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INDEPENDENCE OF IRRELEVANT ALTERNATIVES
AND REVEALED GROUP PREFERENCES

By Hans PETERS AND PETER WAKKER

1. INTRODUCTION

IN coNsUMER DEMAND THEORY the concept of revealed preference is based on the
assumption that, by choosing from budget sets, a consumer reveals his preferences over
the available commodity bundles. Analogously, in bargaining game theory the agree-
ments reached in bargaining games may be thought to reveal the preferences of the
bargainers as a group. In this paper we consider, more generally, single-valued choice
functions defined on the convex compact subsets of the positive orthant of R”. These
subsets are called choice situations. In bargaining game theory choice functions are
called bargaining solutions and choice situations are called bargaining games. In con-
sumer demand theory choice functions are called demand functions and choice situations
are called budget sets. Compact convex budget sets may be regarded as “generalized”
budget sets where certain commodity bundles from the full simplices (linear budget sets)
are not available. An example is the case of piecewise linear budget sets (see Hausman
(1985)); our results would remain valid under the restriction to this case as well. Works
concerned with revealed preference in consumer demand theory are, e.g., Richter (1971),
Varian (1982), and Pollak (1990). The latter discusses generalized budget sets.

One purpose of this paper is to find conditions under which a choice function
maximizes a real-valued function. In consumer demand theory such a function is called
the consumer’s utility function. Another purpose is to provide a thorough study of the
consequences of the well-known independence of irrelevant alternatives (IIA) condition.
A third purpose is to generalize the Nash bargaining solution.

We will first observe that a choice function maximizes a binary relation if and only if it
satisfies IIA. This condition was introduced by Nash in his seminal 1950 paper on the
bargaining problem. Next we show that the combination of Pareto optimality and IIA for
a choice function in general only excludes cycles of length 1 or 2 in the revealed binary
relation. If the dimension is 2, then also cycles of length 3 are excluded, but cycles of
length at least 4 may still occur. For the latter case (i.e., n = 2), adding a weak form of
continuity called Pareto continuity suffices to exclude circularity of the revealed binary
relation; in general, however, even “1ull” continuity does not exclude cycles. For the case
of 2-dimensional linear budget sets, related work was done by Samuelson (1948) and
Rose (1958).

The main result of the paper is obtained by strengthening Pareto continuity to
continuity: this condition together with Pareto optimality, and IIA for n =2 or the
(stronger) strong axiom of revealed preference for n > 2, is sufficient for the existence of
a function representing the revealed binary relation, i.e., of a function which is maxi-
mized by the choice function. We finally show that this representing function must be
strongly monotonic and strictly quasiconcave and, conversely, that the existence of a
representing function with these properties implies the conditions of continuity, Pareto
optimality, IIA, and the strong axiom of revealed preference for the choice function.

The organization of the paper is as follows. Section 2 gives elementary definitions and
considers the role of IIA. Sections 3 and 4 study the (a)cyclicity of revealed preference
without and with continuity conditions, respectively. Section 5 is devoted to the afore-
mentioned main result and briefly discusses an application to bargaining game theory.
Section 6 shows that the results can be extended to other domains, and concludes.
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2. THE ROLE OF I1A

We denote by X the set of all possible alternatives (for a consumer, a group of
bargainers,...). In this paper, with the exception of Section 6, X =R",, and a choice
situation is a nonempty convex compact subset of X. The collection of all choice
situations is denoted by 3.

A choice function is a map F:3 — X with F(S) €S for every S €3. Note that in this
paper a choice function is single-valued by definition. From F we derive a binary
relation R on X as follows: xRy (“x is directly revealed preferred to y”) if there is an
S €3 with x=F(S), yeS.

Sometimes choice functions can be derived from binary relations. A binary relation >
on X represents a choice function F if for every choice situation S we have

2.1) {F(S)}={xeS:x>y forevery y in S},

i.e., F uniquely maximizes > on S.

Obviously not every binary relation represents a choice function, and not every choice
function can be represented by a binary relation. The following condition will character-
ize, within the set-up of this paper, the choice functions which can be represented by a
binary relation. It was introduced in Nash (1950) for bargaining game theory, and is
central in this paper.

DeriniTioN 2.1: The choice function F satisfies independence of irrelevant alternatives
(ITA) if for all choice situations S and T with S ¢ T and F(T) € S we have F(S) = F(T).

THEOREM 2.2: The choice function F can be represented by a binary relation = if and
only if F satisfies 11A.

Proor: First suppose F is represented by = . Let S,T €3 with ScT and F(T) € S.
By definition {F(T)}={x€T:x>=y for every yeT)}. So {F(T)})={xeS:x>=y for
every y € S}. From this we conclude that F satisfies ITA.

In order to prove the converse, suppose F satisfies IIA. Define > :=R. Then, for
every S€3, F(S)>=y for every y€S. We still have to show that F(S) uniquely
maximizes > on S, for every S € 3. Suppose there is an S €3 with y €S and y = F(S),
i.e., YRF(S). Then there is a T€ X with F(S)eT and y = F(T), so by IIA applied
twice, y = F(T N §) = F(S). This completes the proof. Q.E.D.

In defending the IIA-condition Nash (1950, p. 195) argues that (two) rational individu-
als, agreeing on a common choice x from 7, should find the agreement to choose x from
§ c T “of lesser restrictiveness” than the agreement to choose x from 7', and thus should
also agree to choose x from S. Theorem 2.2 and Formula (2.1) clarify how the presence
of fewer points in S may make it “of lesser restrictiveness” to agree on the choice x
from S: in S the players must agree on [x = y] for fewer points y. Thus Theorem 2.2
clarifies two ideas which may have been underlying Nash’s intuition: firstly, that the two
players should choose in accordance with a binary “group preference” relation, and,
secondly and more basic, the idea that the two players may be considered as one decision
unit on which consistency requirements can be imposed.

Let us further note that Theorem 2.2 essentially depends on the restrictive framework
in this paper, in which the choice function is single-valued and has a domain which is
intersection-closed. Under more general circumstances many other conditions for choice
functions have been formulated in the literature which in the context of this paper are
equivalent to IIA. We mention the weak axiom of revealed preference (see Samuelson
(1938)), property a and property 8 of Sen (1971), renamed nonincreasing eligibility and
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nondecreasing eligibility in Wakker (1989a), the independence of /from irrelevant alter-
natives of Luce (1959) and Kaneko (1980), and the V-axiom of Richter (1971). Most of
these properties were studied in the context of consumer demand theory. Arrow (1959)
showed that IIA (called C4 there) is necessary and sufficient for the existence of a
transitive complete representing binary relation under the restrictive assumption that the
domain of the choice function contains all finite subsets of X.

The next two sections deal with the (a)cyclicity of the binary relation in Theorem 2.2.
In Section 3 we consider choice functions without the (Pareto) continuity property; in
Section 4 we will add Pareto continuity and continuity.

3. (A)CYCLICITY OF REVEALED PREFERENCE WITHOUT CONTINUITY

Let F be a choice function and R the corresponding directly revealed preference
relation. We write xPy if there exists an S €3 with x=F(S)and y€ S, y # F(S5). P is

called the directly revealed strict preference relation. For x=(x{,x,,...,x,), y=
YY) EX, we write x>y if x; >y, for i=1,2,...,n and x>y if x,>y, for
i=1,2,...,n; x <y, x <y are analogous. For T c X, conv(T) denotes the convex hull of

T and comv(T)={xe€X:x<y for some y €conv(T)} denotes the comprehensive
convex hull of T. For S €3, P(S):={x € S:there isno y €S with y >x, y # x} denotes
the Pareto optimal subset of S. F satisfies Pareto optimality (PO) if F(S) € P(S) for every
Ses.

Lemma 3.1: (i) For every x € X we have xRx and not xPx. (ii) Suppose F satisfies PO and
IIA. Let x,y €X with x+#y. Then the following three statements are equivalent:
(a) xRy, (b) xPy, (c) x = F(S) for every S €3 withx €S and S C comv{x, y}.

Proor: (i) xRx since F({x}) =x. [Not xPx] is obvious. (i) (b) = (a) by definition. To
prove (a) = (c), suppose xRy. Then x = F(T) for some T €3 with conv{x, y} < T; so
F(conv{x, y}) =x by IIA, hence by PO and IIA, F(S)=x for every § €3 with P(S)=
conv {x, y}; so by IIA again x = F(S) for every § €3 with x €S and S c comv{x, y}. We
have proved (a)=> (c). Suppose (c) is true; then x = F(conv{x,y}) so xPy. (c)= (b)
follows, which completes the proof. Q.E.D.

Lemma 3.1 (and the arguments in its proof) will often be used without explicit
mentioning.

DeriniTION 3.2: The choice function F satisfies the strong axiom of revealed preference
(SARP) if there does not exist a cycle x = x%Px'Px? - - - x*~1Px* = x, where k > 0 is the
length of the cycle.

The condition SARP and the following result (formulated here in a way suited for our
context) have been obtained by Ville (1946) and, independently, by Houthakker (1950)
for general contexts. Kim (1987) has shown that slight weakenings of the transitivity of
the binary relation do not affect the characterizing condition.

THeoREM 3.3: There exists a transitive binary relation representing F if and only if F
satisfies SARP.

The following question arises: Are there in our context simpler and more appealing
conditions which are still strong enough to imply SARP? In view of Theorem 2.2, IIA is a
necessary condition. Further, we have the following lemma.
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Lemma 3.4: Let F satisfy 1IA. Then there do not exist cycles of length 1 or 2 in the
revealed preference relation.

Proor: Cycles of length 1 are excluded by Lemma 3.1(i), which also excludes cycles of
length 2: xPyPx would by IIA imply x = F(conv{x, y}) =y and hence xPx. Q.E.D.

The last property in Lemma 3.4, nonexistence of cycles of length 2, is known as the
Weak Axiom of Revealed Preference (WARP); see e.g. Richter (1971). Further discussion
is postponed until the end of the next section.

In the sequel we shall always assume Pareto optimality. In consumer demand theory it
is an implicit condition; in bargaining game theory it is fairly standard. In what follows,
l(a, b) denotes the straight line through the points a #b in X.

Lemma 3.5: Let n =2, and let F satisfy PO and IIA. Then there do not exist cycles of
length 3.

Proor: Assume the following:
3.1) a,b, x € X satisfy aPb and xRb.

In view of the reflexivity of R (Lemma 3.1(i)) and the definition of P it follows from (3.1)
that a # b, a #x, b #x. We will show that xRa; in some cases the additional require-
ment bPx will be needed. Nonexistence of cycles of length 3 then follows immediately.

In order to prove xRa, we list the following cases, which essentially exhaust all
possible configurations of {a, b, x}.

(3.1a) axb,
(3.1b) b,<ay, by>a,,
(3.1.b.1) x; <by, x onor above /(a,b),

(3.1.b.2) x; <by, x,>b,, x strictly below I(a, b),
(3.1.b.3) x € comv{a, b},

(3.1.b.4) x,>a,, x onorbelow [(a,b),

(3.1.b.5) x,<a,, x strictly above I(a, b),
(3.1b.6) x;>ay,a,<x,<b,,

(3.1.b.7) x,<ay, x, <b,, x strictly above [(a,b).

Note that the case b > a is excluded by aPb and PO. Also the case x > b is excluded by
xRb and PO. Further, the cases with b, > a,, b, <a, are analogous to (3.1.b.1)-(3.1.b.7)
and are therefore omitted. The proof of xRa is given in two steps.
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Step 1: In the cases (3.1.a), (3.1.b.1), (3.1.b.3), and (3.1.b.4), we have xRa.

RPROOF: (3.1.2): xRa would by Lemma 3.1(i) imply x = F(conv{x, a, b}), contradicting
xRb.

(3.1.b.1): Same proof as for case (3.1.a).

(3.1.b.3): By aPb and Lemma 3.1(ii) we have a = F(conv{a, b, x}), so aPx, hence xRa.

(3.1.b.4): Let S = conv{x, a, b}. If F(S) € conv{a, b} then F(S)=a and hence aPx. If
F(S) € conv{a, x}, then F(S) # x since otherwise xRb; so by IIA also F(conv{a, x}) #x,
which by Lemma 3.1(ii) implies xRa. This completes the proof of Step 1.

Step 2: Suppose bPx. Then xRa in the cases (3.1.a), (3.1.b.1)=(3.1.b.4), and (3.1.b.7).
The cases (3.1.b.5) and (3.1.b.6) cannot occur.

Proor: In view of Step 1 we still have to consider the cases (3.1.b.2), (3.1.b.5)-(3.1.b.7).

(3.1.b.2): Let S = conv{x, a, b}. If F(S) € conv{a, b} then F(S) =a by IIA, so aPx. If
F(S) € conv{x, b}, then F(S)=b since bPx, which leads to the contradiction bPa.

(3.1.b.5), (3.1.b.6): By Lemma 3.1(ii), bPx, and a € comv{b, x}, we would have bPa, a
contradiction.

(3.1.b.7): Let T:=conv{a,b,x}. If F(T) € conv{b, x}, then F(T)=>b, which would
imply bPa, a contradiction. So F(T) € conv{x, a} and F(T) # x since otherwise xPb. So
by IIA, F(conv{x,a}) # x, hence xRa by Lemma 3.1(ii).

This completes the proof of Step 2, and of the lemma. Q.E.D.

The following example, which was not easy to construct, shows that for n = 2, IIA and
PO are not sufficient to exclude cycles of length greater than 3.

ExampLE 3.6: We define the following subsets of X =[R2, (see Figure 1):
Gi={xeX:x,>4,x,>4+2/2} - {(4,8)}
_{xeX:x1<4+2\[2_,x2<8, (x1—4—2\/—2_)2
2
+(x,—8-2V2) >16},
Gy={xeX:2<x, <4} - {x€X:x,<10, (x, - 4)* + (x, - 10)* > 4},
Gy={reX:4<x,<4+2/2} - {(8,4)}
_<xeX:x1<8,(x1—8—25)2+(x2—4—2\/5)2>16},
Gy={xeX:2<x, <4}~ {x €X:x, <10, (x, — 10)* + (x, - 4)* > 4},
Gs={(8,4)},
Go={x€X:x,29} -G, - G,,
G,={xeX:x;>8}-G,-G;-G,,
Gg= {(4’8)}’
Gy=X\(G,U - UGy).
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¢ 1 2 a L 8 9 10
4+2V2"
FiGURE 1.—A choice function satisfying IIA and PO, but violating SARP. G; > - - > Gg. On
G,,G,,Gs, G, the first coordinate is maximized. On G,,Gj3, G, G, the second coordinate is
maximized. On G, x,x, is maximized. A cycle aPbPcPd results.

Further a:=(9,1), b=(4,8), ¢c:=(8,4), and d:=(1,9). Let the transitive binary
relation S on X be defined as follows:

() x5 foralli<j, x€G;,, yeG;,i,j€{1,2,...,9

(i) On G,,G,,Gs,G,, & is the lexicographic order.

(iii) On G,, G;, G, Gg, £ is the reversed lexicographic order (first maximizing the
second coordinate).

(iv) On Gy, & maximizes the product x,x,. 5

We define F as the choice function maximizing >. It can be seen that F is
well-defined, and satisfies IIA, PO, and SARP. We define > to be equal to S with one
exception: b > ¢ instead of ¢ =b. So > is not transitive. We define F as the choice
function maximizing . Then also F is well-defined and satisfies PO and IIA (by
Theorem 2.2), but F does not satisfy SARP: aPbPcPdPa, a cycle of length 4.

This section is concluded by an example showing that if n > 2, IIA and PO admit
cycles of length 3.

ExampLE 3.7: Let n =3 and let the choice function F:3 — X be defined as follows.
Let Yi={xeX:x>(,1,1)} and let S €3. If S contains an interior point of Y, then let
F(S) be the unique point of YNS where the product (x; —1)(x,—1Xx;—1) is
maximized on this set; then F(S)>(1,1,1). If SNY =, then let F(S) be the unique
point of § where the product x,x,x; is maximized on S. If SNY# & and x, (resp.
X,,x3) =1 for all x€SNY, then let F(S) be the Pareto optimal point of S NY with
maximal third (resp. first, second) coordinate. Then F can be seen to be a well-defined
choice function satisfying IIA and PO. The corresponding revealed preference relation
contains cycles of length 3, e.g. (2,1,1)P(1,1,2)P(1,2,1)P(2,1,1).

4. (A)CYCLICITY OF REVEALED PREFERENCE WITH CONTINUITY

The following additional condition for a choice function was introduced in Peters
(1986).
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DerINITION 4.1: A choice function F:3 — X satisfies Pareto continuity (PC) if for
every sequence S,S,,S,,... in 3 with S, = S and P(S,) — P(S) (where the limits are
taken with respect to the Hausdorff metric) we have F(S,) — F(S).

For n=2 and S €3, let D'(S) be the point of P(S) with maximal first coordinate,
and let D3(S) be the point of P(S) with maximal second coordinate. D' and D? are
choice functions satisfying PO, IIA, and Pareto continuity but not continuity (see Def.
4.9). Note that for choice functions F satisfying PO and IIA we have F(S)=F(T)
whenever P(S) = P(T): so, for such F, requiring Pareto continuity instead of continuity
seems reasonable.

The remainder of this section is devoted, firstly, to proving that the combination of
PO, PC, and IIA for a choice function F implies SARP if n = 2; secondly, to showing
that for n > 2 these conditions, even with full continuity instead of PC, do not suffice to
exclude cycles. For x #y, [ (x,y) denotes the straight closed halfline through x and y
with endpoint x.

LemMma 4.2: Let F satisfy PO, IL4, and PC. Let v,w € X with v #w.

() If wPv then wPx for all x €1, (w,v)\ W)}, and wPx' for all X' <x €1, (w,0)\ {w}.

(ii) [xPv or xPw] for all x € conv{v,w}\{v,w}, and [x'Pv or x'Pw] for all x' > x with
x € conv {v, w}\ {v,w}.

Proor: (i) Suppose wPv. By convexity of choice situations this immediately implies
wPx for all x € conv{v,w}\ {w}. The case remains where x €/,,(w,v), x not between v
and w. Let S := conv{x,w). If F(S) € conv{v,w} then, by IIA, F(S) = F(conv{v,w}) =w,
so wPx. The case remains where F(S) & conv{v,w}. We will show that this case cannot
occur. By PC the function y — F(conv{y,w}) is continuous on I(v,w). Its image must be
connected, so there is a y €conv{x,v} such that F(conv{y,w})=v. This and
F(conv{v,w}) =w contradict IIA. So everything concerning x in (i) has been proved.
The result concerning x’ follows from consideration of comv {x, w}.

(ii) Let x' be as in (i) (possibly x'=x). If x'>v or x'>w, then we are done.
Otherwise, note that conv{w, x'} U conv{x’,v} is the Pareto optimal subset of
conv {w, x’, v}. W.Lo.g. suppose F(conv{w, x',v}) & conv{w, x'}. By PC the function y —
F(conv{y, x',v}) from conv{w, x'} to conv{w, x'} U conv{x’,v} is continuous. Its image
must be connected; hence F(conv{y, x’,v}) =x' for some y € conv{x’,w}. This implies
x'Puv. Q.E.D.

Up to Theorem 4.8 we make the following assumption:
(4.1) n =2 and F satisfies PO, IIA, and PC.

We will show that P has no cycles by induction based on Lemma 3.5, which says that
there are no cycles of length 3. Fix a sequence a,b,...,y,x of length at least 4 with
aPbP - - - PyPx. We want to show: xRa. The induction hypothesis is that no cycles of
length smaller than the length of (a, b, ..., y, x) exist. This implies:

) For all v and w in this sequence with vP - - - Pw and not both v =a
4.2) and w =x, we have wRv. Further, xRa if there are v and w in the
sequence with w not the immediate successor of v and vPw.

Note that aPb and xRb. Again (3.1.a)-(3.1.b.7), distinguished in the proof of Lemma 3.5,
are essentially all possible cases. Step 1 in the proof of Lemma 3.5 (in which only xRb is
used) implies the following lemma.
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LemMma 4.3: In the cases (3.1.a), (3.1.b.1), (3.1.b.3), and (3.1.b.4), we have xRa.

The remaining cases (3.1.b.2), (3.1.b.5), (3.1.b.6), and (3.1.b.7), are treated in the
following lemmas.

Lemma 4.4: In case (3.1b.2): x, <b, <ay, x,>b,>a,, x strictly below I(a,b), we
have xRa.

Proor: From Lemma 4.2(i) with a in the role of w and b in the role of v, it follows
that (even) aPx. Q.E.D.

LemMma 4.5: Case (3.1.b.6): x, > a; > by, a, <x, <b,, cannot occur.

Proor: yPx, x >a, and Lemma 3.1(i) imply y = F(conv{a, y, x}). So yPa in contra-
diction with (4.2). Q.E.D.

Lemma 4.6: Case (3.1.b.7): b, <a,, x, <ay, b, >a,, b, >x,, x strictly above l(a, b),
cannot occur.

Proor: We consider all possible locations of y. If y; <a; and y on or below I(a, b),
then aPy in view of Lemma 4.2(i), so from (4.2) we obtain xRa. Since by (4.2) also xRb, a
contradiction with Lemma 4.2(ii) follows. If y, > a;, and y on or below /(x, a), then xPa
would by Lemma 4.2(i) imply xPy which is a contradiction. So xRa, but as before that is
also impossible. If y, > b, and y on or above /(a, b), then b € comv{x, y}, so yPb by
Lemma 3.1(ii) (since yPx), in contradiction with (4.2). If y,<a, and y on or above
I(x, a), then a € comv{x, y}, so yPa (since yPx), in contradiction with (4.2). Also y >a
would imply the contradiction yPa. The only possibility left is: y strictly above /(a, b),
y, <b,, y; <a,. In that case, yPa or yPb by Lemma 4.2(ii), in contradiction with (4.2).

Q.E.D.

Lemma 4.7: In case (3.1.b.5): by <ay, b,>a,>x,, x strictly above I(a,b), we have

xRa.

Proor: Suppose xPa. Then xPaPb --- Py, and yPx. By the previous lemmas, yPx is
excluded in all possible configurations except for the configuration described in this
lemma, so a; <x,, a,>x,>Yy,, y strictly above I(x, a). If z is the immediate predeces-
sor of y, then yPxPaPb - -- Pz and zPy. Again, the only possible configuration for this is:
x, <Yy, X,>Y,>2,, z strictly above I(y, x). Repeating this argument we find for the
final step bPcP -- - PzPyPxPa and aPb: ¢, <b,, ¢, > b, > a,, a strictly above I(b,c). In
particular, b; >¢; > -+ >y, >x; >a; > by, an obvious impossibility. Q.E.D.

Lemmas 3.4 and 3.5, and Lemmas 4.3-4.7, imply the following theorem.
THEOREM 4.8: For n =2, PO, IIA, and PC imply SARP.

Samuelson (1948) and Rose (1958) essentially showed that PO and WARP suffice to
exclude cycles, for a single-valued choice function defined on only 2-dimensional linear
choice situations (i.e., budget sets of the form comv{(a,0),(0,b)} where a,b €R,).
Theorem 4.8 extends this result to choice functions defined on nonlinear 2-dimensional
budget sets, while weakening WARP to ITIA.
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The next question is whether Theorem 4.8 will still hold if n > 2. Gale (1960) has
provided an example of a continuous demand function defined on 3-dimensional linear
budget sets which satisfies PO and WARP but not SARP. In other words, the result of
Rose (1958) mentioned before does not have to hold if there are more than 2 commodi-
ties. In the Appendix we will show that Gale’s example can be extended to 3-dimensional
nonlinear budget sets (our choice sets) as well. This can be done even with PC
strengthened to full continuity:

DerFNiTION 4.9: A choice function F:3 — X is continuous if for every sequence
$,81,8,,... in 3 with S, = (where the limit is taken with respect to the Hausdorff
metric) we have F(S,) — F(S).

The appendix shows that WARP does not imply SARP for dimension n =3, by
extending the example of Gale (1960) to nonlinear choice sets. The extension to higher
dimensions, also for linear budget sets, will be given in Peters and Wakker (1991). For
linear budget sets a theoretical argument has already been given in Kihlstrom, Mas-Colell,
and Sonnenschein (1976, first paragraph of page 975).

Another interesting question is whether ITA can be strengthened in an appealing way
in order to imply SARP. For instance, for each dimension n, can one find a natural
number k(n) such that requiring the exclusion of cycles of length smaller than or equal
to k(n), instead of IIA, implies SARP? For linear budget sets the answer is negative, as
follows from Shafer (1977). For our case the answer is also negative: this can be shown by
extending Shafer’s 3-dimensional example to nonlinear budget sets in the same way as is
done in the Appendix with Gale’s example.

5. REPRESENTATION OF REVEALED PREFERENCE

Let F be a choice function. x € X is revealed preferred to y € X, notation xRy, if there
exists a sequence x =x%x',...,x* =y in X with x’Rx'R --- Rx*. If in this sequence
x'Px'*1 for some i €{0,1,...,k — 1}, x is revealed strictly preferred to y, notation xPy. By
Wakker (1989b, Corollary 1.2.12, (vi) and (vii), and Theorem 1.2.5, (ii) and (vi)), F
satisfies SARP if and only if P is the asymmetric part of R. Note that in our case, by
Lemma 3.1(i), if x #y and xRy, then xPy. _ _

Although it is not impossible that R is complete (i.e., xRy or yRx for all x, y € X; for
instance let n =2 and F = D), this will in general not be the case. For instance, if n =2
and F is the Nash choice function N (that is, N(S) is the point of S €3 where the
product x,x, is maximized over S), then neither (1,2)R(2,1) nor (2,1)R(1,2)). Also, R
does not have to be “representable” by a real-valued function on X; f: X — R represents
the binary relation > on X if [x =y = f(x)>f(y)] and [x >y = f(x) > f(y)] for all
x,y €X, where > is the asymmetric part of . For instance, if R is revealed by D!
then R is the lexicographic order on X which is well-known not to be representable by a
real-valued function.

The main purpose of this section is to find sufficient conditions for F such that the
corresponding revealed preference relation R is representable by a real-valued function
f- Such a function will be called a utility function (of the consumer, or the group of
bargainers). It will be shown that f is strongly monotonic and strictly quasi-concave (see
above Lemma 5.4). Up to Theorem 5.3 we assume:

(5.1) F is continuous and satisfies PO and SARP.

The following lemma can be derived from Corollary 1 in Jaffray (1975) applied to the
transitive, asymmetric partial order P.
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LemMa 5.1: If there exists a countable subset A of X such that for all x, y € X with xPy
there is an a € A with xPaPy, then there exists a function f: X - R such that [xPy =
f(x)>f(y)] forallx,y €X.

Remark: Lemma 5.1 is a variation on a result by Debreu (1954, Lemma II); the latter
holds for weak orders (transitive complete binary relations). Actually, given an enumera-
tion A ={a,, ay,.- } of the set A4, a function f as in Lemma 5.1 is easily defined:
fix= Xy 5,2 %1 See Jaffray (1975) for further details.

A set A as in Lemma 5.1 can be obtained as follows:

(52) A={a€X:a=F(conv{x,y}) for some x,y e XN Q"}.

LeMMA 5.2: Let x, y € X with xPy. Then there exists an a € A with xPaPy.

Proor: First assume xPy. Choose sequences (x),(y) cX N Q" with x’' »x, y/ >y,
and with for all j: x/ <x, y/ >y, and 3x’ + 1y’ € comv{x, y}. By the continuity of F we
have F(conv{x’, y/}) — F(conv{x, y}) =x which 1mp11es there is some k € N such that
a = F(conv {x ,yk}) ecomv{x, y}. So a€A, and xPa in view of Lemma 3.1(i). Since
y € comv{a, y*}, also aPy. So this pomt a has the desired propertles

Next assume xPy. Then x =x°Rx! - -+ Re/~'Rx/ - -+ Rek =y with, say, '~ 'Px/. So by
the first part of the proof we have x/~ lPan’ for some a € A, hence also xPaPy. Q.E.D.

For an arbitrary choice function F and a real-valued function f on X, F maximizes f
if f(F(S))>f(x) for every S€3 and x €S, x + F(S).

THEOREM 5.3: Let F be a Pareto optimal continuous choice function. Then the following
two statements are equivalent:

(a) F satisfies SARP.

(b) F maximizes a real-valued function f on X.

Proor: Suppose F satisfies SARP. Then F satisfies condition (5.1), so by Lemmas 5.1
and 5.2 there is an f: X —» R with xPy = f(x) > f(y) for all x,y € X. Since F(S)Px for
all F(S)#x €S and S €3, F maximizes f. The implication (b) = (a) is straightforward.

Q.E.D.

Consequently, if the consumer’s demand function, or the bargainers’ solution, is
continuous, Pareto optimal, and satisfies SARP, then the consumer chooses as if
maximizing a utility function, and the bargainers reach a compromise as if maximizing a
group utility function. )

Next we will show that the function f in Theorem 5.3 is strongly monotonic, i.e.,
strictly increasing in each coordinate, and strictly quasiconcave, i.e., the set {y € X:
f(y) = f(x)} is “strictly convex,” for every x€X. A set TcX is strictly convex if
ax + (1 —a)y is an interior point of T whenever x,y €T, x#y, 0<a <1.

LemMA 5.4: Let F be a Pareto optimal continuous choice function which maximizes a
real-valued function f on X. Then f is strongly monotonic and strictly quasiconcave.

Proor: Let x,yeX with x>y, x#y. Then F(conv{x,y})=x by PO of F, so
f(x) > f(y). This proves strong monotonicity of f.


















