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An individual … can always assign relative likelihoods to the states of nature. But how 
does he act in the presence of uncertainty? The answer to that may depend on another 
judgment, about the reliability, credibility, or adequacy of his information.

—— Daniel Ellsberg (1961, p. 659)

In many situations we do not know the probabilities of uncertain events that are 
relevant for the outcomes of our decisions. The importance of finding tools to ana-
lyze such situations has been understood since Frank Knight (1921). In some sit-
uations we can still assign subjective probabilities to the relevant events and use 
expected utility (Leonard J. Savage 1954) or, more generally, nonexpected utility 
(“probabilistic sophistication”; Mark J. Machina and David Schmeidler 1992). In 
a fundamental contribution, Ellsberg (1961) showed that it is often impossible to 
use subjective probabilities, implying that probabilistic sophistication cannot be 
applied. We therefore have to develop more general models (“ambiguity”). Whereas 
the importance of developing such models had been understood for a long time, 
it was not until the end of the 1980s that such models were discovered (multiple 
priors: Itzhak Gilboa and Schmeidler 1989; rank dependent utility: Gilboa 1987; 
Schmeidler 1989).
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Ambiguity has subsequently become a central topic of research, and several new 
models have been developed (David Ahn et al. 2009; Gilboa 2004), most of which 
were normatively oriented. They usually assumed expected utility for given prob-
abilities (Gilboa and Schmeidler 1989; Peter Klibanoff, Massimo Marinacci, and 
Sujoy Mukerji 2005; Fabio Maccheroni, Marinacci, and Aldo Rustichini 2006; 
Schmeidler 1989). Our aim, however, is purely descriptive. Hence, we assume non-
expected utility throughout.

Several recent empirical studies compared ambiguous events with unambiguous 
events as in Ellsberg’s (1961) paradox, and fitted the α-maxmin model (Yan Chen, 
Peter Katušcák, and Emre Ozdenoren 2007; see also Ahn et al. 2009; for a survey 
of neurostudies, see Soo Hong Chew et al. 2008). The ambiguity attitude of an 
individual was then captured by one number, the α parameter, taken as a general 
degree of ambiguity aversion. Our paper considers richer domains of uncertainty 
with various events and various levels of likelihood involved, both for experimental 
Ellsberg-type events and for natural events. The data that we obtain reveal rich pat-
terns of ambiguity attitudes. Besides aversion, insensitivity to ambiguity turns out 
also to be an important component. Further, within one individual, the two compo-
nents vary widely between different sources of uncertainty. Hence it is desirable to 
develop flexible and rich tools to analyze ambiguity, and this is the purpose of the 
present paper. The richness of ambiguity, with no probabilities of events specified, 
can be compared to the richness of outcomes with no monetary values specified. In 
the same way as one cannot expect there to be one index of risk aversion applicable 
to all nonmonetary outcomes, one cannot expect there to be one index of ambigu-
ity aversion applicable to all ambiguous events. We show that, despite its richness, 
ambiguity can be quantitatively analyzed in a tractable manner by means of what 
we call the source method. We can make exact quantitative predictions about future 
behavior, and we can calculate ambiguity premiums.

A central concept in our analysis will concern sources of uncertainty, as first 
advanced by Amos Tversky in the early 1990s (Tversky and Craig Fox 1995; Tversky 
and Daniel Kahneman 1992). Sources of uncertainty are groups of events that are 
generated by the same mechanism of uncertainty, which implies that they have 
similar characteristics. Following Chew and Jacob S. Sagi (2008), we can define 
choice-based probabilities within particular (uniform) sources even when Machina 
and Schmeidler’s (1992) probabilistic sophistication does not hold between sources. 
Source functions then map choice-based probabilities into willingness to bet. In 
this way, the richness of attitudes to uncertainty and ambiguity can be captured by 
graphs on the probability interval rather than by general functions on algebras of 
events. This considerably increases the tractability of the analysis.

To sum up, we use three components to describe decision under uncertainty: (i) the 
utility of outcomes; (ii) choice-based probabilities for each source of uncertainty; 
(iii) source functions. Component (iii) captures the deviations from Bayesianism1 in 
a tractable manner. Those deviations include the Allais and Ellsberg paradoxes, the 
home bias, and ambiguity aversion. Attitudes towards ambiguity are measured by 
comparing component (iii) for known and unknown probabilities. In the Bayesian 

1 The term Bayesian refers to expected-utility based components.
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view, (i) reflects tastes, (ii) reflects beliefs, and (iii) reflects deviations from rational 
behavior.

The paper proceeds as follows. Section I presents preliminaries, including the 
decision model assumed. Our model includes most nonexpected utility models 
used today. Section IIA introduces the source method, with ways to model different 
attitudes towards uncertainty and ambiguity in Section IIB. Section IIC presents 
indexes of aversion to uncertainty and of insensitivity to uncertainty. Section III 
tests our new concepts in the often-studied Ellsberg paradox, and Section IV tests 
them for natural uncertainties from daily life. In both cases, a rich variety of ambigu-
ity attitudes is found, not only between persons, but also within them. The patterns 
found confirm, for revealed-preference data, findings in the psychological literature 
that were based on introspective judgments (Tversky and Fox 1995; Hillel Einhorn 
and Robin Hogarth 1985). Section V contains a discussion, and Section VI con-
cludes. A Web Appendix gives experimental details, in particular discussing the 
incentives used. It further gives all parameter estimations at the individual level, all 
details of statistical tests discussed later, and several other results at the individual 
level. Examples A.1 and A.2 in this appendix illustrate how our method can give 
exact quantitative predictions for the home bias (Kenneth R. French and James M. 
Poterba 1991). The home bias entails that investors systematically prefer domestic 
stocks to foreign stocks beyond beliefs (subjective probabilities) or tastes (utilities). 
The bias is accommodated by the different source functions for the different stocks.

I.  Preliminaries

This section introduces basic concepts and notation. (E1:x1, … , En:xn) denotes a 
prospect yielding outcome xj if event Ej happens. Outcomes are nonnegative real 
numbers designating money. Exactly one of the events E1, … , En will happen, and 
it is uncertain which one. Thus it is uncertain which outcome will result from a 
chosen prospect. ≽ denotes the preference relation of a decision maker over the 
prospects. We assume weak ordering throughout; i.e., ≽ is complete and transitive. 
Strict preference (≻) and indifference or equivalence (~) are defined as usual. For 
each prospect, the certainty equivalent is the sure amount that is indifferent to the 
prospect. Expected utility holds if a prospect (E1:x1, … , En:xn) is evaluated by its 
expected utility ​∑ j=1​ 

n
  ​ P ​(Ej)u(xj), with u, the utility function, continuous and strictly 

increasing and P(Ej) the subjective probability of event Ej.
In our measurements we will need only two-outcome prospects. The notation xEy 

is shorthand for (E:x, not–E:y). It is implicitly assumed in this notation that x ≥ y. 
For such binary prospects, most static and transitive nonexpected utility theories2 
use the same evaluation. Since these theories diverge only for prospects with three 
or more outcomes, the results of this paper apply to all of them. This convenient 
feature of binary prospects was put forward by Ghirardato and Marinacci (2001), 
Duncan Luce (1991), and John M. Miyamoto (1988).

2 See Ahn et al. (2009), Syngjoo Choi et al. (2007), Thibault Gajdos et al. (2008), Gilboa (1987), Gilboa and 
Schmeidler (1989), Paolo Ghirardato, Maccheroni, and Marinacci (2004), Schmeidler (1989), and Tversky and 
Kahneman (1992).
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We first define our basic model for uncertainty, where no probabilities need to 
be given. A weighting function W assigns a number W(E) between 0 and 1 to each 
event E, such that:

 	  (i)	W(∅) = 0;

 	 (ii)	W is 1 at the universal event;

  (iii)	E ⊃ F implies W(E) ≥ W(F).

Binary rank-dependent utility (RDU) holds for binary prospects if there exist a 
strictly increasing utility function u : 핉 → 핉 and a weighting function W such that 
preferences maximize

(1) 	  xEy ↦ W(E)u(x) + (1 − W(E))u(y).

This model generalizes expected utility by allowing W to be nonadditive. W can be 
interpreted as willingness to bet.

For calibrations of likelihoods of events, we fix a “good” and a “bad” out-
come. Let us assume that these are 1,000 and 0, the values used in the second—
experiment reported later. A bet on event E designates the prospect 1,000E0.
E and F are revealed equally likely, denoted E ~ F, if 1,000E0 ~ 1,000F 0. We 
next define an exchangeability condition that is stronger than revealed equal—
likelihood.

Definition 1. Two disjoint events E1 and E2 are exchangeable if exchanging the 
outcomes under the events E1 and E2 never affects the preference for a prospect; i.e., 
always (E1:x1, E2:x2,  …  , En:xn) ~ (E1:x2, E2:x1,  …  , En:xn). A partition (E1,  …  , En) 
is exchangeable if all of its elements are mutually exchangeable.

Exchangeability of events implies that they are equally likely. Exchangeable 
partitions were called uniform by Savage (1954), and they played a central
role in his analysis. We will use Savage’s term uniform for a slightly different and 
more general concept, for which the following definition prepares.

Probabilistic sophistication holds if there exists a probability measure P such 
that for each prospect (E1:x1, … , En:xn) the only relevant aspect for its preference 
is the probability distribution (p1:x1, … , pn:xn) that it generates over the outcomes, 
where pj = P(Ej) for all j. That is, two different prospects that generate the same 
probability distribution over outcomes are equivalent in terms of ≽. Probabilistic 
sophistication maintains the probability measure P from expected utility but allows 
for more general (nonexpected-utility) evaluations over probability distributions. 
Under probabilistic sophistication, revealed equal likelihood is not only neces-
sary, but also sufficient for exchangeability. The special case of known objective 
probabilities (risk) will be discussed after we have introduced sources in the next 
section.
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II.  Sources of Uncertainty

The first step in our analysis is to distinguish between different sources of uncer-
tainty. A source of uncertainty concerns a group of events that is generated by a 
common mechanism of uncertainty. In Ellsberg’s (1961) classical two-color para-
dox, one source of uncertainty concerns the color of a ball drawn randomly from an 
urn containing 50 black balls and 50 red ones (the known urn). Another source con-
cerns the color of a ball drawn randomly from an urn with 100 black and red balls 
in unknown proportion (the unknown urn). People are willing to exchange a bet on 
black for a bet on red from the known urn, with similar willingness to exchange col-
ors for the unknown urn. They are, however, not willing to exchange a bet on a color 
from the known urn for a bet on a color from the unknown urn. This willingness to 
exchange within but not between urns suggests that the events pertaining to the same 
urn share features and constitute one source of uncertainty, but events concerning 
different urns belong to different sources. The Ellsberg paradox concerns one spe-
cial case of the different treatment of different sources (Chew et al. 2008; Tversky 
and Fox 1995). Alternatively, one source of uncertainty can concern the Dow Jones 
index, and another source the Nikkei index, as in the home bias. Whereas probabi-
listic sophistication is usually violated between sources, as first demonstrated by the 
Ellsberg paradoxes, within single sources it is often still satisfied.

A. Uniform Sources

For convenience, we will assume that sources are algebras, which means that 
they contain the universal event (certain to happen), the vacuous event (certain 
not to happen), the complement of each of their elements, and the union of each 
pair of their elements. Thus they also contain every finite union and intersection of 
their elements. Extensions to domains other than algebras are left to future studies.

We call a source S uniform if probabilistic sophistication holds with respect to 
S. Formally, this means that there exists a probability measure P on the events of S 
such that the preference for each prospect (E1:x1,  … , En:xn) with all outcome-rele-
vant events Ej in S depends only on: (a) the source S; (b) the probability distribution 
(p1:x1, … , pn:xn) generated over outcomes, with pj the probability P(Ej). Under uni-
formity, P will usually denote the relevant probability measure on the source with-
out further mention. Uniformity is an endogenous concept. Chew and Sagi (2008) 
emphasized the interest of considering probabilistic sophistication within sources 
without imposing it between sources. Wakker (2008) pointed out that probabilistic 
sophistication within a source entails a uniform degree of ambiguity for that source, 
which is why we call such sources uniform.

If a finite partition (E1, … , En) is exchangeable then the generated source (con-
sisting of unions of events from that partition) is uniform. Chew and Sagi (2006) 
showed that, under some regularity and richness conditions,3 a source is uniform if 
and only if the following conditions hold for the events of the source:

3 Their richness is satisfied under the common assumption that the probability measure is atomless and countably 
additive on a sigma algebra. It can also be accommodated for finite equally-likely-state spaces as in our Section III 
(equation (4) can then be dropped).
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(2) 	  E ~ F (E and F are revealed equally likely) implies that
 	 E and F are exchangeable (holds for all uniform partitions).

(3) 	  For each pair of disjoint events, one contains a subset that 
 	 is exchangeable with the other (imposing richness).

(4) 	  For each n there exists an exchangeable n-fold partition
 	 (imposing richness).

This result shows that uniformity is a natural extension of exchangeability from 
finite sources to rich (continuum) structures.

For a rich uniform source, we can elicit probabilities to any desired degree of 
precision using a bisection method and equation (3) (see Section IVA). We can, for 
example, partition the universal event into two equally likely events ​E​ 2​ 

1​ and ​E​ 2​ 
2​ that 

then must each have probability 0.5. We next partition ​E​ 2​ 
1​  into two equally likely 

events ​E​ 4​ 
1​ and ​E​ 4​ 

2​ that must each have probability ¼, and we partition ​E​ 2​ 
2​ into two 

equally likely events ​E​ 4​ 
3​ and ​E​ 4​ 

4​ that also each have probability 1/4. We continue like-
wise. This method will also be used in the experiments described later. We will then 
test some implications of the equations (2–4), similar to Baillon (2008).

We next consider an implication of probabilistic sophistication (with probability 
measure P) on S that will be useful for the analysis of ambiguity for uniform sources 
in the next subsection. Under probabilistic sophistication on S, there exists a func-
tion wS such that for any event E from S we have4

(5) 	  W(E) = wS(P(E)).

After substitution in equation (1), we obtain the following evaluation of binary 
prospects:

(6) 	  xEy ↦ wS(P(E))u(x) + (1 − wS(P(E)))u(y).

The function wS, carrying subjective probabilities to decision weights, is called 
the source function. Probabilistic sophistication on S generalizes the probabilistic 
sophistication of Machina and Schmeidler (1992) because wS can now depend on the 
source. That is, whereas probabilistic sophistication holds within some sources, it 
need not hold between sources. The source method uses source functions to analyze 
uncertainty.

Vernon L. Smith (1969, p. 325) and Robert L. Winkler (1991, giving several more 
references) argued for maintaining probabilistic beliefs in the Ellsberg paradox. 
They preferred to accommodate this paradox using the utility function. We will 
maintain probabilities but will also leave utility unaffected (the latter was argued for 
by Robin M. Hogarth and Hillel J. Einhorn 1990, p. 708). Instead, we use source 
functions as the third component, rather than modifying probabilities (beliefs) or 

4 The implication can be derived as follows. If P(A)=P(B), then 1,000A0~1,000B0. Substituting equation (1) 
shows that then W(A) = W(B). Thus, equality of P implies equality of W. It is well known that equation (5) then 
follows.
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utilities (“tastes”), to capture ambiguity attitudes. Source functions reflect interac-
tions between beliefs and tastes that are typical of nonexpected utility and that are 
deemed irrational in the Bayesian normative approach.

Under usual regularity conditions, wS(0) = 0, wS(1) = 1, and wS is continuous and 
strictly increasing. As is usual, we assume that events with known probabilities con-
stitute one uniform source of uncertainty (Fox, Brett A. Rogers, and Tversky 1996, 
p. 7), and we write the corresponding source function without subscript. For an 
event E with known probability P(E) = p, we equate xEy with the probability distri-
bution xpy, yielding x with probability p and y with probability 1 – p. The conven-
tion x ≥ y is maintained in this notation. The evaluation is, accordingly:

(7) 	  xpy ↦ w(p)u(x) + (1 – w(p))u(y).

We call probability distributions over outcomes risky prospects, or just prospects 
if no confusion will arise. As for uncertainty, also for risk most nonexpected utility 
theories used today agree for binary prospects and evaluate them by equation (7).

B. Uncertainty Attitudes

Figure 1 depicts the main properties of source functions wS (cf. Hogarth and 
Einhorn 1990, Figure 1). The x-axis designates probabilities p, which are choice-
based and need not be objective. The y-axis designates weights wS(p), that is, 
transformed probabilities. Figure 1A displays expected utility with a linear source 
function. Figure 1B displays a convex source function, leading to low weights for 
good outcomes and enhancing risk aversion or pessimism. Figure 1C displays an 
inverse S–shaped source function wS. The convex part near 1 explains the risk aver-
sion and pessimism found for unfavorable events that happen with a small prob-
ability (so that the complementary, favorable, event E weighted by wS has a high 
probability). The concave part near 0 explains the risk seeking and optimism found 
for favorable events E that happen with a small probability (the long shot effect). 
Thus the inverse S shape explains the coexistence of gambling and insurance 
(Tversky and Kahneman 1992, p. 316).

The inverse S–shaped source functions reflect a lack of sensitivity to intermediate 
changes in likelihood, so that all intermediate likelihoods are moved in the direction 
of 50-50. The jumps from certainty to uncertainty are then overweighted. Hence, 
this phenomenon is also called likelihood insensitivity. It suggests that decisions will 
not be influenced much by the updating of probabilities after receipt of new infor-
mation. Likelihood insensitivity resembles regression to the mean. It is, however, 
not a statistical artifact, but a perceptual phenomenon that occurs in actual decisions. 
Figure 1D, the most common shape, combines the two deviations from expected 
utility, pessimism and likelihood insensitivity.

Comparative versions of the above concepts can be defined. This can be done 
between persons (Mr. A is more averse to investing in Dutch stocks than Mr. W). 
Ellsberg’s paradox shows that such comparisons can also be done within persons 
(this person is more pessimistic about investing in foreign stocks than in domestic 
stocks; cf. Fox and Tversky 1995, p. 162). Formal definitions and results are in 
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Fox and Tversky (1998), Michael Kilka and Martin Weber (2001), Drazen Prelec 
(1998), Tversky and Fox (1995), Tversky and Wakker (1995), and George Wu and 
Richard Gonzalez (1999).

Ambiguity reflects what uncertainty comprises beyond risk. That is, it concerns 
the differences between decisions and beliefs for unknown probabilities versus 
those for known probabilities. Ambiguity attitudes can be examined by comparing 
source functions for ambiguous sources to those for sources with known probabili-
ties. More general comparisons, between different sources that are all ambiguous, 
are possible (Section IV).

C. Indexes of Uncertainty Aversion and Insensitivity

The graphs of source functions capture attitudes towards uncertainty. For reasons 
of parsimony, it is sometimes convenient to summarize ambiguity attitudes in terms 
of one index number, or two as we will propose. Our proposed indexes are based on 
neoadditive weighting functions (Alain Chateauneuf, Jürgen Eichberger, and Simon 
Grant 2007). They were  suggested to us by Fox (1995, personal communication). 
The first index summarizes the degree of pessimism, with optimism as its counterpart. 
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Figure 1. Shapes Of Source Functions
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This index of pessimism will be larger in Figure 1B than in Figure 1A. The differ-
ence in pessimism between uncertainty and risk then reflects ambiguity aversion. The 
data of our experiments show that a second kind of deviation from expected utility, 
orthogonal to pessimism, is relevant: the degree of likelihood insensitivity. Figure 
1C exhibits more likelihood insensitivity than Figure 1A. We use linear regression, 
illustrated in Figure 2, to define the two indexes. Choosing our indexes corresponds 
to choosing the neoadditive weighting function that best fits the data.

Assume that the regression line of the source function on the open interval (0,1) 
is p ↦ c + sp, with c the intercept and s the slope. Let d = 1 −   c − s be the 
distance from 1 of the regression line at p = 1; i.e., the “dual intercept.” We define

(8) 	  a = c + d (= 1 − s) as an index of (likelihood) insensitivity,

and

(9) 	  b = d − c (= 1 − s − 2c) as an index of pessimism.

These indexes can be interpreted as simplified versions of indexes used by Kilka 
and Weber (2001) and Tversky and Fox (1995). Craig Webb and Horst Zank (2008) 
considered their measurement and preference axiomatizations. An elaborate discus-
sion and theoretical analysis of these measures, as well as of general properties and 
comparisons of source functions, are left to future research.

III.  The Source Method for Ellsberg-like Uncertainties

This section shows how source functions capture attitudes towards uncertainty 
and ambiguity for the classical two-color Ellsberg paradox. This paradox concerns 
artificial events in a laboratory setup, but it is the most studied case of ambiguity. 
Hence, it serves well as a first test of new concepts.

A. Experimental Design

N = 67 students faced two Ellsberg-like urns. The known urn K contained eight 
balls of different colors: red, blue, yellow, black, green, purple, brown, cyan. The 
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unknown urn contained eight balls with the same eight colors, but the composition 
was unknown in the sense that some colors might appear several times and others 
might be absent. As explained in Section II, the two urns concern two different 
sources. For both urns, each ball was equally likely to be drawn. In what follows, 
elementary events of a single color drawn are denoted (with S = K or S = U) by RS, 
BS, YS, AS (A for black), GS, PS, NS (N for brown), and CS. Subjects faced 26 series 
of choice tasks. Each series involved a choice between a prospect and an ascending 
range of sure payments, with the midpoint between the switching values taken as 
certainly equivalent. At the beginning of the experiment, each subject was told that 
one of his choices would be randomly drawn and then played for real.

B. Analysis

Testing Uniformity.—According to uniformity, certainty equivalents of the 
prospect 25E0 should be the same for different events E with an equal number of 
colors (exchangeability). We tested this equality for the unknown urn for three 
one-color events, randomly chosen per subject, for the two-color events {YU, AU}, 
{GU, PU}, {NU, CU}, and {RU, BU}, and for the four-color events {RU, BU,YU, AU} and
{GU, PU, NU, CU}.

Elicitation of Utility.—Utility was elicited using the semiparametric method of 
Abdellaoui, Han Bleichrodt, and Olivier L’Haridon (2008). For each urn we elicited 
certainty equivalents for seven prospects with outcomes between €0 and €25, and 
the outcome-relevant event always being {RS, BS, YS, KS,}, with S = K or S = U. This 
event has a subjective probability of 0.5 for both S. We fitted equation (7) assuming 
a power utility function u(x) = (x/25)ρS (S = K or S = U), and taking the weight 
wS(0.5) of the outcome-relevant event as extra parameter. We used nonlinear least-
square estimation with the certainty equivalent as dependent variable. Choi et al. 
(2007) used a similar model with power utility and the same distance measure to fit 
multiple-choice data.

Source Functions.—To measure wS(p) for p ≠ 0.5, we elicited certainty equiva-
lents CE of prospects 25E 0 with E containing j colors for all j ≠ 4. Substituting equa-
tion (7) then gives wS( j/8) = (CE/25)ρS as a nonparametric estimation. Once the 
values wS( j/8) have been elicited, we can do parametric fitting using Prelec’s (1998) 
two-parametric compound invariance family while minimizing quadratic distance:

(10) 	  wS(p) = (exp(−(−ln(p))α))β.

Parameter α has a meaning similar to our index a reflecting insensitivity, and 
parameter β has a meaning similar to our index b reflecting pessimism. The sta-
tistical tests of α and β gave results similar to those for a and b. For brevity, we 
report only the latter.5 We also analyzed our data using probabilistic choice-error 

5 The parameters a and b have clearer interpretations, primarily because α impacts both likelihood insensitiv-
ity and pessimism. Indeed, α and β were more strongly correlated than a and b, here and also in the natural-event 
experiment reported later.



705Abdellaoui et al.: The Rich Domain of UncertaintyVOL. 101 NO. 2

theories and econometric maximum likelihood estimations. The results are in the 
Web Appendix, and they all agree with the results reported here. All estimations of 
utilities and weighting functions were done at the individual level.

C. Results

Unless stated otherwise, all statistical tests concern two-sided t-tests with 0.05 as 
level of significance.

Uniformity.—ANOVAs with repeated measures show that uniformity is not 
rejected (p = 0.335 for the single-color events; p = 0.245 for the two-color events; 
p = 0.824 for the four-color events). Hence, we will assume the uniform subjec-
tive probability distribution. Because of the central role of this assumption in our 
analysis, we inspected it also at the individual level, rejecting it only for subject 52, 
who was accordingly removed from the analysis. No conclusion was affected by 
this removal.

Utility.—The median utility parameters (ρK = 1.05 and ρU = 1.09) are not sig-
nificantly different from 1 for both urns (sign-tests; 6 p = 0.539 for K; p = 0.175 for 
U). Utility is the same for the two urns (sign-test; p = 0.902).

6 The parameters had outliers and were skewed, resulting in medians and sign tests (having more power) being 
more appropriate than means and t-tests.
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Source Functions.—Figure 3 represents the source functions in the two urns 
(based on median parameters of the Prelec family). The difference between the two 
curves reflects ambiguity attitudes. The dashed curve, reflecting a general uncer-
tainty attitude towards the unknown urn, then consists of the risk attitude component 
plus the ambiguity attitude component.

The source functions are significantly different from the identity function 
(wS (p) = p) at p = 1/8, 2/8, and 3/8 for urn K, and at p = 1/8, 5/8, 6/8, and 7/8 
for urn U (Table 1). Consequently, EU cannot accommodate our data, in agreement 
with common findings (Gilboa 2004). For large probabilities (p > 0.5), source 
functions are significantly lower for urn U than for urn K. For small probabilities 
(p ≤ 0.5) there is no significant difference.

The likelihood insensitivity indexes (0.19 for K and 0.31 for U) significantly 
exceed 0. There is also significantly more insensitivity in urn U than in urn K, which 
is natural given that U has unknown probabilities, whereas K has known probabili-
ties. The pessimism index is positive in urn U (0.04) and negative (meaning opti-
mism) in urn K (−0.08). None of them is significantly different from 0. Pessimism 
in the unknown urn, however, significantly exceeds that in the known urn.

Individual Behavior.—There is much variation between subjects. The follow-
ing figure shows the source functions of three subjects. The values corresponding 
to observations are represented by black (K) and white (U) circles, and the fitted 
source functions by a continuous line for K and a dash-dot line for U.

For urn K, subject 2 is mostly pessimistic, subject 44 is likelihood insensitive, and 
subject 66 combines both. Subject 44 is ambiguity averse, subject 66 is ambiguity 
seeking, and subject 2 is more likelihood insensitive for urn U than for urn K. The 
Web Appendix gives the graphs for six more subjects, discussing several other phe-
nomena. It also provides histograms of the shapes of individual source functions and 
of the number of subjects who are ambiguity averse or ambiguity seeking, plus some 
scatter plots explained later.

Table 1—Source Functions for K and U

p Median Mean
Interquartile —

range
t-tests

wS(p) = p
t-tests

wU = wK

1/8
K 0.19 0.26 [0.12, 0.37] 0.000 0.339
U 0.19 0.23 [0.06, 0.32] 0.000

2/8
K 0.31 0.34 [0.22, 0.44] 0.001 0.231
U 0.27 0.30 [0.11, 0.45] 0.068

3/8
K 0.44 0.44 [0.30, 0.57] 0.012 0.187
U 0.40 0.40 [0.22, 0.58] 0.294

4/8
K 0.50 0.50 [0.36, 0.63] 0.851 0.066
U 0.48 0.46 [0.34, 0.56] 0.145

5/8
K 0.64 0.63 [0.50, 0.79] 0.849 0.007
U 0.58 0.56 [0.42, 0.68] 0.023

6/8
K 0.75 0.73 [0.63, 0.86] 0.409 0.001
U 0.68 0.65 [0.51, 0.81] 0.000

7/8
K 0.94 0.87 [0.80, 0.99] 0.911 0.000
U 0.82 0.75 [0.63, 0.93] 0.000

Note: The median value of wK(1/8) is 0.19, the mean value of wU(4/8) = 0.46, and so on.
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D. Conclusions from the Ellsberg Experiment

Given the symmetry of the colors, it is not surprising that uniformity of the 
sources was verified because the events were exchangeable. Our finding that differ-
ent sources of uncertainty generate different source functions but not different utility 
functions is plausible. The source functions directly pertain to uncertainty, whereas 
the utility functions concern something of a different nature, being the value of out-
comes. This is corroborated by Abdellaoui, L’Haridon, and Corina Paraschiv (2009) 
who also measured utility for risk and ambiguity within binary RDU and also found 
no difference.

The source functions display natural properties. They deviate from EU (linearity). 
There is more willingness to bet for risk than for ambiguity if the choice-based prob-
abilities on the x-axis exceed 0.5, as predicted both by greater aversion to uncertainty 
than to risk, and by greater insensitivity to uncertainty than to risk. Willingness to 
bet is the same for risk and for uncertainty if the choice-based probabilities are 
below 0.5. This also agrees with both more aversion to, and more insensitivity to 
ambiguity, because these effects neutralize each other for such probabilities.

Whereas general ambiguity aversion would predict that all curves for the unknown 
urn are below those for the known urn, Figures 3 and 4 display more complex pat-
terns. There is also some ambiguity seeking, and considerable insensitivity to ambi-
guity displayed by inverse S–shaped curves. These findings illustrate the richness of 
the domain of uncertainty.

IV.  The Source Method for Natural Uncertainties

Ellsberg’s urns were constructed such that uniformity is automatically satisfied 
within the sources. Uniformity is less trivial for natural sources of uncertainty. Such 
sources are the topic of the second experiment, presented in this section.

A. Experimental Design

Subjects and stimuli (sources).—N = 62 students were presented prospects 
for three sources of uncertainty with unknown probabilities concerning: (a) The 
French Stock Index (CAC40) (how much it would change on a given day); (b) the 
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temperature in Paris; (c) the temperature in a randomly drawn remote country, dif-
ferent for each subject. All events concerned a fixed day (May 31, 2006) about three 
months after the experiment. All indifferences were obtained using repeated choice 
and bisection.

Stimuli: exchangeable events.— Figure 5 depicts the partitioning of events that 
we used. This design for testing exchangeability was first used by Baillon (2008). 
We elicited values a1/8, a1/4, a1/2, a3/4, a7/8 using indifferences between (bets on) 
events that partition events into two equally likely subevents, in the following 
order of elicitation: (a) (−∞,  a1/2] ~ (a1/2, ∞) generating the exchangeable par-
tition {E1

2, E 2
2} at the second level in the figure; (b) (−∞, a1/4] ~ (a1/4, a1/2] and 

(a1/2, a3/4] ~ (a3/4, ∞) generating the exchangeable partition {E 1
4, E

2
4, E

3
4, E

4
4}, at the 

third level in the figure; (c) (−∞, a1/8] ~ (a1/8, a1/4], and (a3/4, a7/8] ~ (a7/8, ∞) gen-
erating part of the exchangeable partition at the fourth level. To illustrate our mea-
surement, if a subject preferred to bet on (= receiving 1,000 conditional on) event 
(ℓ, ∞) rather than on event (−∞, ℓ], but preferred to bet on (−∞, h] rather than on 
(h, ∞), then we inferred that a1/2 was between ℓ < h. A subsequent preference for 
betting on (−∞, (h + ℓ)/2] rather than on ((h + ℓ)/2, ∞) then shows that a1/2 is 
actually between ℓ and (h + l)/2; and so on. Next, with a1/2 elicited, a preference 
for betting on (ℓ′, a1/2] rather than on (−∞, ℓ′  ] then shows that a1/4 is between ℓ́  and 
a1/2. And so on.

In the notation ​E​ j​ 
i​ = (a(i−1)/j, ai/j], subscript j indicates the level (number of events 

in the partition), and superscript i indicates the number of the event in a left-to-
right reading. Thus events ​E​ 2j​ 

2i−1​ and ​E​ 2j​ 
2i​ partition event ​E​ j​ 

i​. In the notation ai/j, the 
subscript i/j designates the probability of not exceeding ai/j under uniformity. We 
did not measure a3/8 and a5/8 so as to reduce the burden of the subjects, and because 
the literature on risk and uncertainty suggests that the most interesting phenomena 
occur at extreme values. In other words, we did not determine the middle events of 
the exchangeable partition {​E​ 8​ 

1​, … ,​ E​ 8​ 
8​}. Using the values measured, we carried out 

several tests of uniformity (= exchangeability for our stimuli).

Stimuli: certainty equivalents.—We measured certainty equivalents of the risky 
prospects 1,0001/80, 1,0001/40, 1,0001/20, 1,0003/40, and 1,0007/80, and of the risky 
50-50 prospects 5001/20, 1,0001/2500, 5001/2250, 7501/2500, and 1,0001/2750. We 
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also measured the certainty equivalents of the prospect 1,000E0, with E being (−∞, 
a1/8], (−∞, a1/4], (−∞, a1/2], (−∞, a3/4], (−∞, a7/8], and (a1/2, ∞) for each source.

Motivating subjects.—All subjects received a flat payment of €20. For the hypo-
thetical treatment (n = 31), all choices were hypothetical. For the real treatment (n 
= 31), real incentives were implemented by the random incentive system in addi-
tion to the flat payment. That is, one of the 31 subjects was randomly selected at 
the end, and one of his choices was randomly selected to be played for real. The 
money earned could be collected about three months later, after the uncertainty had 
been resolved. The subjects in the hypothetical treatment did not know that a real-
incentive treatment would follow later for other subjects.

Analysis.—Unless stated otherwise, all statistical tests concern two-sided t-tests 
with 0.05 as level of significance. We fitted the data similarly as in the first experi-
ment. We first used the certainty equivalents of the (risky) 50-50 prospects 5001/20, 
1,0001/2500, 5001/2250, 7501/2500, and 1,0001/2750, respectively, to optimally fit 
equation (7) with power utility u(x) = xρ. With the utility function thus determined, 
we used the certainty equivalents of the prospects 1,0001/80, 1,0001/40, 1,0001/20, 
1,0003/40, 1,0007/80 to determine the source function w(p) for risk at the probabili-
ties concerned. Then, by equation (7), CE ~ 1,000 p0 implies w(p) = CEρ/1,000ρ 
for all p = 1/8, 1/4, 1/2, 3/4, and 7/8.

Because the first experiment found no difference in utility between risk and uncer-
tainty, and because there is no prior reason to expect such a difference, we measured 
utility for risk only in the second experiment and used that utility for uncertainty too. 
Thus we did not have to measure utility for uncertainty separately and were able to 
reduce the burden for the subjects. For each uncertain source, we used the certainty 
equivalents of bets on the events (−∞, a1/8], (−∞, a1/4], (−∞, a1/2], (−∞, a3/4], and 
(−∞, a7/8], and the power utility function to determine the W values of these events, 
with CE ~ 1,000E0 implying the equality W(E) = CEρ/1,000ρ by equation (1).

To test exchangeability as implied by uniformity, we first measured, for each 
source, the value a′1/2 such that (a1/4, a′1/2] ~ (a′1/2, a3/4]. Exchangeability requires 
a′1/2 = a1/2. Next we measured a″1/2 such that (−∞, a″1/2] ~ (a″1/2, ∞), which is 
simply an exact replication of the measurement of a1/2 as done before. It serves 
to test for consistency (a″1/2 = a1/2). The value a1/2 is important because the other 
measurements of events are derived from it, which is why we measured it exten-
sively. We measured preferences between bets on different intervals that should be 
indifferent under exchangeability: (−∞, a1/8] versus (a7/8, ∞] and (a1/8, a1/4] versus 
(a3/4, a7/8].

B. Results on Uniformity, Subjective Probability, and Utility

Uniformity.—We use the term case to specify both the source of unknown prob-
ability (CAC40, Paris temperature, or foreign temperature) and the treatment (real 
incentives or hypothetical choice). Thus there are six cases. Since there were no 
irregularities in the answers that subjects supplied, we used the whole sample. The 
third measurement of a1/2 (as midpoint of (−∞, ∞)) was identical to the first mea-
surement and served as a reliability test. Pairwise t-tests never rejected the null 
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hypothesis of equal values (for neither treatment nor for the whole group), and the 
correlations exceeded 0.85 for all three sources and both treatments. These results 
suggest that the measurements were reliable.

The most refined level of partitioning for which we obtained observations con-
cerned the eightfold partition of the events ​E​ 8​ 

i​ , which we observed for i = 1, 2, 7, 8. 
The equivalences ​E​ 8​ 

1​ ~ ​E​ 8​ 
2​ and ​E​ 8​ 

7​ ~ ​E​ 8​ 
8​ hold by definition. Assuming transitivity of 

indifference, it suffices to verify the equivalence ​E​ 8​ 
2​ ~ ​E​ 8​ 

7​ to obtain equivalence of 
all ​E​ 8​ 

i
 ​ available. For no case did a binomial test reject the null hypothesis of indiffer-

ence between bets on ​E​ 8​ 
2​ and ​E​ 8​ 

7​. The choices between ​E​ 8​ 
1​  and ​E​ 8​ 

8​ serve as an extra 
test of uniformity joint with transitivity of indifference. Again, a binomial test never 
rejected indifference.

We made no observations of the eightfold partition {​E​ 8​ 
i
 ​} between a1/4 and a3/4, but 

in this region we can test exchangeability (implied by uniformity) for the fourfold 
partition {​E​ 4​ 

i
 ​}. Given the equivalences E 1

4 ~ E2
4 and E3

4 ~ E4
4 that hold by defini-

tion, and transitivity of indifference, it suffices to verify the indifference E 2
4 ~ E3

4. 
Although we did not directly test choices between bets on E 2

4 and E3
4, our sec-

ond measurement of a1/2, as midpoint of (a1/4, a3/4], entails a test of the equiva-
lence E 2

4 ~ E3
4. The correlations between the first and second measurement of a1/2 

exceeded 0.75 for all three sources and both treatments as well as the whole group, 
exceeding 0.90 in all but one case. Pairwise t-tests never rejected the null hypoth-
esis of equal values of a1/2 (for neither treatment nor for the whole group) with one 
exception: For the hypothetical group and foreign temperature the difference was 
significant (t30 = 2.10, p = 0.04).

Another test of exchangeability can be derived from comparing the certainty 
equivalents of bets on events E1

2 to those on events E2
2. Under exchangeability, these 

should all be the same. Pairwise t-tests never rejected the null hypothesis of equal 
values (for neither treatment nor for the whole group), with Pearson correlations of 
approximately 0.5 and more. Hence these tests do not reject exchangeability.

The tests suggest that uniformity is least satisfied for foreign temperature with 
hypothetical choice, with no violations found for the other five cases. Because the 
source method has been developed for uniform sources, we will report our analyses 
of risk and ambiguity attitudes for only the five remaining cases in what follows.

Subjective Probabilities.—Figures 6 and 7 display median subjective probability 
estimations for the real and hypothetical treatments contrasted with historical fre-
quencies. The medians are always derived from the medians of the ai/j. Figure 6 dis-
plays the median subjective probability distribution functions for CAC40. Both curves 
show that our subjects were optimistic in the sense that they considered increases of 
the index to be more probable than decreases. The figure also displays the observed 
frequency distribution over the year 2006. Our subjects expected extreme, primarily 
positive, changes to be more likely than they actually were.

Figure 7 displays the median subjective distribution function for Paris tem-
perature. The historical distribution for the time considered (May 31, 1 PM) has 
been added too. The curves are well calibrated. Our subjects are apparently better 
acquainted with temperature volatility than with stock volatility. The data also sug-
gest that subjects did not expect higher temperatures than the historical distribution 
over the past century. We do not report the subjective probabilities for foreign cities 
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because the cities were different for different subjects so that this distribution did 
not concern the same random event for all subjects. Although it was unlikely that 
the subjects, who were recruited individually, might know each other, we wanted 
to avoid any possibility of their learning anything about the city, which is why we 
changed it for each subject.

Utility.—The certainty equivalents (statistics not reported) suggest risk seeking 
for low probabilities and risk aversion for moderate and high probabilities, with 
more risk aversion for the real treatment than for the hypothetical treatment. All 
these findings agree with common findings in the literature (Colin Camerer and 
Hogarth 1999; Gonzalez and Wu 1999), and are confirmed by the parametric esti-
mations given in the Web Appendix. Figure 8 displays the empirical distribution of 
the individual powers of utility. The majority of powers is below 1, suggesting mod-
erate concavity (61.2 percent for the hypothetical treatment and 72.4 percent for the 
real treatment). Median, mean, and standard deviations are 0.92, 1.01, and 0.59 for 
the hypothetical treatment and 0.75, 0.85, and 0.56 for the real treatment. The pow-
ers of utility were lower for the real-incentive group than for the hypothetical group, 
but the difference was not significant. A lower power entails more concavity, which 

3025
0.0 

35201510

0.8 

0.4 

0.2 

1.0 

oC

Median
choice-based
probabilities
(hypothetical
choice)  

 

0.0 

 
 

Real data over
the year 2006  

0            1           2           3 −1−2−3

0.8 

0.6 

0.4 

0.2 

1.0 

CAC40 

Median
choice-based
probabilities
(real incentives)  

Real data over
1900–2006  

Median
choice-based
probabilities
(real incentives)   

Median
choice-based
probabilities
(hypothetical
choice)  

0.6 

Figure 6. Probability Distributions —
for Cac40

Figure 7. Probability Distributions —
for Paris Temperature

0

Hypothetical 
Real 

1                                         2                 3 0

1

0.5 

powers ρ 

Figure 8. Cumulative Distribution of Powers



712 THE AMERICAN ECONOMIC REVIEW april 2011

will generate more risk aversion (given a fixed weighting function), in agreement 
with the common findings in the literature of more risk aversion for real incentives.

C. Overall Results for Source Functions

This section reports results on source functions, describing the decision attitudes 
found. It does so only for the five cases where uniformity is satisfied. Figure 9 dis-
plays source functions. Panel A displays source functions obtained from the raw 
data and linear interpolation, and panel B displays the best-fitting function from 
Prelec’s (1998) compound invariance family (equation 10). The statistical results for 
Prelec’s parameters α and β were similar to those for a and b. As with Experiment 
1, we report only the latter.

The indexes a and b were calculated for each subject and each source. The param-
eters displayed are calculated to fit the group averages and will not be used in statis-
tical analyses. Their orderings agree with all qualitative findings made below. Note 
how Figure 9 compactly and completely presents all components of the decision 
attitude beyond Bayesian expected utility. Together with the Bayesian components 
of utility and subjective probabilities, the figure completely captures the decision 
attitude, exactly quantified, for four sources at the same time. This makes it possible 
to immediately and visually compare these non-Bayesian components. In particular, 
by comparisons with the graphs for risk, the figure immediately reveals attitudes 
towards ambiguity.

The hypothetical-treatment curves (Figure A.13 in the Web Appendix) are similar 
to those of the real-payment treatment (Figure 9), but hypothetical choices were sub-
ject to more noise. All curves display the common inverse S shape of Figure 1D with 
low probabilities overweighted and high probabilities underweighted. Most observed 
points wS(p) deviate significantly from linearity. In other words, the null hypothesis of 
EU is usually rejected, except at p = 0.5, in agreement with inverse S. The insensitivity 
parameter a is significantly higher for real incentives than for hypothetical choice for 
CAC40 and foreign temperature, and marginally so for Paris temperature (p = 0.053). 
The pessimism parameter b is not different for the two treatments.

Regarding source functions under hypothetical payment, no significant differ-
ences are found between the source functions for different sources. We therefore 
focus on real payment. We first consider source functions wS(p) at single prob-
abilities p. With risk included, a repeated-measures analysis ANOVA (corrected by 
the Huynh-Feldt ε) finds significant source dependence for wS(p) and real payment 
except at p = 0.5. Figure 9 shows that there is source preference (higher curve, so 
less pessimism) for risk over all other sources. Indeed, paired t-tests for risk against 
each of the three sources indicate that the values wS(p) are significantly higher for 
risk than for foreign temperature at all probabilities (i.e., ambiguity aversion at all 
probabilities), for CAC40 at p = 0.125 and p > 0.50 and for Paris temperature at 
p > 0.5 (i.e., ambiguity aversion for high probabilities). If we exclude risk, then 
the ANOVA finds significant source dependence for p = 0.25. The figure suggests 
source preference for Paris temperature over CAC40 and foreign temperature, and 
more pronounced inverse-S for CAC40 than for foreign temperature, but the differ-
ences between the curves at the various probabilities are not significant except for 
Paris against foreign temperature at p < 0.5.
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We next consider tests of pessimism and likelihood insensitivity based on the 
global parameters a and b. A repeated-measures ANOVA (corrected by the Huynh-
Feldt ε) reveals a clear source dependence of the pessimism index b. The insensi-
tivity parameter is not significantly different across sources at 5 percent once the 
Huynh-Feldt correction is applied.

D. Results at the Individual Level for Source Functions

To illustrate that the source method can be used at the individual level, Figure 10 
displays the curves for the four sources of one subject, subject 2 from the 
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real-payment treatment. This subject thought long and seriously about each ques-
tion, and the interview took almost two hours. He exhibits source preference for all 
sources over foreign temperature. Further, risk is less likelihood insensitive than 
CAC40 and Paris temperature. In the raw data, the subject slightly violates monoto-
nicity for CAC40, showing that there is noise in the data.

Behavioral implications are that the subject will be more prudent, invest less, and 
take out more insurance for foreign temperature events than for the other events. The 
subject will be more open to long shots for Paris temperature and CAC40 than for risk 
but, on the other hand, will also rather insure for Paris temperature and CAC40 than 
for risk. An updating of (subjective) probabilities after receipt of new information will 
affect the subject less for Paris temperature and CAC40 than for risk.

Figures 9 (for a representative agent) and 10 (for subject 2) concerned a within-
person comparison of different attitudes towards uncertainty for different sources, 
which we take as the main novelty initiated by the Ellsberg paradoxes. We can also use 
source functions and the above indexes of pessimism and likelihood insensitivity for 
the—more traditional—between-person comparisons of uncertainty attitudes. Figure 
11 displays some comparisons. We selected four subjects with clearly distinct curves 
for the purpose of illustration. All curves concern the same source, namely Paris tem-
perature. The lowest curve (subject 18) is more pessimistic than all other subjects. 
This subject will buy more insurance, for instance. The dark middle curve (subject 2) 
clearly displays more pronounced likelihood insensitivity than the dashed curve that 
is close to linear (subject 48). Hence, simultaneous gambling and insurance is more 
likely to be found for subject 2 than for subject 48, and subject 2’s decisions will be 
influenced less by new information (updating probabilities) than those of subject 48 
(cf. Larry G. Epstein 2008).

In general, there was more variation in the individual parameter estimates for the 
ambiguous sources than for risk. It is not surprising, indeed, that risk is perceived 
more homogeneously across individuals than ambiguity.

Figure 11. Source Functions for Paris Temperature and 4 Subjects for Real Payment
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Figures 12 and 13 display scatter plots of the pessimism indexes and the insen-
sitivity indexes, respectively, of the 29 subjects of the real payment group in each 
ambiguous source (y-axis) as a function of the pessimism indexes under risk 
(x-axis). The correlations between the pessimism index in each of the three ambig-
uous sources and the one under risk (the ρs in each graph) are positive and highly 
significant, as are the corresponding correlations between the insensitivity indexes. 
Thus some subjects are likely to be more pessimistic (or more insensitive) for 
all sources than other subjects, showing that there is systematic between-subject 
heterogeneity. Further, the subjects are significantly more pessimistic in each of 
the three ambiguous sources than under risk (paired t-tests), showing that there 
is systematic between-source heterogeneity. The insensitivity indexes were not 
significantly different between the different sources. Similar scatter plots for the 
hypothetical choices and for the Ellsberg experiment of Section III, with the same 
findings, are in the Web Appendix. This Web Appendix also provides histograms 
of the shapes of individual source functions and of the number of subjects who are 
ambiguity averse or ambiguity seeking.
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Figure 12. Pessimism Indexes in the Ambiguous Sources with Respect to Risk (Real Payment)

Note: Numbers of observations above and below the diagonal have been indicated.
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E. Results Regarding Ambiguity

Ambiguity attitudes are usually taken to reflect the differences between sources 
with unknown probabilities and sources with known probabilities. We can infer those 
differences from comparing the curves for risk with the other curves, in Figures 9 
and 10. These comparisons have been discussed above, with the risk curves typi-
cally dominating the other curves, confirming ambiguity aversion.

F. Conclusions from Natural-Event Experiment

In natural sources of uncertainty, uniformity is a nontrivial restriction. We found 
it violated in one of the six cases considered. Again, the source functions display 
natural properties, with more willingness to bet for risk than for the other sources 
when the choice-based probabilities exceed 0.5. There is considerable variation not 
only between subjects but also within subjects between sources.

Behavioral implications of our findings are that people will be more prudent, 
invest less, and take out more insurance for unknown probabilities than for known 
probabilities, confirming ambiguity aversion. As regards the three sources with 
unknown probabilities in the second experiment, people will be more open to both 
insurance and long shots, and will update less, for foreign temperature than for 
CAC40 and Paris temperature.

V.  Discussion

We have analyzed decision attitudes using three components, namely utility of 
outcomes, choice-based probabilities for each source, and source functions. We 
first discuss some details of the measurements of these components, and then other 
issues.

Measuring Utility.—Our utility measurements are valid for most of the existing 
models. In particular, they are not distorted by violations of expected utility, unlike 
traditional methods based on the latter theory. In the absence of such distortions, 
we found utility to be close to linear, in agreement with claims by Matthew Rabin 
(2000), Frank P. Ramsey (1931, p. 176), and others.

Testing Uniformity.—For both experiments, there was no prior reason to expect 
violations of exchangeability (the implication of uniformity relevant here). Unlike in 
the three-color Ellsberg paradox (discussed later), our subjects will not perceive dif-
ferent mechanisms of uncertainty underlying the sources considered here. Because 
uniformity is central to the source method, we nevertheless carried out several tests, 
and we chose to be on the safe side by rejecting the one case in the natural-event 
experiment in which one of the several tests gave a violation.

We have restricted attention to two outcomes so as to focus on the likelihood 
aspects of decision making. We also restricted attention to single-interval events. 
More elaborate tests, for instance regarding unions of interval events and more gen-
eral outcomes, are planned for future research. Empirical violations of uniformity 
can then be expected that are not based on intrinsic nonuniformity, but on perceptual 
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biases. For example, convex unions of intervals may be underestimated relative to 
nonconvex unions because, in the terminology of Tversky and Derek J. Koehler 
(1994), the former may be perceived as implicit unions and the latter as explicit 
unions. This point was tested and confirmed by Baillon (2008). Similarly, events 
related to extreme values (such as E1

2) may be perceived differently than events 
related to intermediate values (such as E 2

4 ∪ E 3
4).

Within-Source Uniformity versus Between-Source Uniformity.—For the cases 
where uniformity was satisfied, our tests found that, given a source, the willingness 
to bet on an event (through its certainty equivalent) depended only on the subjective 
probability of the event and not on where within the source the event came from 
otherwise. This implies a uniform degree of ambiguity throughout the source. The 
violations of probabilistic sophistication occurred only for comparisons of willing-
ness to bet between different sources, and not within them. Such a phenomenon first 
occurred in Ellsberg’s (1961) examples. We found the phenomenon also for natural 
events, and showed (Web Appendix) how it can accommodate the home bias. The 
source method exploits within-source uniformity while allowing between-source 
heterogeneity.

Other Measurements of Decision Weights in the Literature.—A measurement of 
decision weights using proper scoring rules, generalizing the latter to binary RDU, 
appeared in Theo Offerman et al. (2009). They obtained decision weights under 
uncertainty as functions of decision weights under risk, where the latter need not 
be additive, unlike our choice-based probabilities, so that they comprise part of the 
(nonexpected-utility) uncertainty attitude. Steffen Andersen et al. (2009b) measured 
subjective beliefs using a global maximum likelihood fitting technique. Here all 
decision components, utility, probability weighting, and subjective probabilities are 
fitted in one blow. Such a technique is powerful but needs extensive data (hence, 
all subjects with the same characteristics were treated as one subject). Andersen 
et al. (2009b) assumed global probabilistic sophistication, so that within-subject 
between-source heterogeneity and ambiguity aversion as in Ellsberg’s paradoxes 
cannot be handled. If their technique is generalized to allow for source dependence 
of probability weighting, then it provides a useful alternative to our method for mea-
suring source functions and reckoning with ambiguity attitudes.

Abdellaoui, Frank Vossmann, and Weber (2005) also analyzed general decision 
weights under uncertainty as functions of decision weights under risk. They used 
the term choice-based probability to refer to such functions that, again, did not have 
to be additive. They quantified attitudes towards uncertainty and ambiguity but in a 
general and complex manner, inheriting the dimensionality of general nonadditive 
weighting functions (with the same cardinality as the powerset of the state space), 
so that they do not achieve the tractability and reduction of dimension of our source 
functions. Unlike Offerman et al. (2009), Abdellaoui et al. (2005) did not use proper 
scoring rules but carried out a full decision analysis to elicit the required values. 
Enrico Diecidue, Wakker, and Marcel Zeelenberg (2007) similarly measured gen-
eral weighting functions assuming linear utility.

Einhorn and Hogarth (1985) used transformations of judged probabilities to 
empirically investigate ambiguity attitudes. Judged probabilities were obtained 
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through introspection by the subjects so that this approach was not based on revealed 
preference or on a decision theory for source dependence. Our study can be inter-
preted as providing a revealed-preference basis for Einhorn and Hogarth’s ideas.

Heterogeneity or Noise?—Heterogeneity of risk and ambiguity attitudes between 
individuals has been widely documented (Ahn et al. 2009; Gilboa 2004; Yoram 
Halevy 2007), and our findings agree. Heterogeneity between sources within one 
individual has received less attention as yet, usually being restricted to the known-
unknown probability dichotomy. The many significant differences that we found 
between different sources, and the natural directions of these differences—confirm-
ing earlier findings by Tversky and Fox (1995) and others for uncertainty and of 
numerous studies for risk—show that this heterogeneity is not noise. A maximum 
likelihood analysis with a choice error theory incorporated (see the Web Appendix) 
further supports this claim, giving the same results as the analysis reported here.

Precursors.—Several studies compared more refined gradations of ambiguity 
than the dichotomous known versus unknown probabilities, and they can be consid-
ered precursors of the between-source heterogeneity that we have argued for. Such 
studies include Baillon, Laure Cabantous, and Wakker (2011), Chew et al. (2008), 
Shawn Curley and J. Frank Yates (1989), Einhorn and Hogarth (1985), Halevy 
(2007), Ming Hsu et al. (2005), and Tversky and Fox (1995). In the same spirit, 
Tversky and Kahneman (1981 p. 454) wrote: “The major qualitative properties of 
decision weights can be extended to cases in which the probabilities of outcomes 
are subjectively assessed rather than explicitly given. In these situations, however, 
decision weights may also be affected by other characteristics of an event, such 
as ambiguity or vagueness.” For these authors, subjective probabilities are derived 
from direct introspective judgments and are nonadditive, unlike those of the source 
method. Their method was called the two-stage model, was suggested by William 
Fellner (1961, p. 672), and was also discussed by Tversky and Kahneman (1992, 
p. 317). It was analyzed further by Abdellaoui, Vossmann, and Weber (2005), Fox, 
Rogers, and Tversky (1996), Fox and Tversky (1998), Kilka and Weber (2001), 
Tversky and Fox (1995), and Wu and Gonzalez (1999).

Cases where the Source Method Cannot be Applied.—The most well-known 
example of a nonuniform source is Ellsberg’s (1961) three-color urn. This example 
can be remodeled as the intersections of events from two different uniform sources 
(Chew and Sagi 2008, Haluk Ergin and Faruk Gul 2009; Machina 2009a). Machina 
(2009b) introduced some paradoxes for rank-dependent utility. These are also par-
adoxes for most other ambiguity models popular today (Baillon, L’Haridon, and 
Placido, forthcoming). They, however, only concern prospects of three or more out-
comes and do not concern our domain of binary prospects.

The Term Uniformity.—We chose Savage’s (1954) term uniform rather than 
exchangeable for two reasons. First, uniformity is slightly more general than 
exchangeability when imposed on finite sources, not requiring all elementary events 
to be equally likely. Hence, a different term than exchangeability had to be chosen. 
Second, the condition suggests a uniform ambiguity of the source where, once two 
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events have been revealed equally likely, they become completely substitutable in 
every aspect relevant for choice. It is immaterial what their precise location and 
configuration is relative to other events.7

Source Comparisons.—The Ellsberg paradoxes have mostly been interpreted 
as evidence showing that people are more averse to unknown probabilities than to 
known probabilities (ambiguity aversion). Our paper contributes to a line of research 
that extends this interpretation: People behave differently toward different sources 
of uncertainty, also if none of these sources concerns known probabilities (Chew et 
al. 2008; Chew and Sagi 2008; Curley and Yates 1989; Carmela Di Mauro and Anna 
Maffioletti 2001; Fox and Tversky 1998; Tversky and Fox 1995; Wu and Gonzalez 
1999). An important example concerns the home bias (Web Appendix, Example 
A.1). The phenomena that we observed in the data confirm descriptive theories of 
ambiguity put forward in the psychological literature (Einhorn and Hogarth 1985; 
Tversky and Fox 1995), with not only a role for ambiguity aversion but also for 
likelihood insensitivity.

Ambiguity or Different Risk Attitudes?—A Terminological Issue.—It could be 
argued that the difference between known and unknown probabilities that we found 
in our natural-event experiment does not reflect ambiguity, but that instead it simply 
reflects a difference in risk attitude between the sources. It could then be argued in 
the same way, however, that the classical Ellsberg paradox does not reflect ambigu-
ity either, but instead also reflects a difference in risk attitude between the known 
and the unknown urn. This point is, in fact, terminological. Risk attitude is defined 
as the attitude towards given probabilities, which is taken as one source. Following 
Ellsberg, the literature has defined ambiguity as the difference between unknown 
and known probabilities. We follow this terminology. It implies that source func-
tions reflect a general uncertainty attitude that, by definition, consists of the risk 
attitude component plus an ambiguity attitude component.

Reducing Complexity.—For general weighting functions, a weight has to be cho-
sen for every event separately, the complexity of which becomes intractable for 
large state spaces Ω 8. The source method greatly simplifies the complexity of gen-
eral weighting functions, reducing the number of parameters. We identify uniform 
sources and, for each such source, have to measure one more function, the source 
function, in addition to what is required for Bayesian analyses (utilities and prob-
abilities). This procedure is simple enough to be implementable for large state 
spaces, as we have demonstrated in the experiments.

Predicting Choices between Multioutcome Prospects.—Under the rank-dependent 
models (Gilboa 1987; Schmeidler 1989) which include prospect theory (Tversky 

7 There are some formal differences between our concept of uniformity and Chew and Sagi’s (2008) concept 
of homogeneity. The main difference is that our sources are a special case of theirs in the sense that our sources 
always span the universal event so that we never use conditioning on subevents. We prefer to separate the static 
concept of uniformity from dynamic issues regarding conditioning. Chew and Sagi incorporated conditioning to 
handle Ellsberg’s three-color example, but we prefer to model this example as an intersection of different sources.

8 The dimension of the set of weighting functions, (2||Ω||−2), grows exponentially.



720 THE AMERICAN ECONOMIC REVIEW april 2011

and Kahneman 1992), source functions as measured by the source method com-
pletely determine the choices between all prospects, including those with many out-
comes. Under the maxmin and a maxmin multiple priors models, further data about 
multioutcome prospects is required to predict choices between other multioutcome 
prospects.

Multistage Recursive Models of Uncertainty.—Klibanoff, Marinacci, and Mukerji 
(2005), Robert F. Nau (2006), William S. Neilson (2010), and Kyoungwon Seo 
(2009) considered multistage setups with backward induction and a violation of 
the reduction of compound lotteries (the multiplication rule for conditional prob-
ability) assumed. With the events at each stage taken as a separate source, these 
authors assumed expected utility (and hence probabilistic sophistication) within 
each source. It implies that different attitudes toward different sources, including 
ambiguity attitudes, should be captured by different utility functions. The latter, in 
our interpretation, then are source-dependent utility functions. This interpretation 
was explicitly used in a single-stage based experiment by Chew et al. (2008) and 
Andersen et al. (2009a). Ahn et al. (2009) found that the (“single-stage”) binary 
RDU fitted their data better than the multistage model.

Ergin and Gul (2009) generalized the above multistage approaches by allowing 
for probabilistic sophistication, rather than expected utility, in each stage, and in that 
sense are closer to our method. They still committed to the same multistage arrange-
ment of sources and the same dynamic decision principles as the above authors did.9 
They used the term issue instead of Tversky’s term source (that we used). Halevy 
and Ozdenoren (2008) introduced a calibration technique for such models. Chew 
and Sagi (2008) introduced small worlds that, apart from some formal differences, 
play a role similar to our sources.

VI.  Conclusion

We introduced the source method with source functions as a refined tool to 
quantitatively capture the full richness of ambiguity. The source method exploits 
within-source uniformity while allowing between-source heterogeneity. In two 
experiments, attitudes towards uncertainty and ambiguity depended not only on the 
person but also on the source of uncertainty. These findings show that uncertainty is 
a rich domain that can yet be analyzed in a tractable manner.
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