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Abstract

The idea of expected utility, to transform payments into their utilities before
calculating expectation, traces back at least to Bernoulli (1738). It is a very natural
idea to transform, analogously, probabilities. This paper gives heuristic visual
arguments to show that the, at first sight, natural way to do this, at second thought
seems questionable. At second thought a sound and natural way is the way of
anticipated utility, as indicated by Quiggin (1982).

SECTION 1. INTRODUCTION

In this paper we present a new argument, heuristic and visual, for a new approach
to decision making under risk, the ‘anticipated utility’ approach. It has been initiated
by Quiggin (1982) and Yaari (1987a) (and Schmeidler, 1982), and deals with the idea
to transform probabilities. While being very old, this idea until recently did not lead
to sound theories. As we shall argue this is because, loosely spoken, the old approaches
to transformed probabilities ‘transformed the wrong probabilities’ when calculating ex-
pectation. This prevented the idea from becoming full-blown. Only recently, through
the references mentioned above, it has become understood how to integrate with re-
spect to transformed probabilities, i.e., how to calculate expectations with respect to
transformed probabilities. This is best done by means of the ‘Choquet-integral’, in-
troduced by Choquet (1953-4), or its analogues as used in this paper. The purpose of
this paper is to give a visual presentation by means of which the reader may come to
the intuition that the anticipated utility approach, rather than older approaches, is a
natural analogue of expected utility. Hopefully this will interest the reader in getting to
know more about anticipated utility to decision making under risk, and to consult the
references given at the end. Finally a remark on terminology. Instead of ‘anticipated
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utility’ one also finds in the literature terms such as ‘rank-dependent expected utility’,
‘rank-ordered expected utility’, ‘expected utility with rank-dependent probabilities’.
The latter term reflects best the idea of the new approach, but is not concise.

SECTION 2. LOTTERIES AND EXPECTATIONS

The simplest approach to decision making under risk consists of the maximization

of ‘expected value’. Let (p;;zy,...,pn;Z,) be a lottery yielding $z; with probability
pj, 3 =1,...,n. Then the expected value of the lottery is

ipﬂj : (1)

With the reader’s indulgence we present, as a necessary preparation for the sequel,
two elementary illustrations. In Figure 2.1a the shaded area indicates the expected
value. The first column has height z; and breadth p;, hence its area gives the first
term p;z; of the summation of expected value; etc. Let us emphasize that we
assume in the sequel that the outcomes z,,...,z, have been ordered so that
Ty > Ty > -+ > x,.0 Also we assume that all x;’s are positive; this is merely done
for convenience. Figure 2.1b shows an alternative illustration of expected value. It has
simply been obtained from Figure 2.1a by rotating to the left and flipping (as the reader
may imitate with this paper). Obviously, the size of the shaded area is not affected by
these operations. If one considers the shape in Figure 2.1b as the graph of a function,
denoted by G, then the area in it is the integral of G. This function G in fact is the
‘decumulative distribution function’ of the lottery; the decumulative distribution
function® assigns to any real number t the probability that the lottery will yield at
least $t, i.e.,

G : t — P(lottery yields $t or more) .

Indeed, for every t € R, the height of the graph is the sum of the probabilities of
the z,’s to the right of t. Hence the expected value of the lottery can also be obtained
as the integral of the decumulative distribution function, i.e.,

(By elementary means, such as integration by parts, the above integral can be
reduced to the more common [z, tf(t)dt, with f the usual density function, so f the
derivative of —G.)

A challenge to the maximization of expected value was posed by the ‘St. Petersburg
paradox’. Suppose p; = 277 for all j, and z; = 2/ for all j. Then the expected value
of the lottery (pi;@1,...,Pn;%n,27™;0) is n. It turned out however that for large n

'For formula (3) the inequalities #; # zy # --- # x, will be essential. For section 4 the weak
inequalities #; > xy > --- > z, will be essential.

2Probably better known than the decumulative distribution function is the usual ‘(cumulative) distri-
bution function’, assigning P(lottery yields $¢ or less) to every real number ¢. For the visual presentation
of this paper the decumulative distribution serves best; we are following Yaari (1987a) in this. Yaari
also uses such a visual presentation to consider anticipated utility as dual to expected utility.
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FIGURE 2.1. Expected value represented as area.
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individuals were in no way willing to pay $n to participate in such a lottery. Usually
not more than $4 would be paid. Bernoulli’s idea was that one should not calculate
the expectation of the outcomes of money, but one should first transform the amounts
of money by a ‘utility function’ U, and only then calculate expectation. As utility
function Bernoulli proposed the logarithm. Indeed, 374 277 log(2’) tends to log(4)
as m increases, so Bernoulli’s approach indeed explains that people will not pay more
than $4 for participation in the lottery. (We prefer the presentation as above, with
‘large’ n, to the presentation with n = oo. Intuitions of people are frequently misled
by meaningless mathematical conventions concerning 00.)

ULES N
U(xz) ........
U(x3) ........ 3
N
Xn. ...........................................
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FIGURE 2.2.Expected utility (and expected value). To calcu-
late expected utility, for all j the height from X down to
the x-axis is transformed into the height U(X:) ., Then the

. , 3
area shaded by [K3r including [XY, gives the expected utility.
(The area, shaded by [Z1,including [K), gives expected value.)

With further indulgence of the reader, Figure 2.2 gives an elementary presentation
of expected utility, again as a preparation for the intuitive argument to be developed.
As compared to Figure 2.1a, for expected utility first the heights of the columns are
transformed; the height z; is transformed into U(z,), the height z, (down to the z-
axis!) is transformed into U(z.), etc. Finally, the expected utility of the lottery is
the area shaded by \\\ in Figure 2.2 (including the xxx-area), i.e.,

> pUla;) o

The expected utility approach became full-blown when it received behavioural foun-
dations by von Neumann & Morgenstern (1944) and Savage (1954). It stirred statistical
literature, a topic we shall not pursue here. Expected utility was used to explain phe-
nomena related to risk. For instance ‘risk aversion’ was explained through concavity
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of the utility function. If the utility function is concave then indeed a lottery is never
preferred to its expected value. Also expected utility was used to model comparisons
of attitudes of decision makers towards risk. A first decision maker is at least as risk
averse as a second if the values —U" /U' for the first decision maker are nowhere smaller
than those for the second. Indeed, if then the first decision maker prefers a lottery with
nonconstant outcomes (so with risk involved) to a certain amount of money, then the
second decision maker will also prefer the risky lottery. This has been found indepen-
dently by Pratt (1964) and Arrow (1965, 1971).

Still, people have not been fully satisfied by the above results of expected utility.
When being informed about the explanation of risk aversion through concavity of the
utility function for the first time, most people feel a moment’s disappointment. One
would think that the utility function rather reflects the decision maker’s appreciation
of money, than his attitude towards risk. (Be it that the appreciation of money con-
cerns the dealing with risk, which is possibly different from -interval scale = cardinal-
appreciations of money in other contexts.) And one would want to reflect attitudes
towards risk by means of the way in which probabilities are incorporated, rather than
the way in which money is incorporated. An idea is that maybe this can be achieved
by transforming probabilities, just as well as Bernoulli transformed payments. Let us
denote the transformation by . At first sight it may seem self-evident that a lottery
is now to be valued by the following modification of (1) :

) e(pj)z; - (3)

It is then natural that ¢ should be nondecreasing, and that ¢(0) = 0; further we may
normalize ¢(1) = 1. This idea was proposed for instance in Edwards (1955, p. 201,
second column, lines 34-38, and formulas (3) and (4)); it was considered natural. We
shall dispute that naturalness. A first-sight-heuristic argument to suggest that there
may be a difference between the payments and the probabilities in (1) is that the
payments are free variables, whereas the probabilities are restricted to sum to one.
The aim of this paper is to give a more sophisticated heuristic to see the difference.

The new valuation of the lottery of Formula 3 is illustrated in Figure 2.3, by the
area shaded by \\\ (including the xxx-area). Not the heights of the columns, but the
breadths, have now been transformed.

The importance of (3) may appear from the central role given to it in ‘prospect
theory’ of Kahneman & Tversky (1979). The idea already occurred in older papers,
see for instance Preston & Baratta (1948). Further references are Edwards (1962),
Coombs, Bezembinder & Goode (1967), Tversky (1967), and Wallsten (1971). More
references are given in Edwards (1954), Luce & Suppes (1965), and Machina (1982, pp.
290-292). Sometimes the transformed probabilities ¢(p;) in this approach are called
subjective, and the probabilities p; are called objective. Let us emphasize that the
‘subjective probabilities’, additive and summing to one, as occurring in Savage (1954),
are ‘quite different’ (Edwards, 1962, p. 109) from the, nonadditive, not-summing-to-
one, transformed probabilities. For this reason Edwards (1954) proposed to consider
transformed probabilities not as probabilities, but as ‘decision weights’, a term also
used in prospect theory.

We hope to convince the reader that the approach which deals with transformed
probabilities as in (3), simply is not very suited.
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FIGURE 2.3.Transforming probabilities in the ‘old way'.
Breadths of single columns have been transforrped. Tl:le lot-
tery is now valued by the area, shaded by ESl, including [XA.
(The area, shaded by [, including [XJ, gives expected value.)

SECTION 3. THE PROBLEM WITH (3)

In this section we show what the problem is with (3). This has been pointed out
for instance in Kahneman & Tversky (1979). Obviously, if the transformation ¢ is
identity, then we deal with decision making as described by older approaches, and
no new problems will occur. We shall show that problems occur as soon as ¢ is not

identity. So say ¢ is not identity. Then, as we shall argue below, there must exist p,
and p, so that :

@(p1 +p2) # o(p1) + o(p2) - (4)

It is well-known that a function which has equality in (4) for all p; and p, can only
be nonlinear if it is ‘very strange’. For instance it can then only be obtained through
the ‘choice axiom’™ from mathematics, so that it will never be met in practice; its
graph must be dense in [0,1] x R, the function is nowhere continuous, is not Lebesgue
measurable, and is nowhere monotone (see Aczél, 1966). The latter shows that our
nonlinear and monotone ¢ must indeed for some p; and p, satisfy the inequality of (4).
Suppose

Case 1) : ¢(p1 +p2) > @(p1) + @(p2).
To show what may go wrong, we consider what happens if z, is decreased in Figure

2.3. That is illustrated in Figure 3.1. At first, not much interesting happens; see
Figure 3.1a. The height of the first column has decreased somewhat, and with that

*See Maddy (1988) for its controversial history. It should not be confused with the choice axiom for
probabilistic choice theory as in Luce (1959).
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FIGURE 3.1lc.X; hits” X,, An ‘explosion’ of new area to the left

occurs. It has been shaded denser. We added it to the left for
easy comparison. The two columns have been taken together into
one broader column. Because of this, the area is larger than in
Figure 3.1b. A decrease in payment has led to an increase in ar-
ea and valuation.

FIGURE 3.1.Formula (3) violates dominance. Applying Formula (3)
to different lotteries, differing w.r.t. payment X, reveals vio-
lation of stochastic dominance.
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its area. Some area has been lost, and the valuation of the lottery has decreased
somewhat. Note that the ordering of the outcomes, and the breadths of the columns,
have remained unaffected. In Figure 3.1b, z; has been decreased further, and with it
the area and the valuation of the lottery; =, here is very close to ;. The problematic
phenomenon occurs in Figure 3.1c, where z; ‘hits’ x,, i.e., z; = . Then no longer z,
and z, should be treated as different outcomes, with probabilities p; respectively p,.
Now they should be treated as one outcome, with probability p; + p,; of occurrence.*
The columns with heights z; and z, should now be taken together into one column,
with breadth ¢(p; + p2). As one sees, this is broader than the two separate columns
with joined breadth ¢(p;) + ¢(p2). So at the moment where z; hits z,, at the left
side an ‘explosion’ of area occurs. This gives a violation of continuity, which may seem
undesirable. However, there is a far more serious problem: it also gives a violation
of ‘stochastic dominance’! To see this, compare the area, in Figure 3.1b, when z; is
approaching z, so that still ; > z,, but z, is very close to z,, with the area in Figure
3.1c, when z; = z,. Because of the ‘explosion of area’ on the left side, the area in
Figure 3.1c is larger. That means that a decrease of payment has induced an increase
in valuation! This is exactly what a violation of (first-order) stochastic dominance
can be defined to be.

In Case 2, where ¢(p; + p2) < ¢(p1) + ¢(p2), analogously a violation of stochastic
dominance (and continuity) can be demonstrated, now by moving z, up to z; and by
revealing an ‘implosion’ of area. We do not elaborate this.

The problem that transformed probabilities no longer sum to one has been known
for a long time, see for instance Edwards (1954, p. 397/398). Because of this, the
breadth of areas like in Figure 3.1 is variable, which can be considered the main cause
for the violation of stochastic dominance of formula (3). Nevertheless, it is unknown to

us who has been the first to observe explicitly that (3) induces a violation of stochastic
dominance.

SECTION 4. ANTICIPATED UTILITY

To introduce anticipated utility, let us first return to the figures of section 2. Note
that Figures 2.2 and 2.3 are not fully analogous. In Figure 2.2 the heights all the
way down to the z-axis have been transformed, for instance the entire height from
zo down to the z-axis has been transformed into the height U(z;). In Figure 2.3 no
entire distances to the y-axis have been transformed, but only the breadths of single
columns. So naturally the idea of anticipated utility comes to mind: Why not, when
transforming breadths/probabilities, also transform entire distances to the y-axis, like
it is done in expected utility? This is illustrated in Figure 4.1. First the outcomes are
‘rank-ordered’ so that z; > 2o > --- > z, (in fact only z; > z, > --- > z,, is essential).
Then the procedure is as follows :

“The cruciality of this ‘notational’ detail in the application of Formula (3) is sometimes felt as
unsatisfactory.
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FIGURE 4.la.Endpoints of columns.In the illustration of expected
value we have now indicated the points z...-.r2 , the endpoints of
columns. These points will be shifted in Figure 4.1Db.
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FIGURE 4.1b. Anticipated utility. Now entire distances from the
points Zj to the y-axis have been transformed. And now z remains

at a distance 1 from the y-axis.

FIGURE 4.1. The anticipated utility approach to transformed pro-
babilities.
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Replace p, by ¢(p1)-

So the distance p; from z; to the y-axis in Figure 4.1a is
transformed, in Figure 4.1b, into ¢(p;), as it was done in
Figure 2.3. The breadth of the first column with height
xy is now ¢(py).

Replace py + p» by o(p1 + p2)-

So the distance p; + p; from 2, to the y-axis in Figure 4.1a
is transformed, in Figure 4.1b, into ¢(p; + p2), deviating
from Figure 2.3. The breadth of the second column with

height z, is now ¢(p1 + p2) — ¢(p1)-

Replace py +po + - +p1 by o(p1+p2+ -+ Pao1)-

Replace py + p2+ -+ + pa by o(p1+p2+ -+ Dn)

The distance p; + po + -+ + p, (= 1) from z, to the y-axis
in Figure 4.1a is ‘transformed’, in Figure 4.1b, into

o(p1 +p2 + -+ +pn) (= 1), deviating from Figure 2.3. The
breadth of the n-th column with height z, is now

oPr+p2+-+pn) —e@1 +p2+ -+ Paci)-

The lottery is now valued by :

[o(p1)]z1 + [e(p1 +p2) — w(p1)]T2 + -+ + [@(P1 + P2+ - + Pn) —
e(P1+ P2+ + Pn1)]Za - (5)

This valuation can be reformulated exactly as the valuation by expected value was
reformulated in Figure 2.1b. See Figure 4.2. Again, this is obtained from Figure 4.1b
by rotating and flipping. Again the size of the shaded area is not affected by these
operations. The shape in Figure 4.2 is the graph of the function oG, with again G
the decumulative distribution function: All heights G(¢) have been replaced by their
p-values p(G(t)). So the lottery is now valued by

[ eoGtdt (= o)l + o +p2) — plp)las + -

+lp(pr+ D2+ +pn) —0(P1 + D2+ + Do1)]Tn) (6)
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FIGURE 4.2. An alternative presentation of anticipat'ed utility.
Figure 4.1b has been rotated left, and flipped horizontally.
The figure gives the graph of ¢oG.

SECTION 5. DISCUSSION AND EXAMPLE

The valuation by means of the integral in (6) is exactly the expected value of
the lottery which has ¢ o G as decumulative distribution function, instead of G.° So
one may say that anticipated utility first transforms the decumulative distribution
function, and then calculates expected value. Also ¢ oG can be considered a ‘capacity’,
and the valuation of the lottery the ‘Choquet-integral’ with respect to this capacity.
(See for instance Wakker, 1989b, section VI.2 for definitions.) In Wakker (1989d) it
is shown how anticipated utility for decision making under risk can be identified with
‘Choquet-expected utility’, the Choquet-integral approach for decision making under

SIf ¢ is continuous of the right then indeed poG is a decumulative distribution function of a o-additive
probability distribution.
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uncertainty,® for the special case where objective probabilities are known.

To be taken serious, anticipated utility should be able to stand some questions. One
of the first questions coming to mind (for instance when one sees the ‘main message’
in the concluding section 6) is a minor heuristic one: Why should one transform the
probabilities of receipt of a fixed outcome or anything better, and not the probabilities
of receipt of a fixed outcome or anything worse? The answer to this question is that it
does not matter which of these two is taken. The two methods are ‘data-equivalent’,
i.e., the set of decision strategies that can be modeled by the one method is identical
to the set of the other. If one uses a transformation ¢ in the approach of this paper,
then one should use the transformation ¢ : p — 1 — (1 — p) for the other approach. In
(6) one should then replace ¢ o G by ¥oF, with F the usual (cumulative) distribution
function. Relations between transformations such as ¢ and 1 above are central in
Gilboa (1989).

Further anticipated utility and the integral in (6) can directly be extended to lot-
teries with infinite range, and can for instance deal with continuous distributions.

Of more importance is the question of the empirical implications of anticipated
utility. We shall not elaborate these. An example of the most important empirical
implication will be given in the sequel. Further we confine ourselves to the observa-
tion that anticipated utility is free from anomalies in its empirical implications, such as
violations of stochastic dominance and of continuity.” Indeed sensible behavioural char-
acterizations of anticipated utility have been obtained, see Quiggin (1982), Schmeidler
(1982) and the simultaneous work of Yaari, published in 1987(a); and Gilboa (1987a).
Also Wakker (1989a, 1989b Chapter VI) gives a characterization of anticipated util-
ity in its version for decision making under uncertainty; here both transformation of
payments and of probabilities are incorporated. For more information on the empirical
implications of anticipated utility the reader should consult these references.

The most important empirical implication of expected utility is a kind of ‘indepen-
dence’ condition, varying somewhat from context to context. Of course, since antici-
pated utility is more general than expected utility, its empirical implications will be less
restrictive and less strong, so the most important empirical implication of anticipated
utility consists of the weakening of (the several versions of) independence to ‘como-
notonic independence’. Schmeidler (1982) and Wakker (1989c) consider a version of
comonotonic independence where probabilities are mixed, Yaari (1987a,b) considers a
version of comonotonic independence where payments are mixed. All these versions
apply only under the restrictive assumption that there is a kind of linearity w.r.t. the
mixtures. We shall not elaborate these conditions, but instead present a version of
comonotonic independence that is not restrictive: ‘comonotonic coordinate indepen-
dence’. It was introduced in Wakker (1989a, 1989b Chapter VI), as adaptation of
Savage’s ‘sure-thing principle’ (called ‘coordinate independence’ in Wakker’s papers;
see end of the following example). In Yaari (1987a,b) and Wakker (1989c, e) intuitive
explanations are given in terms of hedging respectively optimism/pessimism. Also
Gilboa (1987a) considers a variation of Savage’s sure-thing principle, but his variation
is more complicated.

In decision making under uncertainty no ‘objective’ probabilities have to be known in advance; lack
of information is modeled through a ‘state space’ as in Savage (1954).

"The latter is a somewhat more technical condition. Still it can add empirical content to other
conditions. See Wakker (1988, Example 7.3).
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EXAMPLE 1 [The main empirical implication of the anticipated utility-approach (‘co-
monotonic coordinate independence’)].

Suppose a die will be thrown. Either 1, or 2, ..., or 6 will come up, each with prob-
ability é By z = (z1,...,z¢) we denote the ‘lottery’ giving $z; if 1 comes up, ..., $zq
if 6 comes up. Suppose a person prefers a bet (z1,...,z¢) toabet (y =) (y1,.--,Ys)-
Suppose further that #; > z, > --- > z and that y; > yo > --+ > y¢°. In anticipated
utility the latter is central; to this the term ‘comonotonic’ refers. Suppose further that
z and y have a common outcome, say z, = y,. Then, if the person adopts anticipated
utility to determine his preferences, he will not change preference if the common
outcome is changed into another common outcome, say some z, = y;, as long
as the change of outcome does not affect the rank-ordering of the outcomes.
Le., if still z; >z, > -+ > zg and y; > yy > -+ > ys, then still (z1, 25, T3, T4, T5, T) is
preferred to (y1, Y5, Y3, Ys, Ys, Ys). Figure 5.1 illustrates how this can be derived.

The term comonotonic, abbreviating ‘common monotonic’, and introduced by Schmei-
dler, refers to the fact that the considered lotteries have the same rank-ordering of
‘coordinates’. Indeed the involved outcomes can be considered coordinates, associated
with fixed results of the throw of the die (such results are called ‘states of nature’ in
decision making under uncertainty); the term ‘coordinate’ should distinguish this in-
dependence condition from the other (‘mixture-’)versions. ‘Coordinate independence’
is short for ‘independence of equal coordinates’.

If the change of outcome does affect the ordering of outcomes, the preference may
be changed. To see this, suppose the person is a (‘super-pessimistic’) maximin de-
cision maker, i.e., values a lottery by its lowest outcome. This behavior, deviating
from expected utility, can be described by anticipated utility, by taking ¢(p) = 0 for
all p < 1 (then in Figure 4.2 all area to the right of z, vanishes). Then the above
preference holds if zg > ys. If 2, (= y5) becomes smaller than yg, so that indeed
the rank-ordering of outcomes has been affected, then indeed the preference changes.
Then (z1, 24, z3, 24, T5, Tg) becomes equivalent to (y1, Y5, Y3, Ys, Ys, Ys ), €ach lottery hav-
ing value z), = y;. This phenomenon distinguishes anticipated utility from traditional
expected utility. Under expected utility a change of a common outcome can never
change the preference (this is the meaning of the ‘sure-thing principle’/‘coordinate in-
dependence’), irrespective of whether or not the rank-ordering of outcomes is affected.

O

Let us take the opportunity to comment on (non-)differentiability of the valuation
of lotteries in anticipated utility. The most influential recent deviation of expected
utility, available in literature, is Machina (1982). He showed that results concerning
(‘higher-order’) stochastic dominance, and comparisons of risk attitudes, considered
before among the most important results of expected utility, could be obtained in a
very general framework, not needing expected utility; only a ‘Fréchet differentiability’
assumption is used. This assumption by itself is technical, but in the presence of other
assumptions may get empirical meaning, the status of which is not easy to determine.
(Compare Wakker, 1988, Example 7.3.) It is the kind of assumption that is often made
without further ado in applied literature. However, as shown by Chew, Karni & Safra
(1987, Lemma 1), anticipated utility is not Fréchet differentiable. As Karni (1988)
pointed out to the author, Figure 4.2 shows this in an easy way. Consider the shift of

*> instead of > would suffice
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FIGURE 5.1.Comonotonic coordinate independence. The common outcome
X2=Y2 froq Figure 5.la is replaced in Figure 5.1b by the common
outcome X2=§E' in such a way that the rank-ordering of outcomes
has not been affected. By this the areas of the left and right lot-
indicated by E51 . Hence
still the

tery have been increased by the same amount,
the ordering of the lotteries cannot have been affected,

left lottery must be preferred to the right.
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x; towards z,. At first this induces a decrease in (Choquet-integral)-value at ‘constant
speed’ ¢(p;). However, at the moment that xz; has ‘hit’ z, and continues becoming
smaller than z,, the constant speed suddenly changes into the speed ¢(p; +p2) — @ (p2).°
Loosely spoken, for Fréchet differentiability it is necessary that the speed of decrease is
the same in all directions, as long as the shifts are infinitesimally small; a sudden change
in speed as found above is not allowed. This means that the results of Machina’s theory
cannot be directly applied to anticipated utility. The above study of Figure 4.2 suggests
that ‘speed of decrease’ is constant for infinitesimal shifts, as long as these shifts go in
one direction; this is a loose-hand way to formulate ‘Gateaux-differentiability’. Indeed,
Chew, Karni & Safra (1987, Corollary 1) show that anticipated utility as presented in
this paper!? is Gateaux-differentiable. We think that the ‘sudden change of speed’ as
observed above, and the implied non-Fréchet differentiability, is one of the most serious
intuitive issues of anticipated utility.

SECTION 6. CONCLUSION

The new anticipated utility approach is, in a natural way, dual to expected utility.
In the usual expected utility one takes Figure 2.1a, transforms the heights, then takes
area. In the new anticipated utility approach one first flips and rotates Figure 2.1a
into Figure 2.1b, and only then transforms heights, and takes area. Let us phrase the
main message of this paper:

If one transforms probabilities, then one should not transform the proba-
bilities of receipt of a fized outcome, but one should transform the proba-
bilities of receipt of a fized outcome or anything better.

A final comment: The argumentation of this paper can be no more than heuristic,
with arguments based on flippings of figures; this of course depends upon the particular
way of illustration chosen in this paper, and the particular arrangement of columns in
the Figures. Still we hope that this paper will help the reader getting interested, and
encourage him /her to study the firm non-heuristic axiomatic justifications as provided
in the references.
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