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Abstract Prospect theory is the most popular theory for predicting decisions under
risk. This paper investigates its predictive power for decisions under ambiguity, using
its specification through the source method. We find that it outperforms its most
popular alternatives, including subjective expected utility, Choquet expected utility,
and three multiple priors theories: maxmin expected utility, maxmax expected utility,
and α-maxmin expected utility.

Prospect theory was originally introduced for decisions under risk (Kahneman and
Tversky 1979). There were two problems with the original 1979 version (original
prospect theory or OPT henceforth). First, it could not handle more than two nonzero
outcomes.1 Second, it generated violations of stochastic dominance that were not
descriptively realistic. These problems were resolved in 1992, when Tversky and

1All extensions to more outcomes proposed in the literature have problems (Wakker 2010, Section 9.8).

Electronic supplementary material The online version of this article
(doi:10.1007/s11166-014-9185-0) contains supplementary material,
which is available to authorized users.

A. Kothiyal
Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany

V. Spinu
Anderson School of Management, UCLA, 110 Westwood Plaza, Los Angeles, CA 90095, USA

P. P. Wakker (�)
Erasmus School of Economics, Erasmus University, P.O. Box 1738, Rotterdam, 3000 DR,
the Netherlands
e-mail: wakker@ese.eur.nl

http://dx.doi.org/10.1007/s11166-014-9185-0
mailto:wakker@ese.eur.nl


2 J Risk Uncertain (2014) 48:1–17

Kahneman (1992) used Quiggin’s (1982) rank dependence in their new version of
prospect theory (called PT),2 as is well known.

Another more important advance of PT has, as yet, received less attention.
Tversky and Kahneman (1992) did not only use Quiggin’s (1982) rank dependence
to solve the two aforementioned problems. They also used Schmeidler’s (1989) rank
dependence to extend PT to ambiguity. Ambiguity refers to situations of uncertainty
with no probabilities given (risk refers to situations with probabilities given). Unfor-
tunately, there is still a widespread misunderstanding that prospect theory could only
be applied to risk. The popularity of prospect theory for risk may have contributed to
this misunderstanding. Another reason for this misunderstanding is that prospect the-
ory is purely descriptive, with no normative claims made, whereas most researchers
on ambiguity have so far focused on developing models for normative purposes,
without seeking to describe the phenomena under ambiguity found empirically.

Hey et al. (2010), HLM henceforth, presented a predictive test to compare vari-
ous theories on decision under ambiguity. These theories include subjective expected
utility (Savage 1954), Choquet expected utility (CEU; Gilboa 1987; Schmeidler
1989), maxmin expected utility (Chateauneuf 1991; Cozman 2012; Gilboa and
Schmeidler 1989; Wald 1950), maxmax expected utility (Drèze 1961, 1987, Chs. 2
and 3), and the α-maxmin model (Ghirardato et al. 2004; Jaffray 1994; Luce and
Raiffa 1957, Ch. 13). These theories, used descriptively here, were primarily devel-
oped for normative purposes, assuming expected utility for risk and an Anscombe
and Aumann (1963) model. The descriptive prospect theory of Tversky and
Kahneman (1992) was not included by HLM.3 We add the latter, using its special
case of Abdellaoui et al.’s (2011) source method. We find that it outperforms all the-
ories considered by HLM. Thus, prospect theory seems to be the best descriptive
theory of ambiguity presently available.

This paper proceeds as follows. Section 1 describes the history and the scarcity
of quantitative descriptive studies of ambiguity. Section 2 presents the general theo-
ries of ambiguity considered in this paper, mostly multiple priors and rank-dependent
models (the latter include PT). Here we also explain where we deviate from HLM’s
theoretical analysis. Section 3 explains how we reduced the number of parameters
for each theory. We used Abdellaoui et al.’s (2011) source method for the rank-
dependent theories, and we used HLM’s method for multiple priors. Sections 2 and 3
provide guidelines for empirical researchers interested in tractable tests and applica-
tions of ambiguity models. We describe the basic experimental design in Section 4,
present our results in Section 5, and discuss and conclude in Sections 6 and 7. A Web
Appendix provides further details.

2Although prospect theory is often used to refer to OPT, the new version of 1992 has now replaced OPT
and deserves this nontechnical and short name, rather than the technical and long “cumulative prospect
theory” or CPT. Our terminology was Tversky’s preference.
3HLM (p. 87 bottom) explain that the theories that they call prospect theory are not Tversky and
Kahneman’s (1992) version or any other common version.
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1 Ambiguity and its empirical tests

Until the 1990s, quantitative descriptive studies focused on risk, in the absence of
quantitative models for ambiguity.4 These descriptive studies were often carried
out in the probability triangle (probability distributions over three fixed outcomes).
Since 1990, quantitative ambiguity models have become available (Gilboa 1987;
Gilboa and Schmeidler 1989; Schmeidler 1989), and many extensions have been
proposed after (reviewed by Etner et al. 2012). These models were all norma-
tively motivated (Gilboa et al. 2012, p. 18 3rd para), assuming expected utility for
risk, backward induction in an Anscombe and Aumann (1963) model, and (with α-
maxmin excepted) universal ambiguity aversion. These assumptions, even if accepted
normatively, fail descriptively.5

Some quantitative descriptive studies fitted data for simple situations with no
more than two events.6 Until recently, comparative studies of ambiguity models were
qualitative, testing particular predictions. Ahn et al. (2013) compared kinked models
(mostly multiple priors and rank-dependent models) with smooth models and found
that the former performed better. Hayashi and Wada (2010) falsified multiple pri-
ors models by showing that not only the priors with maximal and minimal expected
utility play a role in decisions, but also intermediate priors.

HLM achieved a recent breakthrough: They extended the comparative studies of
different nonexpected utility models in the probability triangle from risk to ambigu-
ity. One key step was the introduction of a valuable device to generate ambiguity: a
bingo blower. Another step was that they brought together different ambiguity mod-
els, making them quantitatively testable for empirically tractable one-stage prospects.
HLM did include two models in their competition that they called prospect theory,
but these were not Tversky and Kahneman’s (1992) model, or any other common
model.7 Hence, HLM did not test Tversky and Kahneman’s (1992) PT for ambiguity.

Although HLM succeeded in implementing CEU in full generality, CEU has too
many parameters to perform well. We will use Abdellaoui et al.’s (2011) source
method to reduce the number of parameters of CEU. We will extend it to PT, the
reference-dependent generalization of CEU.

4See Bernasconi (1994), Camerer (1989), Harless and Camerer (1994), Hey and Di Cagno (1990), Hey
and Orme (1994), Sopher and Gigliotti (1993) and Starmer (1992).
5For descriptive violations of backward induction, see Barkan and Busemeyer (1999), Budescu and Fischer
(2001), Carbone and Hey (2001), Cubitt et al. (1998), Dominiak et al. (2012), Hey and Knoll (2011), Hey
and Lotito (2009), Hey and Panaccione (2011), Rachlin and Green (1972) and Yechiam et al. (2005).
6See Andersen et al. (2012), Choi et al. (2007), Hsu et al. (2005), and Huettel et al. (2006). Only for
rank dependence and PT have there been some quantitative studies considering more than two events:
Abdellaoui et al. (2011), Abdellaoui et al. (2005), Baillon and Bleichrodt (2012) and Diecidue et al.
(2007). We focus here on revealed-preference based studies. Hogarth and Einhorn (1990) present and cite
influential work using introspective inputs.
7Their first version was an extension of OPT to ambiguity. However, OPT has the aforementioned
problems, making it ill suited for the three-outcome domain considered here. The second version was
Schmeidler’s (1989) CEU with a level parameter of utility added to capture loss aversion. However, this
second version did not incorporate the sign-dependent and reflected weighting of losses that is typical of
prospect theory, and that is needed to make the added level parameter of utility identifiable.
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We next discuss multiple priors models. Sets of priors are often used as a tool of
communication, such as when describing stimuli in experiments, but they rarely arise
exogenously from naturally generated ambiguity. Thus, they do not arise exogenously
with the bingo blower. They are, accordingly, hard to implement in incentivized
experiments with guaranteed absence of deception. The focus of this paper is, hence,
on endogenous sets of priors. These sets comprise even more parameters than PT or
CEU (Eron and Schmeidler 2012). They have an even greater need for a specification
of tractable submodels before they can become implementable. An important contri-
bution of HLM was the introduction of such a tractable submodel. To the best of our
knowledge, HLM were the first to reveal endogenous sets of priors from preferences
when there are more than two events. We will use their submodel in our analysis
(Subsection 3.3).

Because our stimuli do not have exogenously given separate stages, we will, fol-
lowing HLM, not consider two-stage models of ambiguity such as those in Ergin
and Gul (2009), Nau (2006) or Neilson (2010). Taking the stages endogenous, as in
Klibanoff et al.’s (2005) smooth model, would lead to even more free parameters:
the collection of all second-order probability distributions over the (first-order) prob-
ability measures over S is of higher dimensionality than, for instance, the collection
of all sets of priors. Developing tractable subcases of the smooth model is a topic for
future research.

2 Definitions of the general deterministic decision theories tested

HLM used a bingo blower containing pink, blue, and yellow balls in proportions
unknown to the subjects. Further experimental details are in Section 3. A ball was
drawn at random and its color determined the outcome. Only three possible outcomes
were considered, namely, £100, £10, and −£10. Further experimental details are in
Section 4.

We write (E1, E2, E3) for the prospect yielding £100 under event E1, £10 under
event E2, and −£10 under E3. The events E1, E2, and E3 partition the set of possible
colors, denoted S = {pink, blue, yellow}. For example, if E1 = yellow, E2 = ∅,
and E3 = {pink, blue}, then the prospect yields £100 for yellow, −£10 for pink
and blue, and outcome £10 never occurs. Subjects made choices between pairs of
prospects. We discuss the main theories in HLM, and examine in detail which of
these theories performs best. In all these theories, subjects maximize

π1U(£100)+ π2U(£10)+ π3U(−£10), (1)

with U a utility function, and the πs decision weights. The πs are nonnegative and
will sum to 1 except under PT. In all theories considered, the unit of utility is free to
choose, and so is the level except under PT.

Under (subjective) expected utility (EU), there exists a (subjective) probability
measure P on S such that

πj = P(Ej ). (2)

Under EU, not only the unit but also the level of utility is free to choose. We can
always choose U(£100) = 1 and U(−£10) = 0. U(£10) is the only parameter of
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utility to be determined. (Subjective) expected value (EV) is the special case where
U is linear.

Under Choquet expected utility (CEU), there exists a weighting function W

(W(∅) = 0, W(S) = 1, and A ⊃ B ⇒ W(A) ≥ W(B)) such that

π1 = W(E1), π2 = W(E1 ∪ E2)−W(E1), π3 = 1 −W(E1 ∪ E2). (3)

The decision weights πj add to 1, implying that U is unique up to unit and level as it
is under EU. Again, only one parameter of utility remains to be determined.

Under prospect theory (PT), there exist weighting functions W+ and W− such
that

π1 = W+(E1), π2 = W+(E1 ∪ E2)−W+(E1), π3 = W−(E3). (4)

Relative to CEU, the loss is weighted using W− instead of W+, and the weighting
of losses is done in a dual manner. Now the decision weights need no longer add to
1 or to another constant. Hence, the level of utility U is not free to choose, and is
uniquely determined in sufficiently rich models.8 For Eq. 4, the scaling U(0) = 0
is imposed and it is essential.9 Any other scaling leads to incorrect formulas. If we
set U(£100) = 1 which is always possible, then both U(£10) and U(−£10) are
empirically meaningful parameters. Utility for losses is often decomposed into basic
utility u and loss aversion λ, with U(−£10) = λu(−£10). For gains, we then set
u = U . Prospect theory and CEU, and several specifications introduced later, are
called rank-dependent theories.

Multiple priors theories consider a set of priors �—a set of probability distribu-
tions over S. � may be assumed to be closed and convex. α-maxmin EU assumes a
number 0 ≤ α ≤ 1, and maximization of the functional

α min
P∈�EU + (1 − α)max

P∈�EU. (5)

The maxmin EU model is the special case of α = 1, and the maxmax EU model is
the special case of α = 0.10 The decision weights in Eq. 1 correspond with α times
the minimizing probability plus (1 − α) times the maximizing probability from �

and, hence, always sum to 1. Utility is, therefore, unique up to level and unit as it is
under EU and CEU.

HLM further consider a maxmin (maxmax) theory that evaluates a prospect lexi-
cographically, starting with the minimal (maximal) outcome, and a minreg (minimax
regret) theory. We refer to HLM for details.

8Theoretical claims of uniqueness and identifiability are usually derived under the assumption of contin-
uums of domains. For discrete observations as always obtained in practice, those claims provide a lower
bound for uniqueness and an upper bound for identifiability.
9Although the outcome 0 does not occur in our domain, it is essential for the decision weights that U(x)

reflects the distance from x to 0 in utility units, for all x.
10We use the terms maxmin EU and maxmax EU instead of HLM’s terms G&S maxmin and G&S maxmax
because our terms are common in the literature.
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3 Reducing the numbers of parameters

This section describes how we reduced the number of parameters of the main gen-
eral theories defined in the preceding section, so as to achieve the tractability and
parsimony required for empirical applications.

3.1 SCEU: a parsimonious version of CEU

Under general CEU, the weighting function W comprises six parameters, being the
weights of the eight events except ∅ and S. Data fitting is still theoretically possible
for CEU in full generality, and HLM did so, but the results were not very good.
Many authors have indeed pointed out that nonadditive measures are too general to
be tractable, and that special subcases must be developed.11 Abdellaoui et al.’s (2011)
source method achieves this as follows: For a given subject in a given treatment,
there exist subjective probabilities P over S, and a source function w mapping [0, 1]
to [0, 1], strictly increasing and continuous, with w(0) = 0 and w(1) = 1. Then
W(E) = w(P (E)). By allowing w to be different for different sources of uncertainty
(such as for the known Ellsberg urn versus the unknown Ellsberg urn), the source
method generalizes Machina and Schmeidler’s (1992) probabilistic sophistication.
By deviating from the probability weighting function for risk, w captures ambiguity
attitudes.

So as to limit the number of parameters considered, we only use one parameter for
the source function w, by using Prelec’s (1998) family:

w(p) = exp(−(−ln(p))α). (6)

The function is linear for α = 1, is more inverse-S shaped as α is more below 1,
and is more S-shaped as α is more above 1. There is one popular alternative one-
parameter family, by Tversky and Kahneman (1992). In Section 5.3, we discuss this
alternative, and other two-parameter alternatives.

We emphasize that the source function w and its parameter α comprise ambi-
guity attitudes. The probabilities p are subjective, are derived from behavior, and
may not be known to subjects in any conscious manner. In our experiment they will
deviate from the objective probabilities that we know but that the subjects did not
know. In general, we can expect an ambiguous source function to deviate more from
linearity than the weighting function for objective probabilities, where the extra cur-
vature of the source function reflects ambiguity. In general, ambiguity amplifies the
phenomena under risk (see Wakker’s 2010 review (p. 292) and Maafi 2011).

Because U is unique up to level and unit, we set U(£100) = 1 and U(−£10) = 0,
and U(£10) is the only utility parameter. Under linearity, U(£10)) = 2/11. The
preference family resulting from these restrictions on CEU preferences is called the
source-CEU (SCEU) model. It has reduced the number of parameters for W from six
to three: two for P (P(pink) and P(blue)) and one for w (parameter α). SCEU has

11See Chateauneuf et al. (2007), Grabisch and Labreuche (2008, Sections 2.7 and 7), Ivanov (2011,
p. 367), Narukawa and Torra (2011) and Wakker (2010, Section 11.2)
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five parameters in total: besides the three for W , there is one for U (U(£10)) and one
for the error variance (σ ) that will be explained later.

3.2 SPT: a parsimonious version of PT

PT in its full generality generalizes CEU by allowing a separate treatment of losses,
with separate parameters. To limit the number of parameters, SPT, our version of PT,
will have five parameters as did SCEU. It will modify rather than generalize SCEU.

We again use Abdellaoui et al.’s (2011) source method for the decision weights
πj . Thus, we assume subjective probabilities P . Now

W+ = w+(P (E)) and W− = w−(P (E)). (7)

To limit the number of parameters, we assume w− = w+, implying W− = W+. We
again use Prelec’s one-parameter family of Eq. 6.

Given the dual weighting of losses of PT in Eq. 4, the equality W− = W+
leads to a reflected weighting of losses. It is the most common special case of
PT, deviating from CEU. Now π3 of Eq. 1 is W(E3) (= w(P (E3)) rather than
1−W(E1 ∪E2). Uncertainty attitudes for losses are reflected relative to gains rather
than being identical.

Because the decision weights do not add to 1 or another constant, utility U

is a ratio scale. That is, given the requirement U(0) = 0, we can still choose
U(£100) > 0 freely. We set it equal to 1. But now both U(£10) and U(−£10) are
meaningful parameters, at least in theory. It is, however, empirically plausible that
utility is approximately linear for small stakes of the same sign. The main curvature
of utility is generated by loss aversion, giving a kink at 0. Hence, we assume u lin-
ear, with U(£10) = u(£10) = 1/10 and U(−£10) = λu(−£10) = −λ/10. Thus, we
only use one utility parameter, being loss aversion λ. Such a piecewise linear utility
U was recommended by Köbberling and Wakker (2003, end of Section 5), and was
used, for instance, by Barberis et al. (2001, p. 17), Fehr and Schmidt (1999), Gächter
et al. (2007), Rosenblatt-Wisch (2008) and Wakker (2010, Example 9.4.2).

The resulting special case of PT is called the source-PT (SPT) model. It has five
parameters: two for P (P(pink) and P(blue)), one for w (α), one for U (λ), and one
for the error variance (σ ).

3.3 HLM’s parsimonious version of multiple priors

In their full generality, the multiple priors models have too many parameters to be
tractable, even more than CEU or PT have. With the set of probability measures
(priors) over S two-dimensional, the collection of all its closed convex subsets � is
infinite-dimensional. Recall that the set of priors is not exogenously given in our case,
but must be derived from preference. Further, even with a set � given, the minimiza-
tion and maximization in Eq. 5 can be difficult to implement for general sets �. For
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multiple priors models, even more than for the CEU or PT models, finding tractable
subfamilies is necessary for the purpose of obtaining quantitative measurements.12

To our best knowledge, HLM are the first to come up with a tractable subfamily of
multiple priors, making it possible to do a quantitative empirical measurement. They
consider sets of priors

� = {P : P(pink) ≥ ε1, P (blue) ≥ ε2, P (yellow) ≥ ε3}, (8)

with the εj s nonnegative and summing to less than 1.13 This turns the set of all
sets of priors into a three-parameter space, which is tractable enough for fitting and
prediction.

The resulting versions of maxmin and maxmax EU, called MxEU and MnEU,
have five parameters: three for �, one for U , and one for the error variance (σ ).
The resulting version of the α-maxmin EU model, called αMM, has six parameters,
including α.

4 Experimental design

The bingo blower used by HLM contained pink, blue, and yellow balls in 0.2, 0.3,
and 0.5 proportions. There were three treatments (between subjects), with a total
number of 10, 20, and 40 balls in the bingo blower, respectively. Subjects were not
informed about these numbers but could watch the bingo blower. The more balls in
total, the harder it was for subjects to guess the proportions, and the more ambiguity
they perceived. Given that only three possible outcomes were considered (£100, £10,
and −£10), the domain considered is an extension of the probability triangle from
risk to ambiguity.

N = 48 subjects participated, 15 in treatment 1 (10 balls in total), 17 in treatment
2 (20 balls in total), and 16 in treatment 3 (40 balls in total). The subjects made 162
choices between pairs of prospects, which basically involved all nontrivial choices,
with one choice randomly selected and played for real. For each theory, 135 choices
were used for fitting the models, that is, finding the parameters that optimized the
likelihood of those 135 choices. The remaining 27 choices were used as a prediction
(test) set.

The comparisons between the models are based on the predicted log-likelihood of
the test set. The predicted log-likelihood of a model is the logarithm of the probability
of the observed decisions on the test set, using the parameters of the model estimated
by maximum likelihood on the training set. The higher the predicted log-likelihood,

12It is even more so for generalizations of multiple priors models, including Chateauneuf and Faro (2009),
Gajdos et al. (2008), Maccheroni et al. (2006), Nascimento and Riella (2010), Strzalecki (2011) and
Siniscalchi (2009). Ghirardato et al. (2004) and Siniscalchi (2006) gave preference conditions, assuming
an Anscombe-Aumann (1963) model, to determine whether or not a particular probability measure is con-
tained in the set of priors. This requires a two-stage setup and then needs infinitely many observations
(one for each possible prior) to determine the set of priors.
13Although HLM do not state it explicitly (footnote 16 and p. 109), the boundaries εj are lower bounds
and are not upper bounds.
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the better the theory. This measure of performance is widely used in statistics. It is
well-known that increasing the number of parameters of a model beyond the optimal
number will worsen its prediction, because the added parameters start picking up
more noise than systematic factors from the training set (overfitting).

HLM combine the derministic decision theories with two error theories, one
Fechnerian and one contextual. As explained by HLM, the two are virtually iden-
tical for the stimuli considered here. HLM put the most common one, the Fechner
error theory, central in their discussions, and we will use it too. It involves one extra
parameter (σ ), for the error variance. HLM consider one extra decision theory, a
version of decision field theory (DFT), which agrees with EU for its deterministic
part but adds its own specific error theory. For details see HLM (p. 92, 108–109).
Wilcox (2008) surveys alternative error theories.

5 Results

5.1 The analyses of HLM with a modified version of prospect theory

Table 1 displays the average predicted log-likelihoods of the various theories consid-
ered. It reproduces Table 1 of HLM, with only their Fechner error theory, and with
their two versions of prospect theory replaced by SPT.14 SPT gives the best result,
and MxEU, the winner in HML, is now second.

Table 2 similarly reproduces Table 2 of HLM. It indicates, for each theory, for how
many subjects this theory gives the best result.15 Relative to HLM, we again replaced
HLM’s two versions of prospect theory by SPT. SPT again has the best result. For
HLM, αMM was best, winning for 11 subjects, and MxEU was second, winning for
8 subjects. Especially the former loses many subjects to SPT. DFT now outperforms
both theories.

A drawback of Table 2 is that the performance of a theory depends largely on
how many similar theories are competing. Similar theories will fight for the same
subjects, and an outside theory can run away with the victory. This happened during
the 2000 US presidential elections when Nader caused Gore to lose to Bush. The
mentioned drawback can be avoided by comparing theories pairwise, and examining
how each single theory gains (being better for the majority of subjects) or loses to
each other single theory—that is, by considering a tournament between theories. This
is the topic of the next subsection.

A drawback of both Tables 1 and 2 is that no significance levels are given, so that
it is not clear whether the inequalities found are systematic or due to chance. The
analysis in the next subsection will provide significance levels.

14HLM (footnote 18) point out that subject 35 was an outlier, performing very poorly for αMM and
MnEU, and greatly influencing the average likelihoods of those models. Hence, HLM left this subject out.
Although this means favoring the models affected, we follow HLM and also leave this subject out from
Table 1. With subject 35 incorporated, SPT would still win, αMM and MnEU would be among the worst
theories, and the other theories would not be affected seriously; see Table WA1 in the Web Appendix.
15Now subject 35 is included, again following HLM.
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Table 1 Mean predicted log-likelihoods for the three treatments, and overall

SPT MxEU MnEU αMM EU DFT CEU EV MaxMin MaxMax MinReg

All −3.83b −3.92 −4.31 −4.32 −4.43 −4.57 −5.53 −11.50 −13.31 −14.06 −14.58

Tr 1 −2.60b −2.82 −3.13 −2.79 −3.44 −3.50 −3.22 −12.15 −12.57 −14.52 −14.48

Tr 2 −5.16 −5.14b −5.70 −5.58 −5.61 −5.93 −6.35 −11.03 −14.17 −14.45 −14.86

Tr 3 −3.90b −3.96 −28.73 −29.19 −4.39 −4.53 −8.68 −11.34 −13.14 −12.94 −14.29

The biggest (least negative) log-likelihood, indicated by a superscript b, is the best in each row; SPT:
prospect theory with the source method, using Eqs. 6 and 7 and the other assumptions in Section 3.2;
MxEU [MnEU; αMM]: maxmax [maxmin; αMM] expected utility using Eq. 8; EU: subjective expected
utility; DFT: decision field theory, defined in HLM; CEU: Choquet expected utility (Eq. 3); EV: subjective
expected value; MaxMin [maxMax]: evaluation by minimal [maximal] outcome; MinReg: minimax regret
(see HLM)

5.2 Statistical analyses

Table 3 presents the results of a tournament between theories. SPT wins, beating
every other theory. MxEU is the best of the non-rank-dependent theories, beating
every other non-rank-dependent theory. Table 3 gives significance levels. We did
not use t-tests because there were outliers in predicted log-likelihoods that skew
the distributions for virtually every model considered. Instead, we used a two-sided
Wilcoxon rank-signed test, which is valid irrespective of the underlying distributions.
SPT’s victory over MxEU is not significant and may be interpreted as a draw. There
are several other draws.

The many outliers of log-likelihoods that invalidate t-tests also complicate the
interpretations of the averages in Table 1. Hence, medians and trimmed means pro-
vide useful alternative information. Table 4 adds such indicators of central tendency.
The table confirms our findings based on Wilcoxon tests. This table (and other anal-
yses not reported here) suggests that a mean trimmed at 10% represents the data
well. It orders the theories as reported in Table 3, which closely follows the pairwise
significance tests.

Table 2 Number of subjects for whom a theory predicts best

SPT DFT CEU MxEU αMM EU MnEU MaxMax EV MaxMin MinReg

All 10b 8 7 7 6 5 4 1 0 0 0

Tr 1 2 3 3 4b 1 0 2 0 0 0 0

Tr 2 5b 2 3 1 2 4 0 0 0 0 0

Tr 3 3b 3b 1 2 3b 1 2 1 0 0 0

The theories are as in Table 1. The biggest number, indicated by a superscript b, is the best in each row
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Table 3 Pairwise comparison of theories

SPT MxEU αMM MnEU EU DFT CEU EV MaxMin MaxMax

MxEU 2028 – – – – – – – – –

αMM 18
30∗ 2116 – – – – – – – –

MnEU 13
35∗∗ 18

30∗ 1827 – – – – – – –

EU 15
33∗∗ 16

31∗ 1632 1529 – – – – – –

DFT 16
32∗∗ 15

33∗∗ 1731 1830 1929 – – – – –

CEU 14
34∗ ∗ ∗ 15

32∗∗ 12
34∗ ∗ ∗ 2225 2324 2622 – – – –

EV 2
46∗ ∗ ∗ 1

47∗ ∗ ∗ 5
43∗ ∗ ∗ 3

45∗ ∗ ∗ 2
46∗ ∗ ∗ 5

43∗ ∗ ∗ 8
40∗ ∗ ∗ – – –

MaxMin 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 4
44∗ ∗ ∗ 1

47∗ ∗ ∗ 0
48∗ ∗ ∗ 1

47∗ ∗ ∗ 5
43∗ ∗ ∗ 1632 – –

MaxMax 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 3
45∗ ∗ ∗ 2

46∗ ∗ ∗ 2
46∗ ∗ ∗ 3

45∗ ∗ ∗ 4
44∗ ∗ ∗ 10

37∗ ∗ ∗ 1829 –

MinReg 0
48∗ ∗ ∗ 0

48∗ ∗ ∗ 2
46∗ ∗ ∗ 1

47∗ ∗ ∗ 0
48∗ ∗ ∗ 0

48∗ ∗ ∗ 3
45∗ ∗ ∗ 13

35∗ ∗ ∗ 17
31∗ 2028

The theories are as in Table 1 Counts mn mean that the row model fits better for m subjects and the
column model fits better for n subjects. For example, SPT beats MxEU by 28 to 20. The fit is measured
by predicted log-likelihoods and significance levels are conventional (* < .05, ** < .01, *** < .001)

5.3 Variations of prospect theory

We consider some variations of SPT to analyze the role of the various parameters
used. Glöckner and Pachur (2012) present a similar analysis for decision under risk.
Table 5 displays the resulting “within-PT” tournament. Dropping the probability
weighting parameter (α = 1) leads to EU and clearly worsens the prediction. Drop-
ping the loss aversion parameter (λ = 1: SPTλ=1) worsens the prediction even more,
illustrating the importance of loss aversion. Hence, no parameters should be dropped
from SPT.

Adding a utility parameter U(£10) (SPTu) leaves the overall predictive power
almost unaffected. General sign dependence, by allowing a different probability
weighting parameter for losses (α− 
= α+) than for gains (SPT±), similarly leaves
the overall predictive power almost unaffected. We prefer the parsimony of SPT in
these cases, using a minimal number of parameters.

Relative to SPT, SCEU does not reflect the weighting of losses, but uses the regular
rank-dependent weighting there.16 This worsens the prediction somewhat, with SPT
scoring better against the other theories (further illustrated in Table WA3 of the Web
Appendix), showing that the reflected weighting of PT is preferable to the regular

16SCEU can be seen to be the special case of SPT with dual, rather than identical, weighting for losses,
which is why we incorporate it in this subsection. Because utility then becomes unique up to unit and level,
the one parameter that we used for utility under SPT (through −£10) is equivalent to the one parameter
used for utility in CEU.
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Table 4 Means, trimmed means and medians for all models (sorted on trimmed mean.1)

Mean.1 Mean.05 Mean Median

SPT −3.53b −3.62b −3.83b −3.32

MxEU −3.64 −3.75 −3.92 −3.30b

αMM −3.84 −3.96 −4.32 −3.41

MnEU −4.15 −4.20 −4.31 −4.10

EU −4.34 −4.36 −4.43 −4.33

CEU −4.47 −4.67 −5.53 −3.85

DFT −4.51 −4.54 −4.57 −4.11

EV −11.82 −11.73 −11.50 −11.80

MaxMin −13.56 −13.43 −13.31 −14.26

MaxMax −14.46 −14.27 −14.06 −14.44

MinReg −14.65 −14.62 −14.58 −14.93

The theories are as in Table 1. The biggest (least negative), indicated by a superscript b, is the best in each
column

rank-dependent weighting of CEU. Dropping the utility parameter from SCEU by
taking utility linear (SCEV) considerably worsens the prediction.

We considered the following popular weighting functions as source functions
instead of Eq. 6.

w(p) = (exp(−(−ln(p))α))β [Prelec two-parameter; SPT2] (9)

w(p) = α + βp (0 < p < 1) [Neo-additive; SPTNA] (10)

w(p) = pα

(pα + (1 − p)α)1/α
[Tversky and Kahneman 1992; SPTTK ] (11)

w(p) = βpα

(βpα + (1 − p)α)
[Goldstein and Einhorn 1987; SPTGE] (12)

They all lead to somewhat worse predictions than SPT, but not by much. GPT (gen-
eralizated PT), finally, drops the restrictions of the source method and takes a general
weighting function, adding three parameters to SPT. It performs poorly, which comes
as no surprise given its many redundant parameters. The completely general case
of PT with a sign-dependent W− that can be chosen independently from W+ and
with utility also general (U(£10) as an extra parameter) has even more redundant
parameters. Hey et al. (2011) showed that it performs poorly.

We compared the variations of SPT considered in this section with the other, non-
rank-dependent models, in Table 6. It shows that most variations of SPT, although
some worse than SPT, still outperform the other theories. Hence, our conclusion
that prospect theory best predicts choice under ambiguity is not very sensitive to the
particular parametrization chosen.
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Table 5 Pairwise comparison of the variations of Prospect Theory

SPT SPT± SPTu SCEU SPTNA SPT2 SPTGE SPTTK EU GPT SCEV

SPT± 2325 – – – – – – – – – –

SPTu 2226 2424 – – – – – – – – –

SCEU 2424 2523 2523 – – – – – – – –

SPTNA 2325 2325 2523 2622 – – – – – – –

SPT2 17
31∗ 17

31∗ 2028 1830 2325 – – – – – –

SPTGE 14
34∗∗ 15

33∗∗ 1830 1731 2127 2127 – – – – –

SPTTK 17
31∗∗ 18

30∗∗ 18
30∗ 17

31∗∗ 2028 1830 2028 – – – –

EU 15
33∗∗ 16

32∗ 18
30∗ 17

31∗ 1632 1830 1929 1929 – – –

PT 13
35∗ ∗ ∗ 13

35∗ ∗ ∗ 15
33∗ ∗ ∗ 14

34∗ ∗ ∗ 15
33∗ ∗ ∗ 14

34∗ ∗ ∗ 14
34∗ ∗ ∗ 17

31∗∗ 2325 – –

SCEV 1
47∗ ∗ ∗ 0

48∗ ∗ ∗ 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 5
43∗ ∗ ∗ 2

46∗ ∗ ∗ 1
47∗ ∗ ∗ 4

44∗ ∗ ∗ 4
44∗ ∗ ∗ 9

39∗ ∗ ∗ –

SPTλ=1 1
47∗ ∗ ∗ 0

48∗ ∗ ∗ 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 5
43∗ ∗ ∗ 2

46∗ ∗ ∗ 1
47∗ ∗ ∗ 3

45∗ ∗ ∗ 4
44∗ ∗ ∗ 9

39∗ ∗ ∗ 1830

The interpretation of the counts and significance levels are as in Table 3. For example, SPT is better than
SPT± for 25 subjects, and it is worse for 23 subjects. The PT theories are as follows: SPT: prospect theory
with the source method, using Eqs. 6 and 7 and the other assumptions in Section 3.2. SCEU: Choquet
expected utility with the source method; EU: expected utility; GPT: prospect theory with a general (but
sign-independent) weighting function; SCEV: Choquet expected utility with the source method and linear
utility; Subscripts to SPT: ±: sign-dependence of weighting functions; u: nonlinear utility; NA: Eq. 10; 2:
Eq. 9; GE: Eq. 12; TK: Eq. 11

6 Discussion

SPT performed better than SCEU, showing that the reflected weighting of outcomes
at opposite sides of the reference point, as in Eq. 4 (with W− = W+ = W ) outper-
forms the unreflected weighting of Eq. 3. Many studies have confirmed reflection not
only for risk, but also for ambiguity. There is prevailing ambiguity seeking rather than
ambiguity aversion for losses (Chesson and Viscusi 2003; for a review see Wakker
2010, Section 12.7). Wakker (2010, following Eq. 9.7.1) argued that the PT func-
tional, which is, in fact, the S̆ipos̆ (1979) integral, also has a number of mathematical
advantages over the CEU functional, which is the Choquet integral.

In our data fitting for SCEU, there is considerable nonlinearity of utility, with the
parameter U(£10) greatly improving the predictions over SCEV. The analysis of SPT
suggests that this is mainly because the utility parameter substitutes for loss aver-
sion. This suggestion supports Rabin’s (2000) view that much of the utility curvature
found in classical (reference-independent) empirical studies may, in fact, be due to a
(mis)modeling of loss aversion (Wakker 2010, p. 244 and p. 267 top).

It is remarkable that HLM’s DFT performs relatively well. It only deviates from
EU by using a more sophisticated error theory that, apparently, works better than
the other error theories. It will be interesting to combine this error theory with other
theories.
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Table 6 Variations of PT versus other models

SPT SPT± SPTu SCEU SPTNA SPT2 SPTGE SPTTK GPT

MxEU 2028 2028 2424 2325 1830 2325 2226 2523 29
19∗∗

αMM 18
30∗∗ 19

29∗∗ 2127 2226 2325 2523 2622 2820 35
13∗ ∗ ∗

MnEU 13
35∗ ∗ ∗ 14

34∗ ∗ ∗ 18
30∗∗ 17

31∗∗ 17
31∗∗ 2028 2028 1929 2820

EU 15
33∗ ∗ ∗ 16

32∗∗ 18
30∗∗ 17

31∗∗ 1632 1830 1929 1929 2523

DFT 16
32∗ ∗ ∗ 16

32∗ ∗ ∗ 18
30∗ ∗ ∗ 18

30∗∗ 1929 1830 1830 2028 2325

CEU 14
34∗ ∗ ∗ 14

34∗ ∗ ∗ 15
33∗ ∗ ∗ 15

33∗ ∗ ∗ 16
32∗ ∗ ∗ 19

29∗∗ 17
31∗∗ 2028 28

20∗

EV 2
46∗ ∗ ∗ 2

46∗ ∗ ∗ 3
45∗ ∗ ∗ 3

45∗ ∗ ∗ 7
41∗ ∗ ∗ 5

43∗ ∗ ∗ 4
44∗ ∗ ∗ 3

45∗ ∗ ∗ 9
39∗ ∗ ∗

MaxMin 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 4
44∗ ∗ ∗ 4

44∗ ∗ ∗ 4
44∗ ∗ ∗ 3

45∗ ∗ ∗ 7
41∗ ∗ ∗

MaxMax 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 1
47∗ ∗ ∗ 1

47∗ ∗ ∗ 4
44∗ ∗ ∗ 3

45∗ ∗ ∗ 2
46∗ ∗ ∗ 2

46∗ ∗ ∗ 5
43∗ ∗ ∗

MinReg 0
48∗ ∗ ∗ 0

48∗ ∗ ∗ 0
48∗ ∗ ∗ 0

48∗ ∗ ∗ 3
45∗ ∗ ∗ 2

46∗ ∗ ∗ 2
46∗ ∗ ∗ 1

47∗ ∗ ∗ 6
42∗ ∗ ∗

The row-theories are as in Table 1, and the column-theories are as in Table 5 The entries are as in Table 3.
For example, SPT is better than MxEU for 28 subjects, and it is worse for 20 subjects

7 Conclusion

This paper tested the predictive empirical power of some theories for decision under
ambiguity. Most nonexpected utility theories outperform expected utility. Because
prospect theory outperforms Choquet expected utility, its reflection is a desirable
modification of rank dependence, not only for risk but also for ambiguity. The main
component of utility is loss aversion, and curvature of utility found in other reference-
independent theories to a large extent serves to capture loss aversion.

We have demonstrated the importance of choosing an appropriate number of
parameters, and have determined what such an appropriate number is. General non-
additive measures clearly comprise too many parameters. Many general theories of
ambiguity have been introduced in the recent literature besides the ones studied in this
paper. Tractable subfamilies of those general theories should be developed, showing
a good predictive performance, so that these theories then can be applied empirically.

Prospect theory is the most popular theory for predicting decisions under risk
today. We find that, through its source-method specification, it also outperforms other
theories for predicting decisions under ambiguity. It is convenient that the same func-
tional can be used for the whole domain of uncertainty. This facilitates the study
of ambiguity (the difference between uncertainty and risk), where prospect theory,
unlike most other ambiguity theories today, need not commit to the descriptively
failing expected utility for risk.
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