2, the axioms imply the desired representation. Notation
is as in [2] except that we often abbreviate 3 | (1/N)d, and 3V | (I/N)o,,
by (x,, .., xy) and (v, ... yy). We provide details corresponding to Case
{(iv) of the proof of Theorem 2. The other cases are more elementary and
analogous,

Let #(X)= #(x)nX{. The superscript “0” applied to a subset of
XV refers to its restriction to exclude elements which have non-distinct
components. For example, j?(.f): (xe #(x): the components of x
are distinct}. Let ¥ be a continuous and increasing utility function that
represents = on D(X).

LEMMA. For se X%, #0(X) is arc connected.

Proof. Let x+# ye #{(x). We construct an arc from x to y within #(x)
through vectors x(=x°), x', x% .., where each subsequent vector has one
or two components more in common with y than its predecessor. Let j be
the smallest index for which x;> y;, i the largest index for which x, < y..
By x ,,v,v,, we denote x with x,, x, replaced by v, v,. Note (for j>1)
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that v,>y, 2zx, |, and (for i<N) that »,<y,, ,<x;,,. Suppose
X ., Vv.y; 7y (the case y>x ,;v,v, i1s analogous). Then for each :,
between x,> y, there is a unique z, between ;> x, such that x | ,z,.z,~ 1.
Note that our choices of maximal j and minimal / imply inequalitics

such as z;zy>y, 2x;, | and z; <y, <)y, ,<x,,,, guaranteeing
Y 0.6 £(3) (also if j=i+1). For =, = y, the associated =, is denoted
as ¥;; vi< y,. We define x':=x ,,»..y,. Now x =z, provides an arc

from x to x' within #{(<), where x' has at least one component more in
common with 1 than x (the ith component). We construct x? from x' as
we constructed x' from x, again obtaining one more component in com-
mon with y. After at most N steps the constructed alternative becomes
identical to y. Between each subsequent pair of vectors x*, x** ! there is an
arc within j?(.? ). These arcs together constitute an arc from x to y. Indeed
#(X) is arc connected.

Case (iv) IRLU. The ordering > ' is continuous, strictly increasing,
and completely separable on

HA(X) ,={xeX} ':3zeXsuchthat(x, r)e #(X)and
z is the /th rank component of (x, z)§.

Let #9(%) ;= #(3) ,n #Ux). To apply Segal's theorem, we must show:

(a) #AX) ,is open and connected in R™ ', and

(b) VYeekX, FYx) ;n{xeX" ''x,=c} is connected, for each k #1.

Proof of (a). The arc connectedness of () implies that its projection
f(r’(-“ . is connected, using [4, p.115]. To prove openness, let
xe]?(.f) i 1€, X =(x,z)~ X and z 1s the ith rank component of (x, o).
Then 30>03(v,z+d) > (x,z—0)=Fe>03||y—x|| <er(y,z+d) >
>{(r,z=80)=3"€X>3(3,2)~x" Thus, {reX" “lr—x| <) c

FUT) .
Proof of (b). Path connectedness of
S=FUADn{xeXVix, =c}

may be proven as in the lemma. Thus its projection J{(x) ,n
{xe XV ':x,=c} is connected, completing the proof of (b).

Given the additive representation provided by Segal's theorem, we
proceed as in [2, pp. 233-234] to derive . dom(y)c X x [0, 1 [*x X - R
such that ¢(x, p, v) is continuous in x for each (p, v); ¥(-,0,-)=0;

yix, p, vY—(x, p', v)— (X', p, )+ (X, p', y)>0 (1)
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if p>p’ and x> x";' such that ¢ represents > on D(X) in the sense that
on X7, for any N,

(5072 (5)0en (2 (5)0)2m (2 (5)0.)

where for F=3Y" | (1/N)é,,, m(F) is defined by

N

2 Llx, ifN, m(F) = ¢ (x,, (i~ 1)/N, m(F))] =0.

i=1

Given y € X, define
X*(p, y)=sup{z e X: pd.+ (1 —p)b. ~ 4, for some - <z'},
and for x < y,
pH(x, y)=sup{ge[0,1]:¢d + (1 —g)d. ~0d,; for some y<z'}.
Then dom(y) =), y dom(¥(-, -, y)), where
dom(y(-, -, ¥))={(x, p)e Xx [0, 1T*: x <x*(p, y): p<p*(x, ¥)}.

We show that Vye X, (-, -, ) is continuous on dom(¥/(-, -, ¥)). Pick
FeD‘(X), F=YM g5, such that y =m(F). For 1 <k <N, p:=%*_ q,is
the probability under F of receiving an outcome that is not greater than x,.
Let j#k Let x/—x;, p"—p, x;—x, such that x, ,<x/<x,,,
Xp_o1<xj<x4,,, and F~F, for all n, where F, is derived from F by
replacing (x;, x4, p) by (x},x%, p"). In other words, F,= SM e .
where x,=x7 except for i=j k, and %  r"=p" r'=gq, except for
i=k, k+ 1. Note that a choice of p”, x; by indifference to F uniquely deter-
mines x7. That such sequences x7, p”, x}, exist is straightforwardly derived
from weak continuity. From indifference to F, it follows that

[.p (. T4 ») v (r 54, 1)} FLOO ) — (s, p )1 =0,

By the continuity of ¢ in the first argument, the first bracket approaches
0. Therefore, y(x7, p", ¥)—y¥(xi, p, y) also approaches 0. Thus, Vye X,
Y(-,-, ») is continuous on dom(¥(-, -, y)).

YFor p=k/N and p' = jiN, yix, p, y)—ix, p', »)~¥l(x', p, ¥) + (X', p', y) is, according
the construction, given by ¥* | [u}(x, y)—ul(x', ¥)]>0.

% Strictly speaking, the representation obtains only for lotteries in D(X) which have distinct
outcomes. The extension to non-distinct outcomes is accomplished via weak continuity.
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For each ye X, we extend y(-, -, 3) continuously to
o ) eXx [0 1] xXix<x¥(p, y), p<p*x, 3)).
We further extend (-, -, ¥) to all of X x [0, 1] by defining

Y(x*(p, y), po¥), xe(x*p, y), X),

Ve poy)= {'//(x, prx. ). y) pe(prx, y) 1]

By construction, Vye€ X, (-, -, y) is jointly continuous on X' x [0, 1] and
satisfies (1). Therefore, Y(-,-, y) defines a positive Lebesgue-Stieltjes
measure A(-; y)on X x [0, 1] [ 1, p. 149, Theorem 12.5]. Let *F denote the
epigraph of F. Then the representation of the ordering on D‘(X) can be
expressed as: VFe D(X),

A(*F, m(F)) = A(*8 . s0 m(F)).

Since D°(X) is dense in D(X), in order to extend the representation to
D¢(X), it suffices to show that

A(*F\*F, m(F)) + A(*F\*F,, m(F)) - 0 (2)

whenever {F,}c #(F)— F and 3 compact interval K< X such that
supp(F,)c K, ¥n. Let 1, denote the indicator function for a set 4. Then (2)
is implied by the countable additivity of 4 if on Kx [0, 1],

I‘Fn—.’ lt,s a.c. [/:].
The above convergence can fail only for points (x, p)e Su gr F, where
gr F={(x, p): p=F(x)}},
and
S={(x, F(x)): x is a discontinuity point of F}.

Since F has at most countably many discontinuity points and since ¥ is
continuous in x, A(S, m(F))=0. Thus, it remains to prove that VFe D*(X),

Mgr F, m(F))=0. (3)

It follows from the continuity of (-, -, m(F)) that Ai(gr F, m(F))=0,
VFe D(X)n #(F). Suppose 3Fe D (X)\D?(X) such that i(gr F, m(F))> 0.
Pick (t,q)egr F with ¢ge(0,1) such that the A(-, m(F)) measure of
either the portion A of gr F above (¢, g) or of the portion B below (¢, g) is
strictly positive. Without loss of generality, say (A, m{F))>0. Let
F’ e DY(X)n #(F) be such that F’ coincides with F at and above (¢, ¢) and
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supp(F') to the left of ¢ is nonempty and finite. It follows that the
A(-, m(F)) measure of the portion of gr £’ below (¢, ¢) 1s 0.

We may assume F’'=F. By weak continuity and monotonicity of >,
sequences (G, ) and (H,) in D(X)n #(F) can be obtained that converge
in distribution to F such that &(G,, H,) -0 (d is the Prohorov metric),
and for all n, G, and H, each cross F once at (1, ¢4) with G,(H,) strictly
below (above) for x <t and with G, (H,) strictly above (below) for x> 1.
Let C, (D,) be the difference between *G, and *H, above (below) the
point (¢, ¢). Since G, ~ H, ~ F,

AC,, m(F))=A(D,, m(F)). (4)

The difference between B and ()., D, is contained within vertical line
segments associated with the finite number of discontinuity points
of F, hence has 7 measure 0. Therefore, /2 being countably additive,
O=AB, m(F)=AN,_,D,.mF)), and A(D,, m(F))— 0. But for every n,
AMC,, m(F))= Algr F, m(F)) >0, which yields a contradiction to (4). Thus,
(3) has been proved. |}

To conclude, we point out that Lemma B of [2, Appendix 2],
which provides sufficient conditions on ¢ for the corresponding certainty
equivalent functional m to be continuous, should include an additional
assumption to guarantee (3). For this, continuity of ¥ ,(-, -, 1) for all
1€ X suffices.
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