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OA.1  References comparing parametric fittings of nonexpected utility 

 We list some references on decision under risk that use nonexpected utility to fit data, 

and that compare fits of different parametric families.  Our search was done using the annotated 

bibliography at http://people.few.eur.nl/wakker/refs/webrfrncs.docx of March 16, 2015, using 

various key words, and choosing the references for which the annotations mentioned the 

described parametric fitting.  The list obviously cannot be complete and cannot even be close to 

that.  It only illustrates that there have been many such studies. 

 

1. Attema, Arthur E., Werner B.F. Brouwer, & Olivier l’Haridon (2013) “Prospect Theory 

in the Health Domain: A Quantitative Assessment,” Journal of Health Economics 32, 

1057–1065. 

2. Balcombe, Kelvin & Iain Fraser (2015) “Parametric Preference Functionals under Risk in 

the Gain Domain: A Bayesian Analysis,” Journal of Risk and Uncertainty 50, 161–187. 

3. Barseghyan, Levon, Francesca Molinari, Ted O’Donoghue, & Joshua C. Teitelbaum 

(2013) “The Nature of Risk Preferences: Evidence from Insurance Choices,” American 

Economic Review 103, 2499–2529. 

4. Birnbaum, Michael H. (2008) “New Paradoxes of Risky Decision Making,” 

Psychological Review 115, 463–501. 

The above reference surveys many comparative parametric fittings by the author, 

comparing RAM and TAX models to others. 

5. Blavatskyy, Pavlo & Ganna Pogrebna (2010) “Models of Stochastic Choice and Decision 

Theory: Why Both Are Important for Analyzing Decisions,” Journal of Applied 

Econometrics 25, 963–986. 

6. Bleichrodt, Han, Jaco van Rijn, & Magnus Johannesson (1999) “Probability Weighting 

and Utility Curvature in QALY-Based Decision Making,” Journal of Mathematical 

Psychology 43, 238–260. 

7. Bleichrodt, Han & José Luis Pinto (2000) “A Parameter-Free Elicitation of the 

Probability Weighting Function in Medical Decision Analysis,” Management Science 46, 

1485–1496. 

P. 1495: compares fit of different parametric weighting function families. 

8. Blondel, Serge (2002) “Testing Theories of Choice under Risk: Estimation of Individual 

Functionals,” Journal of Risk and Uncertainty 24, 251–265. 

9. Booij, Adam S., Bernard M.S. Van Praag, & Gijs van de Kuilen (2010) “A Parametric 

Analysis of Prospect Theory's Functionals,” Theory and Decision 68, 115–148. 

10. Broomell, Stephen B. & Sudeep Bhatia (2015) “Parameter Recovery for Decision 

Modeling Using Choice Data,” Decision 1, 252–274. 

http://people.few.eur.nl/wakker/refs/webrfrncs.docx
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11. Bruhin, Adrian, Helga Fehr-Duda, & Thomas Epper (2010) “Risk and Rationality: 

Uncovering Heterogeneity in Probability Distortion,” Econometrica 78, 1375–1412. 

12. Camerer, Colin F. & Teck-Hua Ho (1994) “Violations of the Betweenness Axiom and 

Nonlinearity in Probability,” Journal of Risk and Uncertainty 8, 167–196. 

13. Cavagnaro, Daniel R., Mark A. Pitt, Richard Gonzalez, & Jay I. Myung (2013) 

“Discriminating among Probability Weighting Functions Using Adaptive Design 

Optimization,” Journal of Risk and Uncertainty 47, 255–289. 

14. Charupat, Narat, Richard Deaves, Travis Derouin, Marcelo Klotzle, & Peter Miu (2013), 

“Emotional Balance and Probability Weighting,” Theory and Decision 75, 17–41. 

15. Chechile, Richard A. & Alan D.J. Cooke (1997) “An Experimental Test of a General 

Class of Utility Models: Evidence for Context Dependence,” Journal of Risk and 

Uncertainty 14, 75–93.  Correction: Richard A. Chechile & R. Duncan Luce (1999) 

“Reanalysis of the Chechile-Cooke Experiment: Correction for Mismatched Gambles,” 

Journal of Risk and Uncertainty 18, 321–325. 

16. Conte, Anna, John D. Hey, & Peter G. Moffatt (2011) “Mixture Models of Choice under 

Risk,” Journal of Econometrics 162, 79–88. 

17. Etchart, Nathalie (2009) “Probability Weighting and the ‘Level’ and ‘Spacing’ of 

Outcomes: An Experimental Study over Losses,” Journal of Risk and Uncertainty 39, 

45–63. 

18. Fishburn, Peter C. & Gary A. Kochenberger (1979) “Two-Piece von Neumann-

Morgenstern Utility Functions,” Decision Sciences 10, 503–518. 

19. Glöckner, Andreas & Thorsten Pachur (2012) “Cognitive Models of Risky Choice: 

Parameter Stability and Predictive Accuracy of Prospect Theory,” Cognition 123, 21–32. 

20. Green, Leonard, & Joel Myerson (2004) “A Discounting Framework for Choice with 

Delayed and Probabilistic Rewards,” Psychological Bulletin 130, 769-792. 

21. Harless, David W. (1992) “Predictions about Indifference Curves inside the Unit 

Triangle: A Test of Variants of Expected Utility Theory,” Journal of Economic Behavior 

and Organization 18, 391–414. 

22. Harless, David W. (1992) “Actions versus Prospects: The Effect of Problem 

Representation on Regret,” American Economic Review 82, 634–649. 

23. Harless, David W. & Colin F. Camerer (1994) “The Predictive Utility of Generalized 

Expected Utility Theories,” Econometrica 62, 1251–1289. 

24. Harrison, Glenn W. & E. Elisabet Rutström (2009) “Expected Utility Theory and 

Prospect Theory: One Wedding and a Decent Funeral,” Experimental Economics 12, 

133–158. 
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25. Hey, John D. & Daniela Di Cagno (1990) “Circles and Triangles: An Experimental 

Estimation of Indifference Lines in the Marschak-Machina Triangle,” Journal of 

Behavioral Decision Making 3, 279–306. 

26. Hey, John D. & Chris Orme (1994) “Investigating Generalizations of Expected Utility 

Theory Using Experimental Data,” Econometrica 62, 1291–1326. 

27. Hu, Guotao, Aruna Sivakumar, & John W. Polak (2012) “Modelling Travellers Risky 

Choice in a Revealed Preference Context: A Comparison of Eut and Non-Eut 

Approaches,” Transportation 39, 825–841. 

28. Jullien, Bruno & Bernard Salanié (2000) “Estimating Preferences under Risk: The Case 

of Racetrack Bettors,” Journal of Political Economy 108, 503–530. 

29. Kemel, Emmanuel & Corina Paraschiv (2014) “Prospect Theory for joint Time and 

Money Consequences in Risk and Ambiguity,” Transportation Research Part B: 

Methodological 50, 81–95. 

30. Kliger, Doron & Ori Levy (2009) “Theories of Choice under Risk: Insights from 

Financial Markets,” Journal of Economic Behavior and Organization 71, 330–346. 

31. Koop, Gregory K. & Joseph G. Johnson (2012) “The Use of Multiple Reference Points in 

Risky Decision Making,” Journal of Behavioral Decision Making 25: 49–62 (2012). 

32. Loomes, Graham, Peter G. Moffat, & Robert Sugden (2002) “A Microeconometric Test 

of Alternative Stochastic Theories of Risky Choice,” Journal of Risk and Uncertainty 24, 

103–130. 

33. Loomes, Graham & Ganna Pogrebna (2014) “Testing for Independence while Allowing 

for Probabilistic Choice,” Journal of Risk and Uncertainty 49, 189–211. 

34. Lopes, Lola L. & Gregg C. Oden (1999) “The Role of Aspiration Level in Risky Choice: 

A Comparison of Cumulative Prospect Theory and SP/A Theory,” Journal of 

Mathematical Psychology 43, 286–313. 

35. Miyamoto, John M. & Stephen A. Eraker (1989) “Parametric Models of the Utility of 

Survival Duration: Tests of Axioms in a Generic Utility Framework,” Organizational 

Behavior and Human Decision Processes 44, 166–202. 

36. Morone, Andrea & Piergiuseppe Morone (2014) “Estimating Individual and Group 

Preference Functionals Using Experimental Data,” Theory and Decision 77, 323–339. 

37. Neilson, William S. & C. Jill Stowe (2001) “A Further Examination of Cumulative 

Prospect Theory Parameterizations,” Journal of Risk and Uncertainty 24, 31–46. 

38. Pachur, Thorsten & David Kellen (2013) “Modeling Gain-Loss Asymmetries in Risky 

Choice: The Critical Role of Probability Weighting,” mimeo. 

39. Pelé, Marie, Marie-Hélène Broihanne & Bernard Thierry, Joseph Call, & Valérie Dufour 

(2014) “To Bet or not to Bet? Decision-Making under Risk in Non-Human Primates,” 

Journal of Risk and Uncertainty 49, 141–166. 
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40. Rieskamp, Jörg (2008) “The Probabilistic Nature of Preferential Choice,” Journal of 

Experimental Psychology. Learning, Memory, and Cognition 34, 1446–1465. 

41. Sneddon, Robert & Robert Duncan Luce (2001) “Empirical Comparisons of Bilinear and 

Non-Bilinear Utility Theories,” Organizational Behavior and Human Decision Processes 

84, 71–94. 

42. Snowberg, Erik & Justin Wolfers (2010) “Explaining the Favorite-Long Shot Bias: Is It 

Risk-Love or Misperceptions?,” Journal of Political Economy 118, 723–746. 

43. Stott, Henry P. (2006) “Cumulative Prospect Theory’s Functional Menagerie,” Journal 

of Risk and Uncertainty 32, 101–130. 

44. Toubias, Olivier, Eric Johnson, Theodoros Evgeniou, & Philippe Delquié (2013), 

“Dynamic Experiments for Estimating Preferences: An Adaptive Method of Eliciting 

Time and Risk Parameters,” Management Science 59, 613–640. 

45. van Osch, Sylvie M.C., Wilbert B. van den Hout, & Anne M. Stiggelbout (2006) 

“Exploring the Reference Point in Prospect Theory: Gambles for Length of Life,” 

Medical Decision Making 26, 338–346. 

46. von Gaudecker, Hans-Martin, Arthur van Soest, & Erik Wengström (2011) 

“Heterogeneity in Risky Choice Behavior in a Broad Population,” American Economic 

Review 101, 664–694. 

47. Wang, Mei & Paul S. Fischbeck (2004) “Incorporating Framing into Prospect Theory 

Modeling: A Mixture-Model Approach,” Journal of Risk and Uncertainty 29, 181–197. 

48. Zeisberger, Stefan, Dennis Vrecko, & Thomas Langer (2012) “Measuring the Time 

Stability of Prospect Theory Preferences,” Theory and Decision 72, 359–386. 
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OA.2  Comparing two orders 

 We partially randomized the order of presentation of the treatments by using two 

different orderings: week, basic, year, health, kid; and a partly reversed ordering: health, year, 

basic, week, kid.  Mann-Whitney U-tests are used to compare the matching probabilities derived 

from these two orders, and the corresponding p-values are reported in Table OA.1.  The weak 

and health treatments, whose ranks change the most across these two orders, are not affected by 

any of the matching probabilities.  Other treatments are mostly not affected.  Thus, we pool the 

matching probabilities for all our analyses. 

 

TABLE OA.1.  Comparison of matching probabilities between two orderings: Mann-Whitney U 

tests p-values 

a-neutral probability basic week year kid health 

0.1 0.52 0.64 0.35 0.24 0.32 

0.3 0.82 0.49 0.37 0.07 0.55 

0.5 0.11 0.87 0.05 0.06 0.94 

0.7 0.56 0.52 0.46 0.71 0.67 

0.9 0.18 0.74 0.35 0.86 0.15 
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OA.3  Visualizing matching probabilities per a-neutral probability and across 

treatments 

 The scatter plots in Figure OA.2 graph matching probabilities of treatments against those 

of the basic treatment.  Each dot represents one subject.  The 45-degree line is also shown, 

together with horizontal and vertical lines indicating a-neutral probability levels. 

 

FIGURE OA.2.  Matching probabilities per a-neutral probability and across treatments 

 week year kid health 

0.1 

 

0.3 

0.5 

0.7 

0.9 

 

 Table OA.2 reports Spearman’s rank correlation coefficients of event-dependent 

ambiguity aversion index AAj between the different treatments and basic treatment.  The week 
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and year treatments are highly correlated with the basic treatment, while the kid and health 

treatments are less so. 

 

Table OA.2.  Correlation of AAj with basic treatment 

a-neutral probability week year kid health 

0.1 0.42
***

 0.37
***

 0.21
*
 0.18 

0.3 0.38
***

 0.39
***

 0.31
**

 0.21
*
 

0.5 0.38
***

 0.59
***

 0.19 0.02 

0.7 0.62
***

 0.75
***

 0.24
**

 0.26
**

 

0.9 0.33
***

 0.52
***

 0.24
*
 0.20 

*** 𝑝 ≤ 0.01; ** 𝑝 ≤ 0.05; * 𝑝 ≤ 0.10 

 

OA.4  Individual indexes 𝒃 and 𝒂 

 We also extracted the two indexes 𝑏 and 𝑎 for every subject per treatment using linear 

least squares estimations, under the constraint of monotonicity 𝑠 ≥ 0.  Table OA.3 displays the 

median of these indexes.  Comparing across treatments individually, changes of outcomes do not 

affect the indexes, which are the same for the basic, week, and year treatments (Wilcoxon signed 

rank tests: p > 0.37 for 𝑏; p > 0.35 for 𝑎), as also confirmed by Friedman’s test (p = 0.76 for 𝑏; p 

= 0.89 for 𝑎).  Changing the source of uncertainty, the kid treatment gives lower ambiguity 

aversion (one-sided test: p < 0.01) and much better sensitivity (p < 0.001) than the basic 

treatment.  The health treatment has yet more sensitivity than the kid treatment (p < 0.001), but 

the same level of ambiguity aversion (p = 0.13).  Thus, the individual analysis confirms the 

results of the overall analysis. 

 

TABLE OA.3.  Median individual indexes 𝑏 and 𝑎 across treatments 

 basic week year kid health 

ambiguity aversion index 𝑏 0.11
***

 0.04
***

 0.05
***

 0.01
**

 -0.01 

a-insensitivity index 𝑎 0.97
***

 0.96
***

 0.97
***

 0.65
***

 0.20
***

 
*** 𝑝 ≤ 0.01; ** 𝑝 ≤ 0.05; * 𝑝 ≤ 0.10 

 

 For the empirical joint distribution of the two indexes, see the scatter plots displayed in 

Figure OA.3.  Each dot is one subject.  A larger 𝑎 means more a-insensitivity, where 0 refers to 

ambiguity neutrality.  A larger 𝑏 means more ambiguity averse, where 0 again refers to 

ambiguity neutrality. 
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FIGURE OA.3.  Empirical joint distribution of individual indexes 𝑏 and 𝑎 

basic week year kid health 

 



 

 

OA.5  Parametric version of principal component analysis of the ambiguity 

attitudes 

 The field of ambiguity is still in an early stage and the indexes used in this paper are 

relatively new.  Hence an exploratory technique, open to many components, to find the best ones, 

is still useful.  We present such an analysis.  Table OA.4 shows the results of a principal 

component analysis of the event-dependent ambiguity aversion indexes AAj, j = 1, 3, 5, 7, 9, for 

each treatment.
1
  Dimmock, Kouwenberg, & Wakker (2016) used a similar analysis.  A 

parameter-free analysis is in the next section.  For all the treatments, the first two components 

together account for more than 83% of the variance in the decisions of the subjects.  In the basic, 

week, year, and health treatments, the first component is highly correlated with ambiguity 

aversion index 𝑏 and the second component with a-insensitivity index 𝑎.  The kid treatment, 

however, reverses the explanatory power of the indexes: a-insensitivity is more dominant than 

ambiguity aversion.  This may be because there is less variation in ambiguity aversion in the kid 

treatment but less variation in a-insensitivity in the other treatments.  These results confirm that 

indexes 𝑎 and 𝑏 are primary components in ambiguity attitudes, capturing most of the variance.  

This finding confirms early psychological theories (Hogarth & Einhorn 1990). 

                                                             
1 The indexes are the raw data (matching probabilities) minus a constant and, hence, are equivalent to raw 

data. 



 

 

TABLE OA.4.  Principal component analysis of event-dependent ambiguity aversion indexes 

Variable 

loadings on first two components 

basic  week  year  kid  health 

1
st
 2

nd
  1

st
 2

nd
  1

st
 2

nd
  1

st
 2

nd
  1

st
 2

nd
 

AA1 0.14 0.83  0.18 0.86  0.14 0.86  -0.53 0.65  0.19 0.77 

AA3 0.18 0.49  0.31 0.37  0.22 0.42  -0.25 0.43  0.19 0.46 

AA5 0.23 0.05  0.33 0.10  0.32 0.11  0.05 0.28  0.34 0.22 

AA7 0.54 -0.03  0.52 -0.14  0.55 -0.11  0.29 0.34  0.52 -0.04 

AA9 0.78 -0.25  0.71 -0.32  0.72 -0.26  0.76 0.44  0.73 -0.39 

eigenvalue of the component 0.10 0.05  0.13 0.05  0.11 0.05  0.09 0.06  0.13 0.06 

proportion of variance explained (%) 60.32 28.84  61.96 23.49  56.23 27.76  54.12 34.61  62.63 27.71 

correlation coefficient 
𝑎 0.66

***
 -0.63

***
  0.59

***
 -0.69

***
  0.62

***
 -0.70

***
  0.98

***
 -0.03  0.40

***
 -0.80

***
 

𝑏 0.92
***

 0.22
*
  0.94

***
 0.18  0.92

***
 0.27

**
  0.36

***
 0.88

***
  0.89

***
 0.37

***
 

***
 𝑝 ≤ 0.01; 

**
 𝑝 ≤ 0.05; 

*
 𝑝 ≤ 0.10 
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OA.6  Non-parametric version of the principal component analysis 

 To test whether ambiguity attitudes are best explained by the two components, ambiguity aversion and a-insensitivity, we next report a non-parametric 

version of the principal component analysis here.  Table OA.5 shows the principal component analysis on the tied ranks of the event-dependent ambiguity 

aversion indexes AAj, j = 1, 3, 5, 7, 9, for each treatment.  For all the treatments, the first two components together account for more than 79% of the variance 

in the decisions of the subjects.  In the basic treatment, the first component is closely correlated with ambiguity aversion index 𝑏 and the second component 

more with a-insensitivity index 𝑎 than 𝑏.  The week and year treatments yield similar patterns.  In the health treatment, the first component is highly correlated 

with ambiguity aversion index 𝑏 and the second component with a-insensitivity index 𝑎.  The kid treatment, however, reverses the explanatory power of these 

indexes: a-insensitivity is more dominant than ambiguity aversion.  An explanation may be that there is less variation in ambiguity aversion in the kid 

treatment and less variation in a-insensitivity in the health treatment. 

 

TABLE OA.5.  Non-parametric principal component analysis of event-dependent ambiguity aversion indexes 

variable 

loadings on first two components 

basic  week  year  kid  health 

1
st
 2

nd
  1

st
 2

nd
  1

st
 2

nd
  1

st
 2

nd
  1

st
 2

nd
 

AA1 0.23 0.68  0.24 0.73  0.27 0.67  -0.49 0.41  0.43 -0.40 

AA3 0.30 0.63  0.42 0.48  0.35 0.57  -0.41 0.52  0.48 -0.38 

AA5 0.53 -0.15  0.50 -0.06  0.52 -0.08  0.25 0.64  0.54 -0.14 

AA7 0.54 -0.25  0.52 -0.33  0.54 -0.34  0.49 0.35  0.43 0.50 

AA9 0.54 -0.25  0.50 -0.34  0.50 -0.32  0.54 0.16  0.33 0.66 

eigenvalue of the component 949.71 601.34  997.24 473.22  942.40 510.53  927.20 519.81  1049.95 467.05 

proportion of variance explained (%) 51.78 32.79  54.51 25.87  51.48 27.89  51.01 28.60  59.18 26.33 

correlation coefficient 
𝑎 0.51

***
 -0.69

***
  0.40

***
 -0.74

***
  0.42

***
 -0.79

***
  0.94

***
 -0.11  0.03 0.86

***
 

𝑏 0.97
***

 0.11  0.98
***

 0.07  0.96
***

 0.07  0.37
***

 0.68
***

  0.92
***

 0.14 
*** 𝑝 ≤ 0.01; ** 𝑝 ≤ 0.05; * 𝑝 ≤ 0.10
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OA.7  Individual parameters 

 

In this Online Appendix we further analyze the parametric families defined in the main text.  We add 

two one-parameter families: 

 

Prelec (1998) One-parameter: 

Eq. 10 with 𝛽  =  1. (OA.1) 

 

Tversky & Kahneman (1992): 

 𝑚(𝑝)   =
𝑝𝑐

(𝑝𝑐+(1−𝑝)𝑐)
1

𝑐⁄
  for c  0.28. (OA.2) 

Here 𝑐 is an (anti-)index of both a-insensitivity and ambiguity aversion. 

 For each subject per treatment, we observe six matching probabilities for six events 

corresponding to a-neutral probabilities 0.1, 0.3, 0.5, 0.5, 0.7, and 0.9.  We fit parameters for the 

parametric families based on these six observations using least-squares estimation.  Table OA.6 

displays the median of these individual parameters (𝑝 ≤ 0.01 in all cases).  See §OA.9 for 

visualizations.  

 

TABLE OA.6.  Median individual fitted parameters (significance level by comparison with basic 

treatment) 

parametric family parameters basic week year kid health 

neo-additive 
c 0.33 0.34 0.36 0.21

***
 0.06

***
 

s 0.03 0.05 0.04 0.35
***

 0.83
***

 

Goldstein & Einhorn 
𝛼

 0.03 0.04 0.04 0.29
***

 0.81
***

 

𝛽
 0.80 0.92 0.91 0.98

***
 1.02

***
 

Prelec two-parameter 
𝛼

 0.02 0.03 0.02 0.25
***

 0.81
***

 

𝛽 0.90 0.92 0.84 0.93 0.98 

Prelec one-parameter 𝛼
 0.11 0.15 0.14 0.39

***
 0.87

***
 

Tversky & Kahneman c

 0.55 0.59 0.59 0.69

***
 1.00

***
 

*** 𝑝 ≤ 0.01; ** 𝑝 ≤ 0.05; * 𝑝 ≤ 0.10 


: anti-index 

 

 Comparing individual parameters across treatments for Goldstein & Einhorn family, changes 

of outcomes do not affect the parameters, which are the same for the basic, week, and year treatments 

(Wilcoxon signed rank tests: p > 0.24 for 𝛽; p > 0.42 for 𝛼), as also confirmed by Friedman’s test (p = 

0.78 for 𝛽; p = 0.81 for 𝛼).  Changing the source of uncertainty, the kid and health treatments give 

lower ambiguity aversion (higher 𝛽, one-sided tests: p < 0.01 and p < 0.001 respectively) and better 
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sensitivity (higher 𝛼, p < 0.001 both) than the basic treatment.  The health treatment gives even lower 

ambiguity aversion (p < 0.05) and better sensitivity (p < 0.001) than the kid treatment. 

 For the Prelec two-parameter family, changes of outcomes do not affect the parameters, 

which are the same for the basic, week, and year treatments (Wilcoxon signed rank tests: p > 0.48 for 

𝛽; p > 0.49 for 𝛼), as also confirmed by Friedman’s test (p = 0.67 for 𝛽; p = 0.98 for 𝛼).  Changing 

the source of uncertainty, the kid and health treatments give the same level of ambiguity aversion as 

the basic treatment (𝛽: p > 0.44) and better sensitivity (higher 𝛼, p < 0.001 both) than the basic 

treatment.  The health treatment gives even better sensitivity than the kid treatment (p < 0.001). 

 For the one-parameter families, changes of outcomes do not affect the parameter 𝛼 in the 

Prelec one-parameter family or c in Tversky & Kahneman’s family, which are the same for the basic, 

week, and year treatments (Wilcoxon signed rank tests: p > 0.54 for 𝛼; p > 0.15 for c), as also 

confirmed by Friedman’s test (p = 0.95 for 𝛼; p = 0.18 for c).  Changing the source of uncertainty, the 

kid treatment gives higher 𝛼 and 𝑐 than the basic treatment (one-sided tests: p < 0.001 for both 𝛼 and 

𝑐).  The health treatment has yet higher 𝛼 and 𝑐 than the kid treatment (p < 0.001 for both 𝛼 and 𝑐). 

 

OA.8  Correlations of parameters across treatments 

 Table OA.7 reports the Spearman’s rank correlation coefficients of the parameters in the 

parametric families for every pair of treatments.  Correlations among the basic, week, and year 

treatments are highly significant, except the ambiguity aversion parameter 𝛽 in the Prelec two-

parameter family. 
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TABLE OA.7.  Correlations of parameters across treatments 

Goldstein & Einhorn 
𝛽

 

basic week year kid health 

𝛼
 

basic  0.50
***

 0.65
***

 0.28
**

 0.24
**

 

week 0.50
***

  0.52
***

 0.26
**

 0.21
*
 

year 0.55
***

 0.30
**

  0.47
***

 0.35
***

 

kid 0.39
***

 0.31
**

 0.23
*
  0.18 

health -0.01 -0.04 -0.06 0.29
**

  

Prelec two-parameter 
𝛽 

basic week year kid health 

𝛼
 

basic  0.45
***

 0.60
***

 0.28
**

 0.27
**

 

week 0.43
***

  0.44
***

 0.25
**

 0.25
**

 

year 0.51
***

 0.25
***

  0.37
***

 0.34
***

 

kid 0.36
***

 0.24
*
 0.11  0.22

*
 

health 0.12 -0.02 -0.02 0.31
**

  

 
Tversky & Kahneman c


 

basic week year kid health 

Prelec two-parameter 𝛼
 

basic  0.22
*
 0.16 0.29

**
 0.02 

week 0.45
***

  0.14 0.19 0.30
**

 

year 0.60
***

 0.49
***

  0.37
***

 0.06 

kid 0.32
***

 0.22
*
 0.16  0.42

***
 

health 0.24
**

 0.11 0.19 0.16  
*** 𝑝 ≤ 0.01; ** 𝑝 ≤ 0.05; * 𝑝 ≤ 0.10 


: anti-index 
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OA.9  Correlations between various ambiguity measures per treatment 

 Table OA.8 reports the Spearman’s rank correlation coefficients of the parameters in the parametric families for each treatment.  The parameters resulting 

from the neo-additive family are our indexes 𝑎, 𝑏.  Goldstein & Einhorn’s 𝛽 and 𝛼 are anti-indexes of ambiguity aversion and a-insensitivity, respectively.  They 

have almost perfect negative correlations with the aversion and insensitivity parameters 𝑏 and 𝑎, implying that the Goldstein & Einhorn and neo-additive families 

capture the same components of ambiguity attitudes.  In the Prelec two-parameter family, 𝛽 is an index of ambiguity aversion and 𝛼 an anti-index of a-insensitivity.  

Empirically, other than for the kid treatment, the two parameters are well separated and correlations of 𝛼 with the aversion parameter 𝑎 are consistent with 

expectation.  For the ambiguity aversion indexes 𝑏, 𝛽, correlations are less than perfect, especially in the kid treatment.  This is possibly because it cannot capture the 

change of ambiguity aversion, resulting in estimations not significantly different among the treatments.  For the one-parameter families of Prelec and Tversky & 

Kahneman, the correlations with the other parameters are not stable, showing that the one parameter captures different aspects in different treatments. 
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TABLE OA.8.  Correlations between various ambiguity attitude measures per treatment 

basic 
indexes 𝑎, 𝑏 Goldstein & Einhorn Prelec two-parameter Prelec one-parameter Tversky & Kahneman 

𝑏 𝑎 𝛽
 𝛼

 𝛽 𝛼
 𝛼

 c

 

indexes 𝑎, 𝑏 
𝑏  0.45

***
 -1.00

***
 -0.42

***
 0.83

***
 -0.48

***
 -0.80

***
 -0.34

***
 

𝑎   -0.43
***

 -0.96
***

 0.00 -0.92
***

 -0.80
***

 -0.47
***

 

Goldstein & Einhorn 
𝛽

    0.40
***

 -0.84
***

 0.46
***

 0.78
***

 0.32
***

 

𝛼
     0.01 0.94

***
 0.78

***
 0.43

***
 

Prelec two-parameter 
𝛽      -0.05 -0.43

***
 -0.01 

𝛼
       0.82

***
 0.50

***
 

Prelec one-parameter 𝛼
        0.52

***
 

week 
indexes 𝑎, 𝑏 Goldstein & Einhorn Prelec two-parameter Prelec one-parameter Tversky & Kahneman 

𝑏 𝑎 𝛽
 𝛼

 𝛽 𝛼
 𝛼

 c

 

indexes 𝑎, 𝑏 
𝑏  0.39

***
 -1.00

***
 -0.28

**
 0.87

***
 -0.39

***
 -0.82

***
 -0.07 

𝛼   -0.37
***

 -0.92
***

 0.02 -0.91
***

 -0.77
***

 -0.46
***

 

Goldstein & Einhorn 
𝛽

    0.26
**

 -0.88
***

 0.37
***

 0.80
***

 0.06 

𝛼
     0.09 0.93

***
 0.70

***
 0.60

***
 

Prelec two-parameter 
𝛽      -0.03 -0.51

***
 0.20 

𝛼
       0.77

***
 0.54

***
 

Prelec one-parameter 𝛼
        0.32

***
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year 
indexes 𝑎, 𝑏 Goldstein & Einhorn Prelec two-parameter Prelec one-parameter Tversky & Kahneman 

𝑏 𝑎 𝛽
 𝛼

 𝛽 𝛼
 𝛼

 c

 

indexes 𝑎, 𝑏 
𝑏  0.35

***
 -1.00

***
 -0.34

***
 0.87

***
 -0.39

***
 -0.79

***
 -0.10 

𝑎   -0.34
***

 -0.91
***

 -0.05 -0.91
***

 -0.72
***

 -0.36
***

 

Goldstein & Einhorn 
𝛽

    0.32
***

 -0.88
***

 0.38
***

 0.78
***

 0.10 

𝛼
     0.07 0.93

***
 0.70

***
 0.45

***
 

Prelec two-parameter 
𝛽      0.01 -0.47

***
 0.18 

𝛼
       0.74

***
 0.48

***
 

Prelec one-parameter 𝛼
        0.26

**
 

kid 
indexes 𝑎, 𝑏 Goldstein & Einhorn Prelec two-parameter Prelec one-parameter Tversky & Kahneman 

𝑏 𝑎 𝛽
 𝛼

 𝛽 𝛼
 𝛼

 c

 

indexes 𝑎, 𝑏 
𝑏  0.29

**
 -0.99

***
 -0.25

**
 0.49

***
 -0.31

***
 -0.55

***
 -0.38

***
 

𝑎   -0.26
**

 -0.98
***

 -0.51
***

 -0.98
***

 -0.91
***

 -0.70
***

 

Goldstein & Einhorn 
𝛽

    0.21
*
 -0.52

***
 0.29

**
 0.53

***
 0.35

***
 

𝛼
     0.55

***
 0.98

***
 0.90

***
 0.74

***
 

Prelec two-parameter 
𝛽      0.48

***
 0.25

**
 0.43

***
 

𝛼
       0.93

***
 0.77

***
 

Prelec one-parameter 𝛼
        0.75

***
 

health 
indexes 𝑎, 𝑏 Goldstein & Einhorn Prelec two-parameter Prelec one-parameter Tversky & Kahneman 

𝑏 𝑎 𝛽
 𝛼

 𝛽 𝛼
 𝛼

 c

 

indexes 𝑎, 𝑏 
𝑏  0.15 -0.99

***
 -0.08 0.92

***
 -0.19 -0.47

***
 0.51

***
 

𝑎   -0.14 -0.95
***

 -0.07 -0.94
***

 -0.81
***

 -0.26
**

 

Goldstein & Einhorn 
𝛽

    0.07 -0.93
***

 0.18 0.47
***

 -0.53
***

 

𝛼
     0.15 0.98

***
 0.79

***
 0.34

***
 

Prelec two-parameter 
𝛽      0.05 -0.26

**
 0.71

***
 

𝛼
       0.87

***
 0.30

**
 

Prelec one-parameter 𝛼
        0.12 

*** 𝑝 ≤ 0.01; ** 𝑝 ≤ 0.05; * 𝑝 ≤ 0.10   

: anti-index 
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OA.10  Fit of parametric families: Bayesian information criterion (BIC) 

 

TABLE OA.9.  Fit of parametric families: Bayesian information criterion (BIC) 

parametric family basic week year kid health 

neo-additive 273.13 140.71 193.27 242.23 159.25 

Goldstein & Einhorn 272.15 140.69 192.66 240.61 156.80 

Prelec two-parameter 269.95 140.08 191.06 235.89 156.09 

Prelec one-parameter 263.87 140.02 180.25 213.48 154.76 

Tversky & Kahneman 170.78 73.79 93.10 187.31 153.07 
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OA.11  Results on parametric fittings with two one-parameter families included 

In this Online Appendix we repeat the results of parametric fittings, but now with two one-parameter families defined in Appendix OA.7 added.
2
  Table OA.10 shows 

that the ordering of goodness of fit by Akaike’s information criterion (AIC) is, for all treatments: (1) neo-additive; (2) Goldstein & Einhorn; (3) Prelec two-parameter; 

(4) Prelec one-parameter; (5) Tversky & Kahneman.  Because  insensitivity plays a more central role for ambiguity than for risk, Prelec’s one-parameter family 

(focusing on insensitivity) fares better in this case than Tversky & Kahneman’s. 

 

TABLE OA.10.  Fit of parametric families: Akaike’s information criterion (AIC) 

parametric family basic week year kid health 

neo-additive 281.09 148.67 201.24 250.19 167.21 

Goldstein & Einhorn 280.12 148.65 200.63 248.57 164.76 

Prelec two-parameter 277.91 148.04 199.03 243.85 164.06 

Prelec one-parameter 267.86 144.00 184.23 217.46 158.74 

Tversky & Kahneman 174.76 77.77 97.08 191.29 157.05 

 

  

                                                             
2 We thank an editor for recommending removing this analysis from the main text. 
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TABLE OA.11.  Fitted parameters (significance level given by comparison with the basic treatment) 

parametric family parameters basic week year kid health 

neo-additive 
c 0.33 0.32 0.35 0.26

**
 0.15

***
 

s 0.19 0.20 0.17 0.45
***

 0.66
***

 

Goldstein & Einhorn 
𝛽

 0.74 0.73 0.76 0.92
***

 0.93
***

 

𝛼
 0.15 0.15 0.13 0.35

***
 0.55

***
 

Prelec two-parameter 
𝛽 0.91 0.93 0.89 0.86 0.92 

𝛼
 0.14 0.14 0.12 0.35

***
 0.56

***
 

Prelec one-parameter 𝛼
 0.18 0.18 0.17 0.42

***
 0.60

***
 

Tversky & Kahneman c

 0.52 0.51 0.52 0.62

***
 0.70

***
 

***
 𝑝 ≤ 0.01; 

**
 𝑝 ≤ 0.05; 

*
 𝑝 ≤ 0.10 


: anti-index

 

 

 Table OA.11 reports the fitted parameters of these parametric families (all significant at the 1% level).
3
  In addition to what was reported in the main text, 

comparing between the health and kid treatments, the Prelec one-parameter family also gives a higher 𝛼 (p < 0.01), but Tversky and Kahneman’s family gives the same 

c for the health and kid treatments (p = 0.13). 

  

                                                             
3 We also fit these parametric families individually.  For medians of those individual parameters, correlations of parameters across treatments, and correlations among parametric 

families per treatment, see Online Appendix OA.7.  They confirm all results reported here. 
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OA.12  Visualizing matching probabilities per subject and treatment (with individual parameters) 

 

The individual parameters in each panel are listed in the following order: 

neo-additive: c s 

Goldstein & Einhorn: 𝛼 𝛽 

Prelec two-parameter: 𝛼 𝛽 

Prelec one-parameter: 𝛼 

Tversky & Kahneman: c 

  



 

 

23 

 

basic treatment 
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week treatment 

 

 



 

 

25 

year treatment 
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kid treatment 
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health treatment 
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Additional reference for Online Appendix 

Hogarth, Robin M. & Hillel J. Einhorn (1990) “Venture Theory: A Model of Decision 

Weights,” Management Science 36, 780–803. 


