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Abstract 

This article discusses relations between several notions of continuity in rank-dependent utility, and in the 
generalized version of rank-dependent utility as initiated by Segal. Primarily, examples are given to show logical 
independencies between these notions of continuity. This also leads to counterexamples to Segal's (1989) 
characterizing theorem 1. 
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The  rank-dependent  s t ream in the modern  nonexpected utility models  was initiated by 
Quiggin (1982) and Schmeidler  (1989; first version, 1982). An often-cited paper  is Segal 
(1989; first version, 1984). It was the first to introduce a generalization, called the mea-  
sure representat ion approach,  of  Quiggin's rank-dependent  model.  In Quiggin's model,  
a lottery (Pl ,  X l ; . . .  ; pn,xn), yielding Sxj with probability pj  for each j, and with 
xl > �9 �9 >- xn, is evaluated by a functional 

~-'~[f(Pl + . . .  + pi)u(xi)  - f ( P l  + . . .  + pi-1)u(xi)] .  
i=1 

Expected utility is the special case where  the probability t ransformation func t ionf  is the 
identity. The  rank-dependent  form allows a separat ion between attitudes to outcomes,  
modeled through u, and attitudes to probabilities, modeled through f. Segal's measure  
approach replacesf(pl  + . . .  + pi)rt(xi) above by a general function V(pl + �9 �9 �9 + pi, xi); 
i.e., it deletes the separability into the factors u andf. Later  this model  was also studied in 
Green  and Jullien (1988), Chew and Epstein (1989), Cha teauneuf  (1990), Puppe  (1990), 
and Chew and Wakker  (1991). 

Axiomatizations provide characterizations of  quantitative models; i.e., they provide 
necessary and sufficient conditions for the applicability of  quantitative models  in terms of 
the observable primitive, the preference relation of a decision maker.  Thus axiomatiza- 
tions describe the empirical content  of  models  and show their intrinsic consistency. Segal 

*This article is a rewritten version of Wakker (1990a). Puppe (1990) independently discovered that Segal's 
(1989) theorem 1 is not correct. This research has been made possible by a fellowship of the Royal Netherlands 
Academy of Arts and Sciences. 
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used geometric properties of epigraphs of distribution functions to describe and charac- 
terize models. This is mathematically useful, and makes possible the application of ideas 
from qualitative probability theory. As pointed out in Karni and Schmeidler (1990), a 
disadvantage is that it lacks a clear behavioral interpretation. A characterization of the 
general measure approach by geometric conditions is provided in Segal's (1989) theorem 
1. The other results in his paper are based on that theorem. 

This article shows, however, that the theorem is not correct. Example 4 shows that 
Segal's conditions do not imply the existence of a representing measure. Further, the 
continuity claims in Segal's theorem are not correct. The intricacies of absolute continu- 
ity and of the popular weak continuity, as demonstrated by the examples, also complicate 
the analyses in Green and Jullien (1989), Chew and Epstein (1989), and Puppe (1990). 
Segal (1990, lemma 8) presents a new alternative characterization of his generalized 
model. While this is based on Segal (1989, theorem 1) (some other references are also 
given), it actually contradicts the latter because the absolute continuity conditions have 
been deleted. Also, this new alternative characterization is incorrect, as will be shown by 
the examples below. A correct theorem that avoids the problems indicated in this article 
will appear in Segal (1992). Correct results have also appeared in Chateauneuf (1990) 
and Chew and Wakker (1991, section 5). Further, Chew, Epstein, and Wakker (1991) 
provided corrections for Chew and Epstein (1989), and Quiggin and Wakker (1992) 
provided corrections for Quiggin (1982). 

1. Implications of the examples 

Notations, domains, and terminology in this article are as in Segal (1989); i.e., ~> is a 
preference relation over L, the set of probability distributions over [0,M], for some fixed 
M > 0. As usual, we assume that all elements of L are countably additive. ForX ~ L, Fx  
denotes the distribution function, assigning to each e~ ~ IR the probability underXthat  
cx or less will result. Any probability distribution X is uniquely related to the associated 
epigraphX ~ of the distribution function, i.e., the closure of the area in the square [0,M] x 
[0,1] above the graph of Fx  Note that countable additivity of the elements of L is 
essential for this unique relatedness. L ~ is the set of all epigraphs, and is identified with 
L. So ~> can also be considered a preference relation on L ~ We assume throughout that 
Segal's measure-theoretic approach holds, i.e., >~ is represented by a measure v on the 
Borel subsets of [0,M] x [0,1]. 1 A modification appears in example 4, where v is allowed 
to take the value infinite. In the other examples, v only takes finite values. Obviously, ~> 
is transitive and complete in all examples, and is easily seen to satisfy Segal's irrelevance 
axiom--that is, IX ~> Yifand only ifX' ~> Y'] whenever on a set S that is a finite union of 
segments, Fx = Fy and Fx' = Fy,, whereas Fx = Fx' and Fy = Fy, outside S. It can 
be seen that in the presence of the other conditions, the irrelevance axiom is equivalent 
to the stronger axiom that allows S to be general, as well as to the weaker axiom that 
requires X, Y,X', Y' to be simple. Let us mention that the question of representability of 
preference relations on subsets ("events") by ("probability") measures is studied in 
qualitative probability theory; Fishburn (1986) gives a survey. The irrelevance axiom is 
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the additivity axiom from qualitative probability theory (see Fishburn, 1986, p. 336; 
Segal, 1986), reformulated for the present context. Green and Jullien (1988) and Segal 
(1990, lemma 8) use, instead of irrelevance, an ordinal independence condition that by 
itself is weaker than irrelevance. In the presence of the usual conditions it can, however, 
be seen to be equivalent to irrelevance, mainly by Gorman's (1968) result; see Chew and 
Wakker (1991, section 5). 

Table 1 summarizes the properties of the five examples of section 2. We give the table 
immediately here, so that already at this stage the reader can infer the logical relations 
between several properties for preferences, and the implications of the examples for 
Segal's results. For elaborations the reader should consult section 2. Let us also mention 
that in all examples the representing measure v is a ratio scale, i.e., is unique up to a 
positive scale factor. All properties considered below are invariant under variation of the 
scale factor; hence the problems below cannot be avoided by the choice of an alternative 
representing measure. 

Finally, we give some preparatory definitions. As in Segal (1989), stochastic domi- 
nance is taken as strict. By ~. we denote the Lebesgue measure on [0,M] x [0,1]. A 
measure v is absolutely continuous with respect to a measure w if [w(A) = 0 ~ v(A) = 0] 
for all A. The distribution function of v assigns the value v ( ( -m ,e~] x (-o~ ,[3]) to each 
(e~,[3) ~ IR 2. 

Segal's (1989) theorem 1 claims that the conditions of stochastic dominance, irrele- 
vance, and continuity with respect to weak convergence for > are equivalent to the 
existence of a representing measure v that is mutually absolutely continuous with respect 
to ~.. Example 1, however, shows that absolute continuity of v with respect to )t is not 
implied by the other conditions. Example 2 shows that this is neither implied in the 
special case of RDU, where v is a product measure. Further, this example shows that also 
the claimed absolute continuity of ~. with respect to v is not implied by irrelevance, 
stochastic dominance, and weak convergence continuity. One might conjecture that 
these problems could be overcome by replacing the requirements of absolute continuity 
by the requirement that the distribution function of v be continuous. Example 3 shows 
that this does not work, because then weak convergence continuity of > need not be 
implied, even if stochastic dominance is. 

Table 1. A s u m m a r y  o f  t h e  p r o p e r t i e s  o f  t h e  f ive  e x a m p l e s  

s t . d o m  i r r .  ax.  w e a k  c o n t .  v a b . c t .  X a b . c t ,  v d i s t r ,  f i o n  R D U : v  

f o r  > f o r  > f o r  > w r t . X  w r t .  v f i n i t e  o f  v c o n t .  p r o d .  m e a s .  

E x . 1  + + + - + + + - 

E x . 2  + + + - - + + + 

E x . 3  + + - - + + + - 

E x . 4  + + + + + - + / N D  a - 

E x . 5  - + - - - + - + 

a N o t  d e f i n e d .  
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Although Segal (1989) does not make explicit whether the measure v is allowed to be 
extended (i.e., assign value ~) ,  the paper, in particular the proof of his theorem 2, 
suggests that the value infinite is not intended to occur. Example 4 shows, however, that 
finiteness ofv is not implied by stochastic dominance, irrelevance, and weak convergence 
continuity, i.e., the conditions of Segal's theorem 1. Actually, all elements o fL  ~ (except 
the empty set) get assigned measure infinite in this example, and an alternative way to 
derive preferences from the measure must be invoked. 

Segal's (1990) lemma 8 claims that the same conditions for a binary relation as consid- 
ered above, i.e., stochastic dominance, irrelevance, 2 and continuity with respect to weak 
convergence for > ,  are equivalent to the existence of a general representing measure v. 
The lemma does not impose absolute continuity, and makes explicit that the measure 
should only satisfy finite additivity (as opposed to countable additivity). Theorem 1 in 
Segal (1989) does not address finite/countable additivity of the measure; the proof only 
claims finite additivity, but the adopted extension process seems to require countable 
additivity. 3 Example 3 gives a counterexample to Segal's (1990) lemma 8, by showing that 
the conditions for the measure v do not imply weak convergence continuity for prefer- 
ences. Atomic measures v give alternative counterexamples, showing that also stochastic 
dominance can be violated (see example 5). 

2. Elaborations of the examples 

In examples 1 and 3 below, we shall set v: = w/2 + X/(2M) for some measure w. Then h is 
absolutely continuous with respect to v. That in turn implies that > satisfies (strict 
monotonicity with respect to first-order) stochastic dominance. Whenever we add "al- 
most everywhere" to a statement, we mean that the statement holds true except for a set 
with Lebesgue measure 0. By I up we denote the diagonal through the points (0,0) and 
(M, 1); v up is a kind of uniform distribution concentrated on I up, i.e., to every subset of 1 up 
the measure vup assigns the length of the subset divided by the length of lup, and vUp:A 
vup(A O lup). Similarly, 1 dn denotes the diagonal through the points (0,1) and (M,0); to 
every subset of I dn the m e a s u r e  1; dn assigns the length of the subset divided by the length 
of ldn, and vdn:A ~ vdn(A ~ ldn). The diagonal 1 up, a boundary of a probability distribu- 
tion (the uniform distribution), is used in example 3, where weak convergence continuity 
is violated; 1 dn is used in example 1, where weak convergence continuity is satisfied. 

2.1. Example 1 

Let v: = vdn/2 + ~k/(2M). It is not absolutely continuous with respect to k because it 
assigns a positive measure to the Lebesgue null set 1 dn. ~Ihe only property of table 1 that 
warrants further elaboration is weak convergence continuity of >.  Suppose Yi converges 
weakly to Y. It suffices to show that v(Yi) converges to v(Y). We show this for k and v dn 
instead ofv. Convergence of k(Y/) to k(Y) follows because k is countably additive and the 
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Y~ as sets converge to Yas set almost everywhere: nonconvergence can only occur on the 
boundary of Y. (The proof of almost convergence is simplified if one also allows for 
nonconvergence on vertical lines r+lated to discontinuity points of Fy.) Convergence of 
X(Y/) to X(Y) can also be shown by the Lebesgue convergence theorem applied to the 
indicator functions of the Yi's, which converge pointwise to the indicator function of Y 
almost everywhere. A l s o  vdn(y / )  converges to  vdn(g) :  Suppose the boundary of Y inter- 
sects 1 dn in a pointp; this point is uniquely determined. T h e n  vdn (y )  is the V dn m e a s u r e  of 
l dn "to the left" ofp. It is straightforwardly verified that the intersection pointsp i of Yi 
with I dn converge top  ifp is a continuity point of Fv; also this can be shown ifp is not a 
continuity point of Fy, be it in a somewhat more complicated manner (look at first 
coordinates of thepi). Thus also the V dn m e a s u r e  of the Yi's, which is the measure of 1 dn 
to the left ofp i, converges to the V dn m e a s u r e  of Y. [ ]  

2.2. Example 2 

Let v be the product measure of a probability measure P on [0, M], still to be described, 
and the (one-dimensional) Lebesgue measure X 1 on [0,1]. Suppose that P assigns mea- 
sure 1 to a set with Lebesgue measure 0, and that the distribution function of P is 
continuous (so that P has no atoms) and strictly increasing. For example, for the distri- 
bution function of P the Cantor ternary function on [0, M] (see Royden, 1963, problems 
5.9 and 2.42) can be chosen. P is not absolutely continuous with respect to X 1, and X 2 is 
not absolutely continuous with respect to P. Thus v is not absolutely continuous with 
respect to X, and neither is X with respect to v. Finally, we derive weak convergence 
continuity for 9 .  Suppose Yj converges weakly to Y. It suffices to show that v(Yj) con- 
verges to v(Y). By countable additivity of v, it suffices to show that the sets Yi converge to 
the set Y, except on a set with v-measure 0. The set of nonconvergence, to be shown to 
have v-measure 0, is a subset of the union of two sets, each with v-measure 0. The first set 
is the set of points with as first coordinate a discontinuity of Fy. There are at most 
countably many such discontinuities, their P-measure is 0 (because P has no atoms), and 
thus also the first set must indeed have v-measure 0. The second set is the set of boundary 
points of Fg that do not have a first coordinate that is a discontinuity ofFg. This set has 
v-measure 0 because it has everywhere "height" 0, in the same way that a set with height 
e everywhere has v-measure e (e.g., by repeated integration of the indicator-function, 
first with respect to the second coordinate). [ ]  

2.3. Example 3 

Let v : - -  vup/2 -I- )k/(2M). It is not absolutely continuous with respect to k because it 
assigns positive measure to the Lebesgue-null-set 1 up. The distribution function of v is 
continuous. In this example, ~> is not continuous with respect to weak convergence: Let 
Y E L ~ be the area above 1 up, associated with the uniform distribution. Suppose Yi is 
such that, at each point of the domain, F~ decreases to Fy, and such that at each point of 
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the domain except 0 and M, F E > Fy. Then v(Y) = vup(Y)/2 + X(Y)f(2M) = I/2 + 
(M/2)/(2M) = 3/4. The line 1 up is incorporated in Y. Further, v(Yi) = vup(Yi)/2 + 
R(Y,.)/(2M) < % + (M/2)/(2~ = 1/4. The line I up is not incorporated in Yi, apart from its 
endpoints, which contribute measure 0. If we take any X with v-measure strictly between 
1/4 and 3/4, then Yi <~ X for all i, but Y > X. Since Yi weakly converges to Y, weak 
convergence continuity is violated. Let us finally mention that this example does satisfy 
the simple continuity condition of Wakker (1990b). [ ]  

2.4. Example 4 

Suppose v has a positive density function, denoted ~b. The integral of ~b over any open 
neighborhood of (0,1) is 2 .  For any set that does not contain (0,1) in its closure, + is 
bounded, so that the integral of + over that set is finite. Note that v(Y) = 0 for Y = [0, M] 
x {1}, i.e., Y C L ~ is the upper boundary of [0, M] x [ 0 4 ,  corresponding with the 
degenerate probability distribution assigning probability 1 to the outcome 0. All other Y 
E L ~ contain a point (x,p) withx > 0 andp < 1, and thus contain an open neighborhood 
of (0,1), and their v value must be infinite. For this reason the preference relation > 
cannot be derived from v in the usual way. We derive > from v through comparison of 
difference sets, as follows. If Y = [0, M ] x  [0,1] and Z;~ y, or i fZ  = [0, M] x {1} and 
Y* Z, then Y > Z. In all other cases, we define Y > Z if and only if v(Y\  Z) > v(Z \ Y); 
this is well defined because the closed difference sets Y\  Z and Z \ Y do not contain (0,1), 
and their v values are finite. The weak order > on L is well defined. We shall verify 
transitivity. Suppose X > Y, Y > Z. If any of these sets is [0,M] x [0,1] or [0, M] x {1}, 
X > Z is readily verified. In the other case, the preferences over X, Y,Z are represented 
by the finite real numbers v(X\  (XN YN Z)), v(Y\  (XN YN Z)), and v(Z~ (XN YN Z)), 
which implies X > Z. Transitivity has been established. Weak convergence continuity is 
satisfied, both if the limiting Y is [0, M] x {1} (use countable additivity, and absolute 
continuity of v with respect to X), and if Y# [0, 34] x {1}. Also, stochastic dominance is 
satisfied. Although > is not represented by a measure in the usual sense in this example, 
nevertheless irrelevance is satisfied; this follows from stochastic dominance if [0, M] x 
{1} is the dispreferred lottery, and from substitution of v otherwise. This example is 
related to example 25b in Wakker (1991a), where an additive representation is "driven to 
minus infinity" at minimal alternatives. 

Similarly, an analogue of "driven to plus infinity" can occur. Then the integral of 
over every open neighborhood of (M,0) is infinite, the integral of + over every set that 
does not contain (M,0) in its closure is finite, [0, M] x [0,1] has infinite v value, and all 
other Y ~ L ~ have finite v value. So here > can be defined by Y > Z if and only if v(Y) 
> v(Z); v, however, is not real-valued at [0, 34] x [0,1]. A condition to avoid the 
problems illustrated by this example is the second-order Archimedean axiom of Wakker 
(1991a; 1991b). This condition holds on the subspace of ~/3-~/3-~ lotteries (a three- 
dimensional rank-ordered space) if and only if the measure v is bounded. [ ]  
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2.5. Example  5 

Let  v assign measure  1 to all sets that  contain (M/2,1/2), and measure  0 to all sets that  do 
not  contain (M/2,1/2). Then  (M/2,1/2) is an atom. Nei ther  is v absolutely continuous with 
respect  to X, nor  is )t with respect  to v. The  binary relat ion represen ted  by v does  not  
satisfy weak continuity; ne i ther  does it satisfy stochastic dominance  (it does satisfy weak 
stochastic dominance) .  It obviously satisfies the irrelevance axiom, and thus also the 
weaker  "ordinal  i ndependence"  axiom as used in Segal (1990, l emma 8). [ ]  

3. Conclusion 

This art icle has shown that  the character izat ions of  the measure  approach  in Segal 
(1989, theorem 1) and Segal (1990, l emma 8) are  not correct.  First,  the resulting measure  
may be infinite valued;  second, the continuity condit ions are not correct;  and third and 
finally, countable  additivity needs  to be established. A correct  theorem will be provided 
in Segal (1992). See also Cha teauneuf  (1990) and Chew and Wakke r  (1991, section 5). 

No~s  

1. Note that, for simple probability distributions (p 1,x I; . . . ;pn,Xn), this provides a rewriting of the form given 
in the introduction. To wit, set V(0, x) = V(p,0) = 0 = u(0) for allx, p, and substitute V(pl + . . .  + Pi, xi) 
= v([O, xi] x [1-  (P l+ . . .+  pi),l]). 

2. Actually, the weaker ordinal independence; however, this is equivalent to irrelevance for all purposes of 
this article. 

3. Segal (1992), and Chew, Epstein, and Wakker (1991) prove that countable additivity must hold. 
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