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Abstract

We introduce belief hedges, i.e., sets of events whose uncertain subjective beliefs neutralize each other. 
Belief hedges allow us to measure ambiguity attitudes without knowing those subjective beliefs. They lead 
to improved ambiguity indexes that are valid under all popular ambiguity theories. Our indexes can be 
applied to real-world problems and do not require expected utility for risk or commitments to two-stage 
optimization, thereby increasing their descriptive power. Belief hedges make ambiguity theories widely 
applicable.
Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Hedging is a central concept in finance. It turns uncertain monetary outcomes (“gambles”) 
into certainties without using any further information about the relevant uncertainties. A hedge 
combines a properly chosen set of gambles so that their uncertainties neutralize each other and 
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the risk-neutral value is obtained irrespective of what those uncertainties are. This paper intro-
duces an analog for subjective beliefs, called belief hedges. A well-known problem in measuring 
ambiguity1 attitudes is that there is uncertainty about an agent’s subjective beliefs, which may 
confound the measurement. A belief hedge combines a properly chosen set of events, so that 
uncertain subjective beliefs neutralize each other. We can then calibrate ambiguity neutrality 
(formalized in Observation 20) irrespective of the uncertain beliefs, and measure ambiguity atti-
tudes without needing any information about those beliefs.

Belief hedges can be directly applied to the real-life uncertainties that are relevant for ap-
plications. They do not need artificial events such as Ellsberg urns or experimenter-specified 
probability intervals, which increases external validity and the motivation of clients and subjects. 
Using our belief hedges, we introduce general indexes of ambiguity aversion and insensitiv-
ity.

Baillon et al. (2018) were the first to measure ambiguity attitudes without needing information 
about subjective beliefs. We show that their domain of events is the special case of belief hedges 
for three-fold partitions. They did not justify their method theoretically. We will do so for our 
generalization and, consequently, we will also justify their method. Our extension beyond three-
fold partitions gives the desired flexibility for applications (Examples 4, 14, and 22). Our main 
contribution is that we introduce the relevant general concepts: belief hedges and the indexes of 
ambiguity aversion and insensitivity that we derive from them. We give preference foundations 
for these concepts, supporting their validity. We also show that these concepts are based on 
underlying econometric principles. Section 8 gives further details on our contribution to Baillon 
et al. (2018).

Our indexes generalize most ambiguity indexes that have been proposed in the literature. They 
are thus valid under many ambiguity theories. They do not need expected utility for risk, or two-
stage stimuli and dynamic decision principles, making them descriptively valid and tractable. 
Our indexes can directly be elicited from preferences and do not require data fitting or addi-
tional assumptions about parametric specifications or the underlying error model. They show, in 
particular, how many indexes in the literature can be made directly observable.

A detailed outline is as follows. The first part of our paper gives a model-free introduction of 
belief hedges and our indexes of ambiguity attitudes. Following basic definitions (§§2.1–2.3), 
§2.4 introduces belief hedges for ambiguity aversion and a corresponding aversion index—
an average ambiguity premium. This section, while elementary, conveys the main novelty of 
belief hedges, explaining why they make artificial ambiguities (e.g., Ellsberg urns) redundant. 
Section 2.5 presents our second index of ambiguity, which captures insensitivity to changes in 
likelihood.

We interpret aversion as a motivational component of ambiguity attitude and insensitivity 
as a cognitive component. In support of this interpretation, §2.7 shows formally that the in-
dexes are orthogonal and, therefore, capture distinct components in the variance of the data. 
Section 3 gives examples of belief hedges, illustrates their tractability, and gives a preference 
foundation of our indexes. It shows how belief hedges can be used to handle complex empirical 
problems.

The second part of this paper, starting in §4, is theoretical. We extend our indexes to many 
outcomes and first consider models, such as the smooth model, in which our indexes can be 

1 Ambiguity refers to uncertain events for which no probabilities are known. Risk refers to the case of known proba-
bilities.
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outcome dependent. We then move on to outcome independence, which holds in many models 
including biseparable utility, rank-dependent/Choquet expected utility, prospect theory, and the 
various multiple prior models. The notation of the first part of this paper, which did not express 
outcome dependence, can then still be used and is most convenient.

Section 7 shows that our indexes generalize and unify most indexes proposed before. They 
also agree with the common qualitative orderings of ambiguity attitudes, such as being more 
ambiguity averse. Consequently, the arguments that have been put forward in the literature to 
support existing indexes and orderings give broad theoretical support to our indexes. The main 
text ends with discussions and a conclusion (§§8-9). Proofs are in the appendix.

2. Belief hedges

This section defines belief hedges and provides theoretical justifications.

2.1. Basic definitions

S denotes a state space, finite or infinite. Its subsets are events. X denotes a set of outcomes, 
again, finite or infinite. Outcomes can be money amounts, health states, and so on. Acts map 
S to X and are finite-valued.2 Act γEβ assigns outcome γ to event E and outcome β to all 
other states. We further assume that lotteries γpβ (receiving outcome γ with probability p and 
β with probability 1 − p) are available. We use the term prospect for both acts and lotteries. A 
preference relation � is given over prospects, with the usual notation �, �, ≺, and ∼. We assume 
weak ordering throughout (completeness and transitivity). As usual, we identify constant acts 
and degenerate lotteries with outcomes. This implies γ = γSβ = γ1β , and � now also applies 
to outcomes. An event is null if its outcomes never affect preference. Monotonicity means: (i) 
weakly improving an outcome of a prospect weakly improves the prospect; (ii) strictly improving 
an outcome of an act in a nonnull event strictly improves the act; (iii) strictly improving an 
outcome of a lottery with positive probability strictly improves the lottery.

A measurement design H is a finite collection of events. It describes the events that will be 
used to define and measure the ambiguity indexes. A central question in our analysis will be 
which designs to use for these purposes. In most of this paper (except §3) H is fixed, and then 
dependencies on it can be dropped from the notation. By {E1, . . . , En}, the design atoms, or 
atoms for short, we denote the smallest nonempty intersections of events in H. Belief hedging 
will imply that the atoms partition S, covering all states. The Ej s are the “atoms” of the smallest 
(finite) algebra of events generated by H. For E ∈H, |E| denotes the number of atoms contained 
in E. The Greek nu (ν) denotes the normalized event size, or event size for short, with ν(E) = |E|

n
. 

Thus, ν(S) = 1. Section 3 shows that under empirically plausible assumptions, our indexes are 
largely independent of the design (and, thus, of ν).

Throughout this paper, statistics refer to H, defined as usual. For functions F, G :H → R, by 
F =

∑
E∈H F(E)

|H| we denote the average of F ; Var(F ) denotes F ’s variance; Cov(F, G) denotes 
the covariance of F and G. Details are in Appendix A. We define the sensitivity of F with respect 
to G as Cov(F,G)

Var(G)
. It is a first-order approximation of how much F will change on average if G

changes by one unit.

2 We can endow S with an algebra of events containing all singletons {s}, and consider only measurable acts. Then 
nothing in this paper changes.
3
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2.2. Structural assumption

To achieve maximal generality and maximal accessibility, Sections 2 and 3 introduce and 
analyze our concepts under minimal assumptions, which hold for all ambiguity models. We relax 
these assumptions in later sections. Sections 2 and 3 assume:

Assumption 1 (Two outcomes). X = {γ, θ}, with γ � θ . �

Later sections consider multiple outcomes. For a large class of models (§7), our concepts and 
results are independent of outcomes, and Assumption 1 is not restrictive for them. We assume 
that a matching probability m(E) exists for every event E, defined by

γEθ ∼ γm(E)θ. (1)

Monotonicity implies that m is unique. Dimmock et al. (2016, Theorem 3.1) and Gul and Pe-
sendorfer (2020, “risk equivalent”) showed that matching probabilities are well suited to analyze 
ambiguity attitudes because, under many ambiguity models, they capture everything relevant to 
ambiguity attitudes. There is no need to measure risk attitudes, utilities, probability weighting, 
and so on. Ambiguity reflects how m(·) deviates from a probability measure and, thus, from 
additivity. For example, ambiguity aversion implies m(E) + m(Ec) < 1, violating additivity.

We summarize the structural assumptions for the entire paper:

Assumption 2 (Structural assumption). � is a monotonic weak order over acts (finite-valued 
measurable maps from S to X) and lotteries (two-valued probability distributions over X). Each 
event has a matching probability. �

2.3. Ambiguity neutrality

Definition 3. � is ambiguity neutral if m is a probability measure. �

Ambiguity neutrality means that subjective beliefs are treated the same way as objective be-
liefs. We define it for two outcomes here, but Observation 20 will show that general ambiguity 
neutrality is implied under many ambiguity models. Ambiguity neutrality is violated in the fol-
lowing example. We chose it because it refers to an existing experiment, showing the practical 
relevance of our approach. As a price to pay, it involves some game-theoretic details.

Example 4 (Running example). The agent is player 1 in the following two-player minimum 
effort coordination game from Goeree and Holt (2001), in the version analyzed theoretically by 
Eichberger and Kelsey (2011). There are six effort levels {115, 125, 135, 145, 155, 165}. They 
are acts, f1, . . . , f6 (with “f” referring to first player) and the agent has to choose one of them. 
Player 2 also has to choose one of these six effort levels simultaneously and independently. For 
the agent, these are states, denoted s1, . . . , s6 (with “s” referring to second player) and they are a 
source of uncertainty.

The players receive the outcome min{f, s} − c× e, where f is chosen by player 1, s by player 
2, e denotes own effort level, and c = 0.9 denotes the marginal cost. The best outcome possible 
for both players results from the joint maximum effort f6 = s6 = 165, constituting the most fa-
vorable equilibrium. However, if one player chooses a lower effort level, e.g., player 2 chooses 
s3, then the optimal choice for the other player is the same, f3. More effort then leads to a loss. A 
4



A. Baillon, H. Bleichrodt, C. Li et al. Journal of Economic Theory 198 (2021) 105353
less favorable equilibrium results. In this sense, a choice f6 is risky, gambling on trust and coop-
eration, and f1 is safe. In experiments, most players choose the safe, low effort (Table 1 below).

In this example, we assume that we can also observe the agent’s matching probabilities 
through the following indifferences3:

15s10 ∼ 150.500; i.e., m(s1) = 0.50;
15s20 ∼ 15s30 ∼ 15s40 ∼ 15s50 ∼ 150.200; i.e., m(s2) = · · · = m(s5) = 0.20;
15s60 ∼ 150.300; i.e., m(s6) = 0.30;
0s115 ∼ 00.5515; i.e., m

(
sc

1

) = 0.45;
0s215 ∼ 0s315 ∼ 0s415 ∼ 0s515 ∼ 00.3015; i.e., m

(
sc

2

) = · · · = m
(
sc

5

) = 0.70;
0s615 ∼ 00.3515; i.e., m

(
sc

6

) = 0.65.

The agent violates ambiguity neutrality: m is not a probability measure because it violates addi-
tivity. For instance, m(s1) + m(sc

1) = 0.95 < 1.
We will use this example to illustrate the techniques of our paper, and will summarize and 

discuss the results in Example 22. �

2.4. Belief hedging for ambiguity aversion

To measure ambiguity aversion, several papers used differences P(E) − m(E), where P de-
notes subjective probabilities reflecting ambiguity-neutral beliefs, called a-neutral probabilities.4

These differences reflect an ambiguity premium, i.e., a willingness to pay—in probability (be-
lief) units—to avoid ambiguity. This premium increases with the degree of ambiguity aversion 
(Dimmock et al., 2016; Kahn and Sarin, 1988; Viscusi and Magat, 1992). Ideally, with obser-
vations P(E) − m(E) available for a number of events E, we would like to define our aversion 
index as the average

P − m. (2)

The problem with this definition is that P is usually unknown. For Ellsberg urns, we can derive 
P from symmetry assumptions, but for natural events this cannot be done. In Example 4, P need 
not agree with the actual choice percentages in Table 1, as those are unknown to the agent.

Our solution is simple. We ensure, through Definition 5 below, a fixed and known average 
level of P :

P = 1
2

for all P. (3)

Table 1
Choice percentages in Goeree and Holt (2001).

s1 = 115 s2 = 125 s3 = 135 s4 = 145 s5 = 155 s6 = 165

50 18 5 7 5 15

3 Such belief measurements are commonly incentivized by means of a random incentive system that enhances isolation, 
avoiding income effects, hedging effects, and interactions between the game played and the belief measurement.

4 They can be interpreted as the beliefs of the ambiguity neutral twin of the agent, i.e., the beliefs if the agent changed 
into ambiguity neutral but in all other respects remained the same.
5
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To prepare for the concept relevant here (belief hedges), we present a condition that is not only 
sufficient, but also necessary, for Eq. (3):

Definition 5. H is level-hedged, or l-hedged for short, if:

each state s appears in exactly half of the events in H. (4)

Equivalent is that each atom Ei appears in exactly half of the elements of H (can be seen 
via any s ∈ Ei ). This implies P = 1/2, first for all degenerate probability measures assigning 
probability 1 to Ei , and then for all their convex combinations, i.e., for all P . For applications, the 
most tractable special case is when H is complementation closed.5 We multiply P − m = 1

2 − m

by 2 for normalization explained later:

Definition 6. If l-hedging (Eq. (4)) holds, then the index of ambiguity aversion is

b = 1 − 2m. (5)

Using l-hedging, we have captured Eq. (2) without needing to know P . As mentioned, our 
index reflects how much success probability one is willing to give up to avoid ambiguity. In the 
Anscombe-Aumann framework (expected utility for risk), it reflects the proportion of success-
utility the agent is willing to pay. For linear utility, which is reasonable for small stakes, it is the 
proportion of the winning prize the agent is willing to give up to avoid ambiguity. In Example 4, 
we obtain b = 0.08, which suggests weak ambiguity aversion.

2.5. Belief hedging for insensitivity

Theoretically and normatively motivated ambiguity models have focused on ambiguity aver-
sion, a motivational component of ambiguity attitude, and the topic of the preceding section.6

However, empirical studies have found richer phenomena (Anantanasuwong et al., 2020; l’Hari-
don et al., 2018; Kocher et al., 2018). Whereas strong ambiguity aversion has indeed been 
reported for likely events, it gets weaker for events of moderate likelihood, and turns into ambi-
guity seeking for low likelihood events (Trautmann and van de Kuilen, 2015).7

The aforementioned pattern suggests a tendency to treat bets on events as fifty-fifty bets, with 
insufficient discriminatory power and insufficient responsiveness to changes in likelihoods in the 
middle region. It is similar to the insensitivity reflected by inverse-S probability weighting for 
risk, where weights in the middle are also moved toward fifty-fifty (Fehr-Duda and Epper, 2012; 
Wu and Gonzalez, 1999). We incorporate this insensitivity as a second, cognitive component 
of ambiguity attitude. It reflects a poor understanding of ambiguity. The agent takes ambiguous 
events (too much) as one blur. We use the term a(mbiguity-generated) insensitivity to refer to the 
insensitivity generated by ambiguity.

5 However, this condition is not necessary and sufficient to serve in our axiomatization. For example, it is violated if S
contains seven states and H contains all three- and six-state events. Then l-hedging still holds.

6 An exception is Gul and Pesendorfer’s (2015, p. 467, 471) Hurwicz expected utility, which explicitly allows for 
a-insensitivity (our term).

7 These phenomena are reflected for losses, leading to a four-fold pattern. Overall, for losses there is more ambiguity 
seeking than aversion. Reflection can readily be accommodated by reflecting our parameters for losses or using dual 
functionals there. We focus on gains in this paper.
6
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Because insensitivity reflects insufficient responsiveness of matching probabilities to changes 
in the a-neutral probabilities P , we would ideally like to base our insensitivity index on a measure 
of this responsiveness. The most common candidate is the sensitivity measure

Cov(m,P )

Var(P )
. (6)

This index has been widely used as the slope in regressions (Hill et al., 2008, Eq. (2.7)) and as β
in the CAPM model in finance (Hull, 2017). It captures the average derivative of m with respect 
to P (in our domain of nonextreme events), i.e., the average change in m if P changes by one 
unit.

In the ε-contamination model, a tractable subclass of α-maxmin multiple prior models (de-
fined later), our insensitivity index coincides with the size of the set of priors (§7.3). In general, 
the larger the set of priors (perception of ambiguity), the more events are treated alike, corre-
sponding to lower discriminatory power. That is, there is more insensitivity. In the extreme case 
where the set of priors contains all priors, all nontrivial events E are treated alike, with all βEα

indifferent and with, indeed, maximal insensitivity. Section 7 provides similar results for other 
popular ambiguity theories, where insensitivity has often been interpreted as perception of ambi-
guity. Our insensitivity index shows a way to directly measure this based on revealed preferences.

To measure our insensitivity index, we again face the problem that the a-neutral P is unknown. 
Our solution is, again, to ensure that P does not matter. We can then replace any P by the event 
size ν, as if P were uniform over atoms. The idea is to ensure that the event size ν properly 
reflects the probability P (over events of the same size) in the sense that they co-vary perfectly 
with each other. The following condition is necessary and sufficient for this purpose. In the 
summation below, for fixed s we sum over all E.

Definition 7. H is v (ariation)-hedged if:∑
E�s

ν(E) is the same for each fixed state s. (7)

This condition requires that the total size of events containing each fixed state s (equivalently, 
containing each atom Ei , through any s ∈ Ei ), is a constant. It is satisfied in Example 4, where the 
sum of event sizes is 26 for each s. This condition is crucial in ensuring that the approximation in 
Eq. (8) below is proper. We provide an intuitive interpretation in the next subsection and present 
a full mathematical derivation in Appendix A.

To define our insensitivity index, we need one more structural assumption to avoid degeneracy.

Assumption 8 (Nondegeneracy). H does not contain ∅ or S. All atoms Ej are nonnull. Further, 
ν is not constant on H. �

Insensitivity concerns intermediate events away from the extremes and, therefore, the first 
part of the Assumption excludes the extreme events.8 This entails no loss of information because 
the m values of ∅ and S are 0 and 1, respectively, by monotonicity. In the second part of the 

8 In the terminology of Wakker (2010, §7.7), we focus on the insensitivity region. Boundary restrictions can be used 
to define this region. Because our theorems are valid irrespective of what those regions are, we do not discuss them in 
this paper. For applications, we recommend using events in the measurement design with a-neutral probabilities between 
0.05 and 0.95.
7
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Assumption, null events do not affect preference and can therefore be removed from the atoms 
by joining them with a nonnull atom (with the obvious adaptation of H). This second part further 
serves to stay away from extreme events. In the final part, event size needs to be nonconstant—
also after excluding ∅ and S—because we derive insensitivity from variations in event size. This 
implies n ≥ 3. The condition ensures that Var(ν) is positive, so that the ratios below are well-
defined.

Definition 9. H is a belief hedge if both l-hedging and v-hedging hold. �

The following definition is based on Eq. (6), with P replaced by ν.

Definition 10. If Assumption 8 holds and H is a belief hedge, then the index of a(mbiguity-
generated-)insensitivity is

a = 1 − Cov(m,ν)

Var(ν)
. (8)

Because Cov and Var concern variation within H, they can be calculated exactly from the 
matching probability data collected for all events in H. Corollary 13 below gives a simple spe-
cial case of Eq. (8) that can readily be calculated using paper and pencil. Whereas the aversion 
parameter captures how much success probability is lost due to ambiguity, the insensitivity index 
captures how much of the changes in probability is lost due to ambiguity (away from the extreme 
likelihoods). It thus captures the degree of underreaction to new information and is relevant, for 
example, in evaluations of precautionary measures. An index a = 0.43 (as in Example 4) means 
that the agent underestimates the marginal benefits of precautionary measures by a factor of 
almost 2.

Throughout the rest of the paper we assume Assumptions 2 and 8, explicitly in theorems and 
implicitly elsewhere. We end this subsection with a remark about the aversion index. The com-
mon empirical pattern of ambiguity seeking for unlikely events and (strong) ambiguity aversion 
for likely events implies that we would have underestimated [overestimated] the average P − m

if we had included mainly unlikely [likely] events in our belief hedge. L-hedging avoids such 
biases by taking the average event-size equal to 1/2.

2.6. Intuitive explanation of v-hedging

To understand the intuition of v-hedging, assume that it is violated (but l-hedging holds). 
More specifically, assume that there are states s and t such that the summation in Eq. (7) is 
smaller for s (“small”) than for t . Because both states appear in half of the events in H by l-
hedging, this means that t appears more often in big events in H than s, and, vice versa, that s
appears more often in small events than t . Assume that we change a probability measure P by 
moving some probability mass from t to s. Then, within H, the total probability of big events 
decreases, and that of small events increases. It is plausible that the total m value assigned to 
big [small] events then also decreases [increases]. That is, our index of a-insensitivity increases. 
However, this change is due to a change in the additive probability and not a change in ambiguity. 
Factors beyond ambiguity then confound our index. To avoid this, we impose v-hedging.

In Example 4, v-hedging holds. For all probability measures P , the sum of the probabilities of 
all small events of size 1/6 is always 1, and the sum of the probabilities of all large events of size 
5/6 is always 5. Because the sums of the probabilities are the same for each P (including ν), the 
8
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extent to which the matching probabilities m over- or underweight events in H is independent of 
P . It must be due to deviations from probabilities P (ambiguity).

Because the sensitivity of m with respect to P is independent of P , we obtain the following 
approximation:

Cov(m,P )

Var(P )
≈ Cov(m,ν)

Var(ν)
. (9)

This approximation justifies our index of a-insensitivity. Appendix A shows that Eq. (9) provides 
a good first-order approximation under common econometric assumptions. Proposition 24 in 
Appendix A shows some empirically plausible cases in which the equality is even exact.

2.7. Theoretical justifications of belief hedges

We first show formally that our indexes correctly classify ambiguity neutrality (and, accord-
ingly, ambiguity aversion/seeking and (in)sensitivity) and that they have been properly normal-
ized, allowing comparisons across studies. The following theorem shows that belief hedges are 
not only sufficient but also necessary for our purposes.

Theorem 11. Under Assumptions 1, 2, and 8, b = a = 0 for all ambiguity neutral agents if and 
only if the measurement design H is a belief hedge. Then the supremum value of both b and a is 
1.9 �

Psychologically, we interpret aversion and insensitivity as two distinct components of ambi-
guity attitudes, motivational and cognitive. Theorem 12 shows that a mathematical orthogonality 
of the indexes supports this psychological interpretation. The proof of the theorem in Appendix B
gives formalizations. Although conceptual orthogonality does not imply empirical orthogonality, 
Anantanasuwong et al. (2020) did find evidence for empirical orthogonality.

Theorem 12. Under Assumptions 1, 2, and 8, the indexes a and b capture orthogonal compo-
nents of the variance of the data. �

3. Which design to use and a preference foundation

This section examines variations in belief hedges, i.e., the measurement domains.

3.1. Examples of belief hedges

Baillon et al.’s (2018) experiment assumed three nonnull atoms {E1, E2, E3} and a full de-
sign H = {E1, E2, E3, E1 ∪ E2, E1 ∪ E3, E2 ∪ E3} denoted H(E1, E2, E3). We write ms =
m(E1)+m(E2)+m(E3)

3 and mc = m(E1∪E2)+m(E1∪E3)+m(E2∪E3)
3 . They used the following definitions, 

which by substitution (Appendix B) are identical to ours.

Corollary 13. b = 1 − mc − ms and a = 3( 1
3 − (mc − ms)). �

9 Monotonicity excludes constancy of m. If we relax this condition, the supremum values can occur as maxima: b = 1
if m is constant 0 and a = 1 for any constant m.
9
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We next give some other tractable examples of belief hedges. H is a belief hedge if for every 
i < n, every state (a) appears equally often in an event of size i; and (b) it does so with an overall 
frequency 1

2 . This includes all cases where l-hedging holds and H satisfies symmetry with respect 
to the atoms: for all i = j and all Ei, Ej ∈ H: if an event in H contains Ei but not Ej , then H
also contains that event with Ei replaced by Ej . This is satisfied if H is the full design, i.e., it 
contains all unions of Ej s except S and ∅, as in Baillon et al. (2018) with H{E1, E2, E3}. It is 
also satisfied if H is the basic design, i.e., it contains all one-atom events and their complements. 
Further, all disjoint unions of belief hedges are belief hedges.

The examples show that there is much flexibility in belief hedges. The smallest one possible is 
Baillon et al.’s (2018) design: the full design of a three-fold partition of S. Obviously, our indexes 
become more valid and reliable when H is richer. As default, we recommend a basic design with 
a partition of S that specifies all relevant uncertainties,10 such as the six possible effort levels of 
the opponent in Example 4. This design involves all relevant atoms, considers both likely and 
unlikely events (where ambiguity is strongest), and grows linearly with the number of atoms so 
that it is tractable. An important advantage of the basic design (as well as richer designs) is that 
we get enough equalities to estimate the a-neutral probabilities as well (Example 22). In many 
real-world situations, control over the data received is limited, and general belief hedges give 
useful flexibility.

In the basic design of Example 4, we could, at will, add {{s1, s2, s3}, {s4, s5, s6}}, or any other 
pair of disjoint three-state events if these events are relevant or expected to give interesting be-
havior (see Example 14 below). We could further select events that subjects easily relate to or 
that avoid biases. We leave experimental implementations and real-world applications to future 
studies.

3.2. Non-uniform sources

In general, different designs do not need to give the same indexes, as the following example, 
also discussed by Machina (2011), shows.

Example 14. Consider an Ellsberg urn with 90 balls numbered 1-90, the first 30 red, the last 60 
black or yellow in an unknown proportion. For E1 (red), E2 (non-red and odd), E3 (non-red and 
even), the corresponding design H(E1, E2, E3) will suggest ambiguity neutrality with b = a = 0. 
However, for E1 (red), E2 (black), E3 (yellow), the corresponding design H(E1, E2, E3) will 
give deviations from neutrality. Our indexes signal that ambiguity aversion and insensitivity are 
not uniform here. The basic design with the six combinations of parity and color can yield the 
average aversion/insensitivity over all events. �

Ambiguity is too rich a domain to expect that an agent will have one attitude for all events. 
There can be many kinds of (source) preferences and (lacks of) understanding of uncertainty 
beyond risk that go beyond whether probabilities are known or unknown (Tversky and Fox, 
1995). Ambiguity attitudes depend on sources of uncertainty just like utility functions depend on 
commodities (Cappelli et al., 2020). Our indexes can examine such dependencies and emotions.

10 Preferably, this involves a limited number of events, not only for tractability reasons, but also to stay away from very 
extreme a-neutral probabilities below 0.05 or above 0.95, as recommended elsewhere in this paper.
10
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3.3. Uniform sources

We next investigate when different designs do give the same indexes.

Definition 15. The indexes fit perfectly if every measurement design H gives the same in-
dexes. �

The following property characterizes perfect fit: m is neo-additive if there exist a probability 
measure P on S, 0 ≤ σ ≤ 1, and 0 ≤ τ ≤ 1 − σ such that

P(E) = 0 ⇒ m(E) = 0;
0 < P(E) < 1 ⇒ m(E) = τ + σP (E);
P(E) = 1 ⇒ m(E) = 1.

(10)

W is neo-additive if the three implications in Eq. (10) hold with W instead of m, where further-
more σ > 0 and all P(Ei) > 0 (to satisfy monotonicity11). Under Assumptions 1, 2, and 8, and 
neo-additivity of m (Eq. (10)), substitution (Appendix B) gives:

b = 1 − 2τ − σ and a = 1 − σ. (11)

As is common in axiomatizations, we assume complete information about preferences. That 
is, we consider all measurement designs and use m for all events.12 As common in axiomatiza-
tions, we assume a continuum domain. We do so through the following conditions of Villegas 
(1964). We say that m is fine13 if for each nonnull event A there exists an event B ⊂ A such that 
m(A) > m(B) > 0. Fineness of P is defined similarly. Event-continuity holds if: (i) whenever a 
nested sequence A1 ⊃ A2 ⊃ A3 ⊃ · · · converges to ∅ and m(B) > 0, there exists a J such that 
m(Aj ) < m(B) for all j ≥ J , and (ii) whenever a nested sequence B1 ⊂ B2 ⊂ B3 · · · converges 
to B and m(B) > m(A), there exists a J such that m(Bj ) > m(A) for all j ≥ J .

Theorem 16. 14 Under Assumptions 1, 2, and 8, the following two statements are equivalent:

(i) m is neo-additive, and the corresponding probability measure P is fine (“atomless”15) and 
countably additive.

(ii) Our indexes perfectly fit, and m is fine and event-continuous. �

By monotonicity, m in (i) is strictly increasing in P ; i.e., σ > 0. The literature has documented 
several appealing properties of the neo-additive model (Eichberger et al., 2012, p. 238 penulti-
mate paragraph). Theorem 16 provides another one and shows a new way to test the neo-additive 
model: by testing consistency of our indexes over different partitions.

11 This also avoids some open mathematical problems in Chateauneuf et al. (2007), concerning nonnecessity of null 
event consistency in their Theorem 5.2 and inconsistency between null events in bets on and bets against events under 
their maximal pessimism.
12 So far we, only used m on one fixed measurement design.
13 We avoid the common term atomless because the term atom is used in reference to H in this paper. In the presence 
of the assumed event-continuity, our condition is equivalent to Savage’s (1954) fineness. Generalizations that allow for 
atoms may be possible using Mackenzie’s (2019) generalization of Villegas (1964).
14 To avoid some Banach-Kuratowski-Ulam impossibility results, measure-theoretic structure can be added in this the-
orem, where the set of events is a σ -algebra.
15 Here, atoms refer to S. In the rest of the paper, they refer to H.
11
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3.4. Applicability of our indexes

Theorem 16 shows that our indexes perfectly measure ambiguity attitudes if m is neo-additive. 
The neo-additive model performs well empirically and can capture the commonly observed four-
fold pattern of ambiguity aversion (Trautmann and van de Kuilen, 2015).

Theorem 16 can be interpreted as the counterpart for ambiguity of a classical result in expected 
utility for risk: that the CRRA index perfectly captures (relative) risk aversion irrespective of the 
stimuli used if and only if utility is from the CRRA family (Harvey, 1990, Theorem 3). The 
CRRA index is tractable and performs well empirically, even though it usually does not fit per-
fectly due to nonconstant relative risk aversion and its difficulty in handling extreme outcomes. 
Despite these limitations, the CRRA index may still give the best (“average”) summary of the 
data and capture risk attitudes well.

Likewise, we believe that our indexes capture ambiguity attitudes well even if they only ap-
proximate these. Our indexes do not fit all data well, e.g., as in Example 14, where the source 
of uncertainty is not “uniform” (formalized by Abdellaoui et al., 2011; our Eq. (22)). In such 
situations, however, no (pair of) indexes can fit all the data, and our indexes still give the best 
(“average”) summary.

Our indexes may not work well either if very unlikely events are incorporated into the mea-
surement design. Such events are known to involve many irregularities (Kahneman and Tversky, 
1979; Ortoleva, 2012) and are better avoided in applications, e.g., by imposing boundary condi-
tions (Tversky and Wakker, 1995; see Wakker’s 2010 insensitivity region). Our indexes capture 
ambiguity attitudes well if practitioners take these limitations into account then.

Measuring risk attitudes using expected utility involves only one parameter: utility. However, 
measuring ambiguity attitudes using ambiguity models involves several parameters besides am-
biguity attitudes, including utility, a-neutral probabilities, and risky-probability weighting. This 
complicates the task. Many preceding studies jointly estimated all those parameters to measure 
ambiguity attitudes. By contrast, we only use a few indifferences. Our indexes leave the other 
parameters free. They simply drop from the equations. Our indexes substantially simplify the 
measurement of ambiguity attitudes.

4. Extension to many outcomes

From now on, we drop Assumption 1 (only two outcomes) and consider general outcome sets 
X. Observation 17 extends the results obtained before without committing to a specific ambiguity 
model.

Observation 17. All results of §2 and 3, including Theorems 11, 12, 16, and Corollary 13, remain 
valid if we drop Assumption 1 but fix two outcomes γ � θ for the matching probabilities m
(Eq. (1)) and the indexes b, a. �

5. Extension to outcome-dependent ambiguity models

In several models, ambiguity attitudes depend on the outcomes considered (e.g., Chew et 
al., 2008; Dobbs, 1991; Gul and Pesendorfer, 2014; Neilson, 2010; Siniscalchi, 2009; Skiadas, 
2013). Then, the indexes in Observation 17 will depend on the outcomes γ, θ chosen, and can be 
used to investigate this dependence. For example, constant ambiguity aversion with respect to ab-
solute utility increments (Grant and Polak, 2013), or proportional utility increments (Chateauneuf 
12
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and Faro, 2009), or wealth increments (Cerreia-Vioglio et al., 2019b) are inherited by our indexes 
and can be tested using them.

The most popular outcome-dependent ambiguity model is the smooth model (Klibanoff et al., 
2005). We now analyze our indexes for this model. We assume that all functions are sufficiently 
smooth with all required derivatives existing and all O and o terms (defined later) uniform. Our 
analysis is similar to Izhakian and Brenner (2011) and Maccheroni et al. (2013), who provided 
local ambiguity premiums expressed in monetary units. Our premiums are expressed in probabil-
ity units. The text below Eq. (5) explained that, under some assumptions, our index corresponds 
with a proportional monetary premium.

With fixed γ � θ , the indifference γEθ ∼ γm(E)θ in Eq. (1) becomes under the smooth model 
of ambiguity, explaining notation below:∫


(S)

ϕ
(
Q(E)

)
dμ = ϕ

(
m(E)

)
. (12)

The smooth model assumes expected utility for risk with utility function u, which we normalize 
at u(γ ) = 1 and u(θ) = 0. 
(S) denotes the set of (first-order) probability measures over S, and 
μ is a second-order probability distribution over 
(S) interpreted as perception of ambiguity. To 
evaluate γEθ (through the integral in Eq. (12)), we take the second-order μ-weighted expecta-
tion of Q(E), the Q-expected utility, but transformed by a function ϕ. Concavity of ϕ captures 
ambiguity aversion, linearity captures ambiguity neutrality, and convexity captures ambiguity 
seeking. The right prospect in Eq. (1), γm(E)θ , is evaluated by the right-hand side of Eq. (12)
because the first-order probability of receiving γ is, certainly and unambiguously, m(E). Let 
p = P(E) = ∫


(S)
Q(E)dμ denote the a-neutral probability of E. The variance of Q(E) with 

respect to μ is σ 2 = ∫

(S)

(Q(E) − P(E))2dμ. A = −ϕ′′
ϕ′ is the Arrow-Pratt index of ϕ and cap-

tures ambiguity (Klibanoff et al., 2005, p. 1865). Further, σ 2 is the variance of the second-order 
uncertainty μ about ambiguity-neutral probabilities p, and o(σ 2) expresses first-order approxi-
mation as σ 2 vanishes.

Observation 18. In the smooth ambiguity model, the aversion index is

b = σ 2A(p) + o
(
σ 2), (13)

and the insensitivity index is

a = 1

2

Cov(σ 2A(p), ν)

Var(ν)
+ o

(
σ 2). � (14)

Thus, the ambiguity aversion index b is the (average of the) product of what is sometimes 
interpreted as ambiguity perception (σ 2) and a relative aversion index per perceived unit, A(p). 
A similar decomposition occurs in Eq. (20) below, where it is discussed further. Remarkable 
is that Eq. (13) makes the average ambiguity aversion in the smooth model directly observable 
through b, even though its components p, A, and σ 2 are not.

The insensitivity index captures how the aversion premium (σ 2A(p) in Eq. (13)) increases 
with the event size ν, which indeed reflects sensitivity. This degree of ambiguity (perception), 
depending on the variance of the event probability, is similar to Izhakian’s (2017) measure in his 
variation of the smooth model that uses Choquet expected utility instead of expected utility in 
the second stage.
13
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The ambiguity attitude analyzed in the smooth model depends on the outcome interval [θ, γ ] 
(e.g., Klibanoff et al., 2005, Proposition 4). It is independent of outcomes when ϕ(x) = −e−ρx

(Klibanoff et al., 2005, Proposition 2). Then:

b = ρσ 2 + o
(
σ 2); (15)

a = 1

2
ρ

Cov(σ 2, ν)

Var(ν)
+ o

(
σ 2). (16)

This case is of special interest because it concerns the intersection with the variational model 
(Maccheroni et al., 2006). This intersection is exactly the multiplier preference model of Hansen 
and Sargent (2001). Outcome independence is central in the next section.

6. Extension to outcome-independent ambiguity models

Many models assume that ambiguity attitudes are outcome independent.16 Then our indexes 
are as well. The outcome-independent models are all special cases of uniseparable utility: there 
exists a worst outcome θ (∀γ ∈ X : γ � θ; ∃γ � θ ) such that17

γEθ → W(E)U(γ ) and γpθ → w(p)U(γ ) (17)

represents preferences for prospects with at most one outcome γ other than θ . For money, θ
is usually set to 0. For health, it is typically set equal to death. Under prospect theory, θ is the 
reference outcome. U is a nonconstant utility function; we scale U(θ) = 0. W is a nonadditive 
(event) weighting function, i.e., W(∅) = 0, W(S) = 1, and W is set-monotonic (A ⊃ B then 
W(A) ≥ W(B)). Further, w : [0, 1] → [0, 1] is a (probability) weighting function, i.e., w(0) = 0, 
w(1) = 1, and w is strictly increasing. Expected utility implies (a) W is additive (i.e., W is a 
subjective probability measure) and (b) w is the identity. Expected utility under risk only implies 
(b). Under uniseparable utility, we can redefine m in the following outcome-independent manner:

Definition 19. m(E) = p if γEθ ∼ γpθ for some γ � θ . �

By Eq. (17), Definition 19 is equivalent to γEθ ∼ γpθ for all γ � θ (and to W(E) = w(p)). 
It extends our preceding definition (Eq. (1)) to more than two outcomes. The choice of outcomes 
γ � θ is immaterial because they all give the same result and, consequently, Assumption 1 is no 
real restriction.

We could have increased outcome independence by imposing Savage’s (1954) P4. This would 
allow θ to vary, as in biseparable utility, but would reduce generality by excluding some models.

For the sake of easy reference, we provide the following trivial reformulation of the results 
derived in preceding sections, adapted to general X and uniseparable utility.

16 They include biseparable utility (Ghirardato and Marinacci, 2001), Choquet expected utility or rank-dependent utility, 
prospect theory for gains, maxmin EU, and the α-maxmin model (including Gul and Pesendorfer, 2015). Further included 
are separate-outcome weighting models (γEβ → W(E)U(γ ) +W(Ec)U(β); Einhorn and Hogarth, 1985), Chateauneuf 
and Faro’s (2009) confidence representation with worst outcome θ , Izhakian’s (2017) uncertain probability model, and 
Lehrer and Teper’s (2015) event-separable representation.
17 The assumption of a worst outcome is made or simplicity. Because we focus on gains, sign-dependence, as in prospect 
theory, plays no role.
14
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Observation 20. All results of §2 and §3 remain valid, including Theorems 11, 12, 16, and 
Corollary 13 if we replace Assumption 1 by uniseparable utility and use Definition 19 instead 
of Eq. (1). Ambiguity neutrality (Definition 3) then implies W(.) = w(P (.)) for a subjective 
probability measure P (= m). �

Observation 20 shows that our indexes and results can be applied to event-driven ambiguity 
models. It also shows that Definition 3 (ambiguity neutrality) agrees with common definitions. 
Thus, the results obtained in the first part of this paper for two fixed outcomes hold in great gener-
ality. Ambiguity neutrality comprises both probabilistic sophistication (Machina and Schmeidler, 
1992) and indifference between subjective and objective probabilities (Dean and Ortoleva, 2017, 
Footnote 31).

7. Generalizing and unifying existing ambiguity indexes and orderings

This section applies our indexes to a number of outcome-independent ambiguity models and 
relates them to existing indexes and orderings. We assume that H is a belief hedge through-
out.

7.1. Qualitative ambiguity orderings

To our best knowledge, ambiguity neutrality has always been defined as (a special case of) 
global probabilistic sophistication, sometimes as expected utility (surveyed by Gilboa and Mari-
nacci, 2016). Then m is an additive probability (Definition 3 and Observation 20) and both our 
indexes are 0 (Theorem 11), which is compatible with the existing definitions. The sign of b then 
properly reflects ambiguity aversion/seeking.

It is common in the literature to define �1 as more ambiguity averse than �2 if f �1 r ⇒
f �2 r where f is a general, possibly ambiguous act and r is an unambiguous act (risky, with 
known probabilities). See Dean and Ortoleva (2017, Definition 5), Gul and Pesendorfer (2014, 
Corollary 1), and Gul and Pesendorfer (2015, Propositions 3 and 4). Gul and Pesendorfer (2020)
used a stronger restriction and defined the above condition as weakly more ambiguous. These 
conditions all imply that �1 has lower matching probabilities and, hence, a larger b index, which 
is again compatible with these definitions.

Some papers considered qualitative orderings of insensitivity or, relatedly, ambiguity percep-
tion. Multiple prior models have used set-inclusions of sets of priors for this purpose (Ghirardato 
et al., 2004, Proposition 6) which, for tractable subcases of multiple prior models, agrees with 
our insensitivity index (Eq. (20) below). Tversky and Wakker (1995) considered comparative 
subadditivity for general weighting functions W . If applied to matching probabilities, this agrees 
with Baillon and Bleichrodt’s (2015) indexes (discussed in §7.2) and, therefore, with our in-
dex a. Similarly, Tversky and Wakker’s (1995) source preference conditions agree without 
index b.

Some papers defined ambiguity indexes and orderings using premiums in monetary units 
rather than in our probability units (Brenner and Izhakian, 2018; l’Haridon et al., 2018; Mac-
cheroni et al., 2013). These indexes depend on the utility function, are outcome-oriented, and 
are not directly related to our indexes. The remainder of this section shows that our indexes 
generalize many existing quantitative indexes.
15
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7.2. Biseparable utility (including Choquet expected utility)

Many theories are special cases of uniseparable utility, including biseparable utility and Cho-
quet expected utility with a nonadditive measure W . They often adopt an aversion index

1 − W(E) − W
(
Ec

)
. (18)

It was suggested by Schmeidler (1989, example on pp. 571-572 & p. 574) and proposed by Dow 
and Werlang (1992). Most theories assume expected utility for risk, so that m = W , and we get:

Observation 21. Under Assumptions 2 and 8, expected utility for risk, and complementation-
closedness of H, our ambiguity aversion index b is the average of Eq. (18). In Schmeidler’s 
(1989) model, ambiguity aversion18 implies b > 0, ambiguity neutrality implies b = 0, and am-
biguity seeking implies b < 0. �

Theoretical studies often used Eq. (18) to define ambiguity aversion (Klibanoff et al., 2005, 
Definition 7). Empirically implementing it is complex because W needs to be known. Our aver-
sion index shows how to make Eq. (18) observable without the need to measure W . Our indexes 
can do this without assuming expected utility for risk, which increases their descriptive validity.

Baillon and Bleichrodt (2015) considered a domain H(E1, E2, E3) as in our Corollary 13, 
and measured five event-specific indexes. These indexes did not control for beliefs. Our indexes 
show how their indexes can be aggregated to provide that control, capturing both aversion and 
insensitivity.19 Our indexes are also compatible with those of Chateauneuf et al. (2007).20 Under 
Choquet expected utility with expected utility for risk, our Theorem 16 provides an alternative 
axiomatization of Chateauneuf et al. (2007) neo-additive model. Their model is in the intersection 
of Choquet expected utility and multiple prior models, to which we turn next.

7.3. Multiple priors

This subsection shows how common indexes of ambiguity in multiple prior theories can 
be measured directly for real-world applications without the need to measure utility or the 
set of priors or to make arbitrary assumptions about the set of priors. Let C denote a convex 
set of probability distributions over S.P ∗(E) = supP∈C P (E) denotes upper probabilities and 
P∗(E) = infP∈C P (E) denotes lower probabilities. In the α-maxmin model (Ghirardato et al., 
2004), preferences maximize, for γ � β:

γEβ → W(E)U(γ ) + (
1 − W(E)

)
U(β)

18 Schmeidler defined ambiguity aversion [neutrality; seeking] as quasiconvexity [linearity; quasiconcavity] of prefer-
ence with respect to outcome (2nd stage probabilities) mixing, which implies positivity [nullness; negativity] of Eq. (18)
for all Ei and, hence, of our b. He used the term uncertainty instead of ambiguity.
19 Using their notation: b = BC and a = (LA + UA)/3.
20 The authors’ interpretations strongly suggest expected utility for risk, and we assume it. (Without this assumption, 
their indexes do not solely capture ambiguity attitudes but also risk attitudes.) Then m = W is neo-additive and Eq. (11)
gives our indexes. Chateauneuf et al. (2007, p. 544 top) interpret a (we use our notation) as lack of confidence (or distrust) 
in the a-neutral probability P , and b

2a
+ 1

2 as an index of pessimism. Ignoring the irrelevant term 1
2 , their pessimism 

index is our aversion per unit of distrust in P , which is a relative analog of our absolute index. We compare such relative 
and absolute versions after Eq. (20) below.
16
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with W(E) = αP∗(E) + (1 − α)P ∗(E) (0 ≤ α ≤ 1). Expected utility is assumed for risk. 
Maxmin expected utility is the special case of α = 1 (Alon and Schmeidler, 2014). Under 
complementation-closedness we obtain (proved in Appendix B; v-hedging is not needed here):

b = (2α − 1)
(
P ∗ − P∗

)
. (19)

Here (P ∗ − P∗) is the average discrepancy between upper and lower probabilities of events, 
which is sometimes interpreted as ambiguity perception—or as the Dempster-Shafer plausibility-
belief gap (Gul and Pesendorfer, 2014, Corollary 2; Gul and Pesendorfer, 2020, p. 7; Walley, 
1991, p. 222). Further, 2α − 1 (or, equivalently, α itself) is commonly taken as an index of 
ambiguity aversion. It is 0 under ambiguity neutrality.

A tractable subclass of α-maxmin is the ε-α-maxmin model. Let C = {(1 − ε)Q + εT }, with 
a fixed baseline probability Q, a fixed ε ∈ [0, 1], and the variable T any probability measure 
(Dimmock et al., 2015; axiomatized by Chateauneuf et al., 2007). It is a subclass of the ε-
contamination model (Ellsberg, 1961, pp. 663-669) that has been used in many fields (e.g., Aryal 
and Stauber, 2014; Epstein and Schneider, 2010; Hodges and Lehmann, 1952). Several authors 
proposed ε (= P ∗ − P∗), which captures the size of the set of priors, as an index of ambiguity 
perception (e.g., Alon and Gayer, 2016; Chateauneuf et al., 2007, p. 543; Ghirardato et al., 2004
Proposition 6; Walley, 1991). Dimmock et al. (2015) showed:

a = ε and b = (2α − 1)ε. (20)

Thus, our insensitivity index directly agrees with ambiguity perception. Index α (or 2α − 1) 
captures ambiguity aversion in a relative sense, as aversion per perceived unit of ambiguity. Our 
index b is the product of what is often interpreted as ambiguity perception and aversion per unit 
of perception, and is a measure of absolute ambiguity aversion. The pairs (a, b) and (ε, α) are 
informationally equivalent, and which pair is most convenient depends on the context. Index b is 
most useful for determining ambiguity premiums.21

Hey et al. (2010) used the following special case of α-maxmin. They considered three atoms 
E1, E2, E3, and C contained all P with P(E1) ≥ ε1, P(E2) ≥ ε2, P(E3) ≥ ε3, where the εj

are nonnegative and sum to less than 1. Then, with similar interpretations as before22:

a = 1 − ε1 − ε2 − ε3 and b = (2α − 1)a. (21)

Dimmock et al. (2015) showed how to make ambiguity aversion and ambiguity perception 
directly observable, without the need to measure utility U or the set of priors C, for Ellsberg urn 
events. They used Ellsberg urn events and assumed expected utility for risk. Our indexes allow 
us to extend their analysis to real-world events and drop the expected utility assumption for risk.

7.4. The source method

Abdellaoui et al.’s (2011) source method is the specification of Choquet expected utility with

W(E) = wSo
(
P(E)

)
. (22)

Here wSo is strictly increasing with wS(0) = 0 and wS(1) = 1, and P designates a-neutral proba-
bilities. The subscript So expresses dependence on the source of uncertainty, and this dependency 

21 Schmeidler (1989 p. 574) used the term uncertainty premium for index b.
22 This follows from Eq. (20) by defining Q(Ej ) = εj and ε = 1 − ε1 − ε2 − ε3.
ε1+ε2+ε3
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captures ambiguity as, for instance, in Ellsberg’s paradoxes. Abdellaoui et al. (2011) call a source 
So uniform if Eq. (22) is satisfied. We focus here on one uniform source So of ambiguity—besides 
risk with known probabilities.

Abdellaoui et al. (2011) and Dimmock et al. (2016), AD henceforth, fitted neo-additive forms 
of wS and m(E), respectively, on the open interval (0, 1). They then derived their indexes from 
this. We here do so for the function m(E) (Eq. (10)), where σ ≥ 0 and τ are chosen to minimize 
distance. To do so, they needed to know the a-neutral probabilities P(E). Dimmock et al. (2016)
solved this by making the common assumption of symmetry of colors in Ellsberg urns, whereas 
Abdellaoui et al. (2011) measured the probabilities separately. With τ and σ the best-fitting neo-
additive parameters, AD defined (as in Eq. (11))

b′ := 1 − 2τ − σ,a′ := 1 − σ. (23)

By the properties of linear regression estimators we get: a′ = 1 − Cov(m,P )
Var(P )

and by Eq. (9) and 
the results in Appendix A, our index a agrees well with a′. Our index b always agrees with 
b′. Again, we contribute to the literature by showing how ambiguity attitudes can be measured 
without knowing or making assumptions about P .

8. Discussion

Although our indexes can be used beyond the widely studied Ellsberg urns, it remains interest-
ing to apply them to these. Example 14 is a variation of the well-known three-color Ellsberg urn, 
where different sources of uncertainty come together. Studying such situations is an interesting 
topic for future research, both empirically and theoretically (Eliaz and Ortoleva, 2016). Cappelli 
et al. (2020) give some theoretical suggestions.

Recently, much attention has been paid to “hedging” possibilities as a confound in ambiguity 
experiments (Agranov and Ortoleva, 2017; Bade, 2015; Baillon et al., 2020; Cerreia-Vioglio et 
al., 2019a; Dean and Ortoleva, 2017; Georgalos, 2019; Oechssler et al., 2019). Subjects may use 
ambiguities in some choices in the experiment to “hedge” against ambiguities in other choices 
in the experiment. This concept of hedging is unrelated to our concept. Given the level of so-
phistication (which usually includes knowledge of the experimental design) required for such 
hedging, it is more likely that subjects treat each choice in isolation (Binmore et al., 2012, p. 
229; Georgalos, 2019, p. 57; Oechssler et al., 2019; Starmer and Sugden, 1991), so that the prob-
lem does not arise. However, even if only a few subjects hedge, then this confounds experiments 
on ambiguity and, in fact, any preference experiment. It is, therefore, desirable to maximally en-
hance isolated perception in choice experiments. Baillon et al. (2020) and Johnson et al. (2021)
provided methods for doing so.

We, finally, use our running example to illustrate some advantages of our approach.

Example 22 (Example 4 Continued). Eichberger and Kelsey (2011), EK henceforth, also con-
sidered marginal cost c = 0.1 besides c = 0.9. The observed changes in choice percentages 
(shifting towards high effort) were intuitive, but hard to explain by classical game theory. EK 
showed that they can be explained by ambiguity theories. For empirically plausible ambiguity 
attitudes, they referred to another paper, Kilka and Weber (2001), who used different sources of 
uncertainty (and subjects) and inferred subjective beliefs from introspective judgments. Hence, 
it was not revealed-preference based. In terms of our indexes, they found as plausible ranges: 
−0.15 ≤ b ≤ 0.12 and 0.41 ≤ a ≤ 0.61 (EK p. 319). These include the values (b = 0.08, 
a = 0.43) that we obtained in our imaginary example.
18
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Using belief hedges, we can measure ambiguity attitudes with the following advantages: (1) 
they are the attitudes of the players themselves; (2) they refer directly to the relevant uncer-
tainty (the effort level of the other player); (3) the a-neutral probabilities of the players need 
not be known to us—players do not know the percentages in Table 1; (4) we use only re-
vealed preferences. An additional advantage of the basic design used here, which involved all 
relevant uncertainties (sj ), is that we can derive estimates of the underlying a-neutral probabil-
ities. For instance, for our imaginary player, we get p1 = 0.54, p2 = · · · = p5 = 0.07, p6 =
0.19. �

Given our indexes and belief hedges, it is trivial to see that Baillon et al. (2018) is a special 
case. Our contribution concerns the reversed direction: given Baillon et al.’s results (our Corol-
lary 13), we develop the general indexes and the concept of belief hedges. Finding Eq. (8) as 
the proper general concept of insensitivity, was the most challenging step. The validity of the 
general indexes was subsequently confirmed by theoretical justifications: preference axiomatiza-
tions and the common generalization of virtually all existing indexes, including Baillon et al.’s.23

Another challenge was to find the concept of belief hedges needed for the required flexibility and 
tractability of our aversion and insensitivity indexes in applications (Examples 4, 14, and 22). In 
many real-world situations, control over the data is limited, and the flexibility of general belief 
hedges is desirable. Other practical advantages over the special case of Baillon et al. (2018) were 
discussed at the beginning of §3.

9. Conclusion

For a long time, ambiguity measurements were confined to artificial events such as opaque 
urns because it was unknown how to control for unknown beliefs. We introduced belief hedges 
to measure ambiguity attitudes when subjective beliefs are unknown. Belief hedges extend the 
hedging concept from finance, where it protects against unknown outcomes, to ambiguity where 
it protects against unknown beliefs. We show that belief hedges are necessary and sufficient for 
measuring ambiguity attitudes when beliefs are unknown. This allows us to measure ambiguity 
attitudes in real-world applications.

Using belief hedges and some econometric concepts, we introduce two new indexes of am-
biguity. They can easily be applied in practice (Examples 4, 14, and 22), and they generalize 
most other indexes proposed in the literature, including those of Baillon et al. (2018). They 
thus unify existing indexes, including ambiguity orderings. Our indexes are valid under virtu-
ally all existing ambiguity theories and do not require expected utility for risk or multi-stage 
stimuli, which makes it easy to use them and which is needed for empirical validity. They can 
also accommodate the empirically observed ambiguity seeking for unlikely events. They use no 
theoretical constructs and can be directly revealed from preferences. In this sense, they opera-
tionalize earlier indexes. Our indexes need no measurements and data fittings of risk attitudes 
(utility/probability weighting) or a-neutral probabilities. They make ambiguity theories widely 
applicable.

23 Baillon et al. (2018) did not provide theoretical justifications.
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Appendix A. Goodness of fit of Eq. (9)

Throughout this paper, for F : H → R, we write24: F =
∑

E∈H F(E)

|H| ; Var(F ) =∑
E∈H(F (E)−F)2

|H| ; Cov(F, G) =
∑

E∈H(F (E)−F)×(G(E)−G)

|H| .
The following lemma considers variations within our constructed domain H.

Lemma 23. Assume Assumption 8 and l-hedging. Equivalent are:

(i) v-hedging; (ii) E(1s × ν) is the same for each s; (iii) Cov(1s , ν)

is the same for each s.
(24)

Now, also assume v-hedging. With 1Ei
the probability measure on the atoms assigning prob-

ability 1 to Ei , we have, for all s, i, P :

Cov(1s , ν)

Var(ν)
= Cov(1Ei

, ν)

Var(ν)
= Cov(P, ν)

Var(ν)
= Cov(ν, ν)

Var(ν)
= 1. (25)

Proof. For Eq. (24), (ii) is a rewriting of (i), and (iii) is equivalent because Cov(1s , ν) = (E(1s ×
ν) − E(1s) × E(ν)) = E(1s × ν) − 1

4 .
For Eq. (25), the first fraction is the same for all s by Eq. (24)(iii). The first equality now 

follows because 1s = 1Ei
on H for each s ∈ Ei . The second equality follows because every 

probability measure P on H is a convex combination of measures 1Ei
(.), and sensitivity and 

covariance are compatible with convex combinations.25 The third equality follows because ν is 
a special case of a probability measure, and the last equality is by definition. �

We next turn to extraneous randomness in the dependency of m on P and ν. The above equal-
ity Cov(P,ν)

Var(ν)
= 1 means that, on average, a change of one unit of ν generates one unit change of 

P . Hence, by Stock and Watson (2015, §12.1 and Eq. (12.7)), Eq. (9) provides the best first-order 
approximation under common econometric assumptions together with the following critical as-
sumption: m depends on ν only through P with, further, random noise. To illustrate this result, 
and explain when the approximation works well, we give an independent derivation of the fol-
lowing result.

Proposition 24. Under Assumptions 2 and 8 and belief hedging, Eq. (9) holds with exact equality 
if any of the following three conditions holds:

(i) P = ν;
(ii) m is neo-additive;

(iii) P best fits m.26

24 We use population statistics. If one interprets H as a sample, small relative to | S |, then one may prefer sample 
statistics, with denominators |H| −1 instead of |H|. However, those always give the same indexes and results throughout 
our paper because the denominator cancels from all equations.
25 That is, the sensitivity (or covariance) of a convex combination of functions with respect to some other variable (ν in 
our case) is the convex combination of their sensitivities (or covariances).
26 We take the neo-additive model that minimizes quadratic distance, as common in regressions.
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Proof. (i) is trivial, and (ii) follows from Eq. (11) (irrespective of what P is). We consider (iii), 
where m is related to P through the neo-additive decision model (“regular regression”). The 
distance to be minimized is

∑
E∈H

(
m(E) − τ − σP (E)

)2
. (26)

The first order condition of Eq. (26) with respect to τ , divided by −2, gives 
∑

E∈H(m(E) − τ −
σP (E)) = 0. Thus, using Eq. (3),

τ = m − σ/2. (27)

In words, the best-fitting line passes through the center of gravity of the data points, being ( 1
2 , m). 

We define the additive measure Q(E) := σP (E) and qi := Q(Ei) = σP (Ei) and find the opti-
mally fitting qi . We optimize over all qi ∈R, later verifying that they are all positive (and σ > 0). 
By Eq. (27), the distance to be minimized becomes

∑
E∈H

((
m(E) − m

) − (
Q(E) − σ/2

))2
. (28)

The first-order condition with respect to qi is

∑
E⊃Ei

((
m(E) − m

) − (
Q(E) − σ/2

)) = 0. (29)

Summing over i:
∑

i

∑
E⊃Ei

((
m(E) − m

) − (
Q(E) − σ/2

)) = 0. (30)

∑
E∈H

((
m(E) − m

) − σ

(
P(E) − 1

2

))
ν(E) = 0. (31)

∑
E∈H

((
m(E) − m

) − σ

(
P(E) − 1

2

))(
ν(E) − 1

2

)
= 0. (32)

σ =
∑

E∈H(m(E) − m)(ν(E) − 1
2 )∑

E∈H(P (E) − 1
2 )(ν(E) − 1

2 )
= |H|

|H|
Cov(m,ν)

Cov(P, ν)
= (by Eq. (25))

Cov(m,ν)

Var(ν)
. (33)

By Eq. (25), the above denominators are positive. By monotonicity, the above numerators are 
positive; σ > 0; qi = σpi > 0 for all i. Because, with P given, optimal fitting entails a regular 
regression of m w.r.t. P , it is well-known that σ = Cov(m,P )

Var(P )
. Combining this with Eq. (33) implies 

exact equality in Eq. (9). �
Eq. (9) gives a good approximation if any of the three cases in Proposition 24 holds approx-

imately. Poor approximation can result if all these assumptions are strongly violated, but such 
cases are not empirically plausible. Poor approximation can, of course, also result if our ba-
sic assumptions, such as monotonicity, are violated. Eqs. (9) and (8) work well for all practical 
purposes.
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Appendix B. Proofs except of Theorem 16 and for §5

Proof of Theorem 11. Under ambiguity neutrality, m is a probability measure on H and its 
atoms. By Eq. (3), m = 0.5 and b = 0. By Eq. (25), Cov(m,ν)

Var(ν)
= 1 and a = 0. Conversely, assume 

b = 0 for all probability measures P = m. Then m = 0.5 for all m = 1s , which is l-hedging. 
Similarly, if a = 0 for all probability measures P = m then it is so for all m = 1s , implying 
Cov(1s ,ν)

Var(ν)
= 1 for all s which, by Eq. (24), implies v-hedging.

We, finally, turn to the supremum values of the indexes. b tends to its supremum 1 as m
tends to its minimum 0. a tends to its supremum 1 as Cov(m, ν) tends to its infimum 0 (by 
monotonicity, it cannot be negative), which occurs when m tends to a constant function. �
Proof of Theorem 12. We take our data set m as a vector in R|H|. Index b is a normalization 
of the inner product of m with the aversion vector (1, . . . , 1). Index a is a normalization of the 
inner product of m with the insensitivity vector (ν(E) − 1

2 )E∈|H|.27 The aversion and insen-
sitivity vectors are orthogonal because their inner product is 

∑
(ν(E) − 1

2 ) = 0. Having inner 
product 0 is the formal definition of orthogonality and is equivalent to the geometric concept of 
rectangularity. �
Proof of Corollary 13. The case of index b is clear. As for index a,

|H|Cov(m,ν) =
3∑

i=1

(
m(Ei) − m

)(1

3
− 1

2

)
+

3∑
i=1

(
m

(
Ec

i

) − m
)(2

3
− 1

2

)

= 3(ms − m)

(
−1

6

)
+ 3(mc − m)

(
1

6

)
= mc − ms

2
;

|H|Var(ν) =
3∑

i=1

(
1

3
− 1

2

)2

+
3∑

i=1

(
2

3
− 1

2

)2

= 1

6
.

Cov(m,ν)

Var(ν)
= 3(mc − ms). �

Proof of Eq. (11). Because ∅ and S are not in H, and all atoms are nonnull, 0 < P(E) < 1
for all E ∈ H. Hence, m = τ + σP = (by Eq. (3))τ + σ/2 and the result for b follows. As 
regards a, because m is an affine function of P with slope σ on H, Cov(m,ν)

var(ν)
= σ

Cov(P,ν)
var(ν)

=
(by Eq. (25)) σ . �
Proof of Eq. (19). We also assume complementation-closedness here (v-hedging is not needed 
here). m(Ec) = αP∗(Ec) + (1 − α)P ∗(Ec) = α(1 − P ∗(E)) + (1 − α)(1 − P∗(E)). Fur-
ther, m(E) + m(Ec) = αP∗(E) + (1 − α)P ∗(E) + α(1 − P ∗(E)) + (1 − α)(1 − P∗(E)) =
1 − (2α − 1)(P ∗(E) − P∗(E)). Finally, = 1 − 2m(E) = 1 − m(E) − m(Ec) = (2α − 1) ×
(P ∗ − P∗). �
27 |H|Cov(m, ν) = ∑

(m(E) − m)(ν(E) − 1 ) = ∑
m(E)(ν(E) − 1 ).
2 2
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Appendix C. Proof of Theorem 16

That (i) implies (ii) in Theorem 16 follows because Eq. (11) holds for every H. From now on, 
we assume (ii) and derive (i). To prepare, we first prove that, if our indexes fit perfectly, then we 
must have probabilistic sophistication within our source S. That is, we must have uniformity in 
the terminology of Abdellaoui et al. (2011), ruling out Example 14.

Observation 25. Under Assumptions 2 and 8, if our indexes are the same for every H{E1,E2,

E3}, and fineness and event-continuity hold, then m(.) = wa(P (.)) for a strictly increasing wa

and a fine (atomless) countable additive probability measure P .

Proof. The proof uses Lemmas 26-30.

Lemma 26. We cannot have A1 � B1, A2 � B2, A3 � B3 for two threefold partitions 
{A1, A2, A3} and {B1, B2, B3} of S containing nonnull events.

Proof. Consider H{A1, A2, A3} and H{B1, B2, B3}. They have the same aversion index b and, 
hence, the same average m. Because ms of the former exceeds ms of the latter, for mc it must 
be opposite. But then (Corollary 13) a is smaller for the former than for the latter, contradicting 
perfect fit. QED

We next derive implications of event continuity, similar to Villegas (1964, p. 1790) but we do 
not have what he called monotonicity (≈ additivity)—this is also the reason that we need two 
event continuity conditions, whereas for Villegas one is equivalent to the other.

Lemma 27. If D � B � ∅, then there exist C ⊂ D, A ⊂ D with D � C � B � A � ∅.

Proof. There exists H ⊂ D such that D � H � ∅. D − H is nonnull and, by monotonicity, 
� ∅. We have partitioned D into two nonnull events that we now denote D1, S1, where we 
assume D1 � S1. We can similarly partition the smaller of these two, S1, into two nonnull events 
D2 � S2, and inductively continue to obtain an infinite decreasing (in terms of �) sequence of 
disjoint nonnull subevents Dj ⊂ D.

Assume, for contradiction, that Dj � B for all j , which can be interpreted as a violation 
of Archimedeanity. Whereas 

⋃∞
i=j Di decreases to the empty set for j → ∞, every union is 

� B � ∅, violating event continuity. Hence, an A = Dj as required exists. This also implies that 
S∞ := D − ⋃∞

i=1 Di is null. Otherwise, with S∞ in the role of B , Dj ≺ S∞ should occur for 
some j as we just showed, contradicting Dj � Sj . We can, therefore, replace D1 by D1 ∪S∞ and 
every Sj by Sj − S∞, without affecting preference. That is, 

⋃∞
i=1 Di = D. By event continuity, 

C := ⋃J
i=1 Dj � B for J large enough. QED

Lemma 28. We cannot have A1 � B1, A2 � B2 for two twofold partitions {A1, A2} and {B1, B2}
of S.

Proof. Assume, for contradiction, events as in the lemma. By Lemma 27, there exists A′
1 ⊂ A1

such that A1 � A′
1 � B1. We define A′′

1 = A1 − A′
1 � ∅ (by monotonicity). Again by Lemma 27, 

there exists B ′′
1 ⊂ B1 with ∅ ≺ B ′′

1 ≺ A′′
1. We define B ′

1 = B1 − B ′′
1 . We have two partitions 

{A′ , A′′, A2} and {B ′ , B ′′, B2} that violate Lemma 26. QED
1 1 1 1
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Lemma 29. If A ∩ C = B ∩ C = ∅, then A � B ⇔ A ∪ C � B ∪ C.

Proof. Assume A � B . Consider partitions {A, C, S − A − C} and {B, C, S − B − C}. By 
Lemma 26, S − A − C � S − B − C. By Lemma 28, A ∪ C � B ∪ C. The same reasoning 
holds with strict preferences. QED

Villegas used the following implication.

Lemma 30. Assume A1 ∩ A2 = ∅ = B1 ∩ B2. Then A1 � B1 & A2 � B2 ⇒ A1 ∪ A2 � B1 ∪ B2, 
with strict preference if at least one of the two premises is strict.

Proof. By Lemma 29, and Villegas (1964, p. 1789 4th para). QED

Observation 25 now follows from Villegas (1964, Theorem 4.3). �
Observation 31. m is neo-additive.

Proof. By perfect fit, each belief hedge H imposes two equalities on m(.) = wa(P (.)), one for 
each index. We know that there exists at least one wa satisfying all those equalities, being the 
neo-additive function corresponding with the values b, a found (Eq. (11)). It, hence, suffices to 
show that wa(p) is uniquely determined for each p. Consider H{E1, E2, E3} with P(Ej ) = 1

3
for each j . By fineness and countable additivity, such Ej s exist. Here, b determines the average 
of ms = wa(

1
3 ) and mc = wa(

2
3 ) and a determines their difference. This uniquely determines 

wa(
1
3 ) and wa(

2
3 ) as the neo-additive values.

Next assume, for induction w.r.t. k ≥ 0, that wa takes the neo-additive values at all p = i
3×2k . 

Consider j

3×2k+1 (< 1/2) for an odd j < 3 × 2k , and a threefold partition {E1, E2, E3} with 

P(E1) = P(E2) = j

3×2k+1 , so that P(E3) = 3×2k−j

3×2k . For H{E1, E2, E3}’s m values, there are 

only two unknowns: wa(
j

3×2k+1 ) (for E1 and E2) and wa(1 − j

3×2k+1 ) (for E1 ∪E3 and E2 ∪E3). 
Again, Corollary 13 uniquely determines the average and the difference of the two unknowns, so 
that they are both uniquely determined and must be the neo-additive values. This way, wa takes 
the neo-additive values at all p = j

3×2k+1 , both below and above 1
2 . By induction, it does so for all 

k. These values lie dense in (0, 1), so that the nondecreasing (by monotonicity it is even strictly 
increasing) function wa is the neo-additive function everywhere. �

The following observation follows from the above proof because we only used the designs 
mentioned.

Observation 32. Perfect fit in Statement (ii) in Theorem 16 can be restricted to designs 
H{E1, E2, E3}. �

Appendix D. Proofs for the Smooth Model (§5)

Using the notation of Section 5, we first derive the analog of Pratt’s (1964) Eq. (5) regarding 
his risk premium, which is in monetary units. Our ambiguity premium instead is in probability 
units. The following lemma illustrates once more that our treatment of uncertainty about proba-
bilities is analogous to traditional treatments of uncertainty about outcomes.
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Lemma 33. For some given event E:

p − m(E) = 1

2
σ 2A(p) + o

(
σ 2). (34)

Proof of Lemma 33. Pratt (1964, Eqs. (4)-(6)) studied local risk premiums by letting lotteries 
converge to a riskless lottery/outcome x, with expectation kept fixed and variance tending to 
0. We similarly study local ambiguity premiums by letting acts converge to an unambiguous 
act/lottery γpθ , with the ambiguity-neutral part kept fixed and ambiguity σ 2 tending to 0, as 
follows.

In our mathematical derivation we will use a mathematical extension of m, i.e. m as it would 
be in the smooth model for events derived from each F ∈ H as in Eq. (35) below (required for 
all α > 0 sufficiently close to 0, where “sufficiently close” may depend on F ). Such events need 
not be present in the actual design H.

We follow Klibanoff et al. (2005) and assume a compound state space S = S′ × (0, 1], pro-
viding an Anscombe-Aumann mixture structure. Here S′ captures the uncertainty of interest and 
[0, 1] is only auxiliary. For example, F ′ is the event of the AEX index going up by more than 
0.2%, and F = F ′ × [0, 1] is the event of that happening and the result of our randomizing ma-
chine just being anything. F and F ′ can be identified for many purposes. In what follows, we 
keep some F and the corresponding F ′ fixed, with fixed a-neutral probability p (μ-averaged 
Q(F)) and fixed μ-variance of Q(F), denoted τ 2. We consider mixtures αγF θ + (1 − α)γpθ

comprising an α ambiguous and a 1 − α unambiguous part, with α ↓ 0. This mixture can be 
obtained by receiving γ under the disjoint union of an ambiguous and unambiguous event:

(F ′ × (1 − α,1]) ∪ (S′ × (
0, (1 − α)p]); (35)

and θ otherwise. The events in Eq. (35) play the role of events E in Eq. (34). The limit of 
E tending to an ambiguity neutral event in the main text is achieved by letting α tend to 0 in 
Eq. (35). The corresponding ambiguity-neutral probability is αp + (1 − α)p = p for all α.

The matching probability mα is defined by the indifference

γ(F ′×(1−α,1])∪(S′×(0,(1−α)p])θ ∼ γmαθ.

Writing q = Q(F),∫

(S)

ϕ
(
αq + (1 − α)p

)
dμ = ϕ(mα). (36)

Substituting Taylor series of ϕ for α ↓ 0 in the right-hand side:

ϕ(mα) = ϕ(p) + (mα − p)ϕ′(p) + O
(
(mα − p)2) (37)

and for the integrand of the left-hand side:

ϕ
(
αq + (1 − α)p

) = ϕ(p) + α(q − p)ϕ′(p) + 1

2
α2(q − p)2ϕ′′(p) + o

(
α2).

Hence the left-hand side of Eq. (36) is:

ϕ(p) + αϕ′(p)

∫

(S)

(q − p)dμ + 1

2
α2ϕ′′(p)

∫

(S)

(q − p)2dμ + o
(
α2)

= ϕ(p) + 1
α2ϕ′′(p)τ 2 + o

(
α2)

(38)
2
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(the term with ϕ′ drops). Because of Eq. (36) we can equate Eqs. (37) and (38):

(mα − p)ϕ′(p) + O
(
(mα − p)2) = 1

2
α2ϕ′′(p)τ 2 + o

(
α2).

Dividing by ϕ′(p), which does not affect O or o:

(mα − p)
(
1 + O(mα − p)

) = 1

2
α2 ϕ′′(p)

ϕ′(p)
τ 2 + o

(
α2).

mα − p = − 1
2α2A(p)τ 2 + o(α2)

(1 + O(mα − p))

= −1

2
α2A(p)τ 2+ O(mα − p) 1

2α2A(p)τ 2 + o(α2)

(1 + O(mα − p))

= −1

2
A(p)α2τ 2 + o

(
α2) = −1

2
A(p)α2τ 2 + o

(
α2τ 2).

α2τ 2 here is the variance of the event in Eq. (35) i.e., it is denoted σ 2 in Eq. (34) which now 
follows. �
Proof of Observation 18. Index b is Eq. (34) averaged over H and multiplied by 2 for 
normalization (see §2.4). As for the insensitivity index, by Eq. (34), a = 1 − Cov(p,ν)

Var(ν)
+

Cov( 1
2 σ 2A(p)+o(σ 2),ν)

Var(ν)
. Because Cov(p, ν) = Var(ν) (Eq. (25)), we obtain Eq. (14). �
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