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a b s t r a c t

This paper recommends usingmosaics, rather than (σ -)algebras, as collections of events in decision under
uncertainty. We show how mosaics solve the main problem of Savage’s (1954) uncertainty model, a
problem pointed out by Duncan Luce. Using mosaics, we can connect Luce’s modeling of uncertainty
with Savage’s. Thus, the results and techniques developed by Luce and his co-authors become available
to currently popular theories of decision making under uncertainty and ambiguity.
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1. Introduction

Savage (1954) introduced the best-known and most-used
model for decision under uncertainty, with gambles1 mapping
states to consequences. A decision maker chooses a gamble, na-
ture independently chooses a state, and the corresponding conse-
quence results. Duncan Luce pointed out some serious drawbacks
to Savage’s model. Throughout his career, Luce used the following
example to illustrate these drawbacks. We use it as the lead exam-
ple in our paper:

If one is considering a trip from New York to Boston, there
are a number of ways that one might go. Probably the primary
ones that most of us would consider are, in alphabetical order,
airplane,2 bus, car, and train.

∗ Corresponding author.
E-mail addresses: donchaiam@gmail.com (J. Chai), c.li@ese.eur.nl (C. Li),

Wakker@ese.eur.nl (P.P. Wakker), t.wang@ese.eur.nl (T.V. Wang), yang@ese.eur.nl
(J. Yang).
1 This is Luce’s term. Savage (1954) used the term act. We use Luce’s (2000)

terminology as much as possible.
2 The exact quote is from Luce (2000, Section 1.1.6.1). During his childhood, Luce

wasmuch interested in airplanes (besides painting), and hemajored in aeronautical
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When you consider each transportation alternative, you can focus
on the uncertainties relevant to that alternative only. However,
Savage’s model requires you to consider not only the separate un-
certainties regarding each alternative, but also all joint uncertain-
ties. Thus, when choosing between airplane and car, you have to
consider your degree of belief that both the airplane and the car
(had it been taken) would be delayed jointly. This joint event is,
however, irrelevant to the decision to be made. Savage’s require-
ment may lead to large and intractable event and gamble spaces.
Further, the resolution of joint uncertainties often is not even ob-
servable. For instance, if you had chosen to travel by airplane, then
you could never fully learn about the delays of the car trip, which
did not even take place.

Luce developed various conditional decision models to avoid
the aforementioned drawbacks. In the lead example, one then
only considers the uncertainties relevant to (conditioned on) each

engineering. His parents advised against an art career, and astigmatism ruled out
military flying, so that he turned to academic research. This history may have
contributed to the adoption of this example. Luce used the example also in Krantz,
Luce, Suppes, and Tversky (1971, Section 8.2.1) and Luce and Krantz (1971, Section
2).
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transportation alternative separately, with no need to inspect
the irrelevant joint uncertainties. As pointed out by Luce and
others, these models, while avoiding some problems, create other
problems. As we will argue in further detail later, one drawback of
Luce’s models is that they do not have Savage’s clean separation
between chance (in nature) and the human will of the decision
maker. In Luce’s models, both the decision maker and nature
may choose (conditioning) events to happen. Another drawback
is that part of the mathematical elegance of Savage’s model is lost
(pointed out by Luce, 2000 p. 7 and discussed below).

This paper reconciles Savage’s and Luce’s models, with the
aforementioned problems solved and the best of both worlds
preserved. For this purpose, we propose a generalization of
Savage’smodel, based on Kopylov’s (2007)3 mosaics. Mosaics relax
the intersection-closedness requirement of algebras, which is the
cause of the aforementioned problems in Savage’s model. Using
mosaics we can model Luce’s lead example without considering
irrelevant and inconceivable combinations of uncertainties. At
the same time, we maintain Savage’s mathematical elegance
and his clear separation of nature’s influence and the decision
maker’s influence. We will show that for every Luce (2000) model
there exists an isomorphic Savage model, which implies that this
isomorphic model can capture all structures and phenomena that
Luce’s model can, and it can do so in the same tractable manner.
In addition, our model satisfies all principles of Savage’s model:
One state space captures all uncertainties, and themoves of nature
and the decisionmaker are completely separated. In this sense, our
model has the best of both worlds.

Our result shows the usefulness of mosaics. The main conclu-
sion of this paper, entailing a blend of Savage’s and Luce’s ideas, ex-
tends beyond the reconciliation obtained. We recommend the use
and study of mosaics rather than (σ -)algebras as the event spaces
for decision under uncertainty in general. This raises a research
question: To what extent can the appealing and useful mathemat-
ical results obtained for algebras in the literature be generalized to
mosaics? Abdellaoui and Wakker (2005) and Kopylov (2007) pro-
vided several positive results.4

This paper is organized as follows. Section 2 discusses Savage’s
(1954) model and Section 3 discusses Luce’s (2000) model, the
most comprehensive account of his views. Our reconciliation of
these two models is in Section 4. Section 5 overviews some
other deviations from Savage’s model, including Luce and Krantz
(1971), which contributed to and preceded Luce (2000). Unlike
Luce (2000), the models considered there are not isomorphic to
(a generalization of) Savage’s (1954) models, but we show that
they can still be embedded (i.e., are isomorphic to substructures).
Thus we show for all models considered how they can be related
to the revealed preference paradigm of economics. Bradley (2007)
provides a general logical model that can embed all models
considered in this paper as substructures. Section 6 presents a
discussion and Section 7 concludes. The Appendix discusses some
other generalizations of Savage’s model that Luce considered,

3 In 2007, Kopylov worked at the economics department of the University of
California at Irvine, within a mile of Luce’s office who was at the psychology
department there. Yet Kopylov developed his idea independently of Luce’s work.
4 Kopylov (2007), while working from a different motivation (see below), in

fact already gave a positive answer for Savage’s (1954) foundation of expected
utility, by extending it to mosaics. Abdellaoui and Wakker (2005, written after
and building on Kopylov’s paper) provided further generalizations and preference
foundations for a number of popular nonexpected utility theories for risk and
uncertainty: the Gilboa (1987)–Schmeidler (1989)–Quiggin (1982) rank-dependent
utility (including Choquet expected utility), Tversky & Kahneman’s (1992) prospect
theory (which applies not only to risk but also to ambiguity), and Machina &
Schmeidler’s (1992) probabilistic sophistication. Generalizations of othermodels of
uncertainty to mosaics is a topic for future research, as is the extension of measure-
theoretic concepts to mosaics.
being compounding, coalescing, and joint receipts, which are
tangential to our main topic: connecting Luce’s uncertainty model
with other uncertainty models popular in the literature today. Our
connection allows the introduction of Luce’s techniques, including
those in theAppendix and follow-uppapers,5 intomodern decision
theories.

2. Savage (1954)

This section reviews Savage’s (1954) model. Savage models
uncertainty through a state space S. One state s ∈ S is true and the
other states are not true, but it is uncertain which state is the true
one. S is endowed with an algebra E of subsets called events.6 An
algebra contains S and is closed under union and complementation.
It follows from elementary manipulations that an algebra also
contains ∅ and is closed under finite unions and intersections. An
event is true if it contains the true state of nature. C is a set of
consequences; it can be finite or infinite. A decision maker has to
choose between gambles (generic symbol G), which are mappings
from S to C with finite image7 that are measurable with respect to
E.Measurability of Gmeans that for each consequence x its inverse
under G, G−1(x), is an event. It implies that G−1(D) is an event for
every subsetD ⊂ C:G−1 (D) is a finite union of eventsG−1(x) of the
elements x ∈ D, where only finitely many of these events G−1(x)
are nonempty.

The decision maker’s comparisons between gambles constitute
a preference relation <. Some approaches do not take states
and consequences as primitives, with gambles derived, but take
gambles and consequences, or gambles and states, as primitives
(Fishburn, 1981 Section 8.4; Karni, 2006, 2013). Yet these
approaches can be recast in terms of the original Savage model for
the purposes of this paper (Schmeidler & Wakker, 1987).

Savage gave a preference foundation for expectedutility theory:

G →


S
U (G (s)) dP (s) . (2.1)

Here U : C → R is a utility function, and P is a probability measure
defined on the events. This paper does not discusswhich particular
decision theory (such as expected utility theory, prospect theory,
multiple priors, and so on) is to be used. Its topic concerns the
general modeling of uncertainty.

As regards Savage’s drawback of involving a complicated event
space, we not only have to specify all joint uncertainties but also
have to posit axioms sufficiently wide-ranging to generate all
likelihoods. Then, further, all gambles whose consequences are
contingent on the complicated event space have to be considered.
This drawback was elaborated by Luce (2000, p. 6):

It is certainly not unreasonable to suppose that each mode of
travel entails, as a bareminimum, at least 10 distinct [uncertain
events].8 To place this simple decision situation in the Savage

5 References include (Liu (2003), Luce (2010), Luce and Marley (2005), Marley
and Luce (2005), Marley, Luce, and Kocsis (2008)).
6 In his main analysis, Savage (1954) assumed that E is the power set, but he

pointed out that it suffices that it is a σ -algebra (Section 3.4, pp. 42–43). His
preference conditions, especially his P6, imply that S is infinite. Technical aspects
such as the difference between σ -algebras and algebras are not important in this
paper and we keep these aspects as simple as possible.
7 We throughout make this assumption, common in decision theory and made

throughout Luce (2000, see his p. 3), to simplify the mathematics.
8 Luce instead used the term outcome. This term commonly refers to uncertain

events (states of nature) in probability theory, a convention followed by Luce. In
decision theory, however, the term outcome commonly refers to consequences
rather than events. To avoid confusion, we do not use this term.
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Table 2.1
Decisions impacting states of nature.

s1: lung cancer s2: no lung cancer

G1: smoke Pleasant life, then disease Pleasant life, healthy
G2: don’t smoke Unpleasant life, then disease Unpleasant life, healthy

framework we must set S = A × B × C × T ,9 and so there are
at least 10,000 states of nature. Make the problem a bit more
complex and it is easy to see that millions or billions of states
must be contemplated. I think very few of us are able or willing
to structure decisions in this fashion. Rather, we contemplate
each of the alternatives as something unitary.

The 10,000 states of nature calculated by Luce involve 9999
subjective probabilities under subjective expected utility theory,
and 210,000

− 2 nonadditive weights under Luce’s rank- and
sign-dependent theory.10 Hence Savage’s model quickly becomes
intractable for empirical applications.

A crucial assumption in Savage’s model is that the decision
maker does not have any influence onwhich state is true (Fishburn,
1981, Section 2.2). A classical example showingwhat goeswrong if
this assumption is violated is as follows. For two states S = {s1, s2}
and two gambles G1,G2, Table 2.1 displays the consequences.

By Savage’s expected utility, and even just by dominance,
the only rational choice seems to be G1: ‘‘smoke’’, giving the
better consequence and more utility in every state. This analysis
obviously misses an essential point: The choice of the decision
maker impacts the probability of the state of nature, making G2:
‘‘don’t smoke’’ a good choice. Hence Savage’s model, and the
dominance principle, cannot be used in Table 2.1.

In applications, it may be hard to fully satisfy Savage’s
requirement of a strict separation of the decision maker’s and
nature’s moves. A proper definition of states of nature, specifying
the relevant uncertainties beyond control of the decision maker is
not easy to achieve in the example of Table 2.1. It is difficult inmany
applications, e.g. when there is uncertainty about whether you
pass an exam next week, whether your next working paper will
be accepted by the first outlet tried, whether your new company
will survive the first year, whether you will be healthy in five
years from now, and so on. Studies of moral hazard in economics
(Mas-Colell, Whinston, & Green, 1995; Zeckhauser, 1970), and of
causal decision theory in philosophy (Joyce, 199911), do allow for
influence on states as an add-on to Savage’s model, generalizing it.
We will discuss (Sections 3 and 5) more fundamental deviations
from Savage’s model. They seek to incorporate influences of the
decision maker on states and conditioning events so as to simplify
Savage’ model rather than to generalize it. We start with Luce
(2000).

3. Luce (2000)

This section presents Luce’s (2000) model of uncertainty,
the most comprehensive and most up-to-date version of Luce’s
views. For a book review of Luce (2000), see Bleichrodt (2001).
An historical development of Luce’s ideas and some important
historical influences are presented in Section 5. Luce (2000)
introduced a new primitive: (chance) experiments in a two-stage

9 A: airplane; B: bus; C: car; T: train. In his book, Luce used Ω instead of S to
denote the universal set.
10 For simplicity we focus on gains. If there are losses and sign-dependence is
allowed, then the number of required calculations doubles for all cases considered
in this paper.
11 Fishburn (1964, Chs. 2 and 3) similarly considered dependence of probabilities
on gambles.
decision process. First, there is a set (E i)i∈I of chance experiments,
with I an index set. Following Luce (2000), we write the indexes as
superscripts. C denotes a set of consequences. The decision maker
first chooses an experiment from some available experiments, and
then chooses one of the gambles related to the chosen experiment.
One experiment may be traveling by airplane, and another
experiment may be traveling by car. Each chance experiment E
has its own universal set ΩE which, given that chance experiment,
plays the same role as Savage’s state space, specifying all uncertain
events from there on. It is endowed with an algebra EE of events.
The chance experiment E is often identified with its universal set
ΩE . Given one experiment, Luce’s model is like an unconditional
Savagemodel. Once the experiment is chosen, there remain several
gambles available conditional on the experiment. For example, if
one chooses to travel by car, then one may still have to choose
which commitments to take at one’s destiny, with different pros
and cons resulting that depend on travel delays of the car ride.

A gamble conditional on E is of the form (E1 : g1, . . . , En : gn)
where (E1, . . . , En) are events partitioning ΩE and consequence gj
is assigned to every element of Ej. Under expected utility theory,
the gamble is evaluated by

n
j=1

P(Ej)U(gj) (3.1)

with P a probabilitymeasure conditional on E andU utility as usual.
These expected utility evaluations are also used for comparisons
between different chance experiments. The central decision theory
in Luce (2000) is a generalization of expected utility: rank- and
sign-dependent utility, introduced by Luce and Fishburn (1991).
It is essentially equivalent to Tversky & Kahneman’s (1992)
prospect theory. We focus on the general modeling of uncertainty,
without commitment to any specific decision theory. Therefore, an
explanation of details of decision theories is not needed for this
paper.

Luce’s model is more tractable for empirical analyses than Sav-
age’s. Consider the lead example where each mode of travel in-
volves 10 distinct further uncertain events. Under Luce’s model,
the number of states of nature to be contemplated is 4 × 10 = 40
instead of 10,000 as under Savage’s model. Under subjective ex-
pected utility theory, for eachmode of travel 9 probabilities are in-
volved, totaling 4×9 = 36, considerably fewer than Savage’s 9999.
Under rank- and sign dependent theory, 4× (210

−2) nonadditive
weights are involved, considerably fewer than Savage’s 210,000

−2.
One drawback of Luce’s model is that it has a set of chance

experiments without further structure or relations between them.
This way of modeling is not mathematically elegant. To illustrate a
concrete drawback, assume that a richness requirement is needed
that the event space is a continuum, as in Savage (1954).12 In Luce’s
model this then needs to be imposed on every chance experiment
separately instead of only on one unifying state space.

Also valuing mathematical elegance, Luce (2000, p. 7) consid-
ered a step halfway in the direction of Savage’s (1954) model. For
this purpose, different chance experiments are interpreted as mu-
tually exclusive events. Their union


i∈I ΩEi (called master exper-

iment) then is a state space similar to Savage’s. However, Luce
cautioned against this step conceptually. It leads to a conditional
decision model, under which the decision maker first chooses a
chance experiment, and then chooses a decision conditional on the
experiment chosen. This entails choosing an event (subset of the
state space) to come true. Luce (2000, p. 7)wrote critical comments

12 His probability measure is atomless with full range [0, 1] (Savage, 1954, Theo-
rem 3.3.3, item 7), which implies a continuum of events.



J. Chai et al. / Journal of Mathematical Psychology 75 (2016) 10–18 13
about the danger of confusing nature’s moves with the decision
maker’s moves:

A choice of when and how to travel differs deeply from
the statistical risks entailed by that choice. The potential for
confusion in trying to treat them in a unitary fashion is so
great that I eschew this perhaps mathematically more elegant
approach.

Luce’s (2000) approach avoids the most serious problem of the
earlier approach in Luce and Krantz (1971), discussed further in
Section 5.2. However, it still does not achieve the clear separation
of influences that Savage did. By choosing a chance experiment the
decision maker does impact what the true state of nature will be.

The next section presents an alternative to, and a complete rec-
onciliation of Luce’s and Savage’s models. Both the mathematical
elegance of Savage’s model and the empirical tractability of Luce’s
model are obtained, as is Savage’s clean separation between na-
ture and human influence. A special case appeared in Abdellaoui
and Wakker (2005, Example 5.4.v).

4. Reconciling Luce (2000) and Savage (1954)

In our model, as in Savage’s (1954), S denotes the state space,
C the consequence space, and E the collection of subsets of S
called events. To resolve the problems of Savage’s model, we
relax intersection-closedness. The interest of relaxing intersection-
closedness was pointed out before by Luce and his co-authors in
Krantz et al. (1971, Section 5.4.1) and was based on findings of
quantum mechanics. There a particle’s speed and location can be
known separately, but they cannot both be known exactly. Hence,
Krantz et al. (1971, Section 5.4.1) recommended using Dynkin
systems13 to model such uncertainties. Dynkin systems generalize
algebras by requiring closedness only for disjoint unions. Then
intersection-closedness is no more implied.

An interest in relaxing intersection-closedness also arose re-
cently in the theory of decision under ambiguity (uncertaintywith-
out objective or subjective probabilities), where the intersection of
two unambiguous events need not be unambiguous. For example,
consider an urn with 100 balls where each ball has a number 0 or 1
and a color red or green. Even if the proportion of the numbers and
the proportion of the colors are known and unambiguous, their in-
tersectionmay not be, if the correlation between number and color
is unknown. Zhang (2002) therefore recommended taking the set
of unambiguous events to be a Dynkin-system.

Kopylov (2007) proposed yet a further generalization and
required the set of unambiguous events to be a mosaic (defined
later). He still required that the general domain of events E

be an algebra. He used the mosaic structure only to analyze
the subcollection of unambiguous events. We use mosaics for a
different purpose. We require that E itself, the whole domain of
events, is a mosaic rather than an algebra. We do so to solve the
problems in Savage’s model pointed out by Luce, while avoiding
the problems of Luce’s model.

Definition 4.1. The collection E of subsets of the state space S is a
mosaic if it satisfies the following conditions:

(i) It is complementation-closed;
(ii) It contains S;
(iii) For every finite partition (E1, . . . , En) of S consisting of events

(elements of E), E contains all unions of Ej’s. �

13 Other terms are d-systems, QM-algebras, or λ-systems. Such collections play
a role in the mathematics of probability theory when constructing probability
measures on σ -algebras (Billingsley, 1968).
To see that mosaics are more general than Dynkin systems,
consider two different partitions (E1, . . . , En) and (F1, . . . , Fn). A
Dynkin systemwould still consider the union Ei


F j if Ei


F j = ∅,

butmosaics donot and, therefore, aremore flexible for applications
involving multiple chance experiments. Gambles G are again
mappings from S to C with finite image that are measurable (for
each consequence x, G−1(x) is an event). It still implies that G−1(D)
is an event for every subset D ⊂ C, as G−1(D) is a union of events
G−1 (x) : x ∈ D ∩ G (S) from a finite partition {G−1 (x) : x ∈ G (S)}
of S.

We next show how the flexibility of mosaics enables us to
construct, for every Luce model, an isomorphic Savage model. We
assume a Luce model with


E i


i∈I , ΩEi , EEi , and C as in Section 3.

We define the isomorphic Savage model as follows. We keep C as
it is.Wedefine the state space S of Savage not as the union of the E is
(as in Luce’s 2000master experiment), but instead as their product
set


i∈I ΩEi . In this product there is a dimension for each chance

experiment. A Savage-state s ∈ S =


i∈I ΩEi specifies a Luce-
state si ϵE i for each chance experiment E i. It may seem at this stage
that we still consider joint resolutions of uncertainty as Savage
did, because our states refer to such joint resolutions. However,
states are not very relevant because they need not be evaluated.
Events are relevant for this purpose, and they will not reflect joint
uncertainties, as explained next.

The domain E of events in our isomorphic Savage model is
defined as ∪j∈I


EEj ×


i≠j{ΩEi}


=


A : A = Aj

×


i≠j ΩEi ,

Aj
∈ EEj for some j


. Thus an event specifies what happens for

one chance experiment E j, leaving the events for all other chance
experiments unspecified. In measure theory, such sets are called
cylinder sets.

It is well-known that E must be extended, with many sets
added, to turn it into an algebra or a σ -algebra. This extension
brings many artificial extra gambles, requiring many extra
considerations that are practically irrelevant, and this lies at the
heart of Savage’s problem. For mosaics, however, no extension is
needed, because the collection of cylinders itself is a mosaic. This
follows mainly because for a partition of S consisting of events, all
those events Aj ×


i≠j ΩEi with Aj ∈ EEj , so as to be disjoint, must

concern the same chance experiment E j. Their unions are again
cylinder sets concerning that same chance experiment and, hence,
are again contained in E.

Measurability of a gamble G implies, informally speaking, that
G depends on only one chance experiment E j. To see this point,
assume that {x1, . . . , xn} is the image of G. Then the sets G−1(xj)
constitute a partition of S. Hence, as we saw before, these sets
all concern the same chance experiment E j.14 We call E j the
chance experiment relevant to gamble G. We now obtain a one-
to-one correspondence between gambles G in Savage’s model and
gambles GL in Luce’s model. The chance experiment E j relevant for
the Savage gamble G is the domain of the Luce gamble GL, and we
have

G−1 (x) = Aj
×


i≠j

ΩEi ⇐⇒ G−1
L (x) = Aj. (4.1)

Although our state space is big, this does not affect tractability
because we only consider measurable acts and the event space
is tractable. Single states, indeed, never need to be considered or

14 To see this point, assume that G−1(x1) refers to chance experiment E i , imposing
restrictions on the ith coordinate of the true state s. Assume, for contradiction, that
G−1(x2) refers to another chance experiment E j (j ≠ i), imposing restrictions on
the jth coordinate of the true state s. Then G−1 (x1) ∩ G−1 (x2) ≠ ⊘, consisting of
the states that satisfy the requirements for both coordinate i and coordinate j. This
contradicts the disjointness of G−1(x1) and G−1(x2).
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evaluated. The isomorphismof ourmodelwith Luce’smodel shows
thatwehave the same tractability. Consider again the lead example
where each mode of travel entails 10 distinct further uncertain
events. Our model involves 10,000 states of nature, which is as
many as Savage (1954) and waymore than Luce’s (2000) 36 states.
Yet this does not entail a greater complexity because our mosaic
does not involve many events. The number of probabilities or
weights involved is the same as in Luce’s model: 36 probabilities
for 36 cylinder sets under subjective expected utility theory, and
4 × (210

− 2) nonadditive weights of cylinder sets under Luce’s
rank- and sign dependent theory. Hence, we have maintained the
tractability of Luce’s model.

We have re-established Savage’s principle that nature’s moves
and the decision maker’s moves are completely separated. The
decisionmaker cannot in anyway influencewhich state in S is true.
She can influence which partition (chance experiment) {G−1 (x) :

x ∈ C} is relevant to her, but this is always the case with every
choice of gamble in Savage’s model. For instance, choosing to fly
by plane in economy class rather than (a) flying in business class
or (b) traveling by train 1st class or (c) traveling by train 2nd class,
consists of two stages in Luce’s model: First, the airplane chance
experiment is chosen. Second, economy class is chosen. In our
Savage model it is only the one-stage choice of the act of flying
economy class. The choice of this act automatically implies that the
relevant chance experiment/partition describes the uncertainties
about the airplane. In the same way, every choice of any act G in
Savage’s model always implies the ‘‘choice’’ of the relevant events
{G−1 (x) : x ∈ C}. Thus we have incorporated Luce’s choice of
chance events, not as influence on which subset of the universal
event happens in a separate stage, but as a standard choice of act
that fully maintains Savage’s separation of choices of acts from
choices of states of nature. Influencing the relevant partition in no
way influences the true state of nature.

Usingmosaics, we have solved a problem in Savage’smodel that
Luce discussed throughout his career. We fully meet the flexibility
required by Luce but at the same time maintain all principles of
Savage’s model and its elegance with one unifying state space.
Using the described isomorphism, all results in Luce (2000) and
many papers building on it can now be transposed to the currently
popular Savage model.

5. Different ways to model uncertainty that preceded and
influenced Luce (2000)

Luce was not alone in his search of an alternative to Savage’s
model. Different models had been proposed before, making dif-
ferent assumptions about where uncertainty comes from. Luce’s
(2000) model was the culmination of this development. This sec-
tion discusses this history. We show that all models can be ob-
tained as submodels of Savage (1954) in a mathematical sense,
even if at first the concepts of those models seem to be very dif-
ferent.

Savage (1954) is at one extreme of the spectrum: The separa-
tion of the decision maker’s control over the gamble chosen and
nature’s control over the state chosen is complete. At the other ex-
treme is Jeffrey’s (1965) model: He treats both gambles and events
as propositions and uncertainty concerns the truth or falsity of
propositions. Thus he does not differentiate at all between moves
by the decision maker and moves by nature. Luce throughout took
amiddle groundbetween Savage and Jeffrey. In particular, he never
recognized Savage’s strict separation between the decisionmaker’s
and nature’s moves.

We next reference some other discussions of models for
decision under uncertainty. Fishburn (1981) is an extensive and
impressive review of models up to 1981, providing many insights
that are still relevant to the literature today. Bradley (2007)
presented a general logical model that comprises the models of
Jeffrey (1965), Savage (1954), and their intermediate Luce and
Krantz (1971) (when interpreted as logical models) as submodels.
Spohn (1977) also discussed themodels developedup to that point,
arguing for the desirability of maintaining Savage’s separation.

5.1. Jeffrey (1965): the other extreme

Jeffrey (1965) took an approach fundamentally different
from Savage. Bolker (1966, 1967) provided generalizations of
Jeffrey’s model. Whereas Savage distinguishes states and gambles
completely, Jeffrey’s model makes no such distinction at all, and
even equates them. Both probabilities P(A) and utilities u(A)
(called desirability by Jeffrey) are carried by propositions A, which
wemodel as subsets of a space S.15 To Jeffrey, beliefs anddesires are
just two sorts of attitude toward the same proposition, say A. We
can thus assign a probability, but also a degree of desirability, to a
proposition such as passing an exam next week. The interpretation
of propositions can be very broad. In terms of Savage’s model,
propositions can refer to events, gambles, consequences, or their
mix. A decision problem can thus be modeled using a single set
of propositions. The characteristic condition in Jeffrey’s decision
theory, making it a relative to Savage’s expected utility, is that,
whenever A ∩ B = ∅:

u (A ∪ B) =
P (A) u (A) + P(B)u(B)

P (A) + P(B)
(5.1)

where P denotes a probability measure on S. This formula suggests
that u (A) may play a role as a conditional expected utility. This
suggestion will be formalized next.

Though Jeffrey’s and Savage’s models are two extremes of
the philosophical spectrum, one can formally obtain every Jeffrey
model as a substructure of a Savage model. To see this point,
we first start from a Savage model. Take his state space S and
consequence space C. We assume expected utility theory with
probabilities P and utilities U . Suppose that we want to measure
the desirability of a gamble G : S → C conditional on an event
A ⊂ S, i.e.,


A U(G(s))dP

P(A)
. This can be inferred from the conditional

certainty equivalent cGA ∈ C of G given A, defined by

cGA is such that G′
∼ G if : G′(s) = G (s) for s ∈ S \ A and

G′(s) ≡ cGA for s ∈ A. (5.2)

Based on expected utility theory,

EU(G) =


S

U(G (s))dP

=


S\A

U(G (s))dP +


A
U(G (s))dP

EU(G′) =


S\A

U(G′ (s))dP +


A
U(G′ (s))dP

=


S\A

U (G (s)) dP + U

cGA


· P (A) .

Since G ∼ G′, we have EU(G) = EU(G′), resulting in U(cGA) =
A U(G(s))dP

P(A)
, which can be defined as the desirability of G conditional

on event A. Using the same method and keeping G fixed, the
desirability of other events (‘‘propositions’’) can be calculated,
which makes the comparison between propositions possible. For

15 Jeffrey considered a Boolean algebra of propositions, endowed with logical
operations. Such an algebra is isomorphic to an algebra of subsets of a set S (Stone,
1936). For the purposes of this paper, the latter is more convenient.
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example, we can now compare a decision maker’s desirability of
‘‘walking outside in the rain tomorrow’’ versus ‘‘walking outside in
strong wind tomorrow’’.

Formally, for each fixed gamble G, ordering events A by their
conditional certainty equivalents u (A) = U(cGA) yields a Jeffrey
structure. Conversely, under some richness, every Jeffrey structure
can be identified with such a Savage substructure.16 This way,
Jeffrey preferences between events A become observable from
Savagean preferences. In particular, Jeffrey’s desirability can now
be related to the decision-based revealed preference paradigm
prevailing in economics. And hence, at least in a mathematical
sense, a Jeffrey model can be interpreted as a conditional certainty
equivalent submodel of a Savage model with one gamble fixed.
Under revealed preference interpretations of desirability, Jeffrey’s
model is almost dual to Savage’s in the sense that the fixed gamble
G has been decided outside the control of the decision maker but
now the decision maker seems to be choosing between events.

Jeffrey’s model can be reinterpreted as an extreme form of
state-dependent expected utility.17 Now utility not only depends
on the event considered, but is entirely determined by it. There
have been many debates about the identifiability of probabilities
under state-dependent utility (Karni, 2003). Drèze (1987, Ch. 2)
showed that probabilities then can become observable if the
decisionmaker has some influence on the states of nature. Jeffrey’s
model is in this spirit.

Ramsey’s (1931) famous analysis may be between Jeffrey’s
and Savage’s. It never clearly specifies whether events and
consequences can be the same or should be separated. Bradley
(2004) provides a detailed analysis of Ramsey (1931).We now turn
to another model in between Jeffrey’s and Savage’s.

5.2. Luce & Krantz’s (1971) conditional decision model: the middle
ground

Inspired by the lead example (see our introduction), Luce and
Krantz (1971) developed a conditional decisionmodel.18 It consists
of a set C of consequences and a state space S with an algebra E

of events E ⊂ S,19 as in Savage’s model. Different from gambles
in the unconditional Savage setting, which map the entire space
S to C, here conditional gambles GA are considered, which map
subsets A of S to C. That is, they are restrictions of gambles G to
events A. For example, A can designate the event, decided upon
by you, of you traveling by car and GA then specifies the further
uncertainties and results of the travel, laying down a consequence
G(s) for each state s ∈ A. If B designates traveling by airplane, then
the preference GA < G′

B indicates that traveling by car with the
consequences specified by G is preferred to traveling by airplane
with the consequences specified by G′.

The conditional decision structure synthesizes Savage and
Jeffrey. It allows an event, such as A (traveling by car) to be
under the control of the decision maker. A choice between GA
and G′

B determines not only the contingencies with which various
consequences arise, but also which conditioning event (A or B) will
occur. Hence, while Savage’s S can be interpreted as one universe,
here events can constitute parallel universes, the realization of
which depends on the choice of the decision maker. For an event

16 See Fishburn (1981, p. 186). Assume countable additivity. Then the measure
P (A)U(A) is absolutely continuous with respect to P . With u its Radon–Nikodym
derivative, we take U and G in Savage’s model such that u (s) = U(G (s)) for all s.
17 This relation was suggested by a referee.
18 Krantz et al. (1971, Ch. 8) present it with some modifications and extensions.
19 Null events cannot play the role of conditioning events inwhat follows. To avoid
technicalities, we do not consider null events.
A different conditional decisions GA,G′

A are conceivable, and this is
one way in which the model is richer than Jeffrey’s.

For disjoint events A, B and conditional decisions GA and G′

B,
their union

GA ∪ G′

B (5.3)

denotes the function restricted to A ∪ B and equal to G on A and
G′ on B. We postpone discussing the problematic interpretation
of such unions until the end of this section, and now proceed
with the characteristic condition of Luce & Krantz’s (1971) decision
theory:

u

GA ∪ G′

B


=

P (A) u (GA) + P(B)u(G′

B)

P (A) + P(B)
. (5.4)

Again, P denotes a probability measure on S. As in Jeffrey’s model,
the condition suggests that u (GA) plays a role as conditional
expected utility. This indeed follows because, under some natural
conditions (Luce & Krantz, 1971, Section 4):

u (GA) =


A U (G (s)) dP

P(A)
. (5.5)

Fishburn (1981, Section 8.4) reviews related follow-up studies. For
example, Balch and Fishburn (1974) considers a combination of
conditional gambles with gamble-dependent probabilities.

We next show that for every Savage model, we can consider a
Luce & Krantz substructure: For each GA we construct the condi-
tional certainty equivalent cGA as in Eq. (5.2). Through conditional
certainty equivalents, Luce & Krantz preferences between condi-
tional gambles GA become observable from Savagean preferences.

Conversely, for every Luce & Krantz model we can obtain a
Savage substructure, simply because all primitives of Savage’s
model have been provided, with unconditional Savagean prefer-
ences equated with Luce & Krantz preferences conditioned on the
universal event. This ‘‘unconditional’’ subpart of the Luce & Krantz
model indeed completely determines U and P , and thus not only
the whole Savage model but also the whole Luce & Krantz model
with all its conditional preferences. The Luce & Krantz model can
be interpreted as a conditional certainty equivalent submodel of
a Savage model but now not with one fixed gamble G consid-
ered, as in Jeffrey’s model, but with various gambles G,G′, . . .
considered.

We finally discuss interpretations of a union GA ∪ G′

B of
conditional acts for disjoint events A and B. Whether A or B
happens is determined by chance here, with A happening with its
probability determined through P , in P(A)

P(A)+P(B) . In a choice between
GA and G′

B, however, it is under the control of the decision maker
whether A or B happens. We agree with Spohn (1977) that this
double interpretation of events is hard to conceive of.

5.3. From Luce and Krantz (1971) to Luce (2000)

Possibly Luce (2000) came to agree with Spohn (1977) and
later works that the double role of events in Luce & Krantz’s
(1971) approach (Eq. (5.3)), with both nature and the decision
maker choosing between them, is hard to conceive of. Although
not explicitly referring to such unions, Luce’s citation at the end
of our Section 3, criticizing confusions of nature’s and the decision
maker’s moves, suggests so. His model (Luce, 2000), both with and
without a master experiment, does not have events that are both
under control of nature and the decisionmaker, whichwe consider
to be an improvement. But Luce (2000) does not yet achieve the
clear separation of influences that Savage did and does involve
conditional decisions.

Therewas yet another reason that probably led Luce to abandon
unions of conditional gambles as in Eq. (5.3). Since the 1980s an
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interest has arisen in theories deviating from expected utility, the
most popular one being prospect theory (Tversky & Kahneman,
1992). It has not been very widely known that Luce and Fishburn
(1991) essentially introduced the same theory called rank- and
sign-dependent utility. This theory is central in Luce (2000). Once
the realm of expected utility is left, it is no longer clear how to
update or weigh unions. There then is no undisputed analogue
of Eq. (5.4) (Denneberg, 1994; Dominiak, Duersch, & Lefort, 2012;
Miranda & Montes, 2015). This complication will have added to
Luce’s decision to abandon unions of conditional gambles.

6. Discussion

Although our Savage model in Section 4 is isomorphic to Luce’s
model and can accommodate the same empirical phenomena, we
note some formal differences. In Luce’s model, different chance
experiments are simply different unrelated entities and there is
no formal unifying structure. In the step halfway to Savage, using
the master experiment as described in Section 3, different chance
events would be disjoint subevents of one encompassing master
experiment, but Luce does not commit to such a formalization.
His claim ‘‘the events of one experiment never appear in the
formulation of a different experiment’’ (p. 6) has no clear formal
meaning. It does suggest that the universal sets ΩEj of all
possibilities in a chance experiment are different, and may be
mutually exclusive, for different chance experiments. In ourmodel
they are all the same, being the state space S (the universal
statement that is always true). For us, different chance experiments
refer to different partitions of the same state space, with that state
space reflecting one universal truth.

The term Savage model as used in this paper is defined in
Section 2, with states, acts, consequences, events, and a complete
preference relation. A technical difference with Savage’s (1954)
decision theory is that we did not impose his richness conditions,
mainly his P6. They imply that S is infinite for instance, whereas
we allow finite S. Another difference is that his set of events is
an algebra and even a σ -algebra, which is essentially used in his
analyses. Hence his preference foundation cannot be directly used,
for instance. Here Kopylov’s generalization is useful.

In our Savagemodels that are isomorphic to Luce’s models, two
events Ai

∈ ΩEi and Bj
∈ ΩEj of different chance experiments

have a nonempty intersection Ai
×Bj

×


k≠i,j ΩEk . The true state
of nature may be such that both events are true. However, this
intersection is no event: it is not contained in the mosaic. It then
is not relevant to any decision to be made. We are not interested
in it, and need never evaluate, analyze, or even think about
it.

In natural language, different choices of gambles, with different
partitions of S relevant, can be called different events. In the
formal language of decision theory and probability theory, as in
Savage’s model, such terminology is not possible. Events only refer
to subsets of the state space. That is, they only describe moves by
nature. Luce never followed this strict separation of nature’smoves
from decision maker’s moves in Savage’s model.

In our Savage models isomorphic to Luce’s models, any event
(except ∅ and S) appearing in one chance experiment does not
appear in any other, in agreement with Luce’s assumptions. But
this need not hold for general mosaics. In general it may well
happen that an event A occurs in two partitions {A, B2, . . . , Bn}

and {A, C2, . . . , Cm} that have nothing other in common. Here,
intersections Bi ∩ Cj of other events of the chance experiments
may not be events, i.e., they may not be contained in the mosaic.
In the lead example, event A could entail that an earthquake
destroys the route to the destination, preventing all modes of
transportation.20

We prefer mosaics to Dynkin systems. That is, in the preceding
paragraph we prefer not to speculate on whether Bi ∩ Cj = ∅

or on committing to then having Bi ∪ Cj as an event (that should
be evaluated according to the decision theory considered). In this
regard mosaics better capture a desirable feature of Luce’s chance
experiments than Dynkin systems do. We consider this to be a
desirable extra flexibility of mosaics.

There is a renewed interest in the foundations of uncertainty
in the modern literature on uncertainty. Ellsberg (1961) showed
that, surely from a descriptive perspective, we often cannot
assign traditional probabilities to uncertain events, calling for
generalizations (‘‘ambiguity’’) of Savage’s expected utility formula.
After initiating work by Gilboa (1987), Gilboa and Schmeidler
(1989), and Schmeidler (1989), many ambiguity theories have
been developed, including Luce& Fishburn’s (1991) rank- and sign-
dependent utility. This may have also contributed to Luce’s (2000)
decision to modify Luce & Krantz’s (1971) uncertainty model.

Although many modern nonexpected utility theories stayed
within Savage’s general uncertainty model21, there also have
been more fundamental deviations. Those involved uncertainties
about the state space, as in unforeseen contingencies (Ahn &
Ergin, 2010; Dekel, Lipman, & Rustichini, 1998; Karni & Vierø,
2013) and case-based decisions (Gilboa & Schmeidler, 2001). Ahn
(2008) proposed an ambiguity model that used Jeffrey’s (1965)
uncertainty model, also deviating from Savage’s general model.
Ahn and Ergin (2010) incorporated Luce’s partition dependence
(see our Appendix), unaware of Luce’s precedence. Our analysis
has shown how Luce’s models and theories can be invoked in
uncertainty models commonly used today. The many results
and tools provided in Luce’s book can now be used in modern
studies, and new researchers can better become aware of Luce’s
precedences.

7. Conclusion

We have shown how various models of uncertainty can be
embedded into the most well-known model today: Savage’s
(1954) state space model. Thus we have shown how all these
models can be related to the decision-based revealed preference
paradigm of economics. In particular, we showed that Luce’s most
comprehensive model, in Luce (2000), not only can be embedded,
but even can be related isomorphically to Savage’s model. To
this effect, we needed a version of Savage’s model more general
than used by Savage (1954), taking the collection of events as a
mosaic rather than as an algebra. This way we avoided the overly
restrictive intersection-closedness requirement of algebras. We
can now handle parallel uncertainties without having to consider
their joint resolutions. The results, techniques, and empirical
flexibility of Luce (2000) and the follow-up works by him and his
colleagues now become available to modern decision theories.

The main recommendation of our paper is that the literature
on decision under uncertainty use and study mosaics rather than
the common algebras. This way, more tractable models that are
better suited for applications result. It raises a research question for
future studies: How can existing results for algebras be generalized
to mosaics?

20 Such an event is plausible in Luce’s domicile, Irvine in California, both in 1971
and in 2000.
21 For the purposes of this paper, the Anscombe and Aumann (1963) model,
popular in modern decision theory, belongs to Savage’s general uncertainty model,
with a state space and a clear separation betweenmoves by the decisionmaker and
moves by nature.
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Appendix. Luce’s generalizations of Savage (1954) that are
tangential to our analysis

We next turn to three other generalizations of Savage’s model
that Luce incorporated. They are tangential to the proper definition
of a state space and thus to the main topic of this paper. They
are add-ons that can be added or removed from every model
considered in the main text. An important motivation for the
results provided in the main text is to make the following
generalizations available to modern Savage-based analyses.

First, in some parts of Luce’s analysis, he allowed for compound
gambles. Let G0 = C and let G1 denote the set of all gambles
defined before; i.e., they are mappings from a chance experiment
into G0. Hence, G1 ⊃ G0 and G1 is defined as the set of first-
order gambles. One can continue this process recursively, defining
gambles inGk as kth-order gambles, beingmappings from a chance
experiment into Gk−1. Compounding implies that all uncertain
events considered should be repeatable, which of course is a
restrictive assumption.

Luce assumed backward induction. That is, each first-order
subgamble in a compound gamble can be replaced by its certainty
equivalent. This certainty equivalent is assumed to be the same
as if the subgamble had been an unconditional first-order gamble
that was not a subgamble of another gamble. In this way we
can use backward induction to evaluate a gamble. Although Luce
(2000, Definition 2.3.1) called this backward induction assumption
monotonicity, it is controversial outside of expected utility
(Luce, 2000, Sections 2.3.1–2.3.2). Monotonicity with respect to
subjective underlying orderings amounts to separability, and
restrictive dynamic decision principles are then implied (Machina,
1989).

Another problem for backward induction arises for uncertainty,
when probabilities of events are unknown. Luce’s model precludes
learning when the same chance event is used for compounding.
The subjective beliefs remain the same for that chance event,
ignoring the preceding sampling evidence. Assume that we have
randomly selected a ball from an Ellsberg urn of unknown
composition 100 times with replacement, and all 100 times the
color of the ball was red. Then for the 101th sample our belief
of red showing up has increased, and our certainty equivalent
for the gamble (red: $100, not-red: 0) is higher than it was
in the beginning. In Luce’s approach, the 100 preceding events
should provide no information about the 101th replication and
its certainty equivalent should be the same as in the beginning,
which is hard to imagine. Luce (2000, p. 10) referred to personal
communication with one of us about this problem, but left it as an
open problem.

If we only have Savage’s model without replications or com-
pounding, then we can nevertheless make the entire compound-
ing structure observable. For any compound gamble, we only need
Savage’s first-order preferences to carry out backward induction:
we replace final-stage gambles by certainty equivalents step by
step, ending up with the certainty equivalent of the compound
gamble. In this way any preference between compound gambles
in Luce’s setup can be observed using merely Savage-type prefer-
ences. In this procedure, learning effects are excluded. It therefore
provides a solution to the open problem of the preceding para-
graph, suggested to us by Anthony Marley.

Luce considered another generalization of Savage’s setup. Here
(E1 : g1, . . . , En : gn) is not interpreted as a function from ΩE to
C with the Ejs partitioning ΩE . Instead, it is taken as a general 2n-
tuple. It is then allowed to treat (E1 : α, E2 : α, E3 : g3, . . . , En :

gn) differently than (E1 ∪ E2 : α, E3 : g3, . . . , En : gn) even though
they concern the same function from ΩE to C and, hence, must be
indifferent and even identical in Savage’s approach. In thismanner,
violations of event coalescing (Luce, 2000, Section 1.1.6.3) and
other elementary rationality conditions can be accommodated.
A recent model incorporating this idea, and unaware of Luce’s
precedence, is Ahn and Ergin (2010).

Luce also considered joint receipts x ⊕ y of consequences,
meaning that one receives both x and y. If consequences are
monetary, then decisionmakersmay perceive x⊕ydifferently than
x+y. For example, a gain of $200 followed by two losses of $50may
be perceived differently than a gain of $100. Thaler’s (1985)mental
accounting is an empirical counterpart to Luce’s joint receipts.
Luce introduced joint receipts so as to obtain (in our terminology)
cardinal evaluations of consequences (Luce, 2000, 4th approach in
Section 1.3). An alternative way is to usemultiattribute techniques
(Luce’s 1st approach inhis Section 1.3), but not in combinationwith
probability mixtures as in Keeney and Raiffa (1976) and indicated
by Luce, but instead with the measurement techniques of Krantz
et al. (1971). Then standard sequences of Krantz et al. (1971) give
cardinal evaluations of consequences. This underlies the tradeoff
technique of Abdellaoui (2000), Bleichrodt and Pinto (2000), and
Wakker (1984, 2010). This technique has also been used in many
papers by Prelec (e.g., Prelec, 1998, Definition 1) and Tversky (e.g.,
Tversky, 1977, p. 351 axiom 5: invariance), and occasionally by
Luce (Luce & Krantz, 1971, axiom 5). Modern papers in uncertainty
commonly use yet another way to obtain cardinal evaluations
of consequences: through Anscombe & Aumann’s (1963) model
(Etner, Jeleva, & Tallon, 2012; Gilboa & Marinacci, 2013). There are
however drawbacks to thismodel (Machina, 2014 3rd example and
p. 3835, 3rd bullet point; Wakker, 2010 Section 10.7.3), and Luce’s
joint receipts can serve as an alternative tool.
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