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ABSTRACT

Proper scoring rules serve to measure subjective degrees of belief. Traditional proper scoring rules are based on
the assumption of expected value maximization. There are, however, many deviations from expected value,
primarily due to risk aversion. Correcting techniques have been proposed in the literature for deviations due to
nonlinear utility. These techniques still assumed expected utility maximization. More recently, corrections for
deviations from expected utility have been proposed. The latter concerned, however, only the quadratic scoring
rule, and could handle only half of the domain of subjective beliefs. Further, beliefs close to 0.5 could not be
discriminated. This paper generalizes the correcting techniques to all bounded binary proper scoring rules, covers
the whole domain of beliefs and, in particular, can discriminate between all degrees of belief. Thus, we fully
extend the properness requirement (in the sense of identifying all degrees of subjective beliefs) to virtually all
models that deviate from expected value. Copyright r 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Proper scoring rules are cleverly devised optimiza-
tion problems that serve to efficiently measure
subjective degrees of beliefs. Their original intro-
duction, and almost exclusive use up to today,
assumed expected value maximization. However,
numerous deviations from expected value have been
documented, due to risk aversion and other factors.
Winkler and Murphy (1970) analysed deviations
due to risk aversion, but still assumed expected
utility (with risk aversion then captured by non-
linear, concave utility). In view of the many
deviations from expected utility (Starmer, 2000;
Gilboa, 2004), Offerman et al. (2009; abbreviated
OSVW henceforth) extendedWinkler andMurphy’s
analysis to also incorporate the latter deviations.

The purpose of OSVW was to analyse the most
popular proper scoring rule, the quadratic one, as
it is mostly applied, so as to clarify what problems
arise in those applications according to modern
decision theories. OSVW provided corrections for
those existing applications to the extent possible.
Some problems, however, are impossible to resolve
for traditional proper scoring rules once expected
utility is abandoned. These problems, pointed out
by OSVW (Appendix A and p. 1483 penultimate
paragraph), are discussed in detail in Sections 4
and 7. In brief, the first problem is that a function
W (from which beliefs will be derived) can be
measured only on half of its domain, being only
the events that are more likely than their
complements. Without further assumptions, we
cannot observe W for events less likely than their
complements. We call this first problem the half-
domain problem, or the H-problem.

The second problem is that traditional proper
scoring rules lose their discriminatory power for
subjective beliefs around 0.5. That is, there is an
interval of degrees of belief around 0.5 where the
scoring rules give the same optimal reported
probability (‘fifty-fifty’) for all those degrees of
belief. The latter phenomenon, theoretically
predicted by nonexpected utility, is confirmed by
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empirical studies. A common finding there is
that a large proportion of reported beliefs is
exactly 0.5. It is not plausible that there will be
so many true beliefs of exactly and precisely 0.5
at exactly the event considered. It is more plausible
that people with true beliefs in a considerable
region around 0.5 all report 0.5. The level of 0.5
serves as a magnet so to say (Andersen et al.,
2009). Then a reported probability of 0.5 relates
to many degrees of true belief, and cannot be
used to uniquely find back the true belief. If
properness is taken to mean that all degrees of
belief can be identified, then traditional scoring
rules are not even proper under theories more
general than expected value, strictly speaking,
because they cannot discriminate between the
aforementioned degrees of belief around 0.5. We
call the second problem the identification-problem,
or the I-problem.

Regarding the H-problem, OSVW specified a
symmetry condition for beliefs (binary additivity, p.
1484) under which measurements from the half of
the domain that can be covered give complete
information about the other half. OSVW used this
condition in their experiment (p. 1470, 2nd
paragraph; see also the symmetry about 0.5 in
their Figure 1, reproduced as the risk corrected
curve in our Figure 4). If binary additivity is
violated, however, then half of the domain
remains unobservable (see OSVW’s p. 1484).
Regarding the I-problem, in OSVW’s experiment,
the lack of discriminatory power around 0.5 did not
occur prominently (end of Section 8.1.1). OSVW
suggested a modification that can avoid the loss of
half of the domain also if binary additivity is
violated (their Appendix A), but left its examination
to future studies. This paper provides an analysis of
their suggestion and gives generalizations.

Unlike OSVW, we do not focus on some
traditional versions of quadratic proper scoring
rules that have been popular in applications so far.
Instead, our analysis applies to all bounded
proper scoring rules. We extend the theoretical
results of OSVW for quadratic scoring rules to
general proper scoring rules, and nontraditional
scoring rules are presented that avoid the
aforementioned problems. Consequently, the
latter scoring rules extend properness from
expected value to general decision models. They
are truly proper in the sense of fully identifying
subjective beliefs (including ambiguity) over their
whole domain, for most of the currently popular
decision models.

The main contribution of OSVW was to propose
a correction of traditional proper scoring rules
for violations of expected value (risk neutrality)
that works on the half of the domain where
their scoring rule is proper. They called this
correction the risk correction. The cause
underlying the aforementioned H- and I-problems
is that traditional proper scoring rules do not
satisfy Schmeidler’s (1989) condition called
comonotonicity. We extend OSVW’s correction to
the whole domain of beliefs mainly by ensuring that
Schmeidler’s comonotonicity is satisfied. The latter
can be seen to preserve ranks of events. Hence, our
method will be called the rank correction.

Section 2 describes some history of proper scoring
rules from a personal perspective. Basic definitions
are in Section 3, with an example illustrating the
difficulties of traditional proper scoring rules under
nonexpected utility in Section 4. This example also
suggests the direction of solution. Section 5 presents
the main theorems of this paper, generalizing the
results of OSVW. Section 6 shows how these
theorems can be applied to measure subjective
beliefs in a tractable manner. Similar to OSVW,
we need no utility measurement but, unlike OSVW,
we obtain full discrimination. A discussion is in
Section 7, and Section 8 concludes.

2. PROPER SCORING RULES AS AN
APPEALING MULTICRITERIA

OPTIMIZATION PROBLEM; HISTORY AND
EXAMPLE

This section is less formal than the rest of this
paper, and is close to the lecture referred to in the
opening footnote. It can be skipped by readers only
interested in theory or applications. To take an
example examined in this paper, assume that you
want to know very precisely how likely it is that
there will be rain tomorrow according to a weather
forecaster. The event of rain tomorrow is denoted
E. You can simply ask directly, such as ‘What is
your subjective probability of E?’ Problems are,
first, that many people cannot or will not relate to
subjective probabilities, especially for unique one-
shot events as rain on the calendar day that
tomorrow is. Second, even if the forecaster under-
stands and accepts the concept of subjective
probability, there may be no clear incentive for
her to give a meaningful and truthful answer.

To find out about the ideas of the weather
forecaster, we turn to a multicriteria optimization
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problem that will turn out to have very appealing
properties. Imagine that we ask the weather
forecaster to choose a number r between 0 and 1,
telling her that she will be rewarded by 1�(1�r)2 if E
(rain tomorrow), and by 1�r2 if no rain. This
rewarding scheme is called the quadratic scoring rule.
The problem presented to the weather forecaster
entails a two-attribute optimization problem. The
weather forecaster would like to choose r so as to
maximize both the outcome (1�(1�r)2) under E and
the outcome (1�r2) under the complementary event
Ec. The former outcome increases in r and the latter
one decreases in r, so that tradeoffs between the two
attributes have to be made, as in all nontrivial
multicriteria optimization problems. What is an
optimal choice of r for the weather forecaster?

Imagine that the weather forecaster has a
subjective probability p of rain tomorrow,
consciously or subconsciously. Assume that she
maximizes expected value; i.e. expected value is her
goal function (possibly in an ‘as if’ sense). Then r is
chosen so as to maximize

pð1� ð1� rÞ2Þ1ð1� pÞð1� r2Þ:

The first-order optimality condition is as follows:

2pð1� rÞ � 2rð1� pÞ ¼ 0;

implying

r ¼ p: ð1Þ

The algebra is so simple that the readers may
wonder why we claim that proper scoring rules are
among the most appealing multicriteria optimi-
zation problems presently existing. Yet such is our
claim. The conceptual implications of the above
finding are breathtaking, as is explained next.

Equation (1) shows that it is in the self-interest
of the weather forecaster (assuming expected value
for now) to truthfully report her subjective
probability. Subjective probabilities describe the
subjective degree of belief in cases where a person
is not sure and has lack of information regarding
whether the event E will happen. We all lack
information in virtually all of our decisions. No
one knows for sure what the weather will be the
next day. Still we have to make decisions
contingent on it. That we have degrees of belief,
even precise and quantitative degrees of belief,
may seem to be like science fiction. According to
many today, including many frequentist statis-
ticians, subjective probabilities are nonexisting and
meaningless. Proper scoring rules can serve as a
powerful antidote against such views. Not only do

subjective probabilities exist for rational decision
makers (being their reported probabilities in
proper scoring rules) but even more, they are
easy to measure and to observe. To the extent that
a strict frequentist statistician will not report her
true subjective probability in a proper scoring rule,
she is only harming herself.

Proper scoring rules are, essentially, a devise for
reading the minds of people. Brier (1950) intro-
duced proper scoring rules. Bruno de Finetti, one
of the greatest thinkers of the past century and the
most important contributor to the concept of
subjective probability (de Finetti, 1931, 1937),
independently invented proper scoring rules (de
Finetti, 1962). The independence of his discovery
is credible given that he could not read or speak
English in those days. This independence was
confirmed by Savage (1971, p. 783). Further, de
Finetti invented many great ideas independently
and often before others who became more known
for them later. For example, the famous index
of risk aversion and concave utility, �U00/U0,
commonly called the Pratt-Arrow index of risk
aversion after Pratt (1964) and Arrow ([1965,
1971), first appeared in de Finetti (1952, p. 700/
701). We can now add another point to de Finetti’s
score: He was, together with Brier, the first
neuroeconomist. They could read the minds of
people without needing expensive machines, and
they could measure quantities (degrees of belief)
more interesting than the neuronal activities in the
brain studied by modern neuroeconomics.

In mainstream economics, private information
of an agent that she has but that others do not
have is often modelled as the type of the agent.
The subjective probability of the weather fore-
caster can then be taken as her type. Incentive
compatible mechanisms are games where it is in
the self-interest of an agent to reveal her true type,
and where the agent has no interest in mani-
pulating and misrepresenting her private infor-
mation. Such mechanisms are of great importance
for efficiently organizing a society, for instance for
taxation. Given this importance, Hurwicz (1960),
Maskin, and Myerson received the 2007 ‘Nobel’
prize in economics for this idea. However, Brier’s
(1950) proper scoring rule preceded Hurwicz
(1960) by a decade.

Allowing to read the minds of people,
supporting the Bayesian approach to statistics,
dominating modern neuroeconomics historically,
financially, and outputwise, and preceding a Nobel
prize discovery by 10 years should be enough to
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qualify as one of the most appealing multi-criteria
optimization problem presently existing. Algebraic
simplicity for obtaining all this is an additional
pro. When the third author, as a bachelor’s
student, and exposed to purely frequentist
statistics teachers, discovered proper scoring rules
through the inspiring text of de Finetti (1962), this
determined his academic career.

An interesting application of proper scoring
rules is in Tetlock (2005). For many years, he
interviewed leading politicians, submitting their
opinions to proper scoring rules. Then, years later,
he could draw many interesting conclusions. Such
an application had been suggested before by
Hanson (2002) and Hofstee (1988).

3. BASIC DEFINITIONS

Let E denote an event of which it is uncertain
whether or not it is true, such as rain tomorrow. Ec

denotes the complementary event. A prospect aEb
is a function from fE;Ecg to R1, assigning
outcome a to E and outcome b to Ec. That is, in
the example about rain tomorrow, it yields $a if
there will be rain tomorrow, and $b if there will be
no rain tomorrow. Section 2 discussed proper
scoring rules from a normative perspective, under
the traditional assumption of expected value
maximization. The rest of this paper analyzes
proper scoring rules under descriptively more
realistic models. We focus on binary scoring rules
with the outcome depending on whether an event
or its complement is true. We also focus on
nonnegative outcomes. For negative outcomes,
loss aversion and sign-dependent weighting have
to be incorporated (Tversky and Kahneman, 1992;
Wakker, 2010), but we leave this to future studies.
In most applications, negative outcomes cannot be
implemented so that this case is less important.

Virtually all presently existing decision theories
(Appendix A), including expected value and
expected utility, evaluate the prospect aEb by:

If a4b; then aEb/WðE ÞUðaÞ1ð1�WðE ÞÞUðbÞ;

If a ¼ b then aEb/UðaÞð¼ UðbÞÞ;

If aob then aEb/WðEcÞUðbÞ1ð1�WðEcÞÞUðaÞ:

ð2Þ

Here U : R! R is the utility function; it is
assumed continuously differentiable with positive

derivative everywhere.W, the weighting function, is
a set function with 0pW(E )p1 for all E and
E � E0)WðE ÞXWðE0Þ. When choosing between
different prospects, a decision maker chooses the
one that maximizes the above evaluation. We call
this decision model binary rank-dependent utility,
abbreviated binary RDU, or just RDU. If a5 b,
then we can also use the formula for the case a4b
or for the case aob, and all these three formulas
give the same result.

The different weighting of events under
different orderings of outcomes is referred to as
rank dependence. It was Gilboa’s (1987) and
Schmeidler’s (1989, first version 1982) key idea
for getting a sound decision theory for nonadditive
beliefs. The same basic idea had been invented
independently by Quiggin (1982) for the special
case of risk (known probabilities). W gives the
weight of events when they yield the best outcome.
A pessimist will overweight the worst outcome and
assign low W values to events. For an optimist it
will be the other way around. For two events E,Ec,
pessimism means that W(E )1W(Ec)p1. It is
psychologically plausible that people weigh events
differently when the events yield favourable out-
comes than when they yield unfavourable outcomes
(Wakker, 2010 Section 6.4). This explains the
empirical success of rank-dependent theories.

If W is a probability measure, then the tradi-
tional expected utility model results. Then the
formula for a4b agrees with that for aob in
Equation (2), and both these formulas can be used
for all cases. That is, we then need not invoke rank
dependence. If, further, U is linear then expected
value holds. In view of the many empirical
violations of expected utility, several generali-
zations have been considered. Because most of
these generalizations agree with binary rank-
dependent utility on the domain of two-outcome
nonnegative prospects considered here, our
analysis is valid under all those theories.

Proper scoring rules concern prospects
SEðrÞESEc ðrÞ. A subject chooses a real number
0prp1, called reported probability of E, and then
receives an outcome depending not only on r but
also on whether or not event E obtains. The
functions SE and SEc (chosen by the experimenter)
describe the dependence of the outcome received
on E and Ec. This pair of functions, and the
prospects SEðrÞESEc ðrÞ that they generate for each
r, are called a scoring rule. We assume that SE and
SEc are continuously differentiable. We also
assume that binary rank-dependent utility holds;
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i.e. r maximizes the RDU value of SEðrÞESEc ðrÞ.
Given continuity of the RDU functional and
compactness of r’s domain [0,1], an optimal r
always exists. There may in general exist several
optima, in which case one optimum is arbitrarily
selected to be the reported probability r.

Definition 1
A scoring rule is proper if the following

implication holds: If U is linear and W is a
probability measure with W(E )5 p (expected
value maximization), then the optimal value of r
is unique and it is p.1

Section 1 presented an example of a proper
scoring rule. We summarize the formal
assumptions of our model.

Assumption 2 [Structural Assumption]
E denotes an event, Ec its complement, and aEb a

prospect (aX0 and bX0). Prospects are evaluated by
Equation (2) (binary rank-dependent utility), with U
continuously differentiable with positive derivative
everywhere, and W a weighting function. r is
the reported probability, maximizing Equation (2)
over prospects generated by the scoring rule
SEðrÞESEc ðrÞ. SE and SEc are continuously differ-
entiable. The scoring rule SEðrÞE SEc ðrÞ is proper.

The following well-known result will often be used.
Its proof, and all other proofs, are in Appendix B.

Lemma 3
SE(r) is strictly increasing in r and SEc ðrÞ is

strictly decreasing in r

4. AN EXAMPLE ILLUSTRATING THE TWO
PROBLEMS OF TRADITIONAL PROPER

SCORING RULES

This section illustrates the main analytical diffi-
culties of traditional proper scoring rules under

nonexpected utility, and then suggests a solution.
This section can be skipped by readers specialized
in rank-dependent theories and by readers only
interested in applications. We first give a numerical
example, and then discuss it.

Example 4
Assume U(a)5 a, and W(Ec)oW(E )o0.5. The

weights W(E ) and W(Ec) add to less than 1, which
is typical of nonexpected utility with a nonadditive
W and pessimism. W(E )4W(Ec) suggests that E
is subjectively more likely than its complement.
Assume the quadratic scoring rule ð1� ð1� rÞ2ÞE
ð1� r2Þ that is discussed in Section 2. For r5 0.5,
it gives a constant score, 0.75 for both events.
Its RDU value then is, accordingly, 0.75. The
calculations given in the rest of this example show
that r5 0.5 gives the optimal value. In the main text
following the example we discuss the result in
intuitive terms, which may be more convenient for
readers who want to skip algebra as given next.

If we increase r by a small e40 then the highest
score is obtained under event E; i.e. for r40.5
we have SEðrÞ ¼ 1� ð1� rÞ241� r2 ¼ SEc ðrÞ.
Accordingly, the first part of Equation (2)
applies (with a ¼ SEðrÞ4b ¼ SEc ðrÞ). The change
in RDU value is approximately

WðE ÞS0Eð0:5Þe1ð1�WðE ÞÞS0Ec ð0:5Þe
¼ ðWðE Þ � ð1�WðE ÞÞS0Eð0:5Þeo0:

The equality follows from substituting S0Eð0:5Þ ¼
�S0Ec ð0:5Þ40, and the inequality follows from
substituting WðE Þ � ð1�WðE ÞÞo0.

If we decrease r by a small e40 then the highest
score is obtained under event Ec. Accordingly, the
last part of Equation (2) applies. The change now
is approximately

WðEcÞS0Ec ð0:5Þð�eÞ1ð1�WðEcÞÞS0Eð0:5Þð�eÞ
¼ ðWðEcÞ � ð1�WðEcÞÞS0Eð0:5Þeo0:

We substituted WðEcÞ � ð1�WðEcÞo0: The
move away from certainty by decreasing r leads
to a prospect with a considerably lower RDU
value, both because Ec is less likely than E and
because of pessimism.

It follows that r5 0.5 is a local optimum.
Because RDU is not differentiable at this r, first-
order conditions do not apply. It can be seen that
r5 0.5 is in fact a global optimum. If we assume
nonlinear utility, then the changes in RDU above
have to be multiplied by U0(0.75) which does not
change signs. Hence r5 0.5 then still is a local
optimum. Concavity of utility reinforces risk

1Our formal definition is the same as the classical
definition, with properness only referring to expected
value maximization. This paper shows in fact how such
rules can be extended to larger classes of decision models
while still eliciting beliefs correctly. The most essential
property of proper scoring rules is that all degrees of
belief are uniquely related to reported probabilities
through a known function, so that beliefs are identifiable
from observed reported probabilities. We discussed this
essential property in the introduction in the context of
the I-problem; see also the end of Section 5.
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aversion and a preference for r5 0.5. Hence, it
readily follows that r5 0.5 is a global optimum for
every concave utility function. Figure 1 depicts the
optimal r as a function of W(E ) for square-root
utility. The figure is valid whenever W(Ec)oW(E )
and, in fact, whenever W(Ec)o0.5.

We continue to consider the quadratic scoring
rule as in the above example. Under expected
value and expected utility, an event that is
more likely than its complement also has a
weight exceeding 0.5, and then it is always
favourable to increase r above 0.5. The above
example demonstrates that things are different
under nonexpected utility. Then for all events E
that are more likely than their complements but
that yet have their weight below 0.5 it is not
favourable to increase r above 0.5. In this case,
pessimism generates too much preference for
certainty, and r5 0.5 is the optimal reported
probability for all these events. Under pessimism,
which is commonly found, there will be a range of
events E like this (both W(E )o0.5 and
W(Ec)o0.5), illustrated by the flat part in
Figure 1. For all of them, r5 0.5 is optimal. The
reported probability r5 0.5 does not discriminate
between the degrees of beliefs of these events. The
most essential property of properness, the
possibility to discriminate between all levels of
belief, then is lost. This loss of discrimination is the
cause of the I-problem. The magnet-optimum at
r5 0.5 that we have established is related to
phenomena known as inertia and the bid–ask

spread. All these phenomena can be explained by
rank dependence through its implication that is
known as first-order risk aversion (Wakker, 2010
Example 6.6.1).

With regard to the H-problem, it readily follows in
the above example that r40.5 can be optimal only if
WðE ÞXWðEcÞ, and ro0.5 can be optimal only if
WðEcÞXWðE Þ.2 Thus, the highest payment can only
result under the most likely event (OSVWObservation
A1). We can never observe the weight W(E ) of an
event E that is less likely than its complement because
W(E ) only plays a role if E receives the better
outcome. This illustrates the H-problem.

Both problems just explained are implied by the
rank-dependent nature of Equation (2), where the
decision weights change in a drastic nonsmooth
manner if the ordering of the scores for the two
events changes. Such changes of orderings of out-
comes occur for traditional proper scoring rules such
as the quadratic scoring rule and, more generally, for
all scoring rules that have SEðrÞ ¼ SEc ðrÞ for some
0oro1.3 We can avoid these changes in weights,
and the corresponding analytical problems, if we use
scoring rules for which the ordering of outcomes is
the same for all r; for instance, if SEðrÞXSEc ðrÞ for
all r. In Schmeidler’s (1989) terminology, we then
consider a comonotonic set of prospects. This will be
the plan of the rank correction defined later. We first
present some theorems.

5. MAIN RESULTS

The following result generalizes Theorem 1 of OSVW.

Lemma 5
Suppose that Structural Assumption 2 holds.

For all reported probabilities r with SEðrÞ4SEc ðrÞ,
and also for r5 0 if SEð0Þ ¼ SEc ð0Þ, we have

r ¼
WðE Þ

WðE Þ1ð1�WðE ÞÞ
U 0ðSEc ðrÞÞ
U 0ðSEðrÞÞ

: ð3Þ

The expression for r in Equation (3) is not explicit
because r appears in both sides of the equality. It
is, in general, possible that for one value of W(E )
several values of r satisfy Equation (3). The
following example illustrates this point.

0.0
0.0

W (E)

op
tim

al
 r

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

Figure 1. The solid line depicts the optimal reported
probability r as a function of W(E ), assuming UðxÞ ¼ffiffiffi
x

p
and W(Ec)oW(E ) or W(Ec)o0.5.

2If W(E )oW(Ec) then each r40.5 is strictly dominated
by 1�r.
3By Lemma 3, E then is ranked best for r04r but Ec is
ranked best for r0or.
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Example 6
Assume the quadratic scoring rule and expected

utility. Assume that the utility function U is very
convex, which implies strong risk seeking. Assume
WðE Þ ¼WðEcÞ ¼ 0:5. Then the decision maker
will dislike the certainty resulting from r5 0.5
(yielding a sure outcome 0.75), and will prefer the
risk resulting from moving r up or down
somewhat. For example, if UðxÞ ¼ e2:5x, then
r5 0.14 and r5 0.86 are optimal (Figure 2;
OSVW p. 1486). Then the reported probability r
is selected to be one of these two numbers.
Equation (3) then holds for both these numbers.
It in fact also holds for r5 0.5, where there is
however a local minimum.

We can obtain an explicit expression of W in
terms of r, generalizing Corollary 2 of OSVW.

Corollary 7
Assume Structural Assumption 2, with r as in

Lemma 5. Then we have for this r:

WðE Þ ¼
r

r1ð1� rÞ
U 0ðSEðrÞÞ
U 0ðSEc ðrÞÞ

: ð4Þ

Although the following result is logically weaker
than Corollary 7, we present it as our main result
because it is especially tractable for applications.
It shows how properness can be extended to
general decision models. The condition SEð0ÞXSEc

ð0Þ implies that SEðrÞ4SEc ðrÞ for all 0orp1
because SE is strictly increasing and SEc is strictly
decreasing (Lemma 3). Event E always having the
same rank in the sense of having the best outcome,

means by definition that the set of prospects
considered is comonotonic.4 Schmeidler (1989)
demonstrated the importance of this condition for
nonexpected utility. Our analysis provides yet
another illustration of this importance.

Theorem 8
[Extending properness from expected value to

nonexpected utility]. Assume Structural
Assumption 2 with, further, SEð0ÞXSEc ð0Þ. Then
Equation (4) holds for all reported probabilities r.

One implication in the above theorem is that
W(E ), being a function of r throughout its
domain, can be uniquely inferred from r. This is
essential for the identifiability of W from r.

6. THE RANK CORRECTION AND OTHER
TRACTABLE APPLICATIONS OF

THEOREM 8

The condition SEð0ÞXSEc ð0Þ used in the preceding
results can easily be established for bounded
proper scoring rules by means of the following
observation, whose proof is trivial.

Observation 9
If SEðrÞESEc ðrÞ is proper, then so is

ðk1SEðrÞÞESEc ðsÞ for all k 2 R

with k1SEð0ÞÞX0:
ð5Þ

The requirement k1SEð0ÞÞX0 ensures that
k1SEðrÞÞX0 for all r. We can thus take any

kXSEc ð0Þ � SEð0Þ ð6Þ

to have the condition of Theorem 8 satisfied. For
example, for the quadratic scoring rule defined in
Section 2, we can take k5 1 (Figure 4 in Section 7).
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Figure 2. Multiple optima for WðE Þ ¼WðEcÞ ¼ 0:5
and convex utility in Example 6.

4For a general state space S, a set of functions from S to
R is comonotonic if there are no two functions f,g in the
set and two states s,t in S with f(s)4f(t) and g(s)og(t).
Then there is a complete ordering (ranking) of S such
that all functions in the set assign (weakly) higher
values to better ranked states (Wakker, 2010 Exercise
10.12.2). For a comonotonic set of functions, the effects
of optimistically overweighting best ranked events,
pessimistically overweighting worst ranked events,
and other forms of rank dependence work the same
for all functions. For our comonotonic scoring rules,
event E is always ranked better in the sense of always
yielding the best outcome. Hence, pessimists will over-
or underweight E the same for all prospects considered.
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For applying Observation 9 it is necessary that
SE(0) is a real number. For instance, (in
generalizations of our results to negative
outcomes) SE(0) should not be �N. Thus our
comonotonic approach cannot be used for the
logarithmic proper scoring rule.5 It can be used for
all bounded proper scoring rules, such as the

classical spherical rule ðr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21ð1� rÞ2

q
ÞEðð1� rÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r21ð1� rÞ2
q

Þ. For example, we can then take

k5 1 in Equation (5). Using this scoring rule
instead of the quadratic scoring rule in Figure 4
leads to virtually the same correction curve.

An alternative rank correction can be obtained
by arranging SEð1ÞpSEc ð1Þ, implying SEðrÞoSEc ðrÞ
for all ro1. Then all conclusions of Theorem 8, and
the following applications, remain valid by
interchanging Ec and E.

At first, our main results, based on Equation
(4), may seem to be intractable for practical
purposes. To apply it, it seems that we have to
infer ratios of derivatives of utility, and measuring
utility can be as difficult as measuring beliefs.
Before discussing the general solution, we mention
a convenient result that can be obtained if we may
assume linear utility. Then the ratio of utility
derivatives is simply 1. Linear utility is plausible
for moderate stakes as often used in proper scoring
rules (Luce, 2000, p. 86; Pigou, 1920, p. 785;
Rabin, 2000; Ramsey, 1931, p. 176). The following
observation concerns this case, and provides the
most efficient way to empirically measure
nonadditive measures W presently available in
the literature.

Observation 10
Assume that Structural Assumption 2 holds,

that SEð0ÞXSEc ð0Þ, and that U is linear. Then

WðE Þ ¼ r:

We next turn to a general method, introduced
by OSVW for their quadratic scoring rule, and
now adapted to our general setup, to avoid
measuring utility (and probability weighting) also
if utility is not linear. We assume that events Q
with objective probabilities p are available, for
instance generated by flipping symmetric coins. It

is commonly assumed thatW(Q) is the same for all
events Q with the same probability p, so that we
can define w(p)5W(Q) for a function w, called the
probability weighting function.6 OSVW considered
the function B5w�1(W), arguing that this is a
better candidate for an index of belief than W.7

Substitution in Equation (4) shows the following:
Let probability p have the same reported
probability r as event E, and let Q be the event
with objective probability P(Q)5 p. Then W(E )
and W(Q) have the same right-hand side and,
hence, the same left-hand side in Equation (4):

WðE Þ ¼WðQÞ ¼ wðpÞ ð7Þ

which implies

BðE Þ ¼ w�1ðWðE ÞÞ ¼ p: ð8Þ

Thus, an easy way results for measuring subjective
beliefs w�1(W(E )):

Step 1. For event E, observe the reported
probability r.

Step 2. For r, find an event Q with objective
probability p such that Q has the same reported
probability r as E.

Step 3. Then BðE Þ ¼ p ¼ w�1ðWðE ÞÞ is the
subjective belief in E.

OSVW measured the reported probability of a
sufficiently dense set of objective probabilities p,
taking all values p 2 f0; 1=20; . . . ; 20=20g. With
this, straightforward, work carried out once, they
could for each event E in their analysis
immediately infer its subjective belief from the
reported probability r. OSVW called this way of
filtering out w from W the risk correction.

Comonotonic scoring rules described in
Theorem 8 provide a better way to implement
the above procedure than the traditional quadratic
scoring rule of OSVW because the three-step
procedure then is valid for all r. This also holds
if binary additivity is violated and if r5 0.5. We
call the resulting procedure the rank correction,

5It can be used for the logarithmic scoring rule if we, in
generalizations to negative outcomes, can restrict
attention to a subdomain of events whose belief exceeds
some positive threshold.

6In this way, Observation 10 in particular provides the
most efficient way presently existing to empirically
measure the probability weighting function w. We then
have w(p)5 r with p the objective probability of event E.
7In the same way as we can define decision weight w(p)
for objective probability p, we can define decision
weight W(E )5w(B(E )) for general events E. This
illustrates that B rather than W is the natural analog of
probabilities. The decision component w should be
removed from W5woB before an interpretation as
index of belief can be considered.
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and we recommend its use for applications.
Comonotonicity is not only useful for the
analytical purposes explained before but also for
psychological reasons. It controls for the
psychologically realistic effects of optimism and
pessimism in rank dependence, keeping them
constant throughout the measurement of beliefs.

7. ILLUSTRATIONS AND DISCUSSION

Figure 3 depicts the modification of Figure 1 with
a rank correction instead of a risk correction. The
rank correction curve is based on our method in
Theorem 8, using Equation (5) with k5 1. It has
no flat part and discriminates between all levels
W(E ). The I-problem has been resolved. The H-
problem has been resolved too. We will discuss it
in detail for Figure 4, which is similar.

Figure 4 replicates the risk correction curve of
OSVW’s Figure 1 for quadratic scoring rules, and
adds the rank correction curve. This figure
concerns the special case where a probability p is
given for event E, objective or subjective, and
W(E )5w(p), with w and U specified in the figure.
Now we can let the x-axis designate probability p
rather than the subjective weight W(E ), which
would be w(p) in this case. The curves now give the
optimal reported probabilities r5R(p) as a
function of p. The risk correction curve is based
on the traditional quadratic scoring rule, defined

in Section 2 and used by OSVW. Again, this curve
has the I- and H-problems, but the rank-corrected
curve does not. The rank correction curve is based
on our method in Theorem 8, using Equation (5)
with k5 1. It has no flat part and discriminates
between all probabilities. Thus, the I-problem has
been solved. With regard to the H-problem, in the
risk correction curve replicated from OSVW, the
part for po0.5 has simply been obtained from
flipping and rotating the part for p40.5. This can
be justified only under a condition called binary
additivity (OSVW, p. 1484). Such a procedure was
not needed for the rank correction. This whole
curve is derived from data, and it is valid
irrespective of whether or not binary additivity
holds. Thus, the H-problem has been solved too.

7.1. Noise in observations
For practical purposes we do not only want to
avoid completely flat parts, but also shallow parts
in Figure 4, because they give little discriminatory
power and they are prone to errors due to noise in
the data. Finding proper scoring rules that provide
the optimal discriminatory power in the part of the
domain of our maximal interest is a topic for future
research. Sometimes we may deliberately restrict our
attention to events for which particular beliefs can
be excluded on a priori grounds, and require
properness and the restrictions of Lemma 5 only
on that part of the domain. For example, if we
believe beforehand that E will be judged consider-
ably more likely than its complement, so much that
we are also sure to be at a safe distance from the flat
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Figure 3. The solid line gives the optimal reported
probability r as a function of W(E ), assuming
UðxÞ ¼

ffiffiffi
x

p
, for the comonotonic quadratic scoring rule

modified using Equation (5) with k5 1: ð2� ð1� rÞ2ÞE
ð1� r2Þ. The figure is valid for all values of W(Ec).
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Figure 4. Reported probability r5R(p) as a function
of probability p. We assume binary RDU for known
probabilities, with U(a)5 a0.5 and WðE Þ ¼ wðpÞ ¼
exp�ðð� logðpÞÞ0:65Þ.
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part of the risk correction curve in Figure 4, and in
the half of the domain where the H-problem does
not occur, then we can again consider using the
traditional quadratic scoring rule of OSVW.

7.2. Interpretations of subjective beliefs and ambiguity
Reported probabilities are purely choice-based
concepts. Any psychological concept derived from
them is based on interpretations. Under expected
utility, (subjective) probabilities are usually inter-
preted as cognitive indexes reflecting degrees of
beliefs. This interpretation is commonly followed
in the literature on proper scoring rules. Schmei-
dler (1989) interpreted his nonadditive general-
ization W of subjective probabilities also as an
index of belief but assumed expected utility for
risk. As explained before, OSVW suggested that
w�1(W) is a good index if expected utility for risk
is violated. In Schmeidler’s approach, with ex-
pected utility holding for risk so that w is the
identity function, we have B5W so that OSVW’s
interpretation is consistent with Schmeidler’s. As
did OSVW, we follow these generalized interpreta-
tions to stay as close to the traditions in the
literature on proper scoring rules as possible.

Further generalizations and different interpreta-
tions can be considered. Nonadditive measures are
often assumed to capture the effects of ambiguity
(unknown probabilities). It can be debated to what
extent ambiguity concerns the cognitive component
of belief or, differently, components of decision–
attitude, or, possibly, a mix/interaction of these two
components. No consensus has yet been reached in
decision theory on these questions. We leave the
interpretations and further decompositions and
disentangling of various components to future
studies.

8. CONCLUSION

Proper scoring rules are important tools for
measuring subjective degrees of beliefs. They have
many appealing and valuable properties. Unfortu-
nately, they have mostly been analysed under the
assumption of expected value maximization,
whereas many empirical studies have demon-
strated violations of expected value. OSVW
extended one proper scoring rule, the quadratic
one, to general decision theories, but had no
discriminatory power for events with likelihood
close to fifty–fifty (the identification problem).
Further, they could not provide observations for

events less likely than their complement (the half-
domain problem). This paper generalizes the
results of OSVW to all proper scoring rules and
degrees of belief, and shows how the problems
mentioned can be resolved. Thus, we have
provided a general method for measuring sub-
jective beliefs.

APPENDIX A: SPECIAL CASES OF BINARY
RANK-DEPENDENT UTILITY

As explained in Appendix C of OSVW, many
existing theories are special cases of Equation (2).
If an objective probability p is given of E and
WðE Þ ¼ p ¼ 1�WðEcÞ, then we deal with
expected utility for decision under risk (von
Neumann and Morgenstern, 1944). If no objective
probability p is given of E, but W(E ) is a
subjective probability, then we deal with subjective
expected utility for decision under uncertainty
(Savage, 1954). In both cases considered, WðE Þ1
WðEcÞ ¼ 1.

If an objective probability p is given of E, but
W(E )5w(p) for a nonlinear function w then we
deal with rank-dependent utility (Quiggin, 1982)
and, for gains, with prospect theory (Kahneman
and Tversky, 1979; Tversky and Kahneman,
1992). Studies with rich domains of events E
have found that W often cannot be obtained as a
transformation of probabilities, not even of
subjective probabilities (ambiguity). Then general
nonadditive set functions W are used (Denneberg,
1994), as in Choquet expected utility (Gilboa,
1987; Schmeidler, 1989). For prospects with two
outcomes as considered here, other theories are
also special cases of Equation (2). These theories
include multiple priors with maxmin expected
utility (Chateauneuf, 1991; Gilboa and
Schmeidler, 1989; Luce and Raiffa, 1957; Wald,
1950) and with a-maxmin (Eichberger et al., 2010;
Ghirardato et al., 2004; Hurwicz, 1951; Jaffray,
1994 Section 3.4; Luce and Raiffa, 1957 Section 13.5).
For gains, prospect theory (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992) is included.
Other models include Einhorn and Hogarth (1985)
and Pfanzagl (1959).

Many papers considered nonadditive belief
measures W without explicitly linking them to
decisions, as in belief functions (Chateauneuf and
Jaffray, 1989; Dempster, 1967; Denoeux, 2008;
Grabisch et al., 2001; Rota, 1964; Shafer, 1976;
Stanley, 1986), fuzzy measures (Grabisch et al.,

A. KOTHIYAL ET AL.110

Copyright r 2011 John Wiley & Sons, Ltd. J. Multi-Crit. Decis. Anal. 17: 101–113 (2011)

DOI: 10.1002/mcda



2000; Zadeh, 1965), imprecise probabilities
(Walley, 1991), support functions (Tversky and
Koehler, 1994), and upper and lower probabilities
(Kyburg, 1983).

APPENDIX B: PROOFS

Proof of Lemma 3
Assume, for contradiction, that SE(r)5SE(r

0)
for some r 6¼r0. Then r is (at least weakly)
preferable to r0 for all W(E ) if SEc ðrÞXSEc ðr0Þ. r0

is (at least weakly) preferable to r for all W(E ) if
SEc ðrÞpSEc ðr0Þ. r and r0 are equivalent for all W(E )
if SEc ðrÞ ¼ SEc ðr0Þ. That is, the comparison
between SEc ðrÞ and SEc ðr0Þ determines a choice
between r and r0 irrespective of W(E ). It then is
impossible that r is strictly preferable at p5 r and
r0 is strictly preferable at p5 r0 under expected
value, and a contradiction with properness has
resulted. Hence the continuous SE must be either
strictly increasing or strictly decreasing, and SEc

must also be one of these two. Because for p5 1
the value r is chosen so as to maximize SE and this
value of r, by properness, is r5 1, we see that SE is
maximal at r5 1. Similarly, inspecting p5 0 we see
that SEc is maximal at r5 0. Hence, the only
possibility is that SE is strictly increasing and SEc is
strictly
decreasing. &

We next establish Equation (3) for all optimal r
that satisfy a first-order condition, dealing with
boundary solutions only after. We denote the
reported probability r that optimizes the value
of the scoring rule by ~r. By r we denote general
values in [0,1]. From classical properness, it
follows that the expected value under W(E )5 p
is optimal at r ¼ ~r ¼ p for all pA[0,1] Hence, we
have, for all rA[0,1] (for interior r as first-order
condition, and then for the boundary r’s by
continuity)

pS0EðpÞ1ð1� pÞS0Ec ðpÞ ¼ 0 8p 2 ½0; 1�: ðB1Þ

It implies

S0Ec ðpÞ ¼ �
pS0EðpÞ
1� p

8p 2 ½0; 1Þ: ðB2Þ

We now turn to general W,U. We write p for
the decision weight W(E ). If ~r40, then, by
continuity, SEðr0Þ4SEc ðr0Þ for an r0o~r. If ~r ¼ 0,
then we define r0 ¼ ~r ¼ 0. The comonotonic region
is [r0,1]. By Lemma 3, SEðrÞXSEc ðrÞ for all r in the
comonotonic region. For all prospects here, E

yields the best outcome, which by Schmeidler’s
(1989) definition means that this set of prospects is
comonotonic. We restrict our attention to the
comonotonic region in what follows. There the
prospect SEðrÞEðSEc ðrÞÞ is evaluated by:

VðrÞ :¼ pUðSEðrÞÞ1ð1� pÞUðSEc ðrÞÞ

with first derivative

V 0ðrÞ ¼ pS0EðrÞU
0ðSEðrÞÞ

1ð1� pÞS0Ec ðrÞU 0ðSEc ðrÞÞ: ðB3Þ

Substituting Equation (B2) for r5 p, the first
derivative is as follows:

V 0ðrÞ ¼
S0EðrÞ
1� r

½ð1�rÞpU 0ðSEðrÞÞ

� rð1� pÞU 0ðSEc ðrÞÞ� 8r 2 ½0; 1Þ: ðB4Þ

For interior optimal ~r (0o~ro1), V 0ð~rÞ ¼ 0, and
Equations (3) and (4) follow from the following
equalities:

ð1� ~rÞpU 0ðSEð~rÞÞ � ~rð1� pÞU 0ðSEc ð~rÞÞ ¼ 0 ðB5Þ

which follows from Equation (B4) because SE(r) is
strictly increasing.8 We now get

~r

1� ~r
¼

p
1� p

U 0ðSEð~rÞÞ
U 0ðSEc ð~rÞÞ

:

Algebraic manipulations now give Equations (3)
and (4) for ~r.

We finally turn to r5 1 and r5 0; i.e. we
consider boundary solutions r. The case of ~r ¼ 1 is
similar to the case ~r ¼ 0.9 In the rest of the proof
we consider the latter case. If p5 0 then Equations
(3) and (4) follow immediately, and we are done.
We assume p40 henceforth, and derive a
contradiction.

We have ‘40’ in Equation (B5) because U040,
p40, and ~r ¼ 0. By continuity, we have ‘40’ for

8This is direct if S0Eð~rÞ40. It is also possible that
S0Eð~rÞ ¼ 0, and we assume this henceforth. Assume, for
contradiction, that we have ‘o0’ in Equation (B5).
By continuity, this holds on an interval ½r0; ~r� for some
r0o~r that can be assumed to be in the comonotonic
region. S0EX0 implies V0p0 on ðr0; ~r�. Because SE is
strictly increasing, S0E takes positive values at some
values in ðr0; ~r�, implying that V0o0 there and V is
strictly larger there than at ~r, contradicting optimality
at ~r. ‘40’ in Equation (B5) similarly leads to a
contradiction, with V larger at some value r04~r.
9There is a duality between E and Ec, r and 1�r, and p
and 1�p, because of which the case ~r ¼ 1 follows from
the case ~r ¼ 0.
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all r in [0, r0) for some r040. The interval [0, r0] can
and will be assumed to be contained in the
comonotonic region. Because S0EðrÞX0, Equation
(B4) would imply V0(r)X0 on the open interval (0,
r0). By continuity, this would hold on [0, r0]. V,
being maximal at r5 0, then would be constant on
[0, r0]. Because SE is strictly increasing it must have
positive derivate at some points in [0, r0]. V0, the
product in Equation (B4), is positive there, and V
cannot be constant on [0,r0], so that a
contradiction has resulted. The proof is done.
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