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This paper analyzes concave and convex utility and probability distortion functions for decision under 
risk (law-invariant functionals). We characterize concave utility for virtually all existing models, and 
concave/convex probability distortion functions for rank-dependent utility and prospect theory in 
complete generality, through an appealing and well-known condition (convexity of preference, i.e., 
quasiconcavity of the functional). Unlike preceding results, we do not need to presuppose any continuity, 
let be differentiability.
An example of a new light shed on classical results: whereas, in general, convexity/concavity with respect 
to probability mixing is mathematically distinct from convexity/concavity with respect to outcome 
mixing, in Yaari’s dual theory (i.e., Wang’s premium principle) these conditions are not only dual, as 
was well-known, but also logically equivalent, which had not been known before.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

This paper provides a tool for analyzing convexity and concav-
ity of probability distortion and utility for decision under risk and 
for law-invariant functionals. We generalize all existing character-
izations of concavity/convexity and make them more appealing. 
Unlike preceding results, we do not need to presuppose any con-
tinuity, let be differentiability. Those mathematical conditions are 
known to be problematic for empirical preference axiomatizations 
and empirical tests (§3). Continuity is nevertheless commonly im-
posed in the literature to simplify the mathematics. In our results, 
it is optional. The main tool in our analysis is Lemma 3, an adap-
tation of Theorem 3 of Wakker and Yang (2019) from uncertainty 
to risk.

Our Theorem 7 concerns Quiggin’s (1982) rank-dependent util-
ity and Tversky and Kahneman’s (1992) prospect theory. It shows 
that the probability distortion function is concave/convex if and 
only if we have convexity/concavity of preference with respect to 
probabilistic mixing. It is remarkable that these well-known con-
ditions are logically equivalent in full generality. Preceding results 
always assumed continuity.

* Corresponding author.
E-mail addresses: Wakker@ese.eur.nl (P.P. Wakker), jingni.yang@anu.edu.au

(J. Yang).
https://doi.org/10.1016/j.insmatheco.2021.07.002
0167-6687/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
Theorem 4 characterizes concave utility for Miyamoto’s (1988)
biseparable utility for risk. An attractive property of Miyamoto’s 
model is that it comprises many existing models that are all special 
cases of it (Wakker, 2010 Observation 7.11.1). We thus character-
ize concave utility for all these models: original prospect theory 
(Kahneman and Tversky, 1979) for gains and for losses, Quiggin’s 
(1982) rank-dependent utility, and prospective reference theory 
(Viscusi, 1989), Tversky and Kahneman’s (1992) prospect theory 
for risk for gains and losses, disappointment aversion (Gul, 1992), 
Luce’s (2000) binary RDU, RAM and TAX models (Birnbaum, 2008), 
and reference-dependent preferences (Köszegi and Rabin, 2006) 
for 0-kinked universal gain-loss functions. Also included is dis-
appointment theory (Bell, 1985; Loomes and Sugden, 1986; for a 
disappointment function kinked at 0). Our characterizing prefer-
ence condition does not need probabilities as inputs. Hence, it can 
be used for law-invariant functionals (i.e., Machina and Schmei-
dler, 1992 probabilistic sophistication), where probabilities can be 
subjective and, therefore, not directly observable, as for instance in 
Boonen and Ghossoub (2021).

Our Theorem 5 adapts one of the most appealing results in 
the literature on nonadditive measures, by Chateauneuf and Tal-
lon (2002), to our context of risk, and an appealing result follows 
again: the common properties of convexity of probability distortion 
and concavity of utility are jointly characterized by the well-known 
convexity with respect to outcome mixing. We again bring in our 
generalizations of not needing continuity or differentiability, leav-
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.insmatheco.2021.07.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ime
http://crossmark.crossref.org/dialog/?doi=10.1016/j.insmatheco.2021.07.002&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:Wakker@ese.eur.nl
mailto:jingni.yang@anu.edu.au
https://doi.org/10.1016/j.insmatheco.2021.07.002
http://creativecommons.org/licenses/by/4.0/


P.P. Wakker and J. Yang Insurance: Mathematics and Economics 100 (2021) 429–435
ing those optional. We similarly generalize related results by Chew 
and Mao (1995).

There is a well-known relation between risk theory and welfare 
theory. We can reinterpret probabilities as parts of a population 
at a particular wealth level. This way, theorems from risk can be 
transferred to welfare and vice versa. Risk aversion is reinterpreted 
as inequality aversion. The well-known Gini index of inequality in 
welfare was a precursor of Quiggin’s rank-dependent utility. Ebert 
(2004) independently obtained results close to Chateauneuf and 
Tallon (2002) and Chew and Mao (1995) for welfare, and we simi-
larly generalize his results.

There also is a tight relation between risk attitudes and 
Artzner et al.’s (1999) risk measures (Belles-Sampera et al., 2016; 
Goovaerts et al., 2010a). Thus, our results can be applied to risk 
measures, including the convex class introduced by Liu et al. 
(2020). Section 5 shows that, whereas properties of risk measures 
have commonly been derived from outcome mixtures or additions, 
probability mixtures provide an alternative tool. This gives, for in-
stance, a new way to analyze Wang’s premium principle (Cheung 
et al., 2020). For applications to reinsurance-design problems, see 
Liu et al. (2020 §4). A big pro is that our alternative approach does 
not need continua of outcomes, but can handle discrete outcome 
sets. Denuit et al. (2019 §2.2) emphasize the importance of such 
outcome sets for insurance.

Wakker and Yang (2019) analyzed convexity and concavity for 
the context of uncertainty, rather than risk, in a way similar to this 
paper. This paper will be self-contained and can be read indepen-
dently.1

2. Basic definitions

We consider decision under risk with a set P of probability 
distributions, called lotteries (generic notation P , Q , R), over a set 
X of outcomes (generic notation α, β, γ , or x j).2 X can be finite 
or infinite, and its elements can be monetary or non-monetary. 
We assume that P contains all simple probability distributions, as-
signing probability 1 to a finite subset of X , with generic notation 
(p1 : x1, . . . , pn : xn), and possibly more distributions. Measure-
theoretic structure, with a (σ -)algebra on X , and lotteries only 
defined thereon, can be added at will, changing nothing in the 
analysis of this paper. Our analysis will focus on simple lotter-
ies, where measure theoretic aspects are trivial. For non-simple 
lotteries, our analysis does not impose restrictions so that, again, 
measure theoretic conditions can be added at will.

A preference relation, i.e., a binary relation � on P , is given; 
�, �, ≺, ∼ are as usual. V represents � if V :P →R satisfies P �
Q ⇔ V (P ) ≥ V (Q ) for all lotteries P , Q ∈P . This implies weak 
ordering on P ; i.e., � is transitive and complete. Outcomes α are 
identified with degenerate lotteries (1 : α). Thus, � also denotes 
preferences over outcomes.

A (probability) distortion function w maps [0, 1] to [0, 1], is 
strictly increasing, and satisfies w(0) = 0 and w(1) = 1. We do 
not assume continuity of w . Discontinuities at p = 0 and p = 1
are of special empirical interest. For a distortion function w , and a 
function U : X →R, the rank-dependent utility (RDU) of a lottery P
is∫

R+
w(P (U (α) > μ))dμ −

∫

R−
(1 − w(P (U (α) > μ)))dμ. (1)

1 We thank an anonymous editor for recommending this approach.
2 Lotteries may result from law-invariant nonadditive measures W (.), i.e., W =

w(P (.)) for a probability measure P and a strictly increasing transformation w . 
This way, our analysis includes an important subclass of uncertainty models, which 
are probabilistically sophisticated in the sense of Machina and Schmeidler (1992).
430
For a simple lottery (p1 : x1, . . . , pn : xn) with U (x1) ≥ · · · ≥ U (xn), 
the RDU can be rewritten as

n∑
j=1

(w(p1 + · · · + p j) − w(p1 + · · · + p j−1))U (x j). (2)

Rank-dependent utility (RDU) holds if there exist w and U such 
that R DU represents �. Then U is the utility function, and it rep-
resents � on X . The special case of RDU with w the identity is 
called expected utility (EU). We impose one more restriction on P : 
RDU is well defined and finite for all its elements. A necessary 
and sufficient condition directly in terms of preferences—requiring 
preference continuity with respect to truncations of lotteries—is 
in Wakker (1993). A sufficient condition is that all lotteries are 
bounded (with an upper and lower bound contained in X).

Assumption 1 (Structural assumption). P is a set of lotteries over 
outcome set X containing all simple probability distributions. RDU 
holds. X contains at least three nonindifferent outcomes γ � β �
α. �
3. Outcome mixing

This section considers outcome mixing for risk. For this pur-
pose, we reinforce our assumptions.

Assumption 2 (Structural assumption for monetary outcomes). As-
sumption 1 holds. Further, X = I is a nonpoint interval and U is 
strictly increasing. �
We do not presuppose continuity of U . Unlike virtually all axiom-
atizations in the literature we, similarly, do not need to assume 
continuity of the preference relation (except in Corollary 6). Many 
authors have warned against the problematic empirical status of 
continuity assumptions in preference axiomatizations (Ghirardato 
and Marinacci, 2001a; Halpern, 1999; Khan and Uyanik, 2021; 
Krantz et al., 1971 §9.1; Pfanzagl, 1968 §6.6 and §9.5; Wakker, 
1988). The assumption is not merely technical but adds empiri-
cal content to the empirical axioms, and the problem is that it 
is unknown what that added empirical content is. Hence, given 
the purpose of preference axiomatizations to reveal the empirical 
content of theories, it is desirable to do without continuity if pos-
sible.3 In our case, continuity of U on int(I) comes free of charge, 
following from the empirical axioms. At extremes (min(I) for con-
cavity and max(I) for convexity) we have it optional. If continuity 
is considered to be desirable there, then we can get it by adding 
the corresponding continuity condition for �. For simplicity, we 
restrict the definition of convex preferences to simple lotteries, 
which will be strong enough to give all the desired implications. 
Preceding papers (e.g., Yaari, 1987) defined the condition for risk 
by specifying an underlying state space and then extended the 
condition to nonsimple lotteries.4 As we will show, imposing the 

3 We do assume RDU, or biseparable utility, in our results. Köbberling and Wakker 
(2003) provided preference axiomatizations that do not assume continuity, but a 
weaker solvability condition. This condition still has observability problems, but to 
a lesser extent than continuity.

4 For completeness, we give details. In the following results, the proofs of suffi-
ciency of the preference conditions then remain unaltered because we only need 
simple lotteries for those. For necessity, concavity of U and convexity of w imply 
that the representing functional is concave (as in the proof of Theorem 5 or Wakker 
and Yang, 2019 Lemma B.1) and, hence, surely quasiconcave. Then � is convex. 
This implies, in particular, that convexity for all simple lotteries is equivalent to 
convexity for all lotteries under RDU. For further extensions to nonsimple lotter-
ies, see Mao and Hu (2012). Alternative outcome-operations without a state space 
can be obtained by taking probabilistically independent combinations of lotteries 
(Goovaerts et al., 2010b).
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preference conditions only on simple lotteries is enough to give all 
desired results. We can thus avoid the complications of defining 
underlying state spaces.

Because it is common in decision under risk to let concavity 
and convexity refer to probabilistic mixing, considered in the next 
section, we use a different term for outcome mixing. We call �
outcome-convex if for each probability vector p1, . . . , pn (assumed 
to add to 1) and 0 < λ < 1 we have

(p1 : x1, . . . , pn : xn) � (p1 : y1, . . . , pn : yn) ⇒
(p1 : λx1 + (1 − λ)y1, . . . , pn : λxn + (1 − λ)yn

� (p1 : y1, . . . , pn : yn). (3)

We call � outcome-convex on P ′ ⊂ P if Eq. (3) holds whenever all 
lotteries in it are contained in P ′ . We next show that this exten-
sion of convexity in Euclidean domains to the lottery domain gives 
convenient axiomatizations of widely used properties. A new re-
sult on Yaari’s (1987) analog of this extension is given in the next 
section (Corollary 8).

A comoncone is a subset of lotteries {(p1 : x1, . . . , pn : xn) : x1 ≥
· · · ≥ xn}, with n ≥ 2 fixed, the probability vector p1, . . . , pn fixed, 
and 0 < p1 < 1. We call � comonotonic outcome-convex if it is 
outcome-convex on every comoncone; that is, if Eq. (3) holds 
whenever x1 ≥ · · · ≥ xn and y1 ≥ · · · ≥ yn . The following lemma 
provides a tool used throughout this paper.

Lemma 3. Consider a comoncone {(p1 : x1, . . . , pn : xn) : x1 ≥ · · · ≥
xn}. Under Assumption 2, U is concave if and only if � is outcome-convex 
on this comoncone. �

Ghirardato and Marinacci (2001b) propagated the biseparable 
utility model for uncertainty. For risk, this was done by Miyamoto 
(1988), who used the term generic utility. He also emphasized that 
any result for his theory holds for the many models comprised, 
referenced in our introduction. We now apply our technique to his 
model. For a fixed 0 ≤ p ≤ 1, we denote by Pp the set of binary 
lotteries γpβ = (p : γ , 1 − p : β), and by P↑

p we denote the subset 
with γ ≥ β—it is a comoncone if 0 < p < 1. Biseparable utility holds 
if there exist a utility function U and a distortion function w such 
that R DU (γpβ) = w(p)U (γ ) + (1 − w(p))U (β) (for γ � β) repre-
sents � on the set of all binary lotteries.

Theorem 4. If Structural Assumption 2 holds except that biseparable 
utility holds instead of RDU, then U is concave if and only if � is 
outcome-convex on every P↑

p . This holds if and only if � is outcome-

convex on one set P↑
p with 0 < p < 1. �

Thus, we have characterized concave utility for virtually all 
existing models of risky choice (see introduction). For RDU, the 
preference conditions are equivalent to the stronger comonotonic 
outcome-convexity, as is easily verified. For EU, it is equivalent to 
the even stronger outcome-convexity. For EU, this result amounts 
to an alternative to the traditional characterizations based on weak 
risk aversion (preference for expected value) or strong risk aversion 
(aversion to mean-preserving spreads).

The preceding theorem characterized concavity of utility for 
RDU (and other theories), and Theorem 7 will characterize con-
vexity of probability distortion for RDU. The following theorem ef-
ficiently characterizes the two properties jointly. Such “pessimistic” 
functionals have been widely used to represent downside risks, 
rather than overall preference values (Goovaerts et al., 2010a).

Theorem 5. Under Assumption 2, U is concave and w is convex if and 
only if � is outcome-convex. �
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Theorem 5 captures the two most-studied properties of RDU 
through one basic preference condition. The result applies in par-
ticular to the widely studied law-invariant coherent risk measures 
that are comonotonically additive (Cornilly et al., 2018). The theo-
rem shows that quasiconvexity of a functional, which is equivalent 
to convexity of the preference relation, has surprisingly strong im-
plications. We need not assume continuity because it is implied 
(except at some extremes). This way, many results in the literature 
can be generalized, e.g. in Bellini et al. (2021) and Hu and Chen
(2021 Remark 2.2.) In particular, it is a law-invariant convex risk 
functional in the sense of Liu et al. (2020). Chateauneuf and Tal-
lon (2002) analyzed in detail how these properties underly various 
forms of diversification, important for risk functionals (Liu et al., 
2020 §2.3). Ettlin et al. (2020) analyzed the role of diversification 
in optimal risk-sharing across networks of insurance companies.

Theorem 5 provides an interesting alternative to Chew, Karni, & 
Safra (1987). They showed, assuming differentiability, that concav-
ity of U plus convexity of w is equivalent to aversion to mean-
preserving spreads. Quiggin (1993 §6.2) provided an alternative 
proof, also assuming differentiability. Schmidt and Zank (2008)
provided yet another proof, the only one available in the liter-
ature that did not assume differentiability; they still did assume 
continuity. It is desirable to avoid differentiability assumptions in 
preference axiomatizations because differentiability is even more 
problematic than continuity: unlike with continuity, for differen-
tiability there is not even a preference condition to axiomatize 
it. Our derivations, therefore, neither assume differentiability. We 
obtain the following corollary, where for the definition of conti-
nuity and aversion to mean-preserving spreads we refer to Chew 
et al. (1987). We need to assume continuity because without it 
there are no results available in the literature on aversion to mean-
preserving spreads.

Corollary 6. Under Assumption 2 and continuity, outcome-convexity of 
� is equivalent to aversion to mean-preserving spreads.

The result is remarkable because, at first sight, one condition 
concerns only outcome mixing whereas the other condition also 
involves probabilistic mixing. This surprising point was discussed 
by Quiggin (1993 §9.2) in a somewhat different context. Many pa-
pers have used aversion to mean-preserving spreads conditions in 
various forms. At the end of the appendix, we give details of sev-
eral results relevant to the preceding analyses. Our paper shows 
that convexity conditions can serve as appealing alternative. This 
holds especially if the probabilities involved in mean-preserving 
spreads are subjective, implying that they are not directly observ-
able, contrary to our preference condition. Thus, our condition can, 
for instance, serve to make the conditions in §5 of Gul and Pe-
sendorfer (2015) directly observable. Gul and Pesendorfer (2015)
used subjective probabilities as inputs in their axioms but subjec-
tive probabilities are not directly observable.

4. Probabilistic mixing

This section considers probabilistic mixing. For lotteries P , Q , 
λP ⊕ (1 − λ)Q denotes the probability measure assigning prob-
ability λP (α) + (1 − λ)Q (α) to each outcome α, with a similar 
probability mix for each subset of outcomes instead of {α}. Proba-
bilistic mixing can be defined for general outcome sets X .

We call � convex if P � Q ⇒ λP ⊕ (1 − λ)Q � Q . This prop-
erty, suggesting a deliberate preference for randomization, has 
been widely studied in the literature (Agranov and Ortoleva, 2017; 
Cerreia-Vioglio et al., 2019; Fudenberg et al., 2015; Machina, 1985; 
Saito, 2015; Sopher and Narramore, 2000). The opposite condition 
is more commonly found empirically: � is concave if P � Q ⇒
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Fig. 1. Duality of probabilities versus outcomes, and w versus U , for outcome in-
terval I = [0, 1] and U (0) = 0, U (1) = 1. RDU results from Fig. (a) by transforming 
the abscissa by w and the ordinate by U , and then calculating the area of the fig-
ure. RDU results from Fig. (b) by transforming the abscissa by U and the ordinate 
by w , and then calculating the area of the figure.

P � λP ⊕ (1 −λ)Q . It is widely studied for distorted risk measures 
(Tsanakas, 2008).

To prepare for the following theorem, we explain a remarkable 
duality between outcomes and probabilities (Fig. 1). We focus on a 
compact outcome interval that we may normalize: I = [0, 1], with 
utility also normalized: U (0) = 0 and U (1) = 1. We can always 
assume the minimal outcome 0 to be present in the lottery below 
(Eq. (4)), i.e., xn = 0, by setting pn = 0 if necessary. We write x0 =
1. Further, q j = p1 + · · ·+ p j . It is called the rank of outcome x j+1, 
being the probability of receiving an outcome ranked better. We 
write q0 = 0. The RDU value of the lottery

(p1 : x1, . . . , pn : xn), (4)

with utility function U and probability transformation w is

n−1∑
j=1

(w(q j) − w(q j−1))U (x j) (5)

(Fig. 1a). By rearranging terms, it is
n−1∑
j=1

(U (xn− j) − U (xn− j+1))w(qn− j). (6)

But this is exactly the RDU value of the lottery

((xn−1 − xn) : qn−1, (xn−2 − xn−1) : qn−2, . . . , (x0 − x1) : q0) (7)

with utility function w and probability distortion function U
(Fig. 1b). Now the x j s play the role of rank, with their differences 
outcome probabilities, and the qn− j s play the role of outcome. Out-
comes and ranks, i.e., the x j s and qn− j s, play a dual role. Outcome 
mixing is dual to probabilistic mixing. Using this duality, every 
theorem about probability distortion gives a theorem about util-
ity, and vice versa.

To illustrate the above duality, assume Structural Assumption 2. 
Then we have convexity of � for lotteries in Eq. (4) if and only if 
for lotteries in Eq. (7) we have outcome-convexity. By Lemma 3, 
the latter holds if and only if the “utility function” w in Eq. (6)
is concave. We have shown that convexity of � is equivalent to 
concavity of probability distortion. However, we did so under As-
sumption 2. We can obtain the result in complete generality, under 
Assumption 1, using a similar duality and Corollary 6 of Wakker 
and Yang (2019).

Theorem 7. Under Assumption 1, convexity of � is equivalent to con-
cavity of w, and concavity of � is equivalent to convexity of w. �
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The theorem did not need any restrictive assumption, continu-
ity or otherwise. Similar dualities were exploited by Yaari (1987), 
Abdellaoui (2002), Abdellaoui and Wakker (2005), and Werner and 
Zank (2019).5 The duality in Fig. 1 also illustrates that Quiggin’s 
(1982) insight, that one should use differences rather than abso-
lute levels of probability distortion functions, is the dual of the 
insight of the marginal utility revolution (Jevons, 1871; Menger, 
1871; Walras, 1874), being that changes of utility, rather than ab-
solute levels themselves, are basic.

The axiomatization in Theorem 7 of convexity of w through 
a widely used preference condition is appealing. If there are only 
two nonindifferent outcomes, deviating from Assumption 1, then 
w is only ordinal and can be any strictly increasing function, thus 
can always be convex but never needs to be. Hence, Theorem 7
has characterized convexity of w as general as can be.

We present yet another surprising equivalence, combining The-
orems 5 and 7 for the special case of Yaari’s (1987) dual model 
(RDU with linear utility), i.e., Wang’s (1996) premium principle. 
The theorem gives an appealing characterization of the last part 
of Theorem 4 of Wang (1996). Linear utility is also commonly as-
sumed for coherent risk measures (Artzner et al., 1999).

Corollary 8. Under Yaari’s (1987) dual model (Assumption 1, with X a 
nonpoint interval I and U the identity), � is outcome-convex (outcome-
concave) if and only if it is concave (convex). �
Thus the conditions, concerning mixing in two different dimen-
sions—“horizontal” and “vertical”—are not only each other’s duals, 
but they are also logically equivalent here. Röell (1987 §1) dis-
cussed these conditions in Yaari’s model, but was not aware of 
their equivalence, nor has anyone else been as yet.

5. Further implications for existing results on risk in the 
literature

Yaari (1987) considered the special case of RDU for risk with 
linear utility. He characterized convexity of w through aversion 
to mean-preserving spreads, which is a special case of Chew et 
al.’s (1987) theorem. Quiggin (1993 §9.1) and Röell (1987) similarly 
derived this result for linear utility. As our Theorem 7 showed, con-
vexity with respect to probabilistic mixing provides an appealing 
alternative condition. It would have fitted better with the affin-
ity condition for outcome addition that Yaari (1987) used, and the 
affinity condition for outcome mixing that Röell (1987) used, to 
axiomatize RDU with linear utility.

A surprising application concerns Köszegi and Rabin’s (2006)
reference dependent model. Masatlioglu and Raymond (2016)
showed how Köszegi & Rabin’s choice-acclimating personal equi-
librium (CPE) is a special case of RDU. Loss aversion in Köszegi 
& Rabin’s model then holds if and only if the probability distor-
tion function in the equivalent RDU model is convex. Masatlioglu 
& Raymond’s Propositions 3 and 10 used Wakker’s (1994) version 
of our Theorem 7 to characterize loss aversion. They wrote: “we 
were able to demonstrate a previously unknown relationship be-
tween loss aversion/loving behavior and attitudes toward mixing 
lotteries within the CPE framework” (p. 2792) and “our results al-
low us to bring 20 years of existing experimental evidence to bear 
on CPE” (p. 2773). They required monetary outcomes and contin-
uous utility. Our Theorem 7 shows that those restrictions can be 
dropped, and that the result holds in full generality. Their Propo-
sition 6 uses aversion to mean-preserving spreads to characterize 

5 Recognizing them in particular situations is nontrivial. Thus, while well ac-
quainted with Yaari (1987), Wakker (1994 Theorem 24) and Wakker (2010 p. 192 
footnote 8) did not recognize this duality.
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concave utility and loss aversion. Our Theorem 5 shows that their 
mixture aversion would have provided an appealing alternative 
characterization.

6. Conclusion

We have provided completely general axiomatizations of strictly 
increasing concave/convex utility and probability distortion func-
tions, using only basic preference conditions. Unlike preceding re-
sults in the literature, we do not need to presuppose any continu-
ity (or differentiability), and the preference conditions used (con-
cavity and convexity) are all basic and appealing. All the richness 
we need in our analysis is that all simple lotteries are available in 
the preference domain. We have thus provided the most appeal-
ing and most general characterizations of concavity and convexity 
of utility and probability distortion functions presently available.

Declaration of competing interest

There is no competing interest.

Appendix. Proofs and further literature for risk

Proof of Lemma 3. This proof uses advanced tools from Debreu 
and Koopmans (1982). Note that neither they nor we assumed 
continuity of utility. This rather follows as a corollary outside 
max(I). An independent proof from scratch can be obtained from 
Wakker and Yang (2019 Corollary 6).

Assume the comoncone of the lemma. Write π j = w(p1 + · · · +
p j) − w(p1 + · · · + p j−1). We suppress probabilities.

Concavity of U implies concavity and, hence, quasiconcavity of ∑
πi U (xi), which is the representing function on the comoncone. 

Convexity of � follows.
We next assume convexity of �, and derive concavity of U . As-

sume, for contradiction, that U is not concave at some point β . 
First assume β∈int(I). For any β ′ ∈int(I), we have a nondegenerate 
two-dimensional additive representation on {(x1, x2, . . . , x2) : x1 ≥
β ′, x2 ≤ β ′}. For any β ′ < β the additive representation is not con-
cave in its second coordinate x2. By Debreu and Koopmans (1982), 
it must be in its first coordinate, i.e., U must be strictly concave 
below β ′ . Hence, it must be so everywhere strictly below β . For 
any β ′ > β the additive representation is not concave in its first 
coordinate x1. By Debreu and Koopmans (1982), U must be strictly 
concave above β ′ and, hence, everywhere strictly above β . Thus, U
is nondifferentiable at β . Debreu and Koopmans (1982) define de-
grees of (non)concavity. The degree of nonconcavity at β is infinite, 
implying, as Debreu & Kopmans show, an infinite degree of concav-
ity everywhere else. This would imply non-Archimedean function 
values, and a contradiction has resulted.

Because U is strictly increasing, it must also be concave at 
min(I), if such exists. If max(I) exists and U is not concave there, 
then it must be discontinuous there. This implies an infinite degree 
of nonconcavity there, which in turn implies infinite concavity ev-
erywhere below, which cannot be. �
Proof of Theorem 4. Follows from Lemma 3. �
Proof of Theorem 5. This result can be derived from Wakker and 
Yang, 2019, Corollary 7). We give here an independent proof. We 
first assume the properties of U and w , and derive convexity 
of �. (See also Wakker and Yang, 2019, Lemma B1.) Consider 
P = (p1 : x1, . . . , pn : xn), Q = (p1 : y1, . . . , pn : yn), and their mix-
ture M = λP + (1 − λ)Q . The lotteries need not come from the 
same comoncone. We may assume λx1 + (1 − λ)y1 ≥ · · · ≥ λxn +
(1 − λ)yn . Define π j = w(p1 + · · · + p j) − w(p1 + · · · + p j−1), and 
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define EU (P ) = ∑
π j U (x j), EU (Q ) = ∑

π j U (y j) and EU (M) =∑
π j U (λx j + (1 − λ)y j). We have R DU (M) = EU (M), but similar 

equalities need not hold for P and Q . EU is an expected-utility 
type functional using the decision weights of M . We have, with 
the first inequality following from concavity of U (and, hence, 
EU ) and the second from convexity of w: R DU (M) = EU (M) ≥
λEU (P ) + (1 − λ)EU (Y ) ≥ λR DU (P ) + (1 − λ)R DU (Y ). This shows 
that R DU is concave and, hence, quasiconcave, implying convexity 
of �.

We next assume convexity of �. Concavity of U follows from 
Lemma 3. Remains to show that w is convex. We first show that

w(p) ≤ 1 − w(1 − p) (8)

for all p. Because this is direct for p = 0 and p = 1, we consider a 
0 < p < 1. We focus on lotteries (p : x1, (1 − p) : x2) and suppress 
probabilities. The next reasoning closely follows Wakker and Yang
(2019, Lemma B.2).

Take an outcome in int(I), 0 wlog, at which the concave U
is differentiable. Wlog, U (0) = 0. We consider a small positive α
tending to 0, with o(α), or oα for short, the usual notation for a 
function with limα→0

oα
α = 0. In other words, in first-order approx-

imations oα can be ignored. We write π1 = w(p), π2
′ = w(1 − p).

We have π1 > 0 and π2
′ > 0. Because of continuity of U on 

int(I) and differentiability at 0, we can obtain, for all α close to 0, 
the left indifference in

(π2
′α,0) ∼ (0,π1α + oα) � (μπ2

′α, (1 − μ)(π1α + oα)). (9)

The preference is discussed later. We compare two values: the 
μ, 1 − μ mixture of the RDU values (which are the same) of the 
left two lotteries and the RDU value of their μ, 1 − μ mixture, 
which is the right lottery. We take μ > 0 so small that the left out-
come μπ2

′α in the mixture is below the right outcome. Informally, 
by local linearity, in a first-order approximation the only difference 
between the two values compared is that for the left value the 
left outcome π2

′α receives the highest-outcome decision weight 
π1 whereas for the right value it receives the lowest-outcome de-
cision weight 1 −π2

′ . Convexity of � implies the preference in Eq. 
(9), which implies 1 − π2

′ ≥ π1.
Formally, note that different appearances of oα can designate 

different functions. Thus we can, for instance, write, for constants 
k1 and k2 independent of α: k1oα + k2oα = oα . The following is 
most easily first read for linear utility, when all terms oα are zero. 
Write u′ = U ′(0); μ can be chosen independently of α. Here is 
the comparison of the aforementioned two values: μπ1u′π2

′α +
oα + (1 − μ)π2

′u′π1α + oα ≤ (1 − π2
′)u′μπ2

′α + oα + π2
′u′(1 −

μ)π1α + oα . Dividing by μu′π2
′α, we obtain π1 ≤ 1 − π2

′ + oα
α . 

Now π1 ≤ 1 − π2
′ follows.

We finally derive convexity of w . We have to show that

w(p + ε) − w(p) ≤ w(p + δ + ε) − w(p + δ) (10)

for all 0 ≤ p, ε > 0, δ > 0, p + ε + δ ≤ 1. (This reasoning is similar 
to Wakker and Yang (2019 proof of Corollary 7).) For this, we fix 
outcomes γ > β and r = 1 − p − δ − ε , and consider the set of 
lotteries {(p : γ , q1 : y1, . . . , qn : yn, r : β)}. That is, q1 + · · · + qn =
ε + δ. This set is isomorphic to the set of lotteries

{( q1

1 − p − r
: y1, . . . ,

qn

1 − p − r
: yn)} (11)

over I = [β, γ ], and normalizing the original R DU representa-
tion gives an RDU representation on this set. Applying Eq. (8) to 
that RDU representation gives Eq. (10) for the original representa-
tion. �
Proof of Theorem 7. By Eq. (6), convexity of w implies convexity 
of the RDU functional and, hence, convexity of �.
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Next assume that � is convex. We show that w is convex. As-
sume three fixed outcomes x1 � x2 � x3, suppressed henceforth. 
We assume U (x1) = 1, U (x3) = 0. For any lottery (p1, p2, p3)

we consider the ranks q1 = 0, q2 = p1, and q3 = p1 + p2, and 
denote it (q2, q3). The RDU representation can be written as 
w(p1) + (w(p1 + p2) − w(p1))U (x2) = (1 − U (x2))w(p1) + w(p1 +
p2)U (x2) = (1 − U (x2))w(q2) + U (x2)w(q3). Wakker and Yang
(2019, Corollary 6) now implies concavity of w , with details as 
follows. We interpret q2 and q3 as outcomes, assigned to two 
states of nature. This turns convexity into outcome-convexity. U
is a weighting function assigning weight U (x2) to the state yield-
ing the best outcome q3, and w is the utility function. Wakker and 
Yang’s (2019) Assumption 2 holds. Their Corollary 6 implies con-
cavity of w .

The result for convex w and concave � follows from the result 
just obtained by defining U∗ = −U , �∗=�, and w∗ = 1 − w(1 − p). 
If outcomes are monetary and monotonicity w.r.t. money is consid-
ered desirable, then outcomes can be multiplied by −1. �

Further literature on aversion to mean-preserving speads. 
The equivalence of outcome-convexity with aversion to mean-
preserving spreads (and its variations discussed below) holds 
only under RDU. In general, there is no logical relation between 
these conditions. Before discussing further details, we note that 
outcome-convexity has been studied in the literature only when 
an underlying state space was specified, but this is equivalent 
to our definition for simple lotteries. Under compact continu-
ity, outcome-convexity does imply aversion to mean-preserving 
spreads (Chateauneuf and Lakhnati, 2007 Theorem 4.2; Dekel, 1989
Proposition 2). The resulting preferences have been studied for op-
timal insurances (Ghossoub, 2019). If convexity (w.r.t. probabilistic 
mixing) holds, a condition implied by aversion to mean-preserving 
spreads under continuity, then by Dekel (1989 Propositions 2 and 
3), under weak continuity, aversion to mean-preserving spreads 
becomes equivalent to convexity.

Bommier et al. (2012 Result 3) considered a more-risk-averse 
than relation weaker than aversion to mean-preserving spreads, 
with distribution functions crossing once. They showed for linear 
w (EU) that their condition is equivalent to concavity of U . They 
also showed for linear utility (see their proof on pp. 1638-1639) 
that their condition is equivalent to convexity of w . They provided, 
more generally, comparative results. Chew and Mao (1995, Theo-
rem 2 and Table II) used a yet weaker elementary risk aversion 
condition, implied by our outcome-convexity, and showed, under 
RDU, that it holds if and only if w is convex and U is concave. 
They assumed Gateaux differentiability, which under RDU is equiv-
alent to differentiability of w , and continuity. Hence, under the 
latter two assumptions, they provided an alternative way to ob-
tain our Theorem 5. Ebert (2004, Theorem 2) used a progressive 
transfer property, equivalent to Chew and Mao (1995) elementary 
risk aversion, to characterize concavity of U plus convexity of w . 
Importantly, he did not need differentiability of U , although he 
did assume continuity. He considered welfare theory where states 
are reinterpreted as people and probabilities p j reflect propor-
tions of a population. He used extra structural richness in allowing 
for any arbitrary replication of any group (“event”) in the popula-
tion. Ghossoub and He (2021) studied alternative versions of risk 
aversion, taking probability and utility risk premiums rather than 
preferences as primitives. �
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