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The references in this appendix (Appendixes C-F) can be found in the paper, with the 

exception of: 

Goldstein, William M. and Hillel J. Einhorn (1987), “Expression Theory and the Preference 

Reversal Phenomena,” Psychological Review 94, 236–254. 
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Appendix C.  Histograms of Parameter Estimates 

 

 

 

HISTOGRAM C.1. α in risk experiment (§4) 

(mean = 1.239; median = 1.145) 

 

 

 

 

 

 

 

 

 

 

 

 

 

HISTOGRAM C.2. β in risk experiment (§4) 

(mean = 3.071; median = 1.578) 
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HISTOGRAM C.3. α in uncertainty experiment (§6) 

     (mean = 0.835; median = 0.684) 

 

 

 

 

 

 

 

 

 

 

 

 

HISTOGRAM C.4. β in uncertainty experiment (§6) 

     (mean = 1.594; median = 1.208) 
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Appendix D.  Further Results on Probability Weighting for 

Risk (§4) 

 

 

w−1(p) Mean Median Standard 
deviation 

1/8  (= 0.125) 0.330 0.285 0.228 

2/8  (= 0.250) 0.441 0.430 0.223 

4/8  (= 0.500) 0.608 0.620 0.193 

6/8  (= 0.750) 0.793 0.820 0.150 

7/8  (= 0.875) 0.872 0.910 0.132 

 

Parametric Analysis.  Several functional forms of the probability weighting function 

have been proposed in the literature.  The most popular one-parameter specifications 

are the ones proposed by Tversky and Kahneman (1992) and Prelec (1998).  The most 

popular two-parameter functional forms are the ones proposed by Goldstein and 

Einhorn (1987) and Prelec (1998).  The power family, as used by Hey and Orme 

(1994), has not often been used; a recent application is in Qiu and Steiger (2011).  The 

second column of Table D.2 lists the parametric specifications proposed by the 

aforementioned authors.  The following results will illustrate clearly that patterns 

found can be driven more by the parametric family chosen than by the actual data. 

 

TABLE D.1. Summary statistics for the elicitation of probability 
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TABLE D.2. Parameter Estimates 

Study w(p) Median 
estimate 

Individual 
distance  

Distance 
from median 
data 

Hey and Orme (1994) pγ γ = 1.5041 
(0.28) 

0.0515 0.0019 

Tversky and Kahneman 
(1992) 

pγ

(pγ
 + (1−p)γ)1/γ   γ = 2.0521 

(1.24) 
0.0556 0.0037 

Goldstein and Einhorn 
(1987) 

δpγ

δpγ
 + (1−p)γ  γ = 1.3054 

(0.10) 
δ = 0.5119 
(0.12) 

0.0153 0.0031 

Prelec(1) (1998) e−(−ln
 

p)α α = 0.5943 
(0.31) 

0.1174 0.0752 

Prelec(2) (1998) e−β(−ln
 

p)α α = 1.1454 
(0.07) 
β = 1.5781 
(1.54) 

0.0161 0.0022 

Standard errors are in parentheses. 

 

For each subject and each parametric specification, we estimated the optimal 

parameter values by minimizing sums of squared distances: 

 
5
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−∑ . (D.1) 

Here wi  is the i-th element of the sequence of the probability weights for which the 

probabilities (w-inverses) were elicited and ŵi is the i-th element of the estimated 

sequence of probability weights under the various parametric specifications.  For 

example, for w1 = 1/8, we define p1 as the probability elicited in the experiment as 

w−1(1/8) for this subject, and then ŵ1 is the value that the probability weighting 

function of the parametric family assigns to p1.  Its distance from 1/8 indicates how 

far the family is from the data. 

 To avoid convergence to local minima we used a wide variety of starting points.  

The medians of the individual estimators as well as the standard errors are reported in 

the third column of Table D.2 and the corresponding weighting functions are plotted 

in Figure D.1.  Table D.2 also gives the average sum of squared distances if for each 

individual the optimal parameters are determined, as well as the squared distances of 

the optimal fits from the median data. 

 Figure D.1 displays a remarkable variety of patterns, which should caution 

against the unqualified use of parametric fitting.  The one-parameter family advocated 
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by Prelec (1998), denoted Prelec(1), displays the most commonly found shape, the 

inverse-S shape.  It is, however, clear that the function is completely off, and its 

distances from the data in Table D.2 are extreme.  This family necessarily imposes the 

inverse-S shape and intersects the diagonal at (1/e,1/e), which explains part of its bad 

performance.  The one-parameter family by Tversky and Kahneman (1992) and the 

two-parameter families by Prelec (1998) and Goldstein and Einhorn (1987) show a 

similar pattern: mostly convex but, being oriented to inverse-S like phenomena, they 

go the other way and to some extent display the opposite pattern, being a slight S 

shape.  Finally, the power family yields a convex function. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 The average sum of squared distances reported in the 4th column of Table D.2 

suggests that of the one-parameter families, the family of Tversky and Kahneman 

performs considerably better than Prelec’s, but the power family performs best.  The 

two two-parameter families perform very similarly, and have a smaller distance than 

the one-parameter families which is no surprise given their larger number of free 

parameters.  The optimal fits for the median data give similar results with one 

exception: the power-family now yields the best fit, even better than the families with 

an extra parameter. 

7/8 

6/8 

FIGURE D.1. Parametric fittings of median 
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•: Median data.  Curves are as in Table D.2. 
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Appendix E.  Values tj  Measured for W (§5) 

 

 

 Mean Median Standard deviation 

t1 19.06 19.75 2.21 

t2 16.75 16.85 2.41 

t4 13.22 13.00 2.81 

t6 10.96 10.25 2.97 

t7 9.70 8.55 2.53 
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Table E.1: Summary statistics 
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Appendix F.  Further Comments and Statistics 

Removing subjects for risk (§4). In the risk experiment we removed all subjects for 

whom w−1(4/8) > 0.99, w−1(6/8) > 0.99, w−1(4/8) < 0.01, or w−1(6/8) < 0.01.  These 

subjects, in all five questions of the bisection measurement, chose left or right.  They 

did not pay attention to the stimuli.  It also made no sense for these subjects to 

measure w−1(p) for some other probabilities p.  For example, if w−1(6/8) > 0.99 then 

surely w−1(7/8) > 0.99 and no more measurement of w−1(7/8) can or should be made. 

 

Bisection method to measure x1 and x2 for risk (§4).  The particular bisection method 

that we used is similar to the one used by Abdellaoui (2000), and is explained next.  

To obtain x1 in x10.25
30 ~ x00.25

40, we iteratively narrowed down what we call 

indifference intervals containing the indifference value of x1 as follows.  Based on 

extensive pilots, we assumed that x1 would not exceed x0 + 96 and took [x0, x0 + 96) as 

the first indifference interval, denoted [l
1,u1).  To construct the j+1th indifference 

interval from the jth indifference interval [lj,uj), we observed the choice between (l
j
 + 

uj)/20.2530 and x00.2540.  A left choice meant that the midpoint (l
j
 + uj)/2 exceeded x1, 

so that x1 was contained in [lj,
l

j
 + uj

2 ) , which was then defined as the j+1th indifference 

interval [lj+1,uj+1).  After a right choice we similarly took [
l

j
 + uj

2  ,uj) as the j+1th 

indifference interval [lj+1,uj+1).  We did five iteration steps, ending up with [l
6,u6)  (of 

length 96 × 2−5
 = 3), and took its midpoint as the elicited indifference value x1.  We 

similarly elicited x2 (substitute x2 for x1 and x1 for x0 above). 

 

Removing subjects for uncertainty (§5). In the uncertainty experiment we removed 2 

subjects who always chose left or right in the elicitation of W−1(2/8), suggesting that 

their weight for the event of temperature exceeding 7.40C exceeded 2/8, whereas they 

had been informed that the temperature has never been below 7.40C.  For these 

subjects, W−1(1/8) can and should no more be asked.  We also removed a subject who 

always chose left (or right) when measuring matching probabilities.  His answers 
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would imply that a temperature between 15.80C and 160C was as likely as a 

temperature exceeding 160C. 

 

Comparisons between subjective and objective probabilities (§§5-6).  Further 

comparisons between the event E, used to measure utilities under uncertainty, (see 

footnote 2) and objective probability 0.25 used for this purpose under risk are here: 

Risk: mean w(0.25) = 0.163; median w(0.25) = 0.108; median x1 = 92.25; median x2 = 123. 

Uncertainty: mean P(E) = 0.406; median P(E) = 0.375; mean W(E) = 0.358; median W(E) = 

0.310; median x1 = 77.25; median x2 = 91.50. 

 

We tested the mean subjective probabilities found in the uncertainty experiment against the 

historical probabilities (Figure 12), and the subjective probabilities all significantly exceeded 

the historical probabilities: 

 

p = 1/8: historical 17.440C, subjective 18.10C; Z = 3.04, p = 0.002; 

p = 2/8: historical 15.50C, subjective 16.80C; Z = 5.25, p < 0.001; 

p = 4/8: historical 13.120C, subjective 14.80C; Z = 5.03, p < 0.001; 

p = 6/8: historical 11.560C, subjective 12.70C; Z = 3.60, p < 0.001; 

p = 7/8: historical 10.710C, subjective 11.10C; Z = 2.55, p = 0.01. 

 

P-values in Table 3 for one-sided Wilcoxon signed-rank tests: W = 1/8: p = 0.0442; W 

= 2/8: p = 0.0689; W = 4/8: p =  0.00085; W = 6/8: p =  0.0005; W = 7/8: p = 0.0001. 

 

Error propagation in chained measurement.  §9 presents some results on a simulation 

test of error propagation.  The following table gives details. 
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Variable | #Obss Mean Std.Dev. Min Max 

-------------+------------------------------------------------------- 

x0 | 1000   60 0   60   60 

x1 | 1000   86.35 1.35   82.08   90.25 

x2 | 1000 113.76 1.97 107.32 119.43 

w−1(0.125) | 1000 0.077 0.016 0.039 0.138 

w−1(0.25) | 1000 0.202 0.027 0.130 0.289 

w−1(0.50) | 1000 0.494 0.036 0.397 0.625 

w−1(0.75) | 1000 0.776 0.046 0.592 0.907 

w−1(0.875) |   993 0.902 0.045 0.741 0.997 

-------------+-------------------------------------------------------- 
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Appendix G.  References Finding Inverse-S 

{% inverse-S: this is indeed found for 62.5%. 30% had convex prob transformation, rest 

linear.  P. 1507: bounded SA is confirmed  %} 

Abdellaoui, Mohammed (2000), “Parameter-Free Elicitation of Utility and Probability 

Weighting Functions,” Management Science 46, 1497–1512. 

 

 

{% probability elicitation  ; inverse-S;  ambiguity seeking for unlikely %} 

Abdellaoui, Mohammed, Aurélien Baillon, Laetitia Placido, & Peter P. Wakker 

(2010), “The Rich Domain of Uncertainty: Source Funcions and Their Experimental 

Implementation,” American Economic Review, forthcoming. 

 

 

{% Risk averse for gains, risk seeking for losses: they find this. 

inverse-S: find it, both for gains and losses, fully in agreement with the predictions of 

PT. 

Use a measurement method where utility is measured through parametric fitting, 

assuming power utility. %} 

Abdellaoui, Mohammed, Han Bleichrodt, & Olivier L'Haridon (2008), “A Tractable 

Method to Measure Utility and Loss Aversion under Prospect Theory,” Journal of 

Risk and Uncertainty 36, 245–266. 

 

{% inverse-S & uncertainty amplifies risk: confirm less sensitivity to uncertainty than to 

risk.  This implies: ambiguity seeking for unlikely 

(Concave utility for gains, convex utility for losses:) gives concave utility for gains 

(power-fitting gives power of about 0.88 on average) and some convex, but close to 

linear, utility for losses. 

W satisfies bounded SA (= inverse-S extended to uncertainty) for almost all subjects.  

Bounded SA is similar for gains and losses, but elevation is larger for losses.  Bounded 

SA also holds for the factor B (p. 1395 bottom of first column), and for w, so that all 

common hypotheses of diminishing sensitivity of Fox & Tversky (1998), Tversky & Fox 

(1995), Wakker (2004), and others are confirmed.  One small deviation is that for losses 

they find overweighting of unlikely events but no significant underweighting of likely 

events (§5.4, p. 1394).  P. 1398: "The similarity of the properties of judged probabilities 
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and choice-based probabilities comes as good news for the link between the 

psychological concept of judged probabilities and the more standard economic concept 

of choice-based probabilities."  Pp. 1398-1399 top has nice texts on status of source 

preference, as comparative phenomenon that may not be part of transitive individual 

choice.   

TO method’s error propagation: do so on p. 1394, §5.3 end. %} 

Abdellaoui, Mohammed, Frank Vossmann, & Martin Weber (2005), “Choice-Based 

Elicitation and Decomposition of Decision Weights for Gains and Losses under 

Uncertainty,” Management Science 51, 1384–1399. 

 

 

{% inverse-S is found.  Bettor’s subjective probs are estimated from portion of money bet on 

a horse.  Objective probs are estimated from percentage of times that some horse (say 

favorite, or no. 5-favorite, etc.) wins.  Thus, bettors overestimate small probs of winning 

and understimate large probs. of winning. 

Uses power family to estimate utility and find that bettors are risk seeking (P.s.: no 

wonder, for horse race bettors!%} 

Ali, Mukhtar M. (1977), “Probability and Utility Estimates for Racetrack Betting,” Journal of 

Political Economy 85, 803–815. 

 

 

{% three out of four participants show inverse-S prob. weighting%} 

Allais, Maurice (1988), “The General Theory of Random Choices in Relation to the Invariant 

Cardinal Utility Function and the Specific Probability Function.”  In Bertrand R. Munier 

(Ed.), Risk, Decision and Rationality, 233−289, Reidel, Dordrecht, the Netherlands. 

 

{% inverse-S: Cites literature that find inverse-S shape.  Does a first experiment in which 

participants’ behavior confirms that they relatively overvalue longshot lotteries (so small 

prob. for gain).  Payments was in “points” (not explained more).  Unfortunately, the 

gambles always seem to deal with both gains and losses so loss aversion plays a role.  

Then comes the second experiment.  Participants are first asked for estimations of prob. 

and it seems that they !under!estimate small probs and they !over!estimate bigger ones.  

However, not much explanation is given about experimental details there seem to be 

many complicating factors.  For instance, probs are measured by having participants 

indicate percentages of occurrences of events when repeated 100 times.  First they are 

asked to calculate the mathematical answer, then they are asked what they think will 

really be the percentage.  They also choose between gambles but it is repeated choices 
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and they seem to play for totals of points.  In this second experiment, no clear relation 

between gambling behavior and estimated probabilities was found. %} 

Attneave, Fred (1959), “A Priori Probabilities in Gambling,” Nature 183, 842−843. 

 

{% inverse-S: Seem to find it, with overestimation of low probabilities and underestimation 

of high. %} 

Beach, Lee R. and Lawrence D. Phillips (1967), “Subjective Probabilities Inferred from 

Estimates and Bets,” Journal of Experimental Psychology 75, 354−359. 

 

{% “Squiggle Hypothesis” for probability triangle  supports inverse-S weighting functions; 

intersection point, however, seems to be below .16 iso .33.  That is, at .16 their 

observations already suggest convex probability transformation; leads him to question 

RDU. %} 

Bernasconi, Michele (1994), “Nonlinear Preference and Two-Stage Lotteries: Theories and 

Evidence,” Economic Journal 104, 54−70. 

 

{% inverse-S: find that (Fig. 11, p. 341).  %} 

Birnbaum, Michael H., Gregory Coffey, Barbara A. Mellers, and Robin Weiss (1992), 

“Utility Measurement: Configural-Weight Theory and the Judge’s Point of View,” 

Journal of Experimental Psychology: Human Perception and Performance 18, 331−346. 

 

{% They found preference for equality in sense of overweighting of the worst-off, but also: 

inverse-S: people overweight the richest and poorest, suggesting insensitivity to 

groupsize.  Insensitivity dominated pessimism, so that the typical inverse-S shape 

resulted.  The authors then advance an interesting argument: Insensitivity is a cognitive 

limitation at the level of numerical misperception, so that it is reasonable to correct for it.  

They present the equity weighting that results after doing so, which is, obviously, convex 

and pessimistic. %} 

Bleichrodt, Han, Jasan Doctor, and Elly Stolk (2005), “A Nonparametric Elicitation of the 

Equity-Efficiency Tradeoff in Cost-Utility,” Journal of Health Econonomics 24, 

655−678. 

 

{% inverse-S: they find that, doing it for health outcomes instead of monetary.  The curve is 

more elevated/curved than for money.  Table 1, p. 1488, gives a convenient listing of 

studies of prob. weighting.  They clearly find inverse-S, more than for monetary 

experiments.  P. 1492 bottom of 2nd column: They find more bounded S.A (so lower and 
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upper SA) than monetary experiments did.  Strangely enough, p. 1493/1494 finds 

slightly more lower SA than upper SA in one analysis, slightly less in another.  So, 

roughly, it looks equal. 

P. 1494 1st column: The find approximately linear prob. weighting in the middle region. 

p. 1495: compares fit of different parametric weighting function families. 

Weighting function for health is both more elevated (abstract, p. 1495; higher δ in Table 

4) and more inverse-S (p. 1492 bottom; lower γ in Table 4) than commonly found for 

money. %} 

Bleichrodt, Han and José Luis Pinto (2000), “A Parameter-Free Elicitation of the Probability 

Weighting Function in Medical Decision Analysis,” Management Science 46, 

1485−1496. 

 

{% inverse-S: find that because incorporating inverse-S probability weighting improves 

utility measurement. %} 

Bleichrodt, Han, Jaco van Rijn, and Magnus Johannesson (1999), “Probability Weighting and 

Utility Curvature in QALY-Based Decision Making,” Journal of Mathematical 

Psychology 43, 238−260. 

 

{% inverse-S: confirm it.  In exp. 3 elicited certainty equivalents for some gambles 

(hypothetical only) using ping-pong à la Tversky and Fox (1995), only for one nonzero 

outcome.  Assume that utility is x0.88 and then find inverse-S w confirmed.  Do not say 

whether or not they used real incentives. %} 

Brandstätter, Eduard, Anton Kühberger, and Friedrich Schneider (2002), “A Cognitive-

Emotional Account of the Shape of the Probability Weighting Function,” Journal of 

Behavioral Decision Making 15, 79−100. 

 

{% Uses real incentives for gains; losses from prior endowment; 

Determine CEs from choice lists, and fit PT.  Do mixture models.  Optimal result is with 

2 groups, one (20%) doing EV and the other doing PT with all the patterns of T&K 92 

confirmed: 

Concave utility for gains, convex utility for losses; 

inverse-S; find it using Einhorn&Hogarth family. 

Risk averse for gains, risk seeking for losses 

Have no mixed prospects and, hence, model and measure no loss aversion. 

For gains, Chinese students are more optimistic and more likelihood insensitive than 

Swiss students.  They also have more concave utility and, because CE data may not 
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separate utility well from probability weighting (colinearity), it was not clear to me to 

what extent the higher concavity of utility drives the lower probability weighting. 

The authors are happy about each subject clearly falling in one of the two categories (w, 

probability weighting, linear or nonlinear).  I did not understand what else could happen 

than these two.  There are few subjects of the “ambiguous type” (between the two 

categories, with p = 0.4 of being one catefory and p = 0.6 of being the other, as an 

example they give) but I don’t know if there probabilistic models give much space to 

such types in, say, randomly generated choices for instance. %} 

Bruhin, Adrian, Helga Fehr-Duda, and Thomas Epper (2010), “Risk and Rationality: 

Uncovering Heterogeneity in Probability Distortion,” Econometrica 78, 1375–1412. 

 

{% inverse-S: Pp. C33-C34, Section 3.3, refers to Hsu et al. (2005) for neuroeconomic 

evidence supporting inverse-S probability weighting.  P. C34 also explains the “three-

valued logic” of probability weighting. 

 %} 

Camerer, Colin F. (2007), “Neuroeconomics: using Neuroscience to Make Economic 

Predictions,” The Economic Journal 117, C26−C42. 

 

{% p. 188: inverse-S; (on (parameter)-estimation of weighting functions: “These estimates 

are remarkably close to the estimate ... for CPT,” and Figure 7 (plotting the Tversky and 

Kahneman (92) function for the parameter found by Camerer and Ho) 

 p. 191: “and the similarity of the probability weighting estimates across eight studies 

suggest ...” %} 

Camerer, Colin F. and Teck-Hua Ho (1994), “Violations of the Betweenness Axiom and 

Nonlinearity in Probability,” Journal of Risk and Uncertainty 8, 167−196. 

 

{% inverse-S%} 

Cohen, Michèle and Jean-Yves Jaffray (1988), “Certainty Effect versus Probability 

Distortion: An Experimental Analysis of Decision Making under Risk,” Journal of 

Experimental Psychology: Human Perception and Performance 14, 554−560. 

 

 

{% uncertainty amplifies risk: seem to say that; 

   An impressive paper on ambiguity.  Probably the first to seriously put forward the 

concept of likelihood insensitivity/inverse-S, although empirical studies such as Preston 

& Baratta (1948) had found the phenomenon before.  Those empirical studies did not 
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discuss the concepts though. 

     They use an anchoring-and-adjustment model for ambiguity.  First there is an anchor 

probability pA of event A, presented in their stimuli.  The decision weight is a transform 

S(pA), where the transform reflects ambiguity about pA and the decision-maker’s attitude 

towards this.  This anchoring-and-adjustment makes sense for the stimuli that the authors 

use, where always an anchoring probability is salient; and it can be put on the x-axis for 

graphs.  It does not hold for ambiguity in general, because in many situations of 

ambiguity there is no particular anchor probability. 

   To discuss attitudes towards an ambiguous probability, it is useful to specify things 

about the outcome associated with the outcome (is it a favorable outcome or an 

unfavorable one?).  Remarkably, however, in their initial discussion on pp. 436-437 the 

authors don’t specify the associated outcome, taking ambiguity as if something in its 

own right and independent of decisions or outcomes. 

   P. 437 clumn 1 l. 12-13: “Attitude toward ambiguity is denoted by β, ...” (where β 

reflects elevation and not inverse-S).  Thus, only β reflects attitude and not θ (θ reflects 

inverse-S).  Indeed, inverse-S is perceptual/cognitive and not motivational, as confirmed 

by Hogarth (personal communication, March 9, 2007, 11:55 AM, in Barcelona). 

   The authors take S(pA) = (1−θ)pA + θ(1−pA
β) (Eq. 6b, p. 437).  The parameter θ reflects 

degree of inverse-S (for β=1 a large θ ≤ 0.5 move the weight towards 0.5; the authors 

assume θ ≤ 1 but θ > 0.5 does not make much sense, leading to weights decreasing in pA 

for β=1), and β reflects source preference. 

   inverse-S is found; ambiguity seeking for unlikely: p. 435 cites Ellsberg on it and p. 

439 Gärdenfors & Sahlin (1982); their model has it also (e.g., Fig. 2).  Their data 

“confirm” their model, though they don’t discuss the issue of ambiguity seeking for 

unlikely events explicitly in the results and discussion.  That is, the paper does not make 

clear if there is ambiguity seeking for unlikely.  p. 453: Judged probs show inverse-S 

shape, and choices suggest transformation downwards of judged prob. 

   When they use the term “source” they mean something like an expert, being a source 

of information about the uncertain states of nature.  So source does not have the same 

meaning as in the works initiated by Tversky in the early 1990s. 

  Most of their tests are on non-choice-based data.  Experiment 3 tests predictions of 

their model for prospect choices, but uses a very weak test (whether their model is better 

than completely random choice). 

%} 

Einhorn, Hillel J. and Robin M. Hogarth (1985), “Ambiguity and Uncertainty in Probabilistic 

Inference,” Psychological Review 92, 433−461. 
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{% inverse-S is found for losses, both large and small; also upper and lower subadditivity 

are. %} 

Etchart, Nathalie (2004), “Is Probability Weighting Sensitive to the Magnitude of 

Consequences? An Experimental Investigation on Losses,” Journal of Risk and 

Uncertainty 28, 217−235. 

 

{% TO method; Uses the method of Abdellaoui (2000) to measure probability 

weighting.  N=30 subjects.  Flat payment.  Section 3.1 suggests that shallow 

probability weighting in the middle can be strategically, in cases the distinction does 

not matter for decisions. 

inverse-S: is confirmed. 

Section 3.2, around Table 2, retrospectively gives another interpretation for a 

deviating finding in her 2004 paper.  Investigate influence of level of outcomes 

(all high or all low) and spacing (big if some outcomes are low and others are high) 

only for losses.  Find that for moderate and high probabilities there is some influence, 

with more pessimism for high spacing. 

%} 

Etchart-Vincent, Nathalie (2009), “Probability Weighting and the ‘Level’ and 

‘Spacing’ of Outcomes: An Experimental Study over Losses,” Journal of Risk and 

Uncertainty 39, 45–63. 

 

{%  inverse-S: confirm it both for gains and for losses, using Einhorn and Hogarth 

two-parameter family.  

Risk averse for gains, risk seeking for losses: find it well confirmed. 

  Experiment in China with real incentives for Chinese students (N = 153), using a 

finite mixture regression model.  Stakes were like 1-hour wage (low-stake) versus 40-

hour wages (high-stake).  Always choice between sure outcome and 2-outcome 

prospect in choice lists to get CEs.  Use the Golstein and Einhorn (1987) two-

parameter family for probability weighting, and power-utility. 

   Unfortunately, they implemented two choices for real for each subject, being one 

for high-stake and one for low-stake (the high-low stake comparison is within-

subject).  It will, unfortunately, amplify a contrast effect with subjects simply taking 

low-stakes not very seriously.  Not much can be done about this (other than do 
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between-subject). 

   P. 154 footnote 5 properly points out that loss aversion does not affect choices 

between losses under PT; this paper only considers nonmixed prospects.   

Point out that measurements of utility and risk aversion, and investigations of whether 

risk aversion is decreasing or increasing and whether concavity of utility is decreasing 

or increasing, cannot be settled properly if there is no correction for probability 

weighting and other things.  Find increase in relative risk aversion for gains, but find 

that this is primarily driven by different probability weighting for high outcomes than 

for low.  The latter entails a violation of prospect theory.  No increase or decrease but 

constant attitude is found for losses. 

   Losses with real incentives are implemented in an unconventional way: For each 

gain-choice there was a corresponding loss-choice that consisted of first a (choice-

situation-dependent!) prior endowment and then the losses-choice, such that after 

integration of the endowment with the loss-choice the loss-choice was the same as the 

gain-choice.  So differences between gains and losses are a matter of framing, and this 

is how the authors often refer to it.  Discussion of it on p. 170. 

   P. 151 top references several studies showing that heterogenous models can be 

really off.  They find 1/4 subjects doing EV, and 3/4 PT. %} 

Fehr-Duda, Helga, Adrian Bruhin, Thomas Epper and Renate Schubert (2010), 

“Rationality on the Rise: Why Relative Risk Aversion Increases with Stake Size,” 

Journal of Risk and Uncertainty 40, 147–180. 

 

{% inverse-S: find it, and more pronounced for women than for men. %} 

Fehr-Duda, Helga, Manuele de Gennaro, and Renate Schubert (2006), “Gender, Financial 

Risk, and Probability Weights,” Theory and Decision 60, 283−313. 

 

{% ambiguity seeking for unlikely; inverse-S Option traders do EV for given probs, and 

subadditivity for unknown probabilities; ascribe it to subadditivity in judged probability. 

P. 7: “Note that risk can be viewed as a special case of uncertainty where probability is 

defined via a standard chance device so that the probabilities of outcomes are known,” 

The value function is elicited by asking for equivalences. %} 

Fox, Craig R., Brett A. Rogers, and Amos Tversky (1996), “Options Traders Exhibit 

Subadditive Decision Weights,” Journal of Risk and Uncertainty 13, 5−17. 
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{% inverse-S: argue that nonadditive models can describe source sensitivity but not so easily 

source preference because the latter may be a comparative effect, see P. 601: “This 

suggests that models based on decision weights or nonadditive probabilities (e.g., 

Quiggin [1982]; Gilboa [1987]; Schmeidler [1989]; Tversky and Wakker [forthcoming]) 

can accommodate source sensitivity, but they do not provide a satisfactory account of 

source preference because they do not distinguish between comparative and 

noncomparative evaluation.” %} 

Fox, Craig R. and Amos Tversky (1995), “Ambiguity Aversion and Comparative Ignorance,” 

Quarterly Journal of Economics 110, 585−603. 

 

{%;CPT: data on probability weighting; inverse-S; ambiguity seeking for unlikely; %} 

Fox, Craig R. and Amos Tversky (1998), “A Belief-Based Account of Decision under 

Uncertainty,” Management Science 44, 879−895. 

Reprinted with minor changes in Daniel Kahneman and Amos Tversky (2000, Eds), 

Choices, Values and Frames, Ch. 6, pp. 118−142, Cambridge University Press, New 

York. 

 

{% CPT: data on probability weighting; inverse-S: Finds inverse-S for all 10 participants! 

They tested the lower- and upper SA conditions of Tversky and Wakker (1995) and 

found them well confirmed. %} 

Gonzalez, Richard and George Wu (1999), “On the Shape of the Probability Weighting 

Function,” Cognitive Psychology 38, 129−166. 

 

{% inverse-S: racetrack betting finds nonlinear probability inverse-S weights.  These data 

from a different domain do corroborate Preston and Baratta (1948) with intersection of 

diagonal around .18.  Main drawback of horse racing data is that the population is more 

risk seeking than average people are. %} 

Griffith, Richard M. (1949), “Odds Adjustments by American Horse Race Bettors,” American 

Journal of Psychology 62, 290−294. 

 

{% uncertainty amplifies risk: although I found no place where this was stated explicitly, it 

is throughout their model and theory. 

inverse-S; Risk averse for gains, risk seeking for losses: Table 2 on p. 792 suggests 

some more risk aversion for gains than risk seeking for losses.  Table 4 on p. 795 

suggests the same for large outcomes, but the opposite for small outcomes. %} 
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Hogarth, Robin M. and Hillel J. Einhorn (1990), “Venture Theory: A Model of Decision 

Weights,” Management Science 36, 780−803. 

 

{% inverse-S: They find that for losses, i.e. ambiguity aversion for unlikely losses and 

seeking for likely losses.  They find more inverse-S for ambiguity than for chance.  So 

also: ambiguity seeking for losses; 

ambiguity seeking for unlikely: they study losses and there they find the reflection, in 

accordance with what CPT predicts, see above. 

They asked what is a reasonable premium for p-prob at losing $100,000, for various 

probs.  They also cite market evidence (earth-quake insurance, flood-insurance, etc.) 

suggesting much ambiguity aversion for small-prob losses.%} 

Hogarth Robin M. and Howard C. Kunreuther (1985), “Ambiguity and Insurance Decisions,” 

American Economic Review, Papers and Proceedings 75, 386−390. 

 

{% CPT: ambiguity seeking for losses & ambiguity seeking for unlikely: They consider 

losses and there the data confirm all the hypotheses of Tversky and Wakker (1995) 

perfectly well. 

inverse-S: There is risk aversion for small probabilities and risk seeking for high (not 

stated explicitly in the paper I think, but visible in Table 2, Fig. 2, Tables 4 and 5)  

  (uncertainty amplifies risk) These phenomena are amplified for ambiguity, by 

ambiguity aversion for small probabilities and ambiguity seeking for high.  (Note that 

only the consumer data are relevant.  The “firm” data consider selling of insurance which 

means both gains and losses, and loss aversion being relevant.  Indeed, as expected by 

CPT, there more risk aversion etc. is found.)  Unfortunately, the data for ambiguous 

probabilities may be prone to distortion by regression to the mean, which can be an 

alternative explanation of the overestimation of small ambiguous probs and 

understimation of high ambiguous probs.  I do not understand the analysis in §3.4, in 

particular why M(P) + M(1−p) = 1 on page 18.  If p and 1−p are ambiguous and 

participant to 2nd order distributions, they may, as mentioned by the authors, differ from 

their “anchor values.”  The participants, however, need not know that these referred to 

complementary events and may distort both downwards. %} 

Hogarth, Robin M. and Howard C. Kunreuther (1989), “Risk, Ambiguity, and Insurance,” 

Journal of Risk and Uncertainty 2, 5−35. 
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{% inverse-S; discussion of it on p. 1121; %} 

Kachelmeier, Steven J. and Mohamed Shehata (1992), “Examining Risk Preferences under 

High Monetary Incentives: Experimental Evidence from the People’s Republic of 

China,” American Economic Review 82, 1120−1141; for comment see Steven J. 

Kachelmeier and Mohammed Shehata (1994), American Economic Review 84, 

1104−1106. 

 

{% inverse-S; uncertainty amplifies risk (for inverse-S probability weighting): p. 281, lines 

-6/-5: inverse-S: “In many real-life situations, overestimation and overweighting may 

both operate to increase the impact of rare events.”  This relates to the preference 

condition in my 2004-Psych. Rev. paper!  Similarly, p. 289 l. 5-6: “Consequently, 

subcertainty should be more pronounced for vague than for clear probabilities.” %} 

Kahneman, Daniel and Amos Tversky (1979), “Prospect Theory: An Analysis of Decision 

under Risk,” Econometrica 47, 263−291. 

 

{% inverse-S: they find it for risk, and more pronounced for uncertainty; latter also concerns: 

uncertainty amplifies risk. %} 

Kilka, Michael and Martin Weber (2001), “What Determines the Shape of the Probability 

Weighting Function under Uncertainty,” Management Science 47, 1712−1726. 

 

{% inverse-S: §5.2 finds support for inverse-S weighting function and EU for nonextreme 

probabilities. 

risk-u = strength.pr.v: §4.2.5 discusses idea of transformation between value function v 

and risky utility fion u and says that transformation idea does not seem to be correct. 

p. 253: influence formulation for str. of pr.%} 

Krzysztofowicz, Roman (1994), “Generic Utility Theory: Explanatory Model, Behavioral 

Hypotheses, Empirical Evidence.”  In Maurice Allais and Ole Hagen (eds.), 

“Cardinalism; A Fundamental Approach,” 249−288, Kluwer Academic Publishers, 

Dordrecht, the Netherlands. 

 

{% inverse-S; use the two-parameter extension of Karmarkar, as Goldstein and Einhorn, 

1987) also did, and find inverse S for both gains and, as it seems, losses. %} 

Lattimore, Pamela M., Joanna R. Baker, and Ann D. Witte (1992), “The Influence of 

Probability on Risky Choice,” Journal of Economic Behavior and Organization 17, 

377−400. 
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{% inverse-S: p. 289 says that insurance was accepted mostly for small-prob-high-losses.  P. 

295 finds inverse-S for RDU which is the special case of CPT where weighting for gains 

is dual to weighting for losses  %} 

Loehman, Edna (1998), “Testing Risk Aversion and Nonexpected Utility Theories,” Journal 

of Economic Behavior and Organization 33, 285−302. 

 

{% inverse-S: p. 207 gives many citations to extent to which people pay attention to good 

and bad outcomes. %} 

Lopes, Lola L. (1995), “Algebra and Process in the Modeling of Risky Choice,” The 

Psychology of Learning and Motivation 32, 177−220. 

 

{% inverse-S: §4.3 reviews the literature up to that point on probability transformation, 

finding inverse-S as the prevailing pattern. %} 

Luce, R. Duncan and Patrick Suppes (1965), “Preference, Utility, and Subjective Probability.”  

In R. Duncan Luce, Robert R. Bush, and Eugene Galanter (eds.), Handbook of 

Mathematical Psychology, Vol. III, 249−410, Wiley, New York. 

 

{% inverse-S: Confirmed; finds risk seeking for low prob. high gains, risk neutrality for prob, 

of gain between .15 and .22, and risk aversion for higher probs, from data on betting 

behavior in horse races (mostly from 1947-1953).%} 

McGlothlin, William H. (1956), “Stability of Choices among Uncertain Alternatives,” 

American Journal of Psychology 69, 604−615. 

 

{% inverse-S, intersecting diagonal at about .2 (for utility linear).  Prob. transformation 

seems to be .42 at .50! 

Likelihood-sensitivity (inverse-S) ordering: Unsophisticated men exhibit least, then 

sophisticated subjects, then women, in the sense that the first category has least 

overweighting of small probabilities and least underweighting of high probabilities (see 

Table II).  %} 

Preston, Malcolm G. and Philip Baratta (1948), “An Experimental Study of the Auction 

Value of an Uncertain Outcome,” American Journal of Psychology 61, 183−193. 

 

{% Principle of Complete Ignorance: p. 11 

inverse-S: this paper discusses in much detail the psychology of being more or less 

sensitive to numerical scales, and the ability to more or less discriminate between 

options, and maybe taking numbers only as categories.  I did not understand all 
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experimental details though; for example on p. 38, isn’t a 1/3 prob. to save “some” 

people  trivially inferior to a certainty of saving “some” people? %} 

Reyna, Valerie F. and Charles J. Brainerd (1995), “Fuzzy-Trace Theory: An Interim 

Synthesis,” Learning and Individual Differences 7, 1−75. 

 

{% inverse-S: Finds over-betting on small-prob. gain horses (p. 604: for p < .03) 

Rosett, Richard N. (1965), “Gambling and Rationality,” Journal of Political Economy 73, 

595−607. 

 

{% inverse-S: Data support finding of Yaari which suggests inverse-S probability weighting: 

Sets of lotteries preferred to status quo is convex suggesting concave utility but decision 

weights, inferrable from tangent of convex set of lotteries, differ from objective 

probabilities and suggest overweighting of low probabilities. %} 

Rosett, Richard N. (1971), “Weak Experimental Verification of the Expected Utility 

Hypothesis,” Review of Economic Studies 38, 481−492. 

 

{% inverse-S?; argues so on the basis of French, Spanish, and Mexican lotteries%} 

Sprowls, R. Clay (1953), “Psychological-Mathematical Probability in Relationships of 

Lottery Gambles,” American Journal of Psychology 66, 126−130. 

 

{% inverse-S: they find that probability weighting is inverse-S. %} 

Stalmeier, Peep F.M. and Thom G. G. Bezembinder (1999), “The Discrepancy between Risky 

and Riskless Utilities: A Matter of Framing?,” Medical Decision Making, 19, 435−447. 

 

{% inverse-S: Found for both risk and uncertainty 

ambiguity seeking for unlikely: is found here; they have gain outcomes only. %} 

Tversky, Amos and Craig R. Fox (1995), “Weighing Risk and Uncertainty,” Psychological 

Review 102, 269−283. 

 

{% P. 316, §3: That coexistence of gambling and insurance is explained by overweighting of 

small probabilities. Find inverse-S %} 

Tversky, Amos and Daniel Kahneman (1992), “Advances in Prospect Theory: Cumulative 

Representation of Uncertainty,” Journal of Risk and Uncertainty 5, 297−323. 

 

{% inverse-S: Reanalyze data of their 1990 paper on chemical workers’ risk perceptions and 

decisions.  Analyzed judged probabilities but also decision weights derived from 
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decisions, finding that the decision weights depended on the stated probabilities through 

the usual inverse-S relationship.  Their curve fit found decision weights never below 0.10 

and never above 0.49, so that the inverse-S is very strong.  They jointly fit decision 

weights and utility, with utility results plausible. %} 

Viscusi, W. Kip and William N. Evans (2006), “Behavioral Probabilities,” Journal of Risk 

and Uncertainty 32, 5−15. 

 

{% inverse-S of weighting fion; §5 does estimations; use preference ladders, which means 

choices that differ only regarding their common outcome. %} 

Wu, George and Richard Gonzalez (1996), “Curvature of the Probability Weighting 

Function,” Management Science 42, 1676−1690. 

 

{% inverse-S of weighting fion%} 

Wu, George and Richard Gonzalez (1998), “Common Consequence Conditions in Decision 

Making under Risk,” Journal of Risk and Uncertainty 16, 115−139. 

 

{% inverse-S: End of §IV finds longshot effect, and explains it by overestimation of small 

probability rather than by EU. 

inverse-S: Yaari posits this on p. 290: “one finds that some subjects tend to overstate 

low probabilities and to understate high probabilities” and refers to Preston and Baratta 

(1948) and Mosteller and Nogee (1951) for related findings.%} 

Yaari, Menahem E. (1965), “Convexity in the Theory of Choice under Risk,” Quarterly 

Journal of Economics 79, 278−290. 
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Appendix H.  References Finding Evidence against Inverse-S 

{% Measure beliefs through subjective probabilities in first-price auctions.  Measure it by 

introspective judgment, quadratic scoring rule, and prediction (rewarding those whose 

probability estimates are closest to true objective probability).  Argue that the third 

method is a good compromise between being incentive-compatible (which it is only 

partly) and understandable. 

inverse-S: They find that subjects throughout underestimate their probability of winning, 

going some against inverse-S.  They find that probability weighting better explains data 

than utility curvature (which they call risk aversion), which supports the importance of 

probability weighting and prospect theory. %} 

Armantier, Olivier and Nicolas Treich (2009), “Subjective Probabilities in Games: An 

Application to the Overbidding Puzzle,” International Economic Review 50, 1013–1041. 

 

{% PT falsified: Subjects have to do common-ratio choices, and others, not once, but 

repeatedly, say 200 times.  They don’t get any info about probs. etc., only can push one 

of two buttons and from experience find out what probability distribution can be.  They 

don’t even know that it is one fixed probability distribution.  Real incentives: They are 

paid in points, and in end sum total of points is converted to money.  Loss aversion is 

confirmed.  Other than that, all phenomena are opposite to prospect theory, with 

underweighting of small probabilities, anti-certainty effect, more risk seeking with 

gains than with losses, etc.  A very remarkable and original finding.  The authors’ 

explanation is that the subjects in their experiment experience the gambles rather than get 

descriptions thereof.  It is surprising to me that subjects do not get close to expected 

value maximization. 

My explanation (ex post indeed): The subjects put the question “which button would 

give the best outcome” central, and not “which button would give the best probability 

distribution over outcomes.”  They get to see which button gave best outcomes in most 

of the cases, with recency effect reinforcing it.  Thus, subjects experience only the 

likelihood aspect, whether or not events with good/better outcomes obtain or not.  The 

subjects do not experience the outcomes, because these are just abstract numbers to be 

experienced only after the experiment.  This procedure leads to likelihood-

oversensitivity, and S-shaped rather than inverse S-shaped nonlinear measures.  Example 

of recency effect: If subjects, for instance, remember only which option gave the best 

result on the last trial, then they choose the event that with highest probability gives the 
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best outcome (a heuristic advanced by Blavatskyy).  Outcomes will be perceived as 

ordinal more than as cardinal.  The authors themselves may have alluded to this 

explanation on p. 221 just above Experiments 3a and 3b, when they refer to MacDonald, 

Kagel, and Battalio (1991, EJ) who found the opposite of what they found in an 

experiment with animals: 

“For example, Macdonald et al. used a within-subject design and allowed the decision 

makers to immediately consume their rewards.” %} 

Barron, Greg and Ido Erev (2003), “Small Feedback-Based Decisions and Their Limited 

Correspondence to Description-Based Decisions,” Journal of Behavioral Decision 

Making 16, 215−233. 

 

{% error theory for risky choice: Shows, with data, theoretical analysis, and simulation, that 

inverse-S probability estimates can be generated by errors. %} 

Bearden, J. Neil, Thomas S. Wallsten, and Craig R. Fox (2007), “Contrasting Stochastic and 

Support Theory Accounts of Subadditivity,” Journal of Mathematical Psychology 51, 

229−241. 

 

{% An interesting decomposition of some things going on in the Allais paradox. 

Finds violations of the s.th.pr. like Birnbaum and McIntosh (1996), falsifying the 

inverse-S prob weighting of CPT. %} 

Birnbaum, Michael H. (2004), “Causes of Allais Common Consequence Paradoxes: An 

Experimental Dissection,” Journal of Mathematical Psychology 48, 87−106. 

 

{% Pp. 484-486 present the evidence against inverse-S initiated by Birnbaum and McIntosh 

(1996) where in three-outcome-prospect choices with one common outcome increasing 

the common outcome does not increase risk aversion as Pt would predict, but decreases it 

in the spirit somewhat of risk aversion decreasing with increasing wealth. 

P. 493, 2nd column, 3rd para argues that evidence favoring inverse-S is confounded by 

framing effects.  The author, however, only cites his, in itself valid, counterevidence 

against one particular implication of inverse-S and not much other evidence favoring it. 

%} 

Birnbaum, Michael H. (2008), “New Paradoxes of Risky Decision Making,” Psychological 

Review 115, 463–501. 

 

{% branch independence is the sure-thing principle for events for which prob. is also given. 

PT falsified: evidence against inverse-S 
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Finds violations of the s.th.pr. like Birnbaum and McIntosh (1996), falsifying the 

inverse-S prob weighting of CPT, %} 

Birnbaum, Michael H. and Darin Beeghley (1997), “Violations of Branch Independence in 

Judgments of the Value of Gambles,” Psychological Science 8, 87−94. 

 

{% PT falsified: evidence against inverse-S 

Finds violations of the s.th.pr. like Birnbaum and McIntosh (1996), falsifying the 

inverse-S prob weighting of CPT, also for four-outcome gambles distribution-

independence is something of that kind, shifting probability mass from one common 

outcome to the other.  Humphrey and Verschoor (2004) independently found the 

same.%} 

Birnbaum, Michael H. and Alfredo Chavez (1997), “Tests of Theories of Decision Making: 

Violations of Branch Independence and Distribution Independence,” Organizational 

Behavior and Human Decision Processes 71, 161−194. 

 

{% PT falsified: evidence against inverse-S 

Considers choices (R1, R2, C) versus (S1, S2, C), R1 > S1 > S2 > R2.  CPT with inverse-S 

predicts that there will be fewer risky choices as C increases.  (If C increases from worst 

(< R2) to intermediate (between S1 and S2) then inverse-S would have the decision 

weight of S2 and R2 increase, enhancing safe choice.  If C increases from intermediate to 

highest (> R1) then inverse-S would have the decision weight of S1 and R1 decrease, 

which again enhances risk aversion.)  It is found, however, that there are more risky 

choices (in agreement, in fact, with Machina’s fanning out).  As the lotteries get better 

because of C increasing, people get more risk seeking rather than risk averse.  See Table 

1 where the percentage of safe choices decreases rather than increases as we move to the 

right.  So the extreme outcomes seem to be underweighted rather than overweighted. 

The paper gives an extensive theoretical analysis.  The most extensive tests are in 

Birnbaum and Navarrete (1998) (the main topic of which, by the way, is another), which 

also describes the other preceding evidence.  In particular, The B&M paper considers 

only three equally likely outcomes, B&N considers richer probability triples.%} 

Birnbaum, Michael H. and William R. McIntosh (1996), “Violations of Branch Independence 

in Choices between Gambles,” Organizational Behavior and Human Decision Processes 

67, 91−110. 

 

{% PT falsified: evidence against inverse-S 

Real incentives: it was all hypothetical choice; 
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evidence against inverse-S prob. weighting, especially Table 4, see the comments in 

Birnbaum and McIntosh (1996). %} 

Birnbaum, Michael H. and Juan B. Navarrete (1998), “Testing Descriptive Utility Theories: 

Violations of Stochastic Dominance and Cumulative Independence,” Journal of Risk and 

Uncertainty 17, 49−78. 

 

{% Compares utilities measured through chained SG to utilities measured through unchained 

SG, all with two-outcome gambles.  Under classical elicitation assumption (doing 

calculations assuming EU descriptively), discrepancies arise, falsifying EU.  If a 

correction is carried out for probability weighting using inverse-S within RDU, the 

discrepancies only increase.  This is counterevidence against RDU.  Earlier 

counterevidence, by Wakker, Erev, and Weber (1994), Birnbaum and McIntosh (1996), 

and Birnbaum and Navarrete (1998), always concerned three-outcome gambles, this 

paper has two-outcome gambles.  The author suggests that loss-aversion and framing can 

explain the findings. %} 

Bleichrodt, Han (2001), “Probability Weighting in Choice under Risk: An Empirical Test,” 

Journal of Risk and Uncertainty 23, 185−198. 

 

{% (PT falsified:) When they do rank-dependent utility with linear utility, and Prelec’s two-

parameter family, they find convex and not inverse-S weighting functions.  This puts the 

ball in the court of the inverse-S advocates.  To maintain their hypothesis, they have to 

find other explanations for the strategic behavior of subjects than put forward in this 

paper.%} 

Goeree, Jacob K., Charles A. Holt, and Thomas R. Palfrey (2002), “Quantal Response 

Equilibrium and Overbidding in Private-Value Auctions,” Journal of Economic Theory 

104, 247−272. 

 

{% PT falsified: find S-shaped rather than inverse-S shaped probabilit weighting. %} 

Goeree, Jacob K., Charles A. Holt, and Thomas R. Palfrey (2003), “Risk Averse Behavior in 

Generalized Matching Pennies Games,” Games and Economic Behavior 45, 97−113. 

 

{% inverse-S: Assumes it to predict future choices, but finds bad results. 

Measured utilities/probability weighting (a parameter for every outcome/probabiliity), I 

think by best-fitting, on three consecutive weeks, to find that they were not stable over 

time.%} 
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Hartinger, Armin (1999), “Do Generalized Expected Utility Theories Capture Persisting 

Properties of Individual Decision Makers?,” Acta Psychologica 102, 21−42. 

 

{% The undergrads were risk averse for 0.05 and 0.20, risk neutral for 0.80, and very risk 

seeking for 0.50 [risk seeking for (symmetric) fifty-fifty gambles].  When asked about 

latter, undergrads said things such as “It’s a good chance” or “it’s fair.”  These data go 

against the fourfold pattern of inverse-S. %} 

Henrich, Joseph and Richard Mcelreat (2002), “Are Peasants Risk-Averse Decision 

Makers?,” Current Anthropology 43, 172−181. 

 

{% PT falsified & inverse-S: They test the common consequence effect and find risk 

aversion increasing and not decreasing, which is the exact opposite of inverse S.  This 

independently replicates the same finding as by Birnbaum, for instance in Birnbaum and 

Chavez (1997). 

  More elaborate results, with error theories added, are in Humphrey and Verschoor 

(2004, Journal of African Economies).  Unfortunately, the papers have no cross 

references to explain their overlap and priority. %} 

Humphrey, Stephen J. and Arjan Verschoor (2004), “The Probability Weighting Function: 

Experimental Evidence from Uganda, India and Ethiopia,” Economics Letters 84, 

419−425. 

 

{% The data do not suggest inverse-S.  CPT estimations suggest convex (pessimistic) w for 

gains, concave for losses (also pessimistic, because of dual integration for losses that 

CPT does).  For losses they seem to find risk aversion, for gains a little risk seeking.  

This is contrary to the common empirical findings although their footnote 17 suggests 

that it is in agreement with common findings.  This population of betters can obviously 

not be expected to agree with general findings. %} 

Jullien, Bruno and Bernard Salanié (2000), “Estimating Preferences under Risk: The Case of 

Racetrack Bettors,” Journal of Political Economy 108, 503−530. 

 

{% inverse-S: find pessimism iso inverse-S.  %} 

Li, Li-Bo, Shu-Hong He, Shu Li, Jie-Hong Xu, and Li-Lin Rao (2009), “A Closer Look at the 

Russian Roulette Problem: A Re-Examination of the Nonlinearity of the Prospect 

Theory’s Decision Weight π,” International Journal of Approximate Reasoning 50, 515–

520. 
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{% PT falsified: regarding inverse-S: For RDU, his evidence cannot be reconciled with an 

inverse-S weighting function (p. 104) but it can neither be with a convex (p. 1-3).  %} 

Loomes, Graham (1991), “Evidence of a new Violation of the Independence Axiom,” Journal 

of Risk and Uncertainty 4, 92−109. 

 

{% Watch out: they do old-fashioned bottom-up RDU integration, with w around 0 relevant 

to worst outcomes and w around 1 relevant to best outcomes. 

inverse-S & risk seeking for small-prob. gains: they find and model overweighting of 

the best outcome (called “bottom-edge effect”) and, remarkably, not of the worst (see 

their p. 115 last para, and p. 116 between Eq. 11b and 12a); (EU+a*sup+b*inf ).  It 

implied that the Prelec one-parameter family performed worst than the simple 

overweighting of best outcome. 

Unfortunately, in their writing they often equate utility with risk attitude, which is not 

correct for rank-dependent utility. %} 

Loomes, Graham, Peter G. Moffat, and Robert Sugden (2002), “A Microeconometric Test of 

Alternative Stochastic Theories of Risky Choice,” Journal of Risk and Uncertainty 24, 

103−130. 

 

{% inverse-S: P. 306 considers case of two participants, one with p0.5, other with p1.5, as 

prob. transformation function.  Their average then gives inverse-S shape prob. 

transformation.  Nice example!  Estes (1956) seems to give general viewpoints on curves 

derived from group data.%} 

Luce, R. Duncan (1996), “When Four Distinct Ways to Measure Utility Are the Same,” 

Journal of Mathematical Psychology 40, 297−317. 

 

{% inverse-S: Suggest that their data for prob. transf. agree with Preston and Baratta’s but 

this is not much so.  Sprowls (1953) says they are more variable.  P. 397: For Preston and 

Baratta prob. transformation (assuming linear utility) intersects the diagonal at about 0.2, 

in this experiment at 0.5 for guardsmen, and not for the students (they are always risk 

averse).  Domain: [−0.05, 5.50]. 

Mosteller, Frederick and Philip Nogee (1951), “An Experimental Measurement of Utility,” 

Journal of Political Economy 59, 371−404. 

 

{% P. 217: risk seeking for small-prob. gains: not found, only weak risk aversion. 

P. 217: Risk aversion for small-prob. losses: neither found, only weak risk seeking. %} 
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Kühberger, Anton, Michael Schulte-Mecklenbeck, and Josef Perner (1999), “The Effects of 

Framing, Reflection, Probability, and Payoff on Risk Preference in Choice Tasks,” 

Organizational Behavior and Human Decision Processes 78, 204−231. 

 

{% small probabilities 

risk seeking for small-prob. gains: nice example that small probs. are often ignored.  

Give bounded-rationality arguments: for very small probability, even if the catastrophe is 

small, it is not worth the time to think and have transaction costs about. %} 
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{% inverse-S: find convex w more than inverse-S. %} 
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{% inverse-S: almost not found, Prelec’s one-parameter family fits best with parameter 0.94, 

which is very close to linear and has almost no inverse S.  (Utility x0.19 is very concave.)  

%} 
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