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Abstract Preference foundations give necessary and sufficient conditions for
a decision model, stated directly in terms of the empirical primitive: the pref-
erence relation. For the most popular descriptive model for decision making
under risk and uncertainty today, prospect theory, preference foundations
have as yet been provided only for prospects taking finitely many values. In
applications, however, prospects often are complex and involve infinitely many
values, as in normal and lognormal distributions. This paper provides a prefer-
ence foundation of prospect theory for such complex prospects. We allow for
unbounded utility and only require finite additivity of the underlying proba-
bility distributions, leaving the restriction to countably additive distributions
optional. As corollaries, we generalize previously obtained preference founda-
tions for special cases of prospect theory (rank-dependent utility and Choquet
expected utility) that all required countable additivity. We now obtain gen-
uine generalizations of de Finetti’s and Savage’s finitely additive setups to
unbounded utility.
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Kahneman and Tversky (1979), a paper that constituted a breakthrough
in decision theory. Up to that point, the common thinking had been that
irrational behavior was too chaotic to be modeled, and that models of rational
choice were the best descriptive approximation of irrational behavior (Arrow
1951, p. 406). Prospect theory was the first convincing model that at the same
time was tractable enough to allow for theoretical analyses and predictive
applications, and was also able to model irrationalities commonly found in
empirical choices.

Original prospect theory has some drawbacks. First, there are some theoret-
ical problems in the way it implemented nonadditive probabilities. Second, it
deals only with risk (known probabilities). Third, within risk it deals only with a
limited set of prospects (only two nonzero outcomes).1 Quiggin (1982) discov-
ered the solution to the first problem for risk. Schmeidler (1989, first version
1982) independently discovered that same solution and, importantly, extended
it to uncertainty (unknown probabilities), jointly with Gilboa (1987), which
resolves the second problem. Quiggin could handle any finite set of outcomes,
not just the case of two nonzero outcomes, and Schmeidler could handle all
bounded prospects, which attenuates the third problem. A limitation of their
solution was, however, that they could not handle reference dependence and
loss aversion, important empirical components of prospect theory, so that their
solution applies only to gains or losses separately. It cannot handle mixed
cases with both gains and losses. Tversky and Kahneman (1992) incorporated
reference dependence and loss aversion in the models of Quiggin and Gilboa–
Schmeidler, leading to new prospect theory, which will be called prospect the-
ory henceforth.2 Thus they obtained the first theory that combines theoretical
soundness with empirical realism.

The absence of any preference foundation for original prospect theory could
have served as a signal of something being wrong.3 Preference foundations
state conditions, directly in terms of preferences, that are necessary and
sufficient for some decision model, such as prospect theory, to hold. Because
preferences are directly observable, preference foundations identify the em-
pirical meaning of a model. They show how to directly verify or falsify a model
empirically, and how to defend or criticize it normatively. If the conditions in
the preference foundation are natural then the theoretical soundness of the
model has been established.

1Extensions to more nonzero outcomes, proposed in the literature, all have serious problems
(Wakker 2010, Appendix 9.8).
2The new version is, as we see it, an advance relative to the original version, as expressed in the title
of the 1992 paper. Hence we use the convenient term prospect theory for the new theory rather
than for the original one, in agreement with the terminology in Wakker, Thaler, and Tversky
(1997) for instance.
3Kahneman and Tversky (1979, Appendix), aware of the importance of preference foundations,
tried to provide one as good as possible, but they only obtained a partial foundation and could not
identify the full empirical meaning of their model.
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Historical examples illustrate the importance of preference foundations.
The Bayesian approach to economics and statistics became popular through
famous preference foundations by de Finetti (1931), von Neumann and
Morgenstern (1944), and Savage (1954). The multiple priors model, introduced
by Wald (1950) and extensively discussed as early as in Luce and Raiffa (1957,
Ch. 13), only became popular when Gilboa and Schmeidler (1989) provided a
preference foundation.

In retrospect it is clear why a preference foundation (with natural condi-
tions) could never have been found for original prospect theory: the functional
of this theory is not theoretically sound. The other theories discussed above
did receive a preference foundation. Most of those preference foundations
only concerned simple prospects, being prospects that take only finitely many
values; Schmeidler (1989) could handle all bounded prospects. The preference
foundations of Quiggin (1982) and Schmeidler (1989) were extended to con-
tinuous and possibly unbounded prospects by Wakker (1993).

Tversky and Kahneman (1992) did not define or analyze their new theory
for continuous distributions. Such a definition can readily be given (Wakker
and Tversky 1993, Eq. 6.1 and Section 8.4; Davies and Satchell 2003; Wakker
2010, Eqs. 9.7.1 and 12.8.1). This paper will present a preference foundation of
the new version of prospect theory for continuous distributions. It is desirable
to establish such a foundation because continuous distributions are widely
used in applications. For example, stock prices are usually assumed to be
lognormally distributed in finance (Hull 2006). Investment decisions deal with
continua of investment options and, then, with continua of possible returns.
Economic growth models consider continuous paths over time with continuous
risks (Becker and Boyd 1997). Health economics typically deals with continu-
ous outcome scales such as quality of life, considering continuous probability
distributions over those scales and, further, profiles that are continuous over
time (Drummond et al. 1987). References applying prospect theory with
nonlinear probability weighting to continuous distributions, often lognormal
and, hence, unbounded, include Barberis and Huang (2008), Barberis and
Xiong (2009), Bernard and Ghossoub (2009), Carlier and Dana (2011), He
and Zhou (2010), Henderson (2010), Kanbur et al. (2008), Spalt (2010), and
Sumalee et al. (2009).

Another difference between the modern version of prospect theory and its
original version is that until recently no one could even define the latter for
continuous distributions in any plausible manner. Only recently Rieger and
Wang (2008) succeeded in proposing such an extension. They showed that,
basically, only the derivative w′(0) of the weighting function w at p = 0 is
empirically relevant for continuous distributions. In our interpretation, this is
unsatisfactory. Thus Rieger and Wang revealed further limitations of original
prospect theory. Their approach can be extended to all theories using trans-
formations of probabilities of separate outcomes (Allais 1979; Edwards 1962;
Viscusi 1989).

In what follows, Section 1 deals with decision under risk. It defines prospect
theory for continuous distributions and presents the preference foundation for
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this case. Our result generalizes Wakker (1993, Corollary 4.5) by incorporating
reference dependence and loss aversion. It is also structurally more general.
As a corollary, we generalize Wakker’s extension of Quiggin’s (1982) rank-
dependent utility from countably additive to the more general finitely additive
prospects.

Section 2 provides extensions to uncertainty, which is modeled through
states of nature and events for which no probabilities are available (ambigu-
ity). This result, in combination with the aforementioned extension to finite
additivity, implies that we obtain genuine generalizations of de Finetti (1931,
1972) and Savage (1954), allowing for unbounded utility. An additional feature
of our approach is that the only richness required is that all simple (finitely
valued) prospects are available, plus truncations of the prospects considered.
Other than that, our results can be applied to any domain of prospects. It thus
serves as justification of using prospect theory in many applications, including
applications that consider only normal, or lognormal, distributions and their
truncations. Section 3 concludes. Appendix A shows how measure-theoretic
structure can be introduced, and Appendices B and C give proofs. Appendix C
introduces a method for embedding decision under risk into decision under
uncertainty that generalizes Wakker’s (1993, Section 4.2) technique.

1 Risk

Structural def initions X is an outcome set. It is often taken to be the set R of
reals, designating monetary outcomes. Everything that follows remains valid
for more general outcome sets, such as commodity bundles or health states.
We will assume for the utility function defined later that its range is a nonpoint
interval, which will imply that the outcome set is a continuum and cannot be
finite. One outcome, the reference outcome, denoted r, will play a special role in
what follows. A common case is r = 0 for monetary outcomes, designating the
status quo.

A probability distribution P on X maps the subsets of X to [0, 1], with
P(∅) = 0, P(X) = 1, and

A ∩ B = ∅ ⇒ P(A ∪ B) = P(A) + P(B) (additivity).

Sometimes a stronger property, countable additivity, is useful:
If a countable sequence of events A j are mutually disjoint then P(∪∞

j=1 A j) =
∑∞

j=1 P(A j).

P is a subset of the set of all probability distributions over X. Its elements
are called prospects. Our analysis will be flexible regarding the domain (P)
of prospects. Our analysis holds with no modification if we restrict attention
to countably additive prospects. It also holds if we add measure theoretic
structure (Appendix A).

Ps denotes the set of simple prospects, i.e. the prospects that assign prob-
ability 1 to a finite set of outcomes. A simple prospect can be denoted (p1 :
x1, . . . , pn : xn) with the obvious meaning. � is a preference relation over
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P . �, �, ≺, and ∼ are defined as usual. Any degenerate prospect (1 : α), assign-
ing probability 1 to an outcome α, is identified with that outcome. Preferences
over prospects thus generate preferences over outcomes. Outcomes strictly
preferred to r are gains, and outcomes strictly less preferred than r are losses.
Outcomes indifferent to r are neutral. For prospect P, outcome α is a certainty
equivalent (CE) if α ∼ P. A function V represents � if V : P → R and

P � Q ⇔ V(P) ≥ V(Q).

Def ining prospect theory A function w is a (probability) weighting function
if it maps [0, 1] to itself, satisfies w(0) = 0 and w(1) = 1, and is nondecreasing.
Under prospect theory, we use a different weighting function for gains than for
losses.

Definition 1 Prospect theory (PT) holds if there exist weighting functions
w+ and w−, and a utility function U : X → R with U(r) = 0, such that the
evaluation

P → PT(P) =
∫

R+
w+(P{α ∈ X : U(α) ≥ τ })dτ

−
∫

R−
w−(P({α ∈ X : U(α) ≤ τ })dτ (1)

is well defined and real-valued for all prospects P ∈ P , and represents prefer-
ences on P . Then PT(P) is the prospect theory value of P.

Tversky and Kahneman (1992) only considered simple prospects, for which
the integral in our Eq. 1 coincides with their definition of PT. Equation 1 agrees
with Quiggin’s (1982) rank-dependent utility for gains separately, and also for
losses separately. It may deviate when both gains and losses are present. We
have maintained the classical symbol U and the classical term utility, instead
of the symbol v and the term value function that Kahneman and Tversky used.
For losses, our function U implicitly includes loss aversion; i.e., it is the loss
aversion parameter times the value function of prospect theory. This is why
we do not explicitly write the loss aversion parameter in this paper. Wakker
(2010) called U the overall utility function.

Preference conditions for prospect theory If PT holds and, more generally,
if a representing function exists, then � is a weak order. That is, then � is
complete (P � Q or Q � P for all P, Q ∈ P) and transitive. For the extension
of PT from simple to bounded prospects, we use the following two preference
conditions.

(i) Certainty equivalence, or CE equivalence, holds if for each prospect P ∈ P
there exists a CE.

(ii) (Weak) stochastic dominance holds if, for all P, Q ∈ P , we have P � Q
whenever: P{β ∈ X : β � α} ≤ Q{β ∈ X : β � α}} for all α ∈ X.
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We next consider the extension to prospects with unbounded utility (of their
outcomes) that, however, still have a finite and well-defined PT value. For
this purpose we use a truncation-continuity condition, introduced by Wakker
(1993). The condition imposes restrictions on the preference relation in combi-
nation with the preference domain P . It will rule out all unbounded prospects
that have infinite or undefined PT values, and will do so entirely in terms
of preferences.

For prospect P and outcome μ, P∧μ, the above truncation of P at μ, is equal
to P on {α ∈ X : α � μ}\{μ}, and assigns all remaining probability P{μ} +
P{α ∈ X : α � μ} to outcome μ. For outcome ν, P∨ν , the below truncation of P
at ν, is equal to P on {α ∈ X : α � ν}\{ν}, and assigns all remaining probability
P{ν} + P{α ∈ X : α ≺ ν} to outcome ν.

P is truncation-robust if for all outcomes α the following holds:

P � α =⇒ ∃μ ∈ X : P∧μ ∈ P, P∧μ � α; (2)

P ≺ α =⇒ ∃ν ∈ X : P∨ν ∈ P, P∨ν ≺ α. (3)

All bounded prospects (defined formally in Appendix B), which includes all
simple prospects, trivially are truncation-robust. Truncation-continuity holds
if all prospects P ∈ P are truncation-robust. We will assume the following
richness on F : Truncation-closedness holds if for every P ∈ P and α ∈ X, we
have P∧α ∈ P and P∨α ∈ P .

Our main theorem for risk We will not relate the following theorem to one
particular preference foundation of PT. We will state it in general, so that it
can be used as an add-on to every preference foundation of PT for simple
prospects that has a continuum of utility. This includes the common cases with
real-valued outcomes or commodity bundles as outcomes and with continuous
utility. Preference foundations for PT have so far mostly been studied for
uncertainty. Chateauneuf and Wakker (1999) gave a preference foundation
for risk with a continuum of utility, but only for simple prospects. Theorem 2
can be combined with their result to include continuous distributions.

Theorem 2 Assume that PT holds on P s, with utility function U and weighting
functions w+ and w−. Assume the following richness:

(1) U(X) is an interval that contains 0 in its interior.
(2) We have: Ps ⊂ P , certainty equivalence, and truncation-closedness.

Then PT holds on all of P with respect to the same U, w+, and w−, with the PT
value of all prospects in P well def ined and f inite, if and only if the following
conditions hold on P :

(i) Weak ordering;
(ii) Stochastic dominance;

(iii) Truncation-continuity.
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Wakker (1993, Corollary 4.5) did not use the proof technique that we use
in Appendix C (constructing the state space S as a high-dimensional product
space) and, hence, provided his extension of rank-dependent utility to un-
bounded prospects only for countably additive prospects. We can now extend
it to finitely additive prospects. Another difference between Wakker’s (1993)
analysis and ours is that he used a step equivalence assumption instead of our
simpler certainty equivalence assumption. If the utility range is a continuum, as
in Wakker’s Corollary 4.5 and in our paper, then equivalence of the two con-
ditions follows elementarily. A third difference is that Wakker (1993) assumed
a condition called weak truncation-closedness, instead of our truncation-
closedness, throughout his paper. Our results could be generalized to Wakker’s
condition. That condition is, however, more complex, and we nowadays prefer
accessibility to mathematical generality.

Corollary 3 Under truncation-closedness, Corollary 4.5 of Wakker (1993)4 also
holds without the restriction of countable additivity. �

2 Uncertainty

Structural def initions X is again an outcome set, with r the reference outcome.
Now no probabilities are given for uncertainties, but uncertainties are mod-
elled through states (of nature). S denotes the state space. Exactly one state is
true, the others are not true, and the decision maker does not know for sure
which state is true. Events are subsets of the state space. An event is true if it
contains the true state of nature. ∅, the vacuous event, surely is not true, and
S, the universal event, surely is. The results in this paper all hold true both for
finite and for infinite state spaces S. For finite state spaces they, however, do
not contribute anything new, with all extra conditions vacuously satisfied. Only
for infinite state spaces do our results bring novelty.

We consider a subset F of the set of all functions from S to X. Its elements
are called prospects.5 We assume that F contains the set F s of all simple
functions from S to X, taking only finitely many outcomes. A simple prospect
can be denoted (E1 : x1, . . . , En : xn). Here it is implicitly understood that
E1, . . . , En are events that partition the state space. The prospect assigns
outcome x j to every state in E j. Using the same letter s to indicate states
of nature and, as a superscript, to indicate simple prospects will not raise
confusion.

� is a preference relation over F , with �, �, ≺, and ∼ as usual. Any de-
generate prospect (S : α), assigning outcome α to each s ∈ S, is identified with

4This corollary is the analog of Theorem 2 for Quiggin’s rank-dependent utility instead of prospect
theory.
5To distinguish the prospects defined in this section from the prospects defined before for decision
under risk, the term event-contingent prospect can be used here. We can then call the prospects for
risk probability-contingent.
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that outcome α. Preferences over prospects thus, again, generate preferences
over outcomes. Gains, losses, neutral outcomes, certainty equivalents, and
representing functions are defined as before.

Def ining prospect theory A function W is a weighting function if it maps
events to [0, 1], and satisfies W(∅) = 0, W(S) = 1, and A ⊃ B ⇒ W(A) ≥
W(B) (set monotonicity). Weighting functions need not satisfy additivity. Prob-
ability measures concern the special case of weighting functions that do satisfy
additivity.

Definition 4 Prospect theory (PT) holds if there exist weighting functions
W+ and W−, and a utility function U : X → R with U(r) = 0, such that the
evaluation

f → PT( f )=
∫

R+
W+{s ∈ S : U( f (s)) ≥ τ }dτ −

∫

R−
W−{s ∈ S : U( f (s))≤τ }dτ

(4)
is well defined and real-valued for all prospects f ∈ F , and represents prefer-
ences on F . �

Preference conditions for prospect theory Certainty equivalence (CE equiv-
alence) holds if for every prospect in F there exists a CE. The following
condition adapts stochastic dominance from risk to uncertainty. Pointwise
monotonicity holds if, for all f, g ∈ F , we have f � g whenever f (s) � g(s) for
all states s.

For prospect f and outcome μ, f ∧μ, the above truncation of f at μ, is
defined by

f ∧μ(s) = μ if f (s) � μ;
f ∧μ(s) = f (s) if f (s) � μ.

The below truncation of f at ν, f∨ν , is defined by

f∨ν(s) = ν if f (s) ≺ ν;
f∨ν(s) = f (s) if f (s) � ν.

Prospect f ∈ F is truncation-robust if for all outcomes α the following holds:

f � α =⇒ ∃μ ∈ X : f ∧μ ∈ F, f ∧μ � α; (5)

f ≺ α =⇒ ∃ν ∈ X : f∨ν ∈ F, f∨ν ≺ α. (6)

Truncation-continuity holds if all prospects f ∈ F are truncation-robust.
We will assume the following richness on F : truncation-closedness holds if
for every f ∈ F and α ∈ X, we have f ∧α ∈ F and f∨α ∈ F . As in the case
of risk we will not relate the following theorem to one particular preference
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foundation of PT. We will state it in general, so that it can be used as an add-
on to every preference foundation of PT existing today. Thus, we assume that
a PT representation has been obtained for the simple prospects, and that the
utility range is a continuum. These conditions are satisfied for all PT preference
foundations that exist today. References are given after the following theorem.

Theorem 5 Assume that PT holds on F s, with utility function U and weighting
functions W+ and W−. Assume the following richness:

(1) U(X) is an interval that contains 0 in its interior.
(2) We have: F s ⊂ F , certainty equivalence, and truncation-closedness.

Then PT holds on all of F with respect to the same U, W+, and W−, with the
PT value of all prospect in F well def ined and f inite, if and only if the following
conditions hold on F :

(i) Weak ordering;
(ii) Pointwise monotonicity;

(iii) Truncation-continuity.

Theorem 5 can be combined with any presently existing preference foun-
dation of PT (all obtained only for simple prospects) to provide a complete
preference foundation of PT including nonsimple prospects. The presently
existing preference foundations include Köbberling and Wakker (2003,
Theorem 12), Luce and Fishburn (1991, Theorem 5 and its corollary), Tversky
and Kahneman (1992, Theorem 2), Wakker and Tversky (1993, Theorem 6.3),
and Wakker (2010, Theorem 12.3.5). It may seem that certainty equivalence is
implied by the PT representation, given that U(X) is an interval, in which case
the certainty equivalence condition could have been added to the necessary
and sufficient conditions in the theorem. In virtually all cases of interest this
is correct. There are, however, exceptional examples in which this is not so
(Example 10 in Appendix B), because of which the condition has been stated
as a richness restriction.

3 Conclusion

Prospect theory had as yet only received preference foundations for simple
prospects (taking finitely many values). Applications in finance, health, and
other domains often deal with complex situations with continua of possible
outcomes. This paper has given a preference foundation for such cases, i.e.
preference conditions that provide the critical demarcation for validity of the
theory in such cases. Thus this paper supports applications of prospect theory
to situations of complex uncertainties.
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Appendix A: Measure-theory for risk and uncertainty

It is often useful, when working with measures and weighting functions, to
add measure-theoretic structure. This appendix explains how this can be done.
Nothing in the analyses of this paper in the main text needs to be modified if
such structure, as defined later, is added. We will prove our main results in fol-
lowing appendices assuming such structure. Let us point out, prior to defining
this structure through algebras D and A below, that absence of measure-
theoretic structure concerns, per definition, the special case where the algebras
D and A contain all subsets of X and S, respectively. Then all measure-
theoretic restrictions are trivially satisfied and can be ignored. Thus the proofs
in following appendices are also valid under absence of measure-theoretic
structure.

An algebra on a set (the universal set) is a nonempty collection of subsets
of the universal set that is closed under complementation and finite unions.
It follows that it contains ∅, the universal set, and is also closed under finite
intersections. A trivial example is the algebra of all subsets. Another example,
for the universal set R, is the collection of all finite unions of intervals. A third
example is the usual Borel sigma-algebra on R, which is defined as the smallest
collection closed under complementation and countable unions that contains
all intervals.

To add measure-theoretic structure to our analysis, we, throughout, endow
X with an algebra D on X. We assume that D contains all preference intervals.
A preference interval is a subset Y of X such that β ∈ Y whenever α � β � γ

for some α, γ ∈ Y. It means that D contains all U−1(I) for intervals I under PT,
both for risk and for uncertainty. For simplicity, we assume that D contains
all singletons.6 Because of this assumption, we need not distinguish between
simple prospects and step prospects.

Because we allow algebras rather than the more common sigma algebras,
some extra care must be taken in the proofs. For example, sums, differences,
and mixtures of measurable prospects now need not be measurable (Wakker
1993, Example 1.2). But maximums and minimums of two measurable pros-
pects, as in truncations, are. We will often use the latter implicitly in the proofs
that follow.

Decision under risk Now prospects are defined only on elements of D. That is,
they specify only for elements D of D what the probability is that the outcome

6This can always be arranged by replacing all outcomes by their preference indifference classes.
In view of pointwise dominance for uncertainty and stochastic dominance for risk, replacing
outcomes in a prospect by other equivalent outcomes does not affect the preference value of
the prospect, so that preferences over prospects are well defined if only indifference classes of
outcomes are specified. Because indifference classes are preference intervals and, hence, are
contained in D, we can modify D accordingly.
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of the prospect will be contained in D. Nothing more needs to be adapted
in the analysis. Measure-theoretic structure is needed, for instance, if we want
to study atomless (e.g. continuous) countably additive prospects. The reason
is that an atomless prospect defined on the collection of all subsets of a
continuum such as X cannot be countably additive (Banach and Kuratowski
1929; Ulam 1930). Its domain therefore has to be restricted.

Weak stochastic dominance implies, for X = R, that only the distribution
function (α → P((−∞, α]) is relevant for the preference value of a prospect
P. In other words, two prospects that have the same distribution function
are equally preferred. The latter requirement is automatically satisfied for
countably additive P on the Borel sets because then the distribution function
completely determines P. It is restrictive for f initely additive prospects, i.e.
prospects that need not be countably additive.

Decision under uncertainty We assume an algebra A on S in addition to the
algebra D on X. Now events are only the elements of A. We assume measura-
bility of prospects: For every f ∈ F and D ∈ D, f −1(D) ∈ A. This condition is
satisfied for all prospects if A contains all subsets of S.

Appendix B: Proof of Theorem 5

As explained in Appendix A, the following proof is valid both if the measure-
theoretic structure of Appendix A is added and if it is not. A useful point to
note is that the PT functional (Definition 4), is a sum of two Choquet integrals,
because of which it inherits many properties of the Choquet integral.

We first show that PT implies the preference conditions. Weak ordering is
obvious, and pointwise monotonicity follows from substitution. For truncation
continuity, assume f � α. Then the integral in Eq. 4 exceeds U(α). There must
be a μ′ > 0 so large that taking the left integral in Eq. 4 over [0, μ′] instead of
taking it over R

+ already gives a result in Eq. 1 that exceeds U(α).7 If U(X) is
bounded above, then we can take μ′ smaller than sup(U(X)) but close enough.
We define μ = U−1(μ′). P∧μ � α follows. The case f ≺ α is treated similarly.
Truncation continuity follows.

We next assume the preference conditions in Theorem 5, and derive PT. We
first state a special case in the following lemma and then derive the general
case.

Lemma 6 Assume that the outcome space X is an interval in the real line
containing r = 0 in its interior and that utility U is the identity (U(α) = α). For
this special case, Theorem 5 holds.

7This can be seen most easily by viewing the left integral as a regular integral of the function
W+{s ∈ S : U( f (s)) ≥ τ }. (The integral over R

+ is per definition the limit of the integrals over
[0, μ′].) It can also be seen by viewing the left integral as a Choquet integral.
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Proof Now r = 0. The proof will comprise some lemmas, whose proofs are
ended with QED. For each f in F , define V( f ) = U(α) = α with α a CE of f .
By CE equivalence, such a CE always exists. Under the assumption of linear
utility as made here, the CE is unique because different outcomes are never
indifferent. Obviously, V( f ) is real-valued for each f . By weak ordering, V
represents preference. On F s, V agrees with PT. We show that V also agrees
with the PT functional on the rest of F . V satisfies pointwise monotonicity in
the sense that f (s) � g(s) ⇒ V( f ) ≥ V(g). We call f bounded above if there
exists an outcome α such that ∀s ∈ S : α � f (s).8 We call f bounded below if
there exists an outcome β such that ∀s ∈ S : f (s) � β. We call f bounded if it
is both bounded above and bounded below.

Lemma 7 If f is bounded below then V( f ) ≥ PT( f ). If f is bounded above
then V( f ) ≤ PT( f ). This implies in either case that PT( f ) is f inite.

Proof We only consider the case where f is bounded below. This implies that
PT( f ) is well defined and is either finite or +∞. We define a sequence of
outcomes αn tending to the upper bound of X. Then f ∧αn is bounded for each
positive integer n. It is well known that, for each n, we can define a sequence
of simple prospects ( f s

n,k)
∞
k=1 approximating f ∧αn from below (Wakker 1993,

Lemma 1.4). For the PT functional, being a sum of two Choquet integrals,
we get

lim
n→∞ lim

k→∞
PT( f s

n,k) = lim
n→∞ PT( f ∧αn) = PT( f ). (7)

For each n and k, V( f ) ≥ V( f s
n,k) = PT( f s

n,k) by pointwise monotonicity of V.
Hence V( f ) ≥ PT( f ). In view of finiteness of V, PT( f ) cannot be +∞ and
must be finite too. QED

Corollary 8 The functional PT is well def ined and f inite for all f .

Proof Take any prospect f , and outcome α. By Lemma 7, f ∧α has a finite PT
integral. This implies that the negative part of the PT( f ) integral, which is the
PT integral of f ∧0 and which differs by no more than |α| from the PT integral
of f ∧α , is finite too. Similarly, f∨α and the positive part of the PT( f ) integral
are finite too. PT( f ), the sum of its positive and negative parts, is finite too.

QED

Lemma 9 V( f ) = PT( f ) for all f .

Proof For contradiction, assume V( f ) > PT( f ). The case V( f ) < PT( f ) is
similar. V( f ) = CE( f ). Because PT( f ) is smaller, there must exist outcomes

8This condition is slightly more restrictive than the common condition of boundedness if U(X) is
bounded above but does not contain its supremum.
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smaller than V( f ), and we can find an outcome α with V( f ) = CE( f ) > α >

PT( f ). There exists an outcome μ with f ∧μ � α > PT( f ) ≥ PT( f ∧μ). Then
V( f ∧μ) > α > PT( f ∧μ). This contradicts Lemma 7. QED

Lemma 6 has been proved. ��

The PT representation for Theorem 5 follows readily from Lemma 6 by
replacing all outcomes α ∈ X by U(α) and transforming the model accordingly.
This transformation does not affect anything relevant. Details are as follows.
For each α, α′ = U(α), and for each f , f ′ is defined by f ′(s) = U( f (s)).
F ′ = { f ′ : f ∈ F}, and f ′ �′ g′ if and only if f � g. �′ satisfies all conditions
in Lemma 6. The resulting PT ′ representation for �′ generates a PT repre-
sentation for �. The proof of Theorem 5 is complete.

The following example shows why certainty equivalence is not implied by
the representation in our theorems, so that it had to be added as a richness
condition. The example is pathological in considering what are known as
completely finitely additive probability measures. It can be seen that these are
the only cases where certainty equivalence is not implied by the representation.

Example 10 Let S = IN, with A containing all subsets of S. Let W+ = W− = P
be a finitely additive measure on S assigning probability 0 to every finite subset
of S. Such finitely additive probabilities exist. Because P is additive, this is the
special case where PT is expected utility. Let X = [−1, 1) with U the identity.
Let f (s) = 1 − 1/s. Then P( f (s) > 1 − 1/j) = 1 for all j ∈ IN, and PT( f ) = 1.
It is strictly preferred to every outcome in X, and there exists no certainty
equivalent of f . �

Appendix C: Proof of Theorem 2 and Corollary 3, and an example

As explained in Appendix A, the following proof is valid both if the measure-
theoretic structure of Appendix A is added and if it is not. We first consider
Theorem 2. It easily follows that PT implies the preference conditions: Weak
ordering is obvious, and stochastic dominance follows from substitution. The
proof of truncation continuity is very similar to the proof of Theorem 5 and is
omitted.

We next assume the preference conditions in Theorem 2, and derive PT. We
derive this from Theorem 5 by developing a homomorphism between risk and
uncertainty. This homomorphism is of interest on its own, because it shows
how theorems for decision under risk with finitely additive probabilities can
be derived from theorems for decision under uncertainty with state spaces.

Def inition of the homomorphism We define a state space so that each
probability-contingent prospect P corresponds with an event-contingent
prospect. A convenient construction for countably additive probability mea-
sures, used by Wakker (1993, Section 4.2), is through generalized inverses
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of distribution functions. We, however, also allow for finite additivity, where
distribution functions are more complex and do not fully characterize the
probability measure. We, hence, define an alternative homomorphism that can
handle finite additivity. It is in the spirit of Kolmogorov’s (1950) extension
theorem for countable additivity.

We define S as the product space XP with a separate dimension for each
P ∈ P . The algebra A on S contains all “cylinder” sets Y × X(P−{P}) where Y ∈
D and Y concerns dimension P, their finite intersections (“cubes”), and their
finite unions. That is, events (elements of A) specify what happens for finitely
many dimensions, and leave all other dimensions unrestricted. We endow this
algebra with a finitely additive probability Q. Q assigns to each “marginal”
Y × X(P−{P}) (with Y ∈ D referring to dimension P) the probability P(Y). Q
is the product measure of the corresponding marginal probabilities (i.e., they
are taken as independent).

Every A − D measurable function f ′ from S to X generates a probability
distribution f over X in the usual way. We define as F the set of all such
measurable functions that generate a probability distribution that is contained
in P . We define �′ on F by f ′ �′ g′ if f � g where f and g are generated
by f ′ and g′. We trivially have f ′ ∼ g′ whenever f = g, a condition known as
probabilistic sophistication (Wakker 2010, Section 10.1).

Completing the proof using the homomorphism We verify that �′ satisfies all
preference conditions of Theorem 5. Measurability, F s ⊂ F , and CE equiv-
alence are obvious. For truncation-closedness, note that each f ∈ P is gen-
erated by at least one element of F : the projection on the dimension of S
corresponding with f . Also note that truncations of f ′ ∈ F correspond with
truncations of the generated f ∈ P in the natural manner. For example, it
can be seen that f ′∧μ generates f ∧μ. Now truncation-closedness of � implies
it for �′.

We next turn to the necessary and sufficient preference conditions. Weak
ordering holds obviously, and pointwise monotonicity directly follows from
stochastic dominance. So all that remains to be proved is truncation-continuity
of �′.

Assume f ′ �′ α. Then for the corresponding f we have f ∧μ � α for some μ.
f ′∧μ ∈ F by definition of F , and f ′∧μ �′ α by definition of �′. We can similarly
show that f ′ ≺′ α implies f ′∨ν ≺′ α for some ν. Truncation-continuity holds. All
conditions of Theorem 5 are satisfied, and we obtain a PT representation
of �′.

To obtain a PT representation of �, for each p ∈ [0, 1] we take an event
E ∈ A with Q(E) = p. Such an event E always exists because every P = (p :
α, 1 − p : β) is contained in P and the event {α} × X(P−{P}) has probability
p. We define w+(p) = W+(E) and w−(p) = W−(E). This definition does not
depend on the particular event E chosen: Any two events A, B with the same
Q probability p have (A : α, Ac : β) ∼ (B : α, Bc : β) for all α � β � r and
also for all α ≺ β � r so that they have the same W+ value and the same
W− value. We have W+(E) = w+(Q(E)) and W−(E) = w−(Q(E)). Now the
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PT representation on F in Eq. 4 generates that in Eq. 1 on P . The proof of
Theorem 2 is complete.

As to the proof of Corollary 3, the above proof can with no complication be
adapted to the case where there are only gains.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.
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