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For the expected utility model with state dependent utilities, Karni, Schmeidler and Vind {1983)
have shown how to recover uniquely the involved subjective probabilities if the preferences, con-
tingent on a hypothetical probability distribution over the state space, are known. This they do
for consequence spaces, consisting of lotteries on sets of prizes. We adapt their work to conse-
quence spaces that are connected topological spaces, without using lotteries on them. E.g. our
consequences may be money, or commodity bundles.
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1. Introduction

One of the restrictions for the applicability of the usual expected utility model is
that in many cases the consequences are thus state-specific, that the usual state
independence is inconceivable. Already Ramsey (1931), the first derivation of
subjective expected utility, indicated that events may verv well nor be ethically
neutral, which comes down to the same thing as state dependence. Some references,
examples, and applications of state dependent expected utility are Eisner and Strotz
(1961), Section 1V in Yaari (1969), Arrow (1974), Cook and Graham (1977). For
further references, and many results, see Karni (1985).

It state dependent utilities are permitted, then, without further intormation, the
factors probability and utility can no longer be separated in a unique way. Anv
change in probabilities, not affecting the positivity of them, can be handled by a
multiplication of utilities with appropriate factors. In Karni, Schmeidler and Vind
(1983), hereafter abbreviated KSV, it is indicated how, with the further information
of the preferences contingent on a hypothetical probability distribution, the factors
probability and utility can be separated in a unique way, under a ‘consistency
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axiom’. Thus KSV obtain a derivation of expected utility wit/i state dependent
utility. This result has been derived for the case where consequences are lotteries on
a finite set. It can without any problem be extended to mixture spaces (for a
definition see Herstein and Milnor, 1953) as consequence spaces, as long as utility
is linear. So their approach not only handles the case where consequences are
lotteries, but also the case where conscquences are commodity bundles (or money)
with linear utility.

In this paper we adapt the work of KSV to the case where the consequence spaces
are connected topological spaces, and utility only has to be continuous. Thus we
handle tor instance the case where consequences are commodity bundles (or
money), and utility is not (necessarily) linear. The price for this generalization is that
we must replace ‘weak consistency’, the appealing characterizing condition of KSV,
by *cardinal consistency’, a more complicated condition. The latter condition is still
necessary (and sufticient) though, and in the KSV set-up quicklyv can be derived
from linearity and ordinal consistency (sec Proposition 4.2).

2. Definitions, notations, and preliminary results

Let S=1s),..., 5, bea finite state space. Let for every s; be given a consequence
space €, L =X €, is the ser of acts. Act x=(x|,....x,) €l assigns X0y,
/=t ....n. The (actual) preference relation » of a decision maker is a binary
relation on L. As usual we write v v it v >0, v >y if x> v and not v, o<yl
vy, and x=yp if both x 2y and v > In Section 3 we shall turthermore in-
troduce a hvpothetical preference relation } on L, from which { . m <2 are
derived analogously. We say > is a weak order it it is transitive and complete (i.c.
Nzvoor vy for all x vy, Then it also is retlexive, and = is an equivalence
relation.

Notation 2.1. for xe L, y, e €, x_ v, is (x with x, replaced by v,).

v

Definition 2.2. Coordinate / is essential w.r.t. > if there exist e L, v, e ¢
N> x v, Otherwise it 1s (nessential.

S.t.

KSV dealt with the following assumption, where a simple lottery on a set X is a
probability measure on (X, 2"), assigning probability I to a finite subset of X (they
i tact took X finite):

Assumption 2.3. (Lotiery Assumption). For every j, the set €. is the set of simple
lotteries on a non-empty set X; of ‘prizes’.

Obviously L is endowed with a ‘mixture operation’, assigning, to every o € [0, 1],
and xv=(x;,...,x,) and y=(y,...,v,) in L, the simple lottery ax+(l o)y =
(x4 (L =a)yy,...,oxn,+(1 —a)y,). Under the Lottery Assumption, we call »
continuous it, for every x, v, 2 in L with x > v > 2, there exist « and £ in (0, 1) such
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that gz+ (1 —a)x >y > fx+ (1 - )z, we call » independent if, tor every x, ¥, 2 1n L
and « in (0,1), x>y implies ex+ (1 ~a)z > av+(1 —a)z. A function },: ¢ —F is
affine it Vilox;+ (1 —a)yy)=oV,(x)+ (1 - )V, (), for all x. v in €, and all
axel0,1].

Theorem 2.4. Under the Lotiery Assumption 2.3, the following two statemments are
equivalent:

Statement 2.4.i: ‘There exist affine V. ¢ —&, j=1 ... n, s.1.:

n

xyyve Y Vix)= Y Viy)| forall x,yel’
i ! _

b

J=

Statement 2.4.ii: ‘> is a continuous independent weak order’.

Furthermore, if Statement 2.4.i holds, then (V))]_, can be replaced by (V/)/_, if
and only if there exist real (,8_,4);7’:1, and positive a, s.t. V/=p,+aV, for all j. L]

We shall adapt the work of KSV to the case where, instead of the Lottery
Assumption, we have:

Assumption 2.5. (Topological Assumption). For every j, ¥, is a connected (opo-
logical space. L is endowed with the product topology.

In Kelley (1955) the reader can find definitions and basic results of topology.
A reader, not interested in general topology, may simply assume that every ¢
is a convex subset of a linear space, e.g. ¢ =R" and consequences are com-
modity bundels, or ¥ =K, and consequences are amounts of money. Under the
Topological Assumption the preference relation > is continous i\t {vel x> v}
.and {xe L :x<y} are closed, for all yel.

The following property is a central tool under the Topological Assumption.

Definition 2.6. > is coordinute independent (Cl) if

X uizyvovexwozyvow torall oxpu,w,.

CI means that the preference between x and y is independent of those coordinates
where x and y are equal. It is known under various names as ‘(strong) separability’,
(part of the) ‘sure-thing principle’, ‘(preferential) independence’. Note that CI is im-
plied by Statement 2.4.i, thus by Statement 2.4.ii as well. Under CI, the following
definition of preference relations »; on € is of use:

Definition 2.7. For every j, v; and w; € €, we write v; 7; w; if there exists xe L s.t.
XU 7 X W)

Under CI we have v; »; w; & [x_;v; yx_;w;for all xe L], and every »;is a weak

—J
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order if » 1is; furthermore continous if > 1s. The following result, a slight

strengthening of Theorem 3 in Debreu (1960), and of Theorem 14 in Section 6.11.1
of Krantz et al. (1971), is proved in Wakker (1986, Theorem 4.1).

Theorem 2.8. Let the Topological Assumption 2.5 hold. Let at least three coor-
dinates be essential w.r.t. > . Then the following two statements are equivalent:

Statement 2.8.1: ‘There exist continuous V, 1€ —, j <1 .0 s

xrve ¥ V) Z Vigv,)| Jorall x,yvel "

fe= J=1
Statement 2.8.ii: ' > is a continous Cl weak order’.

Furthermore, if Statement 2.8.1 applies, then (V)] | cun be repluced by (V/ );I/] A
and only if there exist real (f3,)]_\, and positive «, s.i. V= [ + ol for all j.

Theorems 2.4 and 2.8 can be interpreted as characterizations ot state dependent
expected utility. There can always be thought to exist ‘subjecti\we probabilities’
()] and ‘state dependent utility functions’ (U)); ., s.t. V= p U for all j. Note
however that from merely the preference relation (all mtmmalion of which is con-
tained in (V});_)) one can never uncover uniquely what the p,’s and U/s are. For
that, further information is needed.

3. Auxiliary hypothetical probabilities

An example of further information, as mentioned above, is provided by KSV. Let
(p;); . strictly positive, summing to one, be a hypothetical, to the decision maker
conceivable, probability distribution on S. We suppose that we know ; the
preference relation that the decision maker would have on L if his subjective pro-

babilities would be equal to (p,)7_,. And we are interested in the case where there
CNISt (p, Jn (U_,) oy S.L both Xyye \j” o U= Y 2 Uy, and ,\‘j>_va
YU )= \“;’ ;U (), forall x, v. In sudl a case IhL dLLlSlOH maker could
be called consistent. Undcr [he hypothetical probabilities his ‘tastes’, quantified by
(') ;. have remained unaffected. Before continuing, for the sake of casy

reference, we write out the analogue of Theorem 2.8 tor > instcad of -,

Theorem 3.1. Let the Topological Assumption 2.5 hold. Let at least three coor-
dinates be essential w.r.t. > . Then the following two statements are equivaleni:

Statement 3.1.i: ‘There exist continuous V,: €, =&, j =1, .. 1, s.(.
"

X %)}@ ) V'/(x_/)?. Y l?/(_}’,) Jorall x,yel "

=)
/ol j=1

Statement 3.1.ii: ‘> is a continuous CI weak order’.

In KSV the following condition (‘Consistency axiom’; reformulated for our con-
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text) was necessary and sufficient for consistency. Note for it that, bv positivity of
the p;’s, essentiality of j w.r.t. » under consistency implies essentiality of j w.r.t.
>, but not the other way around. Some p,’s may be zero.

Definition 3.2. > is ordinally consistent with > if the following two conditions
hold:
Condition 3.2.a: For every j, 7,2 »,.

A

Condition 3.2.b: For every j, essential w.r.t. z, »,D

Obviously ordinal consistency holds if and only if >, = > for all j essential
w.r.t. ». The following theorem gives the major part of the *Main Theorem’ of

KSV; we omit their considerations concerning ‘null states’.

Theorem 3.3. Let the Lottery Assumption 2.3 hold. Let > be non-empty. Let >
and > be continous independent weak orders. Let p,,....p, be positive and sum
1o one. The following two statements are equivalent:

Statement 3.3.i: ‘There exist affine Uj:?}jﬂQ and p;=0,j=1,....n, with ¥ p,=1,
sit.xzye Y pUxp=Y pUty)and x2ye ) p;iUix)=Y p.U;(v) forall x,y
in L.

b

Statement 3.3.ii: ‘> is ordinally consistent with >,

Furthermore, the ratio of p, and p, in Statement 3.3.1 is uniquelv determined for
all k, [, essential w.r.t. ». L[]

Obviously Statement 3.3.i implies Statement 2.4.i, with }, c=p, L torall j. The
following Proposition shows that, under the Topological Assumption, ordinal con-
sistency is too weak a requirement to imply the existence of the probabilities
Pi.-...p, as in Statement 3.3.1.

Proposition 3.4. Let the Topological Assumption 2.5 hold. Let Statements 2.8.i and
3.1.0 hold. Then are equivalent:

Statement 3.4.i; ‘There exist continuous @, V/(if"/)a Fosao V=0V
J=L...on, where every ¢, is strictly increasing or constant’.

Statement 3.4.ii: > is ordinally consistent with > .

Proof. It ; is inessential w.r.t. 3, then } is constant, and evervthing tollows.
Next let j be essential w.r.t. »>. V,represents »;, so is not constant. Thus under (i)
@, is strictly increasing, and >, = >, follows. Under (ii), }/, and l”', represent the
same >, = ;»,, hence V=g, - lj for some strictly increasing ¢,. Since V,(¢)) and
b.(¢)) are connected, and rhe strictly increasing ¢, is onto V,(€)), ¢, cannot make
jumps'. It must be continuous. L

Under the Lottery Assumption and the conditions ot the *KSV Theorem™ 2.4, one
deals with *vNM-utility functions’, i.e. the V,’s and Vs are affine. Then the ¢,
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as above also will be affine, and the probabilities can be derived. In Statement 3.4.1,
the ¢;’s may very well be non-affine, ¢.g. ¢, w—exp(u). Hence a stronger condi-
tion than ordinal consistency seems needed for the topological context. We shall
first show that in the KSV-result a slight weakening of ordinal consistency would
already have sufficed to obtain the desired result. The *cardinal consistency condi-
tion’, to be introduced in the next section, will be a strengthening of this weakening.

Lemma 3.5. /n Statement 3.3.ii, ordinal consistency may be replaced by the Con-
dition 3.2.a.

Proof. We show that, under the assumptions ot Theorem 3.3, Condition 3.2.a im-
plies Condition 3.2.b. So let for every i, >,D },. And let j be essential w.or.t. >,
say v, >, w,. Let further, for some x,, v, x; 2, ¥,. To show is that v, ;/ Y.
ForanyaelL, wehavea_ju; > a_;w; and a_;x; 7 a_;y;, hence a_(av; + (1 —a)x;) >
a_jlaw;+ (1 —a)y;) for every ag(O, 1. So av;+(1-a)x; >aw, +(1—a)y,. By
Condition  3.2.a. av,+ (I -a)x, > aw,+ (1 —a)y, for every «e(0,1]. Thus
u_lav, + (1 —a)x)) >a_(aw, +(1 —a)_}{/). From continuity of > it can be derived

that ¢ ,x, >« _,v,. It follows that x, >, v. L]

/-
The idea in the above Lemma, to derive (3.2.b) from one-sided monotonicity as
(3.2.a), has been inferred from the Proot of Theorem | in Peters (1985).

4. Cardinal consistency

The condition that in our set-up is the necessary and sufficient criterion for
verification/falsification of consistency is the tollowing:

Definition 4.1. 3 is cardinally consistent (CC) with > i [x .« h vo,b,x 2y d,.
and v ,a, > w_;b,] implies [v ;¢; > w ,d;] tor all ,x,....d,.

The idea is to conclude from the first two ; preferences that, mtuitively speak-
ing, the intensity of preference of ¢; over d, is at least as large as that ot a; over b,,
for as far as } is concerned. Were now v_,¢;<w._,d,, then a same reasoning
would give an opposite result for > . And that 1s forbidden by CC. The 1dea,
leading to CC, can be recognized in the “triple cancellation’ condition in Krantz et
al. (1971), the ‘corresponding tradeoffs condition’ in Keeneyv and Raiffa (1976), the
‘Reidemeister condition’ in Blaschke and Bol (1938), and in ‘cardinal coordinate in-
dependence’ of Wakker (1984).

Lemma 4.3.1 will show that indeed cardinal consistency strengthens Condition
3.2.a of ordinal consistency. First we show that, under the Lotterv Assumption, car-
dinal consistency is implied by ordinal consistency, in the context of the KSV-
Theorem 2.4.
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Proposition 4.2, Let the Lotterv Assumption 2.3 hold, and let Statement 2.4.ii hold.
Let Condition (3.2.a) of ordinal consistency hold. Then > s CC wiih

b

Proof. Say we had x_;q; <y b, x_;c 2’ _di, voya 2 woband v < w . The
first two preferences imply (+x+ Ty)ﬂ,-(Ta,- + %d,) Ex+4y) (dh + Sy, e
La, +4d, < 1bh;+ %¢;. The third and fourth preferences in this proot imply

Go+iw)_ (Lo +1d) > (Go+iw)_ (5 b+ 4¢)),

l.e. fa;+4d; >;+b;++c;. This and the <;-preference above give violation of Con-
dition 3.2.a in ordinal consistency. [J

Lemma 4.3. Let » and > be weak orders. let > be CC with >. Then follows:
(1) ‘T>,jC »; for all j’. )
(1) ‘If j is essential w.r.t. >, it is w.r.f. » "
(1) ‘If the Topological Assumption 2.5, and Statements 2.8. iand “v 1.1 hold, then

continuous non-decreasing ¢, : V (W)—»H? exist s.t. V=@, V,, j=1,.
Proof. Let v_u, }.', . By x /z/< XU, XU, }_\' W X v, o x poand CC we
get /2 v w,. This 1mph<s (i) and (ii). For (iii) first suppose b (v,)=1,(1)
Then x, =, b\' twofold application of (i) we get v, CThus 1 (x)) = [A"( V) im-
phies l (\ Vi(y)). There must exist ¢, s.t. V, =, - Nondunasmunux of ¢,

15 bv (x), wmmuity is as in Proposition 3.4.
We shall need the following result from elementary analysis.

Lemma 4.4, Let ACR be convex. Let ¢: A=K be continuous. Let ¢ >0 and J>()
exist s.d., for all o, 5, y,0 in A with | s¢cand play—pf) = lu-f=v~0]
implies (o) — @¢(f) = @(y) — p(I)]. T/zen ¢ Is affine.

Proof. We show ¢ has a second derivative 0 evervwhere. Let e 4. Let v>0 be so
small that v=¢/2, and forall g, uin A, lg -yl =v=9(a) — ¢p(u)| = 2. Thus, with
f=y=wa/2+05/2 above, we vet ¢p(a/2+ 0/ =p(a)/2+ @p0)/2 for all . J in
AN g — v, u+v]. The continuous ¢ must be affine on AN{u— v, 4+ v}. So second

derivative exists in g, and equals 0. ]

The following proposition captures the meaning of CC, without relating it vet to
the hypothetical probabilities (/)] .,

Proposition 4.5. Let the Topological Assumption 2.5 hold. Let Statements 2.8.i and
3.0 hold. Let two or more coordinates be essential w.r... >. Then ure
equivalent:

(1) ‘There exist positive affine or constant ¢, : ln’/(Y",)g“v st Vo=@, b,
Jor all j°.
(11) ‘> s cardinally consistent with ;.
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Proof. First (i)=(i). Let v ,-a/%_v,‘,b,, X ¢,z o d, v a, 2w b, Substituting
b s gives
Vida) = V(b)) = X Vi) = Vil = Vi) = Vid,).
1%
Thus
Ve, = V(dy=Via)=Viby= Y [Vi(w)= Vi)l
=Y

the first inequality by constantness or positive affinity of ¢,. the second since
vopa, 2w b Now v ¢, 2w d; follows,

Next (i) = (i). Let j<n be arbitrary. Since there is another coordinate than j that

1s essential w.r.t. >, and thus by Lemma 4.3.ii w.r.t. >, there exist x, y,u, w s.1.

YIVx) - Viopl=:1e>0, Y[V Viw)]=:>0.

(F/ P
By continuity of x— ~,,:t/ 7 (x;) and of x+— L,r/ I:(x;), and connectedness of L, for
every —e<é<g¢ and —(={<{, % 9,0, exist to give

L V@)=Vl =& XLV = Vi) =

i+ (#7

Consider now the ¢, of Lemma 4.3.iii. Let in its convex domain A := lf’l(?’/)
be given a,f, 7,0 sit. —esa—-f=y-0=<e¢, and s.t. —{<¢ ()@ (pr=_ Let
a, b d be st P}(q,)::(x, V(b) -3, l(( )=, lfﬁ",((//)::()‘, Take 0¥V s.t.

W) = V)l =a—=f Then ¥ ¢, =¥ b, ¥ =7 . Take 0,% s.L.
_,,vi/[b (0)=Viw)l=¢,(f) — ¢ (a). Thcn since Vo=@, V. 0 a,=w b, Twotold
application of CC vields v /"/zw e ¢ (y) - ¢)/((5):' x/;/[lf',(w,)»— V(o) =
» )= ¢, (). Lemma 4.4 shows that ¢, is affine. From Lemma 4.3.1 it can be

derxved that ¢, is non-decreasing, so either constant or positive atfine. ]

5. Main result and conclusions

Theorem 5.1. Let neli, (€)' | u sequence of (onnecred topological spaces {e.g.
¢ =R, > and > two binary relations on L = X - j, L endowed with the pro-
duct topology. Let (p;); | be a sequence of strictly positive real numbers, summing
(o one. Let at least three coordinates be essential w.r.t. > . Equivalent are:

(1) ‘There exist nonnegative (p,), |, summing (o one. and continuous

n 1
U:€-R, j=1..,n st xzye Z] pU(x) = ZI p,U;(v,) and
J /=

"

.\>\c>,\ [)U(\)>Z/)U vy Jorall x,yel

-

(n) ‘2 ouand é are continuous coordinate independent weak orders, > is
cardinally consistent with » .
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Proof. That (i) implies (ii) is by the definitions V;:=p;U,. lf'/, =p, U, ila) =
p,a/p;, Proposition 4.5 and Theorems 2.8 and 3.1.

Next we assume (ii), and derive (i). By Lemma 4.3.ii » has at least three essential
coordinates. Theorems 2.8 and 3.1 have statements (ii) satisfied, thus also statements
(1). Now (i) in Proposition 4.5 follows. Hereby, tor arbitrary fixed ;e L, there exist
nonnegative (4;)/_, s.t. for all x and j we have V,(x)) — V;(z;,)=4,] () = V)l
At least three coordinates are essential w.r.t. >, so at least one (even three) /1‘/’5
are nonzero. Consequently O<v:= Z;'_ PiA,. We define U, : = [V, - l?,(:‘,»)]/,l}/-, and
p,=A;p,/v forall j. Thus V;=p U, + V(z)), V,=vp,U;+ V(2)), for all j. |

In (i) above (U,)7_, can be replaced by (U));. | iff real (§,)] . and positive @, ex-
ist s.t. U;=p,+aU, for all j. The uniqueness result w.r.t. (p;);— is not so simple.
On the set of essential coordinates w.r.t. 3, the ratios of the p,’s are uniquely
determined. For the coordinates, inessential w.r.t ; so those with constant V_'/
and U,, the p,’s are arbitrary. As long as the p,’s are nonnegative, and sum to one,
of course. This can be seen in the above proof: after (V);_, and (V)); , are chosen,
for the constant 171-’5 the 4;’s can be arbitrarily chosen, for the nonconstant 17/s
they are uniquely determined.

For interpretations of results as above the reader is referred to KSV. They also
indicate interesting implications for statistics.

Schmeidler noted that in (i1) above CI for » may be derived from CC. This is
by the choice x=y, a,=b;, ¢; =d; in Definition 4.1. Also we could have weakened
CC by requiring it only for b;=¢;. Note that Lemma 4.3 did not yet give ordinal
consistency. This now follows from (i) above. For the case of two essential coor-
dinates in (ii) above we would have had to add in (ii) above for > and ;/ the
‘Thomsen Condition’. For the definition of this the reader is referred to Krantz et
al. (1971). The case of one essential coordinate for » is somewhat different. This
refers in fact to the case where there is no uncertainty, hence is uninteresting for our
purposes.

Let us finally remark that, for recovering from >, via (Y,’)"I:h and (ﬁj);': 1, the
probabilities (pj)j'-’zl, it i1s not necessary to know all of ». For instance if (not
by=1a) and (x_,a1)_,a;= (x_10,)_1b,, then p\[Uy(a)) = Uy(b))] = p,[U,(b,) — Us(ay)]
so [Uilay) = U(d))/[Uy(by) - Uyay)] =p,/Py, and now from p, p,[Vi(a))— V(b)) =
D1 D21Va(by) — Va(a,y)] we can already uncover the ratio of p; and p-, for noncon-
stant V, and V5.
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