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1. Introduction
This paper considers preferences over sequences
(x11 0 0 0 1 xn) of variable length n. We provide a pref-
erence foundation of average utility representations
(
∑n

j=1 U4xj5/n). Average utility describes, for instance,
(a) a representative agent in utilitarian welfare evaluations
with variable population size (Blackorby et al. 2005,
Harsanyi 1955); (b) the price index when different coun-
tries have different basic commodities (Balk 1995); (c) the
quality of life of different medical treatments tested on
different samples (Weinstein et al. 1980); (d) the average
happiness in different countries (van Praag and Ferrer-i-
Carbonell 2004); (e) decisions under complete ignorance
(Gravel et al. 2012); (f) the subjectively perceived nuisance
of waiting times (Carmon et al. 1995); and so on. Averages
of transformed observations serve as summary indices in
statistics (Norris 1976) and in many other contexts.

Because an exponential transformation of a representing
function does not affect preference, our analysis also covers
geometric means. Thus we can, for instance, cover geo-
metric averages of discount rates rather than the arithmetic
average of discount factors when determining present val-
ues. For simplicity, we will consider arithmetic averages in
what follows.

In our preference foundations, we take optimal choices
between sequences, represented by a (binary) preference
relation over the sequences, as empirical primitive. We then
give necessary and sufficient conditions in terms of those

preferences for representability by average utility. Prefer-
ence foundations serve to justify or falsify the appropriate-
ness of particular kinds of representing functions (Keeney
and Raiffa 1976). Previous preference foundations first used
results for sequences of fixed length n, where continuity in
outcomes is needed to scale utility U , and then extended
their representation to variable length.1 We show that the
variable length, available anyhow, in fact simplifies the
analysis. It provides all the richness needed to scale util-
ity. Using the variable length, we can define a concatena-
tion operation that pastes sequences together and then use
Hölder’s (1901) simple but powerful lemma to scale utility.
Continuity in outcomes is simply redundant.

It is well known that without any cardinal-type operation
(like addition, or taking differences or averages), no cardi-
nal representation can be obtained. This led the committee
of Ferguson et al. (1940), assuming that no cardinal-type
operations are available in the social sciences, to conclude
that cardinal measurement is impossible in social sciences.
Thousands of studies have since refuted this conclusion.
Our concatenation operation will serve as an addition-type
operation. As an example of concatenation in a welfare
context, we may consider the average happiness in sep-
arate European countries but also in their concatenations
(unions), such as in the whole European union. These con-
catenations are natural and readily available.

The preference conditions for axiomatizing average util-
ity provided in §2 are necessary and sufficient in full gen-
erality and generalize all previous results in the literature,
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comprising dozens of papers. Section 3 shows that although
we can do without continuity, we can add it if desirable.
That is, in our approach, continuity is optional rather than
required. The topological results with continuity comprised
in §3 apply to every U with an interval as image, which
generalizes Euclidean continuity.

Section 4 presents two applications of our theorems
in some detail. The first concerns decision under risk.
Our result here in fact shows how Hölder’s addition-based
lemma can be used to simplify and generalize the com-
monly used, mixture-based, von Neumann-Morgenstern
(1944) derivations of expected utility. The second applica-
tion concerns the mathematical theory of generalized (or
quasilinear) means, showing that the simplicity and gen-
erality of our technique has not been known before in
the mathematical literature. We generalize results by Aczél
(1966), Hardy et al. (1934), Kolmogorov (1930), and many
more recent papers. We show again that continuity, com-
monly assumed here too, need not be imposed as an extra
assumption because it is implied by the other assumptions.
Section 5 concludes.

Appendix A gives details on how exactly we generalize
preceding results in the literature on decision under risk
and functional analysis. Appendix B gives details on the
literature in other domains of application, in particular wel-
fare models with variable population size. Proofs are in
Appendices C through E.

2. General Preference Foundation for
Average Utility

X is a nonempty outcome space. It can be finite or infi-
nite. Greek letters �1�1 0 0 0 and indexed Roman letters xi
denote outcomes. Prospects are sequences of the form x =

4x11 0 0 0 1 xn5 ∈ Xn, with n ∈ �. #x = n is the length of
the prospect. The xjs are coordinates of x. X =

⋃

n∈�X
n

is the set of all prospects. That is, n is variable and we
consider finite sequences of any length. The concatena-
tion (x1 y) denotes (x11 0 0 0 1 xn, y11 0 0 0 1 ym). Further, 1x = x,
2x = 4x1 x5, and kx = 4x1 4k− 15x5 for all k > 1.

A preference relation ¼ is given on X. The notation �,
´, ≺, ∼ is as usual. A function M represents ¼ if M2 X→

� and x¼ y ⇔M4x5¾M4y5. Other terms used in the lit-
erature are that ¼ maximizes the objective function M or
that prospects are evaluated by M . If a representing func-
tion exists, then ¼ is a weak order; i.e., it is complete (x¼
y or y ¼ x for all x1 y) and transitive. The axiomatizations
provided here concern preference foundations.

We identify outcomes with the corresponding sequences
of length 1. The restriction of ¼ to X resulting this way
is also denoted ¼. A function U represents ¼ on X if
U2 X →� and �¼ �⇔U4�5¾U4�5.

Definition 1. Average utility (AU) holds if there exists
U2 X →� such that

x 7→

∑#x
i=1 U4xi5

#x
(1)

represents ¼. U is the utility function.

AU implies that U represents ¼ on X. It also implies
symmetry:

Definition 2. Symmetry holds if

4x11 0 0 0 1 xn5∼ 4x�4151 0 0 0 1 x�4n55

for all permutations �.

Symmetry is often called anonymity in welfare evalua-
tions. The following implication is characteristic of both
additive (

∑#x
i=1 U4xi5) and average utility.

Definition 3. Joint independence holds if

4c11 x21 0 0 0 1 xn5¼ 4c11 y21 0 0 0 1 yn5

⇒ 4d11 x21 0 0 0 1 xn5¼ 4d11 y21 0 0 0 1 yn50 (2)

The condition implies that preferences between two
n-tuples are independent of a common first coordinate.
Because of symmetry, preference then is independent of
any common coordinate. By repeated application, prefer-
ence is independent of any number of common coordi-
nates. This condition is often called separability. We do not
use this term to avoid confusion with a topological con-
dition of the same name defined later. Joint independence
is called the sure-thing principle in decision under uncer-
tainty (Savage 1954) and is central in nontransitive models
of uncertainty (Bell 1982, Loomes and Sugden 1982).

We often use the following generalization of joint inde-
pendence:

Definition 4. Expansion independence holds if

x¼ y ⇔ 4�1x5¼ 4�1 y5 whenever #x = #y0 (3)

In the presence of symmetry, the condition implies that
inserting an extra common coordinate at any place does
not affect optimality. By repeated application, inserting any
number of common coordinates does not affect optimal-
ity. In general, this condition is somewhat stronger than
joint independence (Lemma 18) because it links prefer-
ences between prospects of different length. In the pres-
ence of other conditions that we will use (mainly repli-
cation equivalence, which will link preferences between
prospects of different lengths), the two conditions become
equivalent (Lemma 19).2 In welfare evaluations, expansion
independence means that a choice between welfare alloca-
tions over a fixed population need not be altered if a new
member, unaffected by the choice, joins. In a mathematical
sense, expansion independence amounts to compatibility of
preference and sequence concatenation. Our application of
Hölder’s lemma will be based on this compatibility.

Because real numbers satisfy the Archimedean axiom,
such an axiom is necessary for any real-valued representa-
tion. The following axiom will be used for average utility.
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Definition 5. The Archimedean axiom holds if for all
x1 y ∈ X with #x = #y and x � y, and all v1w ∈ X with
#v = #w:

4nx1 v5¼ 4ny1w5

for some n ∈�.

In words, a sufficient number n of advantages x � y can
offset any disadvantage v ≺w.

The conditions defined so far are satisfied both by addi-
tive and by average utility representations. The following
condition is natural for average utility and distinguishes it
from additive utility:3

Definition 6. Replication equivalence holds if x ∼mx for
all x1m.

The following theorem is our main result. All the proofs
are delegated to appendices.

Theorem 7. The following two statements are equivalent
for ¼ on X=

⋃�

n=1 X
n.

(i) There exists a utility function U2 X → � such that
average utility (Equation (1)) represents ¼.

(ii) ¼ satisfies the following five conditions:
1. weak ordering
2. joint independence
3. symmetry
4. replication equivalence, and
5. the Archimedean axiom.

Further, the utility function U in statement (i) is unique up
to level and unit.

The first four conditions in statement (ii) (the
Archimedean axiom not included) will often be called the
intuitive conditions. The rest of this section informally
explains why our theorem can do without additional rich-
ness and why this is desirable.

Several authors have pointed out the problematic nature
of continuity in preference axiomatizations,4 adding to the
desirability of having it optional. The only preference foun-
dations of average utility that did not use any version of
continuity are Fishburn (1972) and Gravel et al. (2012).
They both considered finite subsets of a set rather than
sequences as we do. Fishburn’s preference conditions use
a technique by Scott (1964), based on methods for solving
linear inequalities. As pointed out by Gravel et al. (2012,
end of §3), this leads to complex axioms. The latter paper
used a richness Axiom 4 that is preferable to continuity but
still has similar observability problems (Wakker 1988b).

Our main theorem combines the advantages of Fishburn’s
(1972) technique and the papers that used continuity or
richness. We achieve complete generality as does Fishburn,
leaving continuity optional. At the same time, our intuitive
axioms are the simplest and weakest ones used in the lit-
erature on continuous or rich representations. As suggested
above, we will not first establish fixed-finite dimensional
results, but we immediately turn to general dimensions n.

We next illustrate how we can scale cardinal utility in
our general setup. Assume outcomes � � �� � and n ∈�
(� denotes strict preference). We can find k such that the
following preferences hold between three n-tuples, where
k� denotes k-fold concatenation and not multiplication:

(

k�1�1 4n− k− 15�
)

´ n�´
(

k�1�1 4n− k− 15�
)

0 (4)

These preferences reveal

k

n
¶ U4�5−U4�5

U4�5−U4�5
¶ k+ 1

n
0 (5)

In plain words, we count how many advantages � � � it
takes to offset a number of disadvantages �≺ �. Because n
can be taken arbitrarily large, we can thus identify cardinal
utility as accurately as we want. This is why we can do
without the richness assumption of a continuum domain.

3. Preference Foundation for Continuous
Average Utility

This section considers the special case where X is a topo-
logical space. It is connected if the only sets that are
both open and closed are � and X. It is separable if
there exists a countable dense subset. A subset is dense
if every nonempty open set contains an element of the
subset. To obtain continuous representations, we use a con-
tinuity condition introduced by Gravel et al. (2011). It is
the weakest condition used in the literature (see below),
leading to the strongest theorems. It is a remarkable weak-
ening of the simple continuity (continuity with respect to
finite-dimensional product topologies; see Appendix B.2)
assumed in the other papers in the literature.

Definition 8. ¼ on X is continuous if the sets 8� ∈ X:
�� x9 and 8� ∈X2 �≺ x9 are open for every x ∈X.

Theorem 9. The following two statements are equivalent
for ¼ on X=

⋃�

n=1 X
n.

(i) There exists a utility function U2 X → � such that
average utility (Equation (1)) represents ¼, with U4X5 an
interval.

(ii) ¼ satisfies the following five conditions:
1. weak ordering
2. joint independence
3. symmetry
4. replication equivalence, and
5. continuity with respect to some connected and sep-

arable topology on X.
Further, the utility function U in statement (i) is contin-

uous (with respect to the topology5 in point (5) in state-
ment (ii)), and it is unique up to level and unit.

Theorem 9 differs from Theorem 7 in the following
ways. In statement (i) we added that U4X5 is an interval.6

In statement (ii) we replaced the Archimedean axiom with
the stronger requirement of continuity of ¼.
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The topological requirements in the theorem are satis-
fied, for instance, if X is a convex subset of a Euclidean
space. Then, given the other conditions, ¼ is continuous
if and only if U is, and the topology can be taken to be
the usual Euclidean one. This is the most common case in
applications.

Continuity of ¼ when restricted to the outcome set X is a
relatively weak condition. It is, for instance, satisfied when-
ever X =� and ¼ is monotonic, in which case the restric-
tion of ¼ to the outcome set is simply the natural order
on �. Continuity of ¼ on the domain of all prospects, X,
is stronger. It implies the existence of constant equivalents
for all prospects. We call � ∈X a constant equivalent (CE)
of x ∈ X if � ∼ x. In general, a prospect x can have no
CE, or many CEs, which then are all equivalent. The CE
condition holds if every prospect has a CE.

Lemma 10. Assume the intuitive conditions (1–4 in Theo-
rem 7). Continuity of ¼ on the outcome set X with respect
to a connected topology and the CE condition are equiv-
alent to continuity of ¼ on the set of prospects X with
respect to a connected topology on X.

4. Applications
This section briefly applies the preceding theorems to two
fields, decision under risk and functional analysis. We pro-
vide our results in the main text but defer detailed compar-
isons of the literature to Appendix A.

4.1. Expected Utility for Decision Under Risk

Lotteries designate probability distributions over X. We in-
terpret n-tuples as 1/n probability-lotteries. Average util-
ity then is expected utility. Our domain contains every
simple rational-probability lottery (Blackorby et al. 1977,
p. 354; Grabisch et al. 2011a, §2.3). For example, the lot-
tery (2/52813/520), where notation is as usual, corresponds
with the equally probable five-tuple (818101010). Thus our
theorems axiomatize expected utility for all simple rational-
probability lotteries.

In decision under risk, replication equivalence and sym-
metry are satisfied by definition because they are different
ways of writing the same lottery.7 We obtain the following
axiomatization.

Corollary 11. Expected utility holds on the set of sim-
ple rational-probability lotteries if and only if ¼ is an
Archimedean weak order satisfying joint independence.

The corollary immediately follows from Theorem 7.
It generalizes Shepherdson (1980, Theorem 2.3 and Corol-
lary 5.3; see our Appendix A), who considered rational
probabilities as we do. Continuity of utility can be char-
acterized using Theorem 9. Corollary 11 can be extended
to all lotteries, including those with nonrational probabil-
ities, by reinforcing the Archimedean axiom. We do not
elaborate on this point.

The axiomatizations of expected utility provided in
the literature so far used a stronger condition than
joint independence—NM independence. When all weighted
n-tuples (simple lotteries) (p12x11 0 0 0 1 pn2xn5, denoted C,
P , Q, and so on (with the pj ’s possibly irrational) are incor-
porated in the domain, then NM-independence requires

P ¼Q ⇔ �C + 41 −�5P ¼ �C + 41 −�5Q

for all 0 <�< 10 (6)

Here the probabilistic mixture operation is defined the
usual way.8

Lemma 12. NM-independence implies joint independence
on the subset of simple rational-probability lotteries.

Thus traditional derivations of expected utility can be
obtained as corollaries from our analysis. We can similarly
axiomatize Savage’s (1954) subjective expected utility for
uncertainty if we relate n-tuples to Savage’s uniform parti-
tions. We again do not elaborate on this point.

To illustrate the intuitive nature of our concatenation-
based approach, we restate expansion-independence for
risk. It requires that a preference between random selec-
tions from two different n-tuples of outcomes remain unaf-
fected if the same outcome is added to both n-tuples. This
condition is less restrictive, and easier to understand, than
is the mixture condition in Equation (6).

4.2. Functional Analysis

Foundations of average utility representations can be
obtained if preference theory is linked to the mathematical
theory of generalized means.9 This theory is a subfield of
functional analysis (Aczél 1966) and makes the following
assumption:

Assumption 13 (Structural Assumption). X ⊂� is an
interval, X =

⋃

n∈�X
n, and M2 X → � is monotonic

(strictly increasing in each coordinate).

Taking a function, rather than the preference relation, as
primitive, is common in many fields. In production theory
(Nicholson 2005), for example, the xj ’s are the inputs of
a production process, and M is the output quantity. Pref-
erence foundations give insights into relationships between
properties of production processes and production outputs.
For price indices (Balk 1995), the xj ’s concern prices of
particular commodities, and it is discussed whether life has
become more or less expensive. There have been many
debates about what proper price indices are, and prefer-
ence foundations provide arguments for those discussions.
The influential Artzner et al. (1999) considered sequences
of uncertain outcomes xj conditional on uncertain events,
with M reflecting the degree of riskiness. Bonferroni (1924)
introduced the following concept.
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Definition 14. M is a generalized mean if there exists a
strictly increasing function U such that

M4x11 0 0 0 1 xn5=U−1
(

∑

U4xj5
/

n
)

(7)

(with U−1 assumed well defined).10

For our purposes it is convenient not to require continuity
of U from the outset, although it will follow from the other
conditions (Theorem 15). U is the utility function.

AU preference theorems can be related to axiomatiza-
tions of generalized means by defining M as the CE func-
tion of the preference relation ¼. This way we can derive
the theorems presented next from the results of preceding
sections, as the proofs in the appendix will demonstrate.
We first give direct reformulations of our AU preference
conditions for the function M . M satisfies

• reflexivity if M4�5= � for all outcomes �;
• symmetry if M is invariant under permutations of coor-

dinates;
• joint independence if M4c11 x21 0 0 0 1 xn5 ¾ M4c11 y21

0 0 0 1 yn5⇒M4d11 x21 0 0 0 1 xn5¾M4d11 y21 0 0 0 1 yn5;
• replication equivalence if M4x5=M4nx5 for all n1x.
We need not reformulate the Archimedean axiom

because our setup will imply continuity (and hence the
Archimedean axiom) as in Theorem 9.

Theorem 15 (Characterizing Generalized Means).
Assume Structural Assumption 13. Then the following two
statements are equivalent:

(i) M is a generalized mean (Equation (7)).
(ii) M satisfies reflexivity, symmetry, joint independence,

and replication equivalence.
U in (i) is continuous and it is unique up to level and unit.

That U must be continuous can be seen, for instance,
because for every U4�5 and U4�5 in its range, the midpoint
U4�5 for �=M4�1�5 must also be contained in its range.
Thus U , increasing on an interval, cannot have “jumps.”

5. Conclusion
We have studied average utility representations on
sequences of variable length. Our main contribution is to
demonstrate how the richness generated by the variable
length can be exploited to simplify measurements (Equa-
tion (5)) and axiomatizations. This richness allows for a
concatenation operation on sequences to which Hölder’s
(1901) Lemma can be applied. We thus obtain necessary
and sufficient conditions for average utility in full general-
ity, and we generalize all results in the literature for various
fields (detailed in Appendix B).

In particular, we show that continuity in outcomes, com-
monly assumed, is redundant, as it is in von Neumann-
Morgenstern expected utility for risk. This point had been
overlooked in the literature on sequences of variable length.
Given the problematic empirical status of this continu-
ity for preference foundations, our relaxation is desirable.

An obvious topic for future research concerns the use of our
technique, exploiting the richness of variable length, to ana-
lyze functionals other than AU, including many other wel-
fare criteria for variable population size (Blackorby et al.
2005; Grabisch et al. 2011a, b).

Appendix A. Preceding Literature on
Risk Theory and Functional Analysis

This appendix gives details on how the results of §4 generalize
preceding results in the literature.

A.1. Risk Theory

The relation between our results and classical derivations of
expected utility was explained in the main text. An alternative
derivation of expected utility for rational probabilities is in Shep-
herdson (1980, Theorem 2.3 and Corollary 5.3). His main axiom
is NM-independence (Equation (6)) restricted to � = 005 which,
together with a continuity-in-probability that is stronger than the
Archimedean axiom, implies NM-independence for all rational
probabilities and, thus, joint independence. The domain of simple
rational-probability lotteries was used for instance by Peleg and
Peters (2009).

Blackorby et al. (1977) considered equally likely lotteries as
we do. They assumed X = �n

+. Their Assumption 3 is sim-
ple continuity, implying our continuity. Their Assumption 4 is
joint independence.11 Symmetry is their Definition 1. Replication
equivalence is an implication of their implicit assumption (in their
Lemma 2) that a prospect is sufficiently described by the sub-
jective probability distribution that it generates over outcomes, a
condition sometimes called probabilistic sophistication (Machina
and Schmeidler 1992). Thus their main result, Theorem 1, follows
from our Theorem 9.

A.2. Functional Analysis

Theorem 15 generalizes results by Kolmogorov (1930) and
Nagumo (1930). These authors used an associativity condition:

M4x110001xk5=�

⇒ M4x110001xk1xk+110001xn5=M4k�1xk+110001xn50 (A1)

Associativity can be equated with the substitution principle of
decision under risk, which is a weak version of the NM-
independence condition. It allows replacement of a conditional
lottery by an equivalent other conditional lottery (such as its CE)
without affecting preference. The Blackorby et al. (2005, p. 125)
population substitution principle, when imposed on their repre-
sentative agent, is equivalent. Kolmogorov (1930) and Nagumo
(1930) also used idempotence, a reinforcement of reflexivity:
M4n�5 = �.12 It can be seen, under symmetry, that associativ-
ity is equivalent to joint independence and replication equivalence
and that it implies idempotence. We only prove the implications
needed for our analysis. Reversed implications can be derived
from Lemma 21, but we will not elaborate on this.

Lemma 16. Assume Structural Assumption 13 and symmetry.
Then associativity implies idempotence, reflexivity, replication
equivalence, and joint independence.
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Thus the theorems of Nagumo and Kolmogorov follow as
corollaries of Theorem 15. Remarkably, Nagumo and Kolmogorov
assumed continuity of M , but this assumption can be dropped.
It is implied by the other assumptions, as Theorem 15 showed.
This also implies that our continuity condition in §3 entails
no restriction for the study of generalized means because it is
always implied.

Several authors studied generalized means for weighted pros-
pects (p12x11 0 0 0 1 pn2xn) (Chew 1983; de Finetti 1931; Hardy et al.
1934, §6.20 and Theorem 215; Muliere and Parmigiani 1993).
Then the generalized mean is defined as U−14

∑n
j=1 pjU4xj55.

An obvious interpretation is that the prospects are lotteries
and the generalized mean is the CE under expected utility, as
in §4.1. Axiomatizations similar to those of Nagumo (1930) and
Kolmogorov (1930) were given, using a modified associativity
condition:

M4P5=M4Q5 ⇔ M
(

�C + 41 −�5P
)

=M
(

�C + 41 −�5Q
)

for all 0 <�< 10 (A2)

The condition implies associativity because we can apply it to
the case where Q is the CE of P , and then it implies that a con-
ditional subpart of a prospect can be replaced by its CE. The
condition is a weakened version of the independence condition
(Equation (6)) because it only considers indifferences/equalities.
Our Theorem 15 can be used here similarly as in §4.1, with
our domain containing all prospects with rational weights. In the
context of weighted n-tuples, Hardy et al. (1934, Theorem 215)
noticed that continuity of the function M need not be imposed
because it is implied by the other conditions, similarly as in
our results.

Appendix B. Comparing and Generalizing Preference
Foundations Published in Other Fields

This appendix discusses related preference foundations in the lit-
erature. We give details on the way in which our preference foun-
dations generalize preference foundations in the literature that
were not discussed in Appendix A.

B.1. Additive and Average Utility

The two most common ways to subjectively evaluate sequences
are by sums or by averages of their utilities. These two ways
generate the same preferences between n-tuples if n is fixed, but
part ways if n is variable. Then sequences of different length have
to be compared with each other.

Additive representations have been extensively studied, and
numerous preference foundations have been provided, often based
on bisymmetry conditions. We will not review the large litera-
ture on additive representations in detail13 but instead focus this
appendix on average representations for variable length.

B.2. Alternative Preference Foundations of
Average Utility

We discussed Fishburn’s (1972) foundation of average utility
in §2. We now discuss some other contributions. All references
discussed assume weak ordering and we also assume it throughout
this section.

Many papers assume the following continuity condition, which
is stronger (more restrictive) than the Gravel et al. (2011) conti-
nuity condition as used in our paper. Simple continuity holds if,

for each n, the restriction of ¼ to Xn is continuous with respect to
the product topology. In the presence of the requirement � ∼ k�

as implied by replication equivalence, this condition implies our
continuity (Definition 8).

Instead of our replication equivalence,14 Gravel et al. (2011)
used an averaging preference condition: x ¼ y ⇒ x ¼ 4x1 y5¼ y

that is stronger:

Lemma 17. Under weak ordering, averaging implies replication
equivalence.

The same number enlargement and same number existence
consistency of Gravel et al. (2011) are equivalent to expan-
sion independence, which in turn implies our joint independence
(Lemma 18). Their existence of critical levels is, in the presence
of some other conditions such as averaging, equivalent to our CE
condition, which implies our continuity (Lemma 10). Their main
result, Theorem 2, shows that an AU representation exists for
X = �k if weak ordering, symmetry, averaging, expansion inde-
pendence, continuity, and minimal increasingness (a monotonic-
ity condition on �k) hold. Because �k is a connected separable
topological space, their conditions imply the conditions of our
Theorem 9 and their result follows from our theorem.

Blackorby et al. (2005, Theorem 6.15 and the text following
the theorem) assume X =�. Outcomes are interpreted as individ-
ual utilities, assumed available as observed inputs. The authors
assume simple continuity, Pareto weak preference and minimal
increasingness (two monotonicity conditions), replication equiva-
lence, symmetry (see their p. 198 line 2, “anonymity”), and same-
people independence, which is our joint independence (see their
p. 198), to obtain AU. Again, all conditions in our Theorem 9 are
satisfied and their result follows from our result.

Gravel et al. (2012) considered AU representations over sets
instead of sequences. We focus on sequences, which are an essen-
tially different domain. Hence there is no logical relation between
their result and ours. Their main result does not use continuity
in outcomes but a solvability condition (their richness Axiom 4).
This condition is similarly problematic in preference axiomati-
zations as utility (see our discussion following Theorem 7, and
Wakker 1988b for further discussion).

Marinacci (1998) considered limits of average utility for infi-
nite sequences and provided axiomatizations of these (Corollar-
ies 6 and 16) and of nonadditive generalizations. He assumed
an Anscombe–Aumann (1963) model, which mathematically
amounts to linear utility on a convex (mixture) outcome space.

B.3. Different Domains and More General Functionals

There exist many preference foundations of models that general-
ize average utility by bringing in other subjective factors, such
as nonequal subjective weightings of coordinates that may be
additive15 or nonadditive.16 In many of these, our finite n-tuples
of outcomes are replaced with continuous streams of outcomes.
In all these cases, our equally weighted average utility is present
as a special case in a substructure. However, there is no easy way
to obtain preference foundations of unweighted average utility
from those more general models. They derive weaker conclusions
from weaker axioms and essentially use the extra structure in their
derivations. Hence these results are logically independent of the
results of this paper.
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Appendix C. Proofs Without Continuity

Lemma 18. Under weak ordering, expansion independence im-
plies joint independence.

Proof. Assume 4x21 0 0 0 1 xn5 R 4y21 0 0 0 1 yn5, with either R= �, or
R= ∼, or R= ≺. By expansion independence, both

4c11 x21 0 0 0 1 xn5 R 4c11 y21 0 0 0 1 yn5 and
4d11 x21 0 0 0 1 xn5 R 4d11 y21 0 0 0 1 yn50

Hence the latter two relationships are always the same, implying
joint independence. �

The reversed implication need not hold, for instance under
average utility with utility depending on length n. It does hold in
the presence of the other intuitive conditions.

Lemma 19. The intuitive conditions imply expansion indepen-
dence.

Proof. Assume an outcome � and #x = #y = n. Take some c
with #c = n2 and assume the relationship 4x1 c5 R 4y1 c5 where
either R= �, or R= ∼, or R= ≺. We will show below that both
x R y and 4x1�5 R 4y1�5. That is, the latter two relationships are
the same whatever they are. This implies expansion independence.

By joint independence (applied n2 times) we have 4x1d5 R
4y1d5 for all d of length n2. In words, replacing an n-tuple x by
an n-tuple y in any n4n+ 15 tuple generates an R relation.

We, hence, have 44j + 15x1 4n− j5y5 R 4jx1 4n+ 1 − j5y5 for
all j , which by transitivity implies 4n+ 15x R 4n+ 15y. By repli-
cation equivalence, it gives xRy.

We also have 44j + 15x1 4n − j − 15y1n�5 R 4jx1 4n − j5y1
n�5 for all j , which by transitivity implies 4nx1n�5 R 4ny1n�5.
By replication equivalence, 4x1�5 R 4y1�5. �

Monotonicity holds if weakly improving an outcome in a
prospect gives a weakly preferred prospect and strictly improv-
ing an outcome in a prospect gives a strictly preferred prospect.
Repeated application of the condition implies the same if several
outcomes are replaced.

Lemma 20. The intuitive axioms imply monotonicity.

Proof. Let R=¼ or R= �. By expansion independence applied
n − 1 times (for x21 0 0 0 1 xn), � R � implies 4�1x21 0 0 0 1 xn5 ·

4�1x21 0 0 0 1 xn5. �

Strong associativity holds if

4x110001xk5¼4y110001yk5

⇔ 4x110001xk1ck+110001cn5¼4y110001yk1ck+110001cn50 (C1)

In words, improving a subprospect improves the whole prospect.
The condition reinforces monotonicity by considering sub-
prospects of length exceeding 1.

Lemma 21. Expansion independence implies strong associativity.

Proof. Apply expansion independence n − k times (for ck+11
0 0 0 1 cn). �

The following result concerns the Archimedean axiom.

Lemma 22. Assume the intuitive axioms, #x = #y, x � y, and
4nx1 v5¼ 4ny1w5. Then 4mx1 v5¼ 4my1w5 for all m¾ n.

Proof. By applying strong associativity twice, we get

44n+ 15x1 v5¼ 4y1nx1 v5¼ 4y1ny1w5= 44n+ 15y1w50 �

Proof of Theorem 7. Necessity of the five conditions in state-
ment (ii) follows from substitution. We, hence, assume the five
conditions of statement (ii) and derive the AU representation (and
after that establish the uniqueness result). We will use Theo-
rem 3.2.1.1 of Krantz et al. (1971; Hölder’s 1901 lemma without
the requirement that every element have an inverse) and will ver-
ify its conditions. Our concatenation operation of prospects corre-
sponds with the concatenation operation denoted � by Krantz et al.
We define a binary relation ¼∗ on prospects that will turn out to
be the additive counterpart of the “averaging” binary relation ¼.
To this effect, we take an arbitrary outcome � ∈X. We will let �
play the role of a neutral element with respect to the concatenation
(“addition”) and ¼∗, later setting U4�5= 0.

Definition 23. x¼∗ y if there exists m¾ max8#x1#y9 such that
4x1 4m− #x5�5¼ 4y1 4m− #y5�5.

The preference ¼ in Definition 23 refers only to prospects of
the same length, in which case additive and average utility give
the same result. If there exists an m ¾ max8#x1#y9 such that
the preference in Definition 23 holds, then by expansion indepen-
dence (Lemma 19), the preference holds for all m¾ max8#x1#y9.
Roughly, ¼∗ is derived from ¼ by starting from equal-length com-
parisons and then adding or deleting �s as is desirable. The sym-
metric part ∼∗ and the asymmetric part �∗ are defined as usual.
We verify that ¼∗ satisfies all four conditions of Theorem 3.2.1.1
of Krantz et al. (1971). For conditions 2 through 4, we first give
their definition, and then their derivation.

1. (Weak ordering): Completeness of ¼∗ follows immediately
from completeness of ¼. For transitivity, assume that x¼∗ y and
y ¼∗ z. Then 4x1 4m − #x5�5 ¼ 4y1 4m− #y5�5 ¼ 4z1 4m− #z5�5
for all m ¾ max8#x1#y1#z9, implying, by transitivity of ¼,
4x1 4m− #x5�5 ¼ 4z1 4m− #z5�5 for all such m. This implies
x¼∗ z, and transitivity follows.

2. (Weak associativity): 4x1 4y1 z55∼∗ 44x1 y51 z5. This follows
from idempotence because we even have equality here. (Our
concatenation satisfies what is sometimes called associativity for
operations.)

3. (Krantz et al. monotonicity): x ¼∗ y ⇔ 4c1 x5 ¼∗ 4c1 y5 ⇔

4x1 c5 ¼∗ 4y1 c5. This term of Krantz et al. deviates from
our term monotonicity. It is in fact expansion independence
extended to prospects x1 y of different length. 4x1 4m− #x5�5 ¼
4y1 4m− #y5�5 is, by expansion independence, equivalent to
4z1 x1 4m− #x5�5 ¼ 4z1 y1 4m− #y5�5, which gives the first logi-
cal equivalence in monotonicity. The second logical equivalence
follows from symmetry.

4. (The Archimedean axiom): If x �∗ y, then for all v1w ∈ X
there exists an n such that 4nx1 v5 �∗ 4ny1w5. Assume x �∗ y;
that is, 4x1 4m− #x5�5 ¼ 4y1 4m− #y5�5. By the Archimedean
axiom of ¼, 4n4x1 4m− #x5�51 v5 ¼ 4n4y1 4m− #y5�51w5 for
some n. All the �s cancel, and hence we get 4nx1 v5¼∗ 4ny1w5,
as required.

All conditions in Krantz et al. (1971, Theorem 3.2.1.1) are
satisfied. Hence there exists a real valued function U4 · 5, unique
up to a positive scale factor, that is additive with respect to
the concatenation operation (U4x1 y5 = U4x5 + U4y5).17 We get
U4�5= 0. The idea underlying their proof is to, first, define U
through Equations (4) and (5) and taking limits for n → �.
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In these equations we only compare sequences of the same length,
implying that the preferences ¼ agree with ¼∗. We obtain U
correctly irrespective of whether the representation is additive,
as with ¼∗, or average, as with ¼. The preference conditions
imply that the revelations of utility do not generate inconsisten-
cies. The conditions of Krantz et al. (1971, Theorem 3.2.1.1),
similar to Hölder (1901), imply that sums of U values repre-
sent ¼∗. Mostly their monotonicity condition for ¼∗ implies that
its representation is additive and not average.

For ¼ we do not have monotonicity in the Krantz et al. sense,
but replication equivalence. We finally show that this implies that
averages of U represent ¼. Because of replication equivalence,
we have x ¼ y ⇔ 4#y5x ¼ 4#x5y. Because the latter preference
concerns two prospects of the same length, it is equivalent to
4#y5x ¼∗ 4#x5y, or 4#y5

∑#x
i=1 U4xi5 ¾ 4#x5

∑#y
j=1 U4yj5. This is

equivalent to 4
∑#x

i=1 U4xi55/#x ¾ 4
∑#y

i=1 U4yi55/#y. The AU rep-
resentation of ¼ has been derived.

We finally consider the uniqueness result. Substitution immedi-
ately shows that we are free to choose level and unit of U . To see
that there is no other liberty, consider U4�5 for some � and define
¼∗ as above with respect to �. The above proof has demonstrated,
using Krantz et al. (1971, Theorem 3.2.1.1), that only the unit of
U then can be changed. �

An alternative way in which we could have derived results
similar to ours (primarily Theorem 7) from existing expected
utility theorems is as follows. We can, first, relate n-tuples to
rational-probability lotteries. Then, by properly weakening the
NM axioms, including the NM type mixture independence, to
such lotteries, the commonly used restrictive continuity conditions
on outcomes can be replaced by the nonrestrictive (necessary)
NM type Archimedean axiom, similarly as we did. We would
then have used an independence condition based on an underlying
mixture operation instead of our Hölder-type joint independence.
We preferred our route based on the latter independence because
concatenation is more basic than mixing.18 Hence our conditions
are simpler and give more general theorems. In short, the Hölder-
concatenation approach is more efficient than the NM-mixture
approach.

Appendix D. Proofs with Continuity (§3)

Definition 24. For the preference relation ¼ on X, the order
topology is the smallest topology that makes ¼ continuous, i.e.,
that contains all sets 8� ∈X2 �� �9 and 8� ∈X2 �≺ �9.

Because the order topology is coarser than any other topology
with respect to which ¼ is continuous, we have

Lemma 25. ¼ on X is continuous with respect to a connected
topology if and only if the order topology is connected. ¼ on X is
continuous with respect to a separable topology if and only if the
order topology is separable.

Proof of Lemma 10. Assume continuity of ¼. Then continuity
of ¼ on X holds trivially. For the CE condition, consider any
x = 4x11 0 0 0 1 xn5. We find a CE of x. Assume, without loss of gen-
erality, that x1 ¼ · · · ¼ xn. By replication equivalence and mono-
tonicity (Lemma 20), x1 ∼ 4x11 0 0 0 1 x15 ¼ x ¼ 4xn1 0 0 0 1 xn5 ∼ xn.
Hence the closed sets 8� ∈ X2 � ¼ x9 and 8� ∈ X2 � ´ x9 are
nonempty. Their union is X and, by connectedness, they must
intersect (in fact, at their infimum/supremum). This intersection
is a CE of x. The CE condition holds.

Next assume the CE condition and continuity of ¼ on X. Take
an arbitrary x, with its constant equivalent denoted CE. Then
8� ∈X: �� x9= 8� ∈X: �� CE9 and 8� ∈X: �≺ x9= 8� ∈X:
�≺ CE9 are open because ¼ on X is continuous. Hence ¼ (on X)
is continuous. �

Our continuity condition (taken from Gravel et al. 2011) is
the closed sections condition of Fuhrken and Richter (1991),
but restricted to one dimension, which underscores its general-
ity. The above results show that it is essentially stronger than
continuity of ¼ on X because the latter does not imply the CE
condition, such as with lexicographic preferences with respect to
rank-ordered n-tuples from �n. The following result is a corollary
of Lemmas 10 and 25.

Lemma 26. Assume the intuitive conditions. ¼ (on X) is contin-
uous with respect to a connected topology on X if and only if it
is continuous with respect to the order topology of ¼ on X and
the latter is connected.

Lemmas 25 and 26 show, effectively, that the topology taken on
X is a refinement of the order topology and that it is immaterial
which refinement it is.

It has sometimes been thought, erroneously, that a function rep-
resenting a binary relation is always continuous with respect to
the order topology. However, any strictly increasing discontinuous
function from � to � provides a counterexample. The follow-
ing well-known result (a corollary of Beardon and Mehta 1994,
Proposition 1; see also Steen and Seebach 1970, pp. 67–68) gives
details.

Lemma 27. Assume that ¼ on X is continuous with respect to
a connected topology, and that U represents ¼ on X. Then the
following statements are equivalent:

1. U is continuous.
2. U4X5 is an interval.
3. U4X5 neither has a gap nonempty (maximal noncontained

interval) of the form 4�1 �7 nor of the form 6�1 �5.
4. U4X5 is a dense subset of its convex hull.
5. For each pair of outcomes �, �, there exists a utility mid-

point � in the sense that U4�5= 4U4�5+U4�55/2.

The following lemma provides the main step in the derivation
of Theorem 9 from Theorem 7.

Lemma 28. The intuitive conditions and continuity imply the
Archimedean axiom.

Proof. For contradiction, assume that the Archimedean axiom
is violated. That is, assume x � y and 4nx1 v5 ≺ 4ny1w5 for all
n, with #x = #y = k and #v = #w = m. Let � = CE4v51� =

CE4w5 (this counteralphabetic notation will be most convenient).
v ∼ �∼m� and w ∼ � ∼ m� and strong associativity imply
4nx1 v5 ∼ 4nx1m�5 and 4ny1w5 ∼ 4ny1m�5. Hence we have
4nx1m�5 ≺ 4ny1m�5 for all n, which implies 4nmx1m�5 ≺

4nmy1m�5 for all n, and then

4nx1�5≺ 4ny1�5 for all n0 (D1)

Let x ∼ �, y ∼ �. Then x ∼ k�, y ∼ k�, nx ∼ nk�, and ny ∼ nk�
imply, by strong associativity, 4nx1�5 ∼ 4nk�1�5 and 4ny1�5 ∼

4nk�1�5 for all n. Substituting this in Equation (D1) gives
4nk�1�5 ≺ 4nk�1�5 for all n. By Lemma 22 we cannot have
4n�1�5¼ 4n�1�5, implying

4n�1�5≺ 4n�1�5 for all n0 (D2)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

11
5.

15
8.

15
3]

 o
n 

23
 F

eb
ru

ar
y 

20
15

, a
t 0

4:
59

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Kothiyal, Spinu, and Wakker: Average Utility Maximization: A Preference Foundation
Operations Research 62(1), pp. 207–218, © 2014 INFORMS 215

We have �� �. By monotonicity, � � �. Equation (D2) suggests
that the utility difference between � and � is infinitesimal relative
to that between � and �.

We first define a set C, being an arc between � and � (i.e.,
C is isomorphic to 60117). For each rational number q between 0
and 1, we choose some m and n with q = m/n. We then define
q� + 41 − q5�, or q� for short, as a CE of 4m�1 4n − m5�5.
By replication equivalence, it does not depend on the particular
m and n chosen. Thus we have an ordered set isomorphic to the
rational numbers between 0 and 1. For each irrational number 0 <

r < 1, the two sets
⋃

q∈�2 q<r8� ∈X: �≺ q�9 and
⋃

q∈�2 q>r8� ∈X:
�� q�9 are open and nonempty. By connectedness, there exists
at least one outcome contained in neither set. It can be seen that
there usually are many and that they are not all equivalent. At any
rate, we take one and define it as r�. Define the function that
assigns r� to each 0 ¶ r ¶ 1. (Formally, this can be done using
the choice axiom from mathematical logic.) This ordered set is
isomorphic to 60117 (it is a continuum), denoted C.

For each � ∈ C we define a constant equivalent �� of (�1�) and
�� of (�1�). It generates two sets 8��2 � ∈C9 and 8��2 � ∈C9.

Lemma 29. For each � � � ∈C we have �� � ��.

Proof. This proof will be ended by QED. Because the ratio-
nal numbers are dense in 60117, there are rational numbers
m/n and 4m − k5/n (with k > 0) such that � � 4m/n5� and
44m− k5/n5� � � . Then, by monotonicity, also �� � 44m/n5�5�
and 444m− k5/n5�5� � ��. It suffices to prove 44m/n5�5� �

444m− k5/n5�5�, or 44m/n5�1�5� 444m− k5/n5�1�5, or

(

n44m/n5�51n�
)

�
(

n444m− k5/n5�51n�
)

0 (D3)

Because 4m�1 4n − m5�5 ∼ 4m/n5� ∼ n44m/n5�5, we have,
by strong associativity, 4n44m/n5�51n�5 ∼ 4m�1 4n − m5�1n�5.
Similarly, 4n444m−k5/n5�51n�5∼ 44m−k5�1 4n−m+k5�1n�5.
We substitute these indifferences in Equation (D3) and get, as
sufficient to prove,

4m�1 4n−m5�1n�5� 44m− k5�1 4n−m+ k5�1n�50

By expansion independence, dropping n− k common coordi-
nates, this is equivalent to 4k�1n�5 � 4k�1n�50 We finally
prove this. By Equation (D2), 4�1n�5 � 4�1n�5. For induc-
tion, 4j�1n�5 � 4j�1n�5 implies, by expansion independence
and then monotonicity, 4�1 j�1n�5 � 4�1 j�1n�5 � 4�1 j�1n�5,
or 44j + 15�1n�5 � 44j + 15�1 n�5. It follows by induction that
4k�1n�5� 4k�1n�5. QED

Every preference interval 8�∈X2 �� ≺�≺��9 is nonempty be-
cause it contains CE4��1��54�� ∼4��1��5≺4��1��5≺4��1��5,
mostly by monotonicity). These preference intervals are all dis-
joint by Lemma 29. Hence these are uncountably many disjoint
nonempty open sets, which cannot be because of topological
separability. Contradiction has resulted and Lemma 28 has been
proved.

The beginning of this proof has in fact shown that under the
CE condition the Archimedean axiom can be restricted to the case
where x1 y1 v1 and w are outcomes. �

Lemma 30. Assume that average utility holds with utility U and
that continuity holds with respect to a connected topology on X.
Then U is continuous.

Proof. For all values U4�5 and U4�5 in the image of U , the mid-
point 4U4�5+U�55/2 is also contained in the image of U because
it is the utility of the CE of (�1�), which exists by Lemma 10.
By Lemma 27, U is continuous. �

Proof of Theorem 9. To derive (i) ⇒ (ii), we assume state-
ment (i). The first four conditions in (ii) follow from substitution.
Condition 5 follows by taking the topology on X generated by U ,
i.e., by ¼ on X. U4X5 being an interval implies connectedness
and separability of this topology.

We finally assume statement (ii), and derive statement (i),
continuity of U , and the uniqueness result. By Lemma 28, the
Archimedean axiom is satisfied. By Theorem 7, we obtain an
average-utility representation. By Lemma 30, U is continuous. By
Lemma 27, U4X5 is an interval. The uniqueness follows from
Theorem 7. �

If we replace continuity by simple continuity in Theorem 9,
then the nontrivial implication, (ii) ⇒ (i), can easily be derived
from Debreu (1960), along the lines of Blackorby et al. (1977).
First, on each Xn with n¾ 3 we then get an additive representation
∑n

j=1 Vj1 n4xj5, mainly because joint independence is what is often
called (preferential) separability. The function Vj1 n at this stage
can depend on n. For each n, the functions V11 n1 0 0 0 1 Vn1n’s are
identical, and we obtain a representation

∑n
j=1 Un4xj5 (Blackorby

et al. 1977, Lemma 1; Blackorby et al. 2005, Theorem 4.7). Repli-
cation equivalence (relating dimensions k and m to each other
through dimension km) implies that Un is independent of n (as in
Blackorby et al. 2005, Theorems 4.19, 6.1, and 6.2) and (dropping
the n) that average utility

∑n
j=1 U4xj5/n represents preference on

the whole domain X. A special advantage of our more general
analysis is that we obtain a uniform generalization of results on
generalized means.

Appendix E. Further Proofs

Proof of Lemma 12. Both for r1 = c1 and r1 = d1,

4r11 x21 0 0 0 1 xn5=
1
n
r1 +

n− 1
n

4x21 0 0 0 1 xn5 and

4r11 y21 0 0 0 1 yn5=
1
n
r1 +

n− 1
n

4y21 0 0 0 1 yn50

By NM-independence, the preference between (r11 x21 0 0 0 1 xn) and
(r11 y21 0 0 0 1 yn) must agree with that between (x21 0 0 0 1 xn) and
(y21 0 0 0 1 yn) for both r1, implying joint independence. We did not
use weak ordering in this proof, and we only used NM-indepen-
dence for rational probabilities. �

Proof of Theorem 15. The implication (i) ⇒ (ii) follows from
substitution. We, hence, assume (ii) and derive (i) and continu-
ity and uniqueness. ¼, the preference relation represented by M ,
satisfies the first four conditions in statement (ii) in Theorem 9.
Continuity of ¼ on X follows because it is the natural order
on �. The topology, the Euclidean one, is connected and sepa-
rable. The CE condition follows from reflexivity. By Theorem 9,
there exists a continuous AU representation. By monotonicity,
U is strictly increasing. By idempotence, M is the CE function.
(i) has been proved. The uniqueness follows from Theorem 9. �

Proof of Lemma 16. For idempotence, assume M4n�5 = �.
By associativity, with k = n, we have M4n�5=M4n�5. By mono-
tonicity, �= �.
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For replication equivalence (also derived by Blackorby
et al. 2005, Theorem 4.20), take the constant equivalent
M4x5 = �. By k-fold application of associativity, M4kx5 =

M4k4#x�55. By idempotence, M44k#x5�5= �. We conclude that
M4x5=M4kx5.

For joint independence, assume 4x11 0 0 0 1 xn5 ¼ 4y11 0 0 0 1 yn5.
The CE condition is satisfied with M the CE function, by idem-
potence. Take constant equivalents M4x5 = � and M4y5= �,
respectively. Then � ¾ �. By monotonicity, 4�1�1 0 0 0 1�5 ¼
4�1�1 0 0 0 1 �5 (both n + 1-tuples). By associativity, the former
4n + 15-tuple is indifferent to (�1x11 0 0 0 1 xn) and the latter to
(�1y11 0 0 0 1 yn). Hence 4�1x11 0 0 0 1 xn5 ¼ 4�1 y11 0 0 0 1 yn5. Expan-
sion independence has been shown. By Lemma 18, this implies
joint independence of ¼ and, hence, of M . �

Proof of Lemma 17. For induction, assume kx ∼ x. It implies
kx ¼ x and kx ´ x. By averaging, kx ¼ 4k + 15x ¼ x and kx ´
4k+ 15x´ x. 4k+ 15x ∼ x follows. Induction implies replication
equivalence. �

Endnotes

1. See Blackorby et al. (1977, Lemma 2 and Assumption 5);
Blackorby et al. (2005, Chapters 4–6); Gravel et al. (2011, fol-
lowing Theorem 1).
2. This equivalence is elementary in the sense that it does not use
technical axioms such as the Archimedean axiom or continuity
in its derivation. All logical relations between intuitive conditions
claimed in this paper will be elementary in this sense.
3. Conversely, additive representations can be separated from
average representations by a reinforced expansion independence
where Equation (3) is also imposed for x1 y of different length
(Pivato 2013, Wakker 1986).
4. See Pfanzagl (1968, §6.6, pp. 107–108, Remark on p. 111,
§9.5); Krantz et al. (1971, §9.1); Luce et al. (1990, Theo-
rem 21.21); and Fuhrken and Richter (1991, p. 94). Bossert et al.
(2007) argued for relaxing continuity and used it to obtain exten-
sions to infinite sequences.
5. Lemmas 25 and 26 will show that this topology has to be a
refinement of the order topology generated by ¼ on X. These
lemmas also show that it can be any such refinement. Lemmas 10
and 27 further illustrate that the choice of the refined topology is
immaterial. This also holds for the other results in this section.
6. Equivalently, there exists a connected topology with respect to
which U is continuous. This topology can always be taken to be
separable. Note that topological separability need not be stated as
an assumption, generalizing results by Gravel et al. (2011) and
others.
7. To formalize the application of our results to decision under
risk, we equate lotteries with the equivalence classes of n-tuples
that generate them. We can then verify that our conditions for
n-tuples naturally extend to lotteries under replication equiva-
lence and symmetry. For brevity we do not elaborate on this
formalization.
8. NM-independence is often defined with an implication in only
one direction in Equation (6), even sometimes with indifference
instead of preference and only for mixture 0.5. Then a stronger
continuity-like version of the Archimedean axiom is used from
which the two-sided implication follows for all mixture weights.
9. This was indicated by Bullen (2003); Chew (1983); Goovaerts
et al. (2010); Grabisch et al. (2011a, p. 42, b); Muliere and
Parmigiani (1993); Ozaki (2009); and Wakker (1988a).

10. U can also be taken strictly decreasing, but then we can
replace it by −U . Studies on nonsymmetric quasilinear means
include Aczél (1966), Marichal (2000), and Wakker (1988a).
11. Their Lemma 1, with U s dependent on the length s of the
prospects, suggests that their Assumption 4 is not meant to capture
expansion independence.
12. Some papers interchange the terms idempotence and reflexivity.
13. References include Fuhrken and Richter (1991), Krantz et al.
(1971), and Wakker (1986). Pivato (2013) provided advanced
results for sequences of variable length, with extensions to
infinitesimal representations without the Archimedean axiom (see
also Fuhrken and Richter 1991, p. 84). Barberà and Pattanaik
(1984) and Kannai and Peleg (1984) give axioms to separate addi-
tive and average representations.
14. Their term replication equivalence is similar to what we call
idempotence.
15. Such models include subjective expected utility (Ahn 2008,
Jeffrey 1965, Savage 1954); discounted utility (Koopmans 1972,
Kopylov 2010); and utilitarian welfare (Blackorby et al. 2005,
Harsanyi 1955, Kolm 2002).
16. Such models include rank-dependent utility (Gilboa 1987;
Grabisch et al. 2011a, b; Quiggin 1982; Schmeidler 1986) and
betweenness models (Chew 1983, Ozaki 2009).
17. This result for ¼∗ generalizes Blackorby et al. (2005, The-
orems 4.21 and 4.22) by dropping continuity of the represen-
tation and weakening the continuity preference condition to the
Archimedean axiom.
18. It can be seen that our independence condition is close to
Savage’s sure-thing principle, which is more basic than NM-
independence, again, because it does not use a mixture operation.
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