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This paper introduces anchor levels as a new tool for multiattribute utility theory. Anchor levels are attribute
levels whose values are not affected by other attributes. They allow for new interpretations and generaliza-

tions of known representations and utility measurement techniques. Generalizations of earlier techniques can be
obtained because cases with complex interactions between attributes can now be handled. Anchor levels serve
not only to enhance the generality, but also the tractability, of utility measurements, because stimuli can better
be targeted toward the perception and real situation of clients. In an application, anchor levels were applied to
the measurement of quality of life during radiotherapy treatment, where there are complex interactions with
what happens before and after. Using anchor levels, the measurements could be related exactly to the situation
of the clients, thus simplifying the clients’ cognitive burden.
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1. Introduction
This paper introduces anchor levels as a new tool for
the theory and measurement of multiattribute utility.
Anchor levels are special attribute levels whose util-
ity is unaffected by interactions with other decision
criteria (attributes). By imposing independence condi-
tions only on the anchor levels and not on complete
attributes, we generalize existing approaches.
Anchor levels give new interpretations and gen-

eralizations of existing results, such as Fishburn’s
(1965) additive decomposability and Anscombe and
Aumann’s (1963) subjective expected-utility model.
By means of anchor levels, we can generalize existing
measurement techniques. We can define and measure
attribute utilities when the attributes have interac-
tions of high complexity.
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The primary application of anchor levels to utility
measurement concerns situations where the utility of
some attribute, rather than an aggregate overall utility,
is the primary topic of interest, for instance,because this
attribute utility is the quantity relevant to other deci-
sions. Jansen et al. (1998, 2000) informally applied our
technique to intertemporal preferences in a study of the
stability over time of quality of life during radiother-
apy treatment. This application is described in greater
detail later in this paper. For intertemporal choice,
Kahneman (1994) emphasized the importance of mea-
suring instant utility—i.e., the experienced well-being
at given time points—as opposed to the overall utility
of entire episodes. Another example arises in decision
under uncertainty. For standard utility-measurement
techniques such as the standard gamble, our primary
interest concerns the utility of the outcomes, and not
the expected utilities of the gambles used during the
measurement procedure. Those gambles serve only as
a tool to measure the utilities of the outcomes.
In Jansen et al. (1998, 2000), anchor levels not only

allowed for utility measurement in the presence of
interactions, but also permitted construction of stim-
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uli familiar to the subjects. The present paper is a
formalization of this application, with the aim to
demonstrate that these techniques are of use for gen-
eral multiattribute utility theory. Other applications
will be mentioned, such as the measurement of util-
ity when expected utility’s separability is violated in
decision under uncertainty, the measurement of indi-
vidual happiness when this happiness depends on
the happiness of other individuals in society, and the
identifiability of probabilities under state-dependent
expected utility.
Interactions between attributes have been studied

extensively in multiattribute utility theory. Keeney
and Raiffa (1976) presented multilinear models with
multiplicative interactions. These models were used
in a number of empirical studies (Fryback and Keeney
1983, Torrance et al. 1996). The multivalent and hyper-
cube models developed by Farquhar and Fishburn
(1981) allow for more general interactions. These gen-
eral interactions, however, complicate the measure-
ment of utility.
For applications to utility measurement, the mes-

sage of this paper can be stated concisely: Determine
levels of attributes that are affected by interactions as
little as possible, and then use Equations (4.3)–(4.5) in
§4 to measure utility. The rest of this paper provides
examples, preference axioms, and a quantitative rep-
resentation to support this method. Apart from the
assumed presence, or constructibility, of anchor levels,
no restrictions are imposed on the other attribute lev-
els, and every kind of general interaction is permitted.
The outline of this paper is as follows. Section 2

describes separability and attribute interaction in
multiattribute utility theory. Section 3 demonstrates
how the utility contribution of anchor levels can be
separated additively, without requiring additive sep-
arability for the utility contribution of other attribute
levels. Additive decomposability holds if and only
if all attribute levels are anchor levels, a condition
that is somewhat weaker than Fishburn’s (1965)
marginal independence. Section 4 formally presents
our new method, which assumes that only some lev-
els are anchor levels. It establishes the measurability
of attribute utilities through a preference founda-
tion. Section 5 considers attribute-independent anchor
levels, i.e., anchor levels that can be used across
different attributes. We generalize Anscombe’s and

Aumann’s (1963) preference axiomatization of subjec-
tive expected utility for decision under uncertainty
(events with unknown probabilities). As these authors
did, we assume the von Neumann-Morgenstern
axioms for known probabilities, implying expected
utility there. We then show that subjective expected
utility also holds for events with unknown probabil-
ities if and only if all attribute levels (“outcomes”)
are attribute-independent anchor levels. This provides
a new preference foundation for Bayesian decision
analysis.
Mathematical examples are provided throughout

to illustrate the basic meaning of concepts presented
in this paper. In Example 4.4, the importance weights
of the attributes have a natural interpretation as
discounted duration and the interaction-dependent
utility functions as quality of life. Example 4.5 illus-
trates the notorious problem of nonidentifiability
of probability for state-dependent expected utility.
Indeed, the parameters of our model are theoretical
scaling factors without clear interpretation in this
example. Example 5.4 illustrates the general concept
of attribute-independent anchor levels. In this exam-
ple, the importance weights and utilities are regular
subjective probabilities and utilities in the subjective
expected-utility model. Example 5.6 considers a vio-
lation of separability due to disappointment. Clas-
sical expected utility is violated and its elicitation
techniques cannot be used, but the techniques pre-
sented here can still be used to measure probabilities
and utilities, including the disappointment effect. The
psychological interpretation of such interactions is not
revealed by the preference models, but should be
based on context and application.
Following a short history of decision analysis in the

health domain in §6, §7 shows how anchor levels can
resolve problems in the measurement of quality-of-life
years (QALYs) in the health domain. The section for-
malizes the approach of Jansen et al. (2000). Section 8
presents a discussion, and §9 concludes. Proofs are in
the appendix.

2. Interactions in Multiattribute
Utility

Multiattribute utility theory provides tools for aggre-
gating different objectives that may be mutually com-
petitive into an overall decision (Keeney and Raiffa
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1976, von Winterfeldt and Edwards 1986). Tradeoffs
usually have to be made between the several objec-
tives, or attributes as they will be called formally.
A larger house may be farther away from work, a bet-
ter career opportunity may offer a lower job security,
etc. Formally, we assume n attributes and consider a
set X = X1 × · · · × Xn of alternatives. Alternatives are
n-tuples �x1� � � � � xn	 where xj designates the level of
the alternative on attribute j . For example, there may
be n time periods, with xj designating the health state
during period j .
In most applications, alternatives are evaluated

additively (Keeney and Raiffa 1976, Equation (6.29);
Stigler 1950, §§IV and VIII B; von Winterfeldt and
Edwards 1986, Equation (8.1)). That is,

U�x1� � � � � xn	=
n∑

j=1
wjuj�xj	 (2.1)

evaluates the alternative �x1� � � � � xn	, where U�x1�

� � � � xn	 is the overall utility of the alternative, uj�xj	

is the utility of xj , and wj is a weighting factor to set-
tle the exchange rates between the various attributes.
In the QALY (quality-of-life years) model that is
commonly used in medical cost-effectiveness studies,
uj�xj	 is the quality of life when being in health state
xj and wj corresponds to the discounted duration of
period j . The Markov models commonly used to eval-
uate stochastic processes essentially require additive
separability over disjoint periods (Johannesson et al.
1996, p. 286) as in Equation (2.1).
The additive model in Equation (2.1) holds only

if appropriate preference conditions, such as utility
independence and separability, are satisfied. The lat-
ter condition concerns riskless options and entails, for
instance, that with � denoting preference,

�c1�x2�����xn	� �c1�y2�����yn	

if and only if �c′1�x2�����xn	� �c′1�y2�����yn	� (2.2)

That is, preference is independent of the common
level (c1 or c′1) of the first attribute. Utility indepen-
dence is a similar condition, but refers to risky prefer-
ences. These conditions exclude interactions between
attributes. The following mathematical example and
its extensions in later sections will illustrate the con-
cepts of this paper.

Example 2.1. Assume n = 3�X1 = X2 = X3 = �0�1�,
and expected utility with U�x1�x2�x3	 = x1 + x2 +
x3 + 1− exp�−x1x2x3	. The last term generates inter-
actions between the attributes. We have �1�0�1	 ≺
�1�0�45�0�45	 and �0�0�1	 	 �0�0�45�0�45	, so that
preference is not independent of the common level
of the first attribute. This violation of Equation (2.2)
shows that U is not additively decomposable, and
neither is a strictly increasing transform of an addi-
tively decomposable function. �

If additivity is violated, then it is sometimes reesta-
blished by redefining the attributes (Keeney 1992,
McDaniels 1995, p. 421). In applications, deviations
from additivity can be ignored as long as they do not
generate large biases (Dolan 2000, pp. 1754–1755). In
many cases, however, the biases are too large to be
ignored. Such cases are common, for instance, in time
preferences (Loewenstein and Elster 1992, Prelec and
Loewenstein 1991). Many phenomena in economics,
such as addiction and habit formation, are driven
by the nonseparability of disjoint periods (Becker
1996).
In the health domain, the utility measurement of

temporary health states is similarly complex because
this utility often depends on what happens before
and after, a dependence that directly violates separa-
bility (Dolan 2000, p. 1743; Krabbe and Bonsel 1998;
Kupperman et al. 1997; Loomes and McKenzie 1989,
p. 303; Richardson et al. 1996). Broome (1993, pp. 151–
152) considers separability to be “the most dubi-
ous condition” of the QALY model. Many viola-
tions of sophisticated requirements of the classical
QALY model also imply a violation of the more basic
separability. Examples are the dependency of qual-
ity of life on: (a) prognosis (Torrance 1987, p. 596;
Krabbe and Bonsel 1998, pp. 182–183); (b) prior expe-
rience with the health state (Dolan 2000, §3.2.3; Gold
et al. 1996, p. 100; Sackett and Torrance 1978, p. 703;
Stiggelbout and de Haes 2001, pp. 226–227); (c) the
duration spent in this health state (Dolan and Gudex
1995; McNeil et al. 1981; Miyamoto and Eraker 1988,
p. 15; Sackett and Torrance 1978, p. 703; Sutherland
et al. 1982).
A general equation for expressing interactions

between attributes is

U�x1� � � � � xn	=
n∑

j=1
wjuj�xj� x	� (2.3)
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where uj�xj� x	 is the utility of xj , which depends
on the levels of the other attributes x1� � � � � xj−1,
xj+1� � � � � xn. Without further specifications, Equa-
tion (2.3) is too general to yield empirical predic-
tions. It is impossible to elicit the weights wj or the
utilities uj�xj� x	 from decisions. Only the total sum∑n

j=1wjuj�xj� x	 can be elicited. Further specifications
that do allow for the elicitation of the parameters wj

and uj�xj� x	 are the topic of this paper.
In some situations, separability and utility inde-

pendence cannot be maintained in full strength, but
weakened versions can be maintained. In such cases
it is commonly assumed in the literature that some
attributes are separable from (so have utilities inde-
pendent of) some other attributes, but interactions
between remaining attributes are permitted (Leontief
1947, Strotz 1957). Keeney and Raiffa (1976) exten-
sively studied similar weakenings of utility inde-
pendence. Interactions were multiplicative in their
models and were governed by a restricted number of
extra parameters.
What the mentioned weakenings do have in com-

mon is that those parts of separability or utility inde-
pendence that are maintained are invariably imposed
on all levels of the attributes in question. For example,
if attributes 2� � � � �n are separable from attribute
1—i.e., Equation (2.2) holds—then the requirement
should hold for all levels c1, c′1, and for all x2� � � � � xn,
y2� � � � � yn. Such conditions are not satisfied in
Example 2.1. In this respect, our paper will introduce
a new approach. We introduce a version of separabil-
ity that is imposed only on specially chosen levels of
attributes, the anchor levels, and not on other levels.
Then, a meaningful measurement of attribute utility
uj�xj� x	 remains possible even if this utility depends
on the other levels x1� � � � � xj−1�xj+1� � � � � xn. In appli-
cations, the anchor levels should be chosen with care
so as to be suited for this purpose.

3. Partially Additive Decomposability
Through Anchor Levels

This paper follows the Keeney and Raiffa (1976)
approach to multiattribute utility, where risk is as-
sumed to be present in the decision process. We
therefore consider not only the set ×n

j=1Xj of
alternatives—i.e., combinations of conceivable attrib-
ute levels—but, more generally, the set L�×n

j=1Xj	 of

all prospects over alternatives. Prospects are simple
probability distributions over ×n

j=1Xj , where simple
means that the number of possible alternatives is
finite. A typical prospect is �p1 � x

1� � � � � pm � xm	, yield-
ing alternative xj = �xi

1� � � � � x
j
n	 with probability pj ,

for j = 1� � � � �m. Probabilities p1� � � � � pm are nonnega-
tive and sum to one. By � we denote the preference
relation of an agent over the prospects; strict prefer-
ence 	 and equivalence/indifference ∼ are as usual.
Expected utility means that there exists a utility func-
tion U� ×n

i=1Xi → � on the alternatives such that
preferences maximize

�p1 � x
1� � � � � pm � xm	 �→

m∑

j=1
pjU �xj	� (3.1)

We assume Equation (3.1) throughout this paper.
That is, we assume expected utility, as is commonly
done in classical multiattribute utility theory and
in most normative works. Extensions of multiat-
tribute utility to nonexpected-utility models include
Bleichrodt and Miyamoto (2003), Dyckerhoff (1994),
Fishburn and LaValle (1992), and Zank (2001). Simi-
lar extensions of our results are left to future studies.
This paper focuses on the decomposition of the over-
all utility function U�x1� � � � � xn	 into attribute utility
functions uj�xj	, which is the general topic of multiat-
tribute utility.
The most well-known preference condition for

the characterization of additive decomposability is
Fishburn’s (1965) marginal independence (see also
Keeney and Raiffa 1976, Theorem 6.4). It requires that
the utility of a prospect �p1 � x

1� � � � � pm � xm	 depend
only on the marginal distributions �p1 � x

1
i � � � � � pm � xm

i 	
generated over the attributes i = 1� � � � �n, and not on
the correlations or joint distributions of the attributes
otherwise. For the purpose of this paper, a weakened
condition based upon Fishburn’s (1965) Theorems 1
and 3 is most suited. We will discuss the condition
in more detail, and we first introduce a preparatory
notation. The notation deviates from the conventions
of Keeney and Raiffa (1976), but is convenient and
is commonly used today. For x = �x1� � � � � xn	 and
yi ∈ Xi, yix is x with xi replaced by yi; i.e., it is
(x1� � � � � xi−1�yi� xi+1� � � � � xn	.
Consider the 50-50 prospect �1/2 � bix�1/2 � biy	.

The two alternatives have a common ith attribute bi.
Imagine that an agent can choose whether the left or
the right attribute level bi is improved into another,
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better, level gi. It seems intuitively plausible that, if
there is no interaction with the other attributes, then
the utility improvement is the same in the alternative
with xs as with ys. That is, the following indifference
(denoted by ∼) seems to be indicative of the absence
of interaction.

�1/2 � gix�1/2 � biy	∼ �1/2 � bix�1/2 � giy	 (3.2)

We call bi, gi (a pair of ) anchor levels ( for attribute i)
if Equation (3.2) is satisfied for all x�y. They are non-
trivial if not gix ∼ bix for some x (which, hence, holds
for all x).
Substituting expected utility shows that, equiva-

lently,

U�gix	−U�bix	 is independent of x� (3.3)

Equation (3.3) suggests that the replacement of bi by
gi can serve as a standard for the utility unit, invariant
in all contexts. Equation (3.2) provides an empirical
test. Nontriviality implies that the utility difference in
Equation (3.3) is not zero.
Example 3.1. Assume Example 2.1, but now with

prospects added and expected utility with respect to
the function U as defined in Example 2.1. Preferences
for prospects over outcomes �c�1�x3	 are risk neutral
in x3 for c = 0, but strictly risk averse for c > 0.
This constitutes a violation of the weakest util-
ity independence conditions in Keeney and
Raiffa (1976), and illustrates once more the
interaction between attributes. For the prospect
�1/2 � �0�1�1	�1/2 � �0�1�0		, with i = 1, b′1 = 0, and
g′
1 = 1, the improvement of the first attribute of
the left alternative is preferred to that of the right
alternative; i.e.,

�1/2 � �1�1�1	�1/2 � �0�1�0		

	 �1/2 � �0�1�1	�1/2 � �1�1�0		�

violating Equation (3.2). Hence, b′1 and g′
1 are not

anchor levels. It can be seen that there exist no non-
trivial anchor levels in this example. �

Violations of Equation (3.2), like those in the above
example, have been used to define multivariate risk
aversion. For instance, Richard (1975, conditions (i)
and (ii) on p. 13) considered the case of two attributes.
Multivariate risk aversion was defined as a preference
for the side in Equation (3.2) where, for j �= i, the pre-
ferred level of attribute j (x or y) is coupled with the

nonpreferred level of attribute i (g or b). Such a con-
dition had been considered before by de Finetti (1932)
and has been tested in several studies (Payne et al.
1984; Pliskin et al. 1980, p. 210).
In Example 3.1, no nontrivial anchor levels existed.

The following example shows that it is possible, at
least in theory, to add auxiliary attribute levels that
can serve as anchor levels.
Example 3.2. Assume Example 3.1. We extend the

set X1 by adding the attribute level g1 = 2, so that the
attribute set �0�1�∪ �2� results. Assume that

U�2�x2�x3	= 4+U�0�x2�x3	�1

With b1 = 0, �b1�g1� are anchor levels for the first
attribute, as follows from Equation (3.3). �

A set of attribute levels are anchor levels if each pair
from the set is a pair of anchor levels. The following
theorem shows that anchor levels do not interact with
other attributes, and are additively separable.

Theorem 3.3. Let 1≤ i ≤ n. Ai is a set of anchor lev-
els for attribute i if and only if there exist functions V :
∏

j �=i Xj → � and vi� Ai → �� such that U�x	 = vi�xi	+
V �x1� � � � � xi−1�xi+1� � � � � xn	 whenever xi ∈Ai.

In Example 3.2,

i= 1� A1 = �0�2�� V �x2�x3	= x2+ x3� v1�0	= 0�

and v1�2	= 4�

Corollary 3.4.
(i) U�x	 can be written as vi�xi	 + V �x1� � � � � xi−1,

xi+1� � � � � xn	 for some functions vi and V , if and only
if all attribute levels xi ∈Xi are anchor levels.
(ii) The additive decomposition (Equation (2.1)) holds

if and only if all levels of all attributes are anchor levels.

Statement (ii) is a variation of Fishburn’s (1965,
Theorem 3) characterization of additive decompos-
ability. The condition in the statement is obviously
weaker than Fishburn’s marginal independence. The
latter condition immediately implies our condition—
i.e., Equation (3.2)—for all attribute levels, because all

1 We chose the addition of 4 in this example so as to ensure mono-
tonicity in all attributes. Calculations show that, even stronger,
U�2�0�0	 > U�1�1�1	, so that U�2�x2�x3	 > U�y1�y2�y3	 whenever
y1 < 2.
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marginal distributions are the same in Equation (3.2).
Our condition is weaker because it only considers the
special case of 50-50 two-outcome marginal distribu-
tions with identical joint distributions off attribute i.
Our condition still implies additive decomposability
and, thus, marginal independence.
In a number of papers, Farquhar and Fishburn de-

rived representations from generalizations—i.e., less-
restrictive versions, of the above conditions (see
Farquhar and Fishburn 1981, and the references
therein). In their multivalent representations, attribute
sets Xi are partitioned into subsets Xi

j such that
Equation (3.3) holds for all elements bi, gi from each
subset Xi

j . Then, generalized (multivalent) additive
representations can be derived on subdomains
X

i1
1 × · · · × X

in
n . The fractional hypercube methods

used generalized forms of Equation (3.2), with
multioutcome prospects. Various utility functions,
constructed through several additions and multipli-
cations, were derived. For a more general form than
in Corollary 3.4(i), see Theorem 3 of Farquhar and
Fishburn (1981).
Although anchor levels themselves are additively

separable, their corresponding attribute need not be,
and any kind of interaction is conceivable for the
other levels of this attribute. In Jansen et al. (1998,
2000), a health state “hospitalization caused by a seri-
ous accident” was not present in the original domain
of their study, but was added to serve as an anchor
level, in the same way that attribute level g was
added in Example 3.2. Further details are in §7.

4. Using Anchor Levels to
Measure Utility

In the preceding section, we saw that all attribute
levels must be anchor levels under additive decom-
posability. The multivalent and hypercube methods of
Farquhar and Fishburn (1981) extended this result to
partitions of attribute levels and more complex repre-
sentations. In this section, we will follow an alterna-
tive route from Equation (3.3).
We assume for now that �bi� gi� are nontrivial

anchor levels with gix 	 bix. Here g abbreviates
good and b abbreviates bad. We pursue a definition
of the utility of attribute xi within x, even though
there are interactions. We keep all attributes j �= i fixed
at their level xj , and define ui�xi� x	 to be U�xix	,

but renormalized to be zero at bix and one at gix. In
other words,

ui�xi� x	=
U�x	−U�bix	

U�gix	−U�bix	
� (4.1)

Defining V �x1� � � � � xi−1�xi+1� � � � � xn	 = U�bix	 and
wi =U�gix	−U�bix	, we get

U�x	=wiui�xi� x	+V �x1� � � � � xi−1�xi+1� � � � � xn	� (4.2)

Not only is the location term V �x1� � � � � xi−1�xi+1�
� � � � xn	 independent of xi, but also, by Equation (3.3),
the scaling factor wi is independent of x; wi depends
only on i, given gi and bi. The factor wi can be inter-
preted as the weight of attribute i. The linear decompo-
sition is genuine in the sense that all interactions are
captured through ui�xi� x	, the attribute utility of xi at
x (relative to b and g).
Given expected utility, we can measure ui�xi� x	 as

follows, always with the probability 0 ≤ p ≤ 1 such
that the relevant indifference results.

Case 1.

U�x	≥U�gix	 and

gix ∼ �p � x�1− p � bix	� ui�xi� x	=
1
p
≥ 1� (4.3)

Case 2.

U�gix	≥U�x	≥U�bix	 and

x∼ �p�gix�1−p�bix	� 0≤ui�xi�x	=p≤1� (4.4)

Case 3.

U�bix	≥U�x	 and

bix∼ �p�gix�1−p�x	� ui�xi�x	=
−p

1−p
≤0� (4.5)

Example 4.1. Assume Example 3.2. Imagine that
we want to measure the utility of the first attribute
levels 0, 0.5, and 1. Classical measurement methods
are based on utility independence, and would use an
equivalence such as

�0�5�1�0	∼ �0�500 � �1�1�0	�0�500 � �0�1�0		 (4.6)

to conclude that 0.5’s utility is the midpoint of the
utilities of 0 and 1, suggesting linearity and risk neu-
trality. However, if we change the third attribute level
to 1, then we obtain an equivalence

�0�5�1�1	∼ �0�547 � �1�1�1	�0�453 � �0�1�1		� (4.7)
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suggesting that 0.5’s utility now exceeds the mid-
point of the utilities of 0 and 1 and, thus, suggest-
ing concavity and risk aversion. The deviation from
Equation (4.6) is considerable. A traditional measure-
ment through Equation (4.6), based on utility inde-
pendence, would lead to wrong conclusions if x2 =
x3 = 1 in the relevant context of application.
If we use the anchor levels defined before, b1 = 0

and g1 = 2, then we find, in general,

w1 = 4� V �x2� � � � � xn	=U�0�x2� � � � � xn	�

u1�b1�x	= 0� and u1�g1�x	= 1

as usual, and

u1�x1�x	= �U�x1�x2� � � � � xn	−U�0�x2� � � � � xn		/4�

The interactions between the attributes have now
been incorporated explicitly. For example, at x =
�1�1�1	, we obtain

u1�0�x	 = 0�

u1�0�5�x	 = 0�223�

u1�1�x	 = 0�408�

and

u1�0�5�x	
u1�1�x	−u1�0�x	

= 0�547�

in agreement with the indifference in Equation (4.7).
At x, the utility of the first attribute level 0.5 clearly
exceeds the midpoint of the utilities of 1 and 0, and
u1�·�x	 is concave. �

Throughout the rest of this paper, uj�yj� x	 desig-
nates the (attribute) utility of yj when the levels of the
other attributes are x1� � � � � xj−1�xj+1� � � � � xn, in keep-
ing with the preceding analysis. Obviously, xj plays
no role in this notation. The following theorem estab-
lishes the empirical meaningfulness of the preceding
constructions. It formalizes what was illustrated in
Example 4.1.

Theorem 4.2. Assume that gir 	 bir for some r . Then
�gi� bi� are anchor levels if and only if

U�x	=wiui�xi� x	+V �x1� � � � � xi−1�xi+1� � � � � xn	�

where:
(i) wi > 0 is independent of x.
(ii) ui�xi� x	 is given by Equations (4.3)–(4.5).

(iii) U�yix	−U�zix	 = wi�ui�yi� x	− ui�zi� x		 for all
yi� zi.
Further, ui is uniquely determined. The uniqueness of U

up to a unit and location parameter corresponds to unique-
ness of wi and V up to the same unit and of V up to the
same location.

The theorem gives a kind of first-order Taylor
expansion ofU , be it that it is global and exact. ui�xi� x	

is the renormalized one-dimensional cut of the n-
variable function U . It captures the marginal utility
contribution of attribute i, incorporating the interac-
tions with the other levels xj . The factor wi restores the
scale, and the function V the location. V is indepen-
dent of xi. Because bi and gi are anchor levels, wi, the
weight of attribute i, is independent of x and xi.
The following theorem shows that the above result

can be obtained in an overall manner when anchor
levels are available on all attributes. It thereby pro-
vides a special case of Equation (2.3) with all param-
eters empirically meaningful, while preserving the
generality of Equation (2.3) apart from the restrictions
for the anchor levels.

Theorem 4.3. Let g, b be two alternatives with gib 	 b

for each i. Then all �bi� gi� are anchor levels if and only if

U�x1� � � � � xn	=
n∑

j=1
wjuj�xj� x	+W�x	

where:
(i) The wjs are positive and independent of x;
(ii) ui�xi� x	 is given by Equations (4.3)–(4.5);
(iii) For each i, U�yix	 − U�zix	 = wi�ui�yi� x	 −

ui�zi� x		 for all yi� zi. Equivalently,
∑

j �=i

wjuj�xj� x	+W�x	

is independent of xi.
Further, the uis are uniquely determined. The unique-

ness of U up to a unit and location parameter corresponds
with uniqueness of the wis and W up to the same unit and
of W up to the same location.

The theorem again gives a kind of first-order
Taylor expansion, with the uj�xj� x	s normalized one-
dimensional cuts, the wjs scale factors independent of
x, and W jointly organizing the location terms for all
attributes. For each i,

∑
j �=i wjuj�xj� x	+W�x	, which is
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independent of xi, restores the location of U , and
is the analog of V in Theorem 4.2. The two state-
ments in (iii) both capture the same idea—namely,
that variation in the ith attribute is completely cap-
tured through wi and ui.
In decision models, the meaning of the parameters

inferred from decisions is based on interpretations
and extraneous information, and is always open to
debate. In Savage’s (1954) famous derivation of sub-
jective expected utility, for instance, subjective prob-
abilities are usually interpreted as degrees of belief
and utilities as cardinal indexes of value. Discussions
of the probability interpretation will be referenced in
Example 4.5. Discussions of the utility interpretation
include Dyer and Sarin (1982), Ellsberg (1954), Ng
(1999), and many others. In our model, the extent
to which wi is only a convenient scaling factor or
is a factor with a special interpretation depends on
the extent to which U�gix	 and U�bix	 have a special
interpretation or not. In isolation, our decision model
cannot speak to these questions, but extraneous infor-
mation and interpretations in the context of applica-
tion should decide. We give two examples to illustrate
this point, one where wi has a natural interpretation,
and one where it does not.
Example 4.4 (Time Preference for Health States).

Assume that attributes designate periods, attribute
levels designate health states during the corre-
sponding periods, g designates good health, and b

designates death or something with the same instant
utility as being dead (e.g., being numb). It is a con-
vention in the health domain that good health be
assigned utility one, and death utility zero (Gold et al.
1996, pp. 84, 88). This convention is essential for
obtaining meaningful comparisons of the effects of
different medical treatments for different patient
groups in cost-effectiveness studies. Torrance (1986,
p. 17) wrote:

The central basis for this method is that the difference
in utility between being dead and being healthy is set
equal across people. In this way the method is egalitar-
ian within the health domain; that is, each individual’s
health is counted equally.

Based on this convention, and in agreement with
the normalization in Equations (4.3)–(4.5), we set
ui�gix	= 1 and ui�bix	= 0.

The convention just described implicitly assumes
that b and g are anchor levels. This convention can be
justified only in cases where the preference condition
in Equation (3.2) can be justified, which is a non-
trivial requirement. In such cases, wi reflects the dis-
counted duration of the corresponding period, and
ui�xi� x	 can be interpreted as a quality-of-life index—
i.e., a rate of utility per time unit when being in health
state xi during period i, assuming health state xj for
period j , j �= i. �

Example 4.5 (Decision Under Uncertainty with
State-Dependent Expected Utility). There are n

states (of nature), of which exactly one is true, the
others are not true, and the agent is uncertain about
which is the true one. For example, each state of
nature can describe a disease that a patient possibly
has, given her symptoms. X1 = · · · = Xn = � is an
outcome set concerning the potential outcomes of
medical treatments of the patient. Alternatives are
also called acts. Act �x1� � � � � xn	 ∈ X1 × · · · × Xn = �n

yields outcome xj if state of nature j is true.
We assume a two-stage Anscombe-Aumann (1963)

model, with �p1 � x
1� � � � � pm � xm	 yielding act xj with

probability pj , for each j . For example, �p1 � x
1� � � � �

pm � xm	 describes a medical treatment that with prob-
ability pj has effects as described by xj . Then the pjs
represent uncertainties that can be probabilized on the
basis of extensive epidemiological data, and the states
of nature represent uncertainties with unknown prob-
abilities. As throughout this paper, �p1 � x1� � � � � pm � xm	

is evaluated by
∑n

j=1 pjU �xj	. Anscome and Aumann
(1963) assumed probabilistic mixtures both before and
after the states. Their Assumption 2 states that it is
immaterial whether a mixture is modeled before or
after the states.
We assume that U�x1� � � � � xn	 =

∑n
j=1 rjvj �xj 	 is a

subjective expected utility with subjective proba-
bilities r1� � � � � rn and state-dependent utility func-
tions vj . This state-dependent variation of Anscombe
and Aumann’s model was described by Arrow (1951,
pp. 431–432) and axiomatized by Fishburn (1965),
Rubin (1987), and Karni (1993).
Additive separability is satisfied, and all outcomes

are anchor levels for all attributes (= states of nature).
For each state i we can define wi = ri�vi�gi	−vi�bi		 for
arbitrary fixed gi, bi. Here wi has no special meaning
or interpretation. In particular, the normalized wis,
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while probabilities in a formal sense, are only math-
ematical devices and have no natural interpretation.
The problem of nonidentifiability of probability under
state-dependent expected utility has been discussed
extensively; see Aumann (1971), Drèze (1987, Ch. 2),
Kadane and Winkler (1988), Karni (1996), Karni and
Schmeidler (1993), Karni and Mongin (2000, p. 233),
Nau (1995), and Schervish et al. (1990).
A method of using constant-utility outcomes to

identify probability in state-dependent expected util-
ity by fixing two outcomes with state-independent
outcomes, similar to Example 4.4, was used by
Drèze (1987, Ch. 2 through idempotent acts), Maher
(1993, Ch. 8), Karni (1993), and, finally, Karni (1999),
with b the worst and g the best outcome. Karni and
Schmeidler (1993, the Proposition) used a similar idea,
with b = 0 and g infinitesimally close to b through the
requirement of identical derivatives limg→0�vi�g	 −
vi�0		/�g − 0	 at b = 0. It is interesting to note that a
technique used in state-dependent expected utility to
measure subjective probabilities is formally similar to
a convention used in the health domain to measure
quality of life. �

5. Overlapping Attribute Sets
The previous sections did not assume relations
between attribute levels for different attributes. In
many contexts, however, such relations are present. In
intertemporal preferences the same commodities can
be consumed at different time points, and in decision
under uncertainty an outcome can be received under
different events; see Example 4.5. This section con-
siders identical attribute sets for different attributes,
and examines the implications for the measure-
ment of attribute utilities. The following observation,
still formulated for a general setup with different
attribute sets, is preparatory. It readily follows from
Theorem 3.3.
Observation 5.1. For a set Ai ⊂Xi of anchor levels,

preferences between prospects over the set �aix� ai ∈
Ai� are independent of x. In particular, the utility
ui�ai� x	 in Equations (4.3)–(4.5) is independent of x

whenever, besides bi ∈Ai and gi ∈Ai, also ai ∈Ai.
The condition in the observation is reminiscent of

utility independence. The condition is too weak to
characterize anchor levels because it does not exclude
scale differences between U�ai� x	 and U�ai� y	 for

x �= y (Example 10.1(i) in the appendix). The rest of
this section assumes that X1 = · · · = Xn = � for a set
� called the outcome set. For outcomes %�&, we write
% � & if �%� � � � �%	 � �&� � � � �&	. We use the notation
%ix in analogy to yix; that is, %ix denotes x with xi

replaced by %.
In the setup of this section, outcomes can serve as

anchor levels for different attributes. It is plausible
that their utilities are then invariant over the various
attributes. A formalization is as follows, where
attribute i is null if %ix ∼ &ix for all %�&, and x and non-
null otherwise. A ⊂ � is a set of attribute-independent
anchor levels if: (a) A is a set of anchor levels for each
attribute; (b) a preference %ix � �p � 'ix�1− p �&ix	 is
not only independent of x (Observation 5.1), but also
independent of i for all nonnull attributes i and for
all %�&�' ∈A. Example 10.1 shows that conditions (a)
and (b) are logically independent.
For attribute-independent anchor levels &�', a

strict preference 'ix 	 &ix for some i implies that such
a strict preference holds for all nonnull i, and implies
' 	 & as soon as there is at least one nonnull attribute.
In that case, 'ix 	 &ix for some nonnull i if and only
if the same holds for all nonnull i, which holds if and
only if ' 	 &.
Observation 5.2. Assume that � = X1 = · · · = Xn

and that A ⊂ � is a set of attribute-independent
anchor levels. Then:
(i) The preferences between prospects over the set

�%ix� % ∈ A� are independent of x and i for all non-
null i.
(ii) On A, the functions vi� i = 1� � � � �n of

Corollary 3.4 are the same up to unit and location.
(iii) For each % ∈ A, the utility ui�%i� x	 in Equa-

tions (4.3)–(4.5) is independent of x and i for all non-
null i if, for attribute-independent anchor levels ' 	 &,
bi = & and gi = ' for all such i.
If the set A contains only two outcomes (or only

two equivalence classes of outcomes), then attribute
independence only requires that the two outcomes
are ranked the same for each attribute. This require-
ment is not very restrictive or informative. For three
or more equivalence classes, the condition is more
restrictive and informative. The following theorem
shows how overall utilities of alternatives can be
related to utilities of attribute-independent anchor
levels.
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Theorem 5.3. Assume that %�&, and ' are attribute-
independent anchor levels, and that i is nonnull. Then
(i) %ix ∼ �p � 'ix�1−p �&ix	 if and only if �%� � � � �%	∼

�p � �'� � � � � '	�1− p � �&� � � � �&		.
(ii) If & ≺ ', and we scale U�&� � � � �&	 = 0,

U�'� � � � �'	 = 1�ui�&�x	 = 0, and ui�'�x	 = 1, then
U�%� � � � �%	= ui�%�x	.

Jansen et al. (1998, 2000) informally used a result
as in (ii) above to relate the quality of life of chronic
health states to the quality of life of temporary health
states; see §7. The following example illustrates the
implications of attribute independence for anchor
levels.
Example 5.4 (Behavioral State-Independent

Expected Utility). This example is like Example 4.5,
with state-dependent expected utility and all attribute
levels anchor levels. In addition, we assume that
state-independent expected utility holds. That is, there
exist probabilities qi and a function u such that
U�x1� � � � � xn	 = ∑n

i=1 qiu�xi	 is a subjective expected
utility functional on �n. As will be demonstrated in
Corollary 5.5(ii), such a representation exists if and
only if all outcomes are attribute-independent anchor
levels.
The probabilities qi are uniquely determined as

soon as there are two or more nonindifferent attribute
levels. In this case, fix arbitrary outcomes g, b with
g 	 b, to be used as attribute-independent anchor
levels. Then wi = qi�u�g	 − u�b		 for each i, and the
normalized wi/�

∑n
j=1wj	 are the subjective probabili-

ties qi. The probability qi can easily be inferred from
preference through matching events with known
probabilities, as follows: Receiving g under state i and
b otherwise is equivalent to receiving g with objective
probability qi and b otherwise.
By Equations (4.3)–(4.5), we elicit ui�%�x	= �u�%	−

u�b		/�u�g	 − u�b		, independently of i and the xjs.
The factor u�g	− u�b	 is a scaling factor that can be
chosen arbitrarily; for instance, u can be normalized
so that this factor is one. Equations (4.3)–(4.5) elicit
the traditional utility function u. In decision under
uncertainty, we are often interested in the utilities of
attribute levels,2 and acts are used only as a tool to
measure those utilities. �

2 Remember that attributes refer to states of nature, and an attribute
level designates an outcome in the traditional terminology, such as
money or commodity bundle or health state.

Corollary 5.5.
(i) If A ⊂ � is a set of attribute-independent anchor

levels, then there exist nonnegative q1� � � � � qn summing to
one, and a function u� A→�, such that U�x1� � � � � xn	=∑n

j=1 qju�xj	 on An.
(ii) All outcomes (i.e., the whole set �) are attribute-

independent anchor levels if and only if subjective expected
utility holds; i.e., the representation of (i) holds for all
�x1� � � � � xn	 ∈�n.

The result in (ii) is a generalization of the sub-
jective expected-utility characterization of Anscombe
and Aumann (1963). They used condition (i) of
Observation 5.2 (“monotonicity”), whereas attribute
independence is a weaker requirement that restricts
monotonicity to particular one- and two-outcome
prospects that are nondegenerate on all but one
attribute (= “state”).
The examples of decision under uncertainty that we

have considered so far assumed no interactions, with
all attribute levels (outcomes) anchor levels, some-
times attribute independent. The following example
illustrates how our parameters can capture psycho-
logical interactions that violate separability.
Example 5.6 (Nonexpected Utility with Disap-

pointment). This example is like state-independent
expected utility in Example 5.4, with n=2, A=�=
�a�b�g�h�, q1=2/3, q2=1/3, and u�a	=−1, u�b	=0,
u�g	=1, u�h	=2. There is, however, one modification
of the function U . For act �h�a	, the agent will feel
disappointment if the worst outcome a obtains, given
that the best outcome h was more likely. Then the
utility of a is −4 instead of −1, resulting in U�h�a	
�= �2/3	2+1/3�−4		=0 instead of U�h�a	=1. For all
other acts, U is like the state-independent expected
utility in Example 5.4. It is easy to verify that �b�g�
are attribute-independent anchor levels.
For eliciting utility from preference, we scale

u�b	= 0 and u�g	= 1. Then,

�1 � �b� b		∼ �1/2 � �g�g	�1/2 � �a� a		 suggests that

u�a	=−1�
The observation �1 � �h� a		 ∼ �1 � �b� b		, however,

suggests factors beyond expected utility. Eliciting the
factors of Equation (4.2) for x = �h�a	 and i = 2, we
obtain
• w2 = U�h�g	 − U�h�b	 = �1/3	�u�g	 − u�b		 =

1/3= q2;
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• V �x1	=U�h�b	= 2u�h	/3+u�b	/3= 4/3;
• u2�a� �h�a		 = �U�h�a	 − U�h�b		/�U�h�g	 −

U�h�b		= �−4/3	/�1/3	=−4.
We see that u2�a� �h�a		=−4 deviates from u�a	=−1,
which indeed reveals a violation of expected utility.
In this manner, we can define and measure the inter-
actions given a fixed outcome h for the second state
of nature.
As is common in decision theory, our formulas,

based solely on observed choice, do not determine
the psychological interpretations and background of
the interactions. Our model captures all interactions
through the utility u2�a� �h�a		. Whether the interac-
tions are due to disappointment while consuming a,
and, even more basically, to what extent these inter-
actions are at all realized during the consumption
of a in state 2 and not of h in state 1, should be
based on extraneous information and interpretations
from our part, which are to be determined by the
context of application. In the application in §7, for
instance, we assume that an interaction takes place in
the first attribute (the “period” of radiotherapy treat-
ment), not on the basis of the mathematical preference
model, but on the basis of medical and psychological
arguments. �

The representation of the above examples can be
restated for other contexts, such as welfare evalua-
tions, or intertemporal choice with health states spec-
ified for n periods. Example 5.6 could concern the
latter context, where it would be hard to adapt to
health state a if immediately following h, so that �h�a	
is evaluated especially negatively.

6. History of Decision Analysis and
Measurement Problems in the
Health Domain

The following two sections elaborate on Example 4.4.
This section describes the history of decision analy-
sis for QALY measurement, and some problems that
arose there.
Until the 1970s, the most common measure for eval-

uating (heavy) medical treatments was the five-year
survival rate, i.e., the proportion of patients still alive
five years after a treatment. In the beginning of the
1980s, the usefulness of the more flexible expected
utility criterion became understood in the medical

domain (Weinstein and Stason 1977, McNeil et al.
1978). Keeney and Raiffa’s (1976) techniques were
subsequently used to justify specific evaluations of
chronic health states. For example, t years in health
state x, followed by death, is evaluated by w × u�x	,
where u measures quality of life and w measures dis-
counting (McNeil et al. 1981). Utility independence
and other axioms justify this multiplicative evaluation
(Pliskin et al. 1980).
The most popular way of evaluating the utility

of nonchronic health outcomes is through QALYs
(quality-adjusted life years); for surveys, see Fryback
(1999) and Gold et al. (1996). Consider a general,
nonchronic health profile of spending t1 years in
health state x1, t2 years in health state x2� � � � � and,
finally, tn years in health state xn, followed by death.
The QALY utility of the health profile is

∑n
j=1wju�xj	,

where u�xj	 is the quality of life in health state xj and
wj reflects the duration �wj = tj if zero discounting).
For risky decisions, the expectation of this QALY util-
ity is to be maximized.
With G denoting good health and D denoting

death, the common scaling convention is u�G	 = 1
and u�D	 = 0. The quality of life u�xj	 of a health
state xj can be measured through the standard gamble
method. For some fixed duration t, the probability p

is determined such that �p� �t years G	�1 − p�D	 ∼
�t years xj	. Then u�xj	= p is set.
The QALY model is tractable, but requires many

restrictive conditions. One of these conditions con-
cerns the standard gamble method, which, like the
other traditional methods, measures the quality of
life of health states only when they are chronic.
It is then assumed that the obtained quality-of-life
measurements also apply to temporary health states.
This assumption is especially problematic for health
states that cannot even be conceived as chronic.
For instance, undergoing a radiotherapy treatment
(denoted R) for the rest of one’s lifetime is not realis-
tic.
To measure the quality of life of a temporary

health state (say R, during t1 years for t1 = 1/2	,
Torrance (1986) proposed a chained method. In a first
stage, for some properly chosen health states A�B, an
equivalence is elicited such as (t1 years R, t2 yearsG)∼
�p� �t1 yearsA, t2 yearsG	; 1− p� �t1 yearsB, t2 yearsG)).
In the second stage, u�A	 and u�B	 are measured
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through traditional standard gamble questions, where
A and B are taken as chronic. Finally, u�R	= pu�A	+
�1−p	u�B	 is set. A and B must be conceivable both as
chronic and as temporary health states. Good health
�G	 could be substituted for A, but death �D	 cannot
realistically be substituted for B if followed by G at t2.
Torrance proposed using the worst temporary health
state, other than death, for B.
Torrance (1986) emphasized that A and B should

be conceivable, but did not specify preference con-
ditions that these health states should satisfy. Jansen
et al. (1998, 2000) and Johnston et al. (1998) infor-
mally stated some requirements. We first describe
the domain of the studies by Jansen et al. These
authors studied postoperative radiotherapy treatment
for early-stage breast cancer patients. Radiotherapy
reduces recurrences of breast cancer, but may induce
undesirable side effects. To determine an optimal deci-
sion, the impact of side effects on the well-being of the
patients has to be measured. Jansen et al. were partic-
ularly interested in the effect of experience with the
treatment on the evaluation thereof. For the quality of
life during a radiotherapy treatment, the psychologi-
cal impact of the future prospects is all-decisive, and
a measurement ignoring this impact is of no interest.
The authors, therefore, decided to study radiotherapy
only for a fixed period, followed by return to good
health.
Jansen et al. (1998, 2000) emphasized that Torrance’s

temporary health states A, B should be chosen with
care, and used the term anchor health states for such
proper choices. The anchor health states should be
“broadly applicable and comparable across different
contexts” (Jansen et al. 1998, p. 398), and “the utility
of the anchor health state should not be systematically
affected by its duration (utility independence) or by
the health state following after (separability of prefer-
ence)” (Jansen et al. 2000, p. 69). Johnston et al. (1998,
p. 215) also suggested that there should be a “validity
of the link [anchor] state.” Like Torrance (1986), the
latter authors used the worst temporary health state
as one anchor state, and emphasized that the descrip-
tion of the good health state, which they used as
another anchor state, should be unambiguous (p. 215).
Borcherding et al. (1995, p. 24) suggested using intu-
itively meaningful anchor levels rather than maxi-
mal and minimal outcomes: “It might be more desir-
able to elicit meaningful anchors from the decision

maker � � �and then to elicit weights for these ranges.”
The next section formalizes the conditions required for
the anchor health states that were alluded to in the
literature just cited.

7. Anchor Health States for QALY
Measurement with Intertemporal
Dependencies

This section describes the application of our technique
to the problem studied by Jansen et al. (1998, 2000).
Consider two attributes �n= 2	. The first refers to an
initial period of six months, the second to the rest of
life. There are four health states:

Being in
Health state Death hospital Radiotherapy Good health

Abbreviation D B R G

For example, �R�G	 means radiotherapy in period 1
and good health in period 2.3 Figure 1 illustrates
the domain of our study. We want to measure
u1�R� �R�G		, the well-being during radiotherapy if
followed by good health.
We use the common scaling U�G�G	 = 1 and

U�D�D	 = 0. The classical QALY model uses the
points indicated by • in Figure 1. It elicits the prob-
ability p such that �p� �G�G	�1 − p� �D�D		 ∼ �R�R	

and then equates the chronic utility U�R�R	= p with
the temporary utility u1�R� �R�G		. This approach is
not satisfactory in this application because, first, the
option �R�R	 is too unrealistic to be used in exper-
iments, and second, if it could have been used, its
utility U�R�R	 could not have been equated with
u1�R� �R�G		. An alternative would be to use the
points indicated by ↓ in the figure. That is, D

and G are anchor states for period 1, we set4

u1�D� �R�G		 = 0 and u1�G� �R�G		 = 1, elicit p

such that �p� �G�G	�1− p� �D�G		 ∼ �R�G	, and then
equate p with u1�R� �R�G		. Unfortunately, this alter-
native approach fails because �D�G	 is an unrealistic
option that cannot be used in experiments.

3 More precisely, R in period 1 designates a six-week radiother-
apy treatment followed by four and a half months of possible side
effects.
4 Remember that u1�G� �R�G		 denotes the utility of G in period 1
in the context �R�G	, which means that R is replaced there by G,
so that �G�G	 results. The notation u1�D� �R�G		 is similar.
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Figure 1 The Domain Study of Jansen et al. (1998, 2000)
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Jansen et al. (1998, 2000) used another anchor health
state than D for period 1, i.e., hospitalization caused
by a serious accident �B	. Most people will be able
to relate to this hypothetical health state. It is very
distinct from the other health states considered in this
experiment so as to minimize systematic interactions
with those. In a first stage, the points indicated by
� in Figure 1 were used. The preferences �B�G	 �

�R�G	� �G�G	 held for virtually all patients, so that
Equation (4.2) could be used, and the probability q

was measured such that

�R�G	∼ �q� �G�G	�1− q� �B�G		� (7.1)

In the notation of §4, which would entail a scal-
ing u1�G� �R�G		 = 1 and u1�B� �R�G		 = 0, the result
would be u1�R� �R�G		= q.
The authors, however, wanted to follow the com-

mon scaling convention in the health domain that
assigns quality of life zero to death and quality
of life one to good health; i.e., u1�G� �R�G		 = 1
and u1�D� �R�G		 = 0. This scaling convention is
important because it allows for comparisons of
effects across different studies with different people
and treatments. In the terminology of this paper, the
common scaling convention assumes that D and G

are attribute-independent anchor levels. The rescaling
requires that u1�B� �R�G		 be related to u1�G� �R�G		

and u1�D� �R�G		. To this effect, Jansen et al. used the
points indicated by © in the figure in a second stage.

They elicited the utility of B through the indifference

�B�B	∼ �r� �G�G	� 1− r� �D�D		� (7.2)

Such an indifference implies U�B�B	 = r . Given
U�D�D	 = 0 = u1�D� �R�G		�U�G�G	 = 1 = u1�G�

�R�G		, the authors assumed

u1�B� �R�G		=U�B�B	� (7.3)

implying that u1�B� �R�G		 = r . The crucial step in
this reasoning, Equation (7.3), results from Theo-
rem 5.3(ii) (for i= 1). Substituting u1�B� �R�G		= r in
Equation (7.1) finally yields

u1�R� �R�G		= q+ �1− q	r� (7.4)

This equation gives the utility of radiotherapy dur-
ing six months, incorporating the dependency on the
good health following it. It can be justified by our
theory under the assumption that D�G� and B are
attribute-independent anchor levels. The underlying
preference conditions have been described in the pre-
ceding sections.
It is well understood that the underlying preference

conditions will not be satisfied to a perfect degree.
There will be individual variations in the degree of
approximation. The health state B was developed to
avoid systematic biases as much as possible. Our
claim is not that state B is a perfect anchor state and
that all biases have been completely eliminated. We
only claim that B is a better approximation than health
states that have been used traditionally. Our measure-
ment procedure did not completely avoid all biases,
but it avoided biases better than the classical proce-
dures that have been used so far.
We finally draw some conclusions from the medi-

cal application described in this section. The complex
and general formulas of §§4 and 5 have allowed for
an experimentally simple measurement of quality of
life. All interactions between separate time periods
have been respected, and only hypothetical scenarios
that are easy to imagine for the patients were used.
The implementability of the method was found to
be satisfactory. Several biases that have been known
to occur in other measurements, such as loss aver-
sion, could be avoided (Jansen et al. 1998, p. 397).
The measurement, therefore, agreed better with other
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measurements such as time tradeoffs (for a definition,
see Gold et al. 1996). For further discussion of empiri-
cal and psychological aspects, and conclusions for the
effects of experience with radiotherapy on the well-
being during the treatment, see Jansen et al. (1998,
2000).

8. Discussion
The contributions of Theorems 4.2 and 4.3 do not lie
in the representations

U�x	 = wiui�xi� x	+V �x1� � � � � xi−1�xi+1� � � � � xn	 or
n∑

j=1
wjuj�xj� x	+W�x	

per se. These representations are completely general,
and, therefore, without predictive power. The repre-
sentations become meaningful only in combination
with the second parts of the theorems, showing the
empirical meaning of the parameters.
A utility difference U�xjz	−U�yjz	 can be measured

by classical methods without resorting to anchor lev-
els. For instance, if U�h	 = 1�U�/	 = 0, and xjz and
yjz are between h and / in preference, then we can
find p and q such that xjz ∼ ph + �1− p	/ and yjz ∼
qh+ �1− q	/. We then get

U�xjz	−U�yjz	= p− q� (8.1)

Without anchor levels available, however, it is not
easy to interpret such differences. They cannot be
related to a representation with identifiable param-
eters, such as in Theorems 4.2 or 4.3. In addition,
general measurements as in Equation (8.1) are not
experimentally tractable if h and / are not related to
the stimuli of the study (compare Jansen et al. 1998,
2000). Because of the absence of interpretations for
Equation (8.1), such general equations are not useful
in applications (Borcherding et al. 1995, pp. 9–10).
The elicitation of our model remains complex. With-

out further restrictions on the interactions, the mea-
surement of uj�yj� x	 has to be redone for every
separate x. Our result cannot simplify the preference
system beyond its intrinsic complexity. The param-
eters, while complex, are, at least, well defined and
identifiable.

Our technique of assuming some levels with inde-
pendent utility and using them to measure utili-
ties of other levels is reminiscent of a technique for
measuring utility in Skiadas (1997). He considered
decision under uncertainty with all kinds of inter-
actions and violations of separability permitted. He
assumed that there is a sufficiently rich set of canon-
ical consequences such that acts taking only those
consequences do satisfy separability and all expected
utility axioms. Then a general act can be matched
with a canonical act that is indifferent, conditional
upon each state, and the expected utility of the gen-
eral act can, thus, be determined.

9. Conclusion
This paper has proposed a new theoretical generaliza-
tion of attribute independence, based on anchor lev-
els. These are relatively stable levels of outcomes,
and their values are unaffected by context and
interactions. Anchor levels give alternative, more
general, characterizations of classical representations
such as additively decomposable multiattribute util-
ity (Fishburn 1965) and subjective expected utility
(Anscombe and Aumann 1963). They can character-
ize models that allow for general interactions between
attributes, and they can make attribute utilities iden-
tifiable in such general models. Examples illustrated
the meaning of our concepts and implications for the
measurement of disappointment, of subjective proba-
bilities if utility is state dependent, and of QALYs in
the absence of temporal separability. The method was
applied in a study of the well-being of patients during
radiotherapy treatment.
A simple practical recommendation for the mea-

surement of utility is as follows. No matter how com-
plex the interaction between attributes is, attribute
utilities can be defined and measured if anchor levels
can be constructed for these attributes. We hope that
this paper, advancing a very general mathematical the-
ory but originating from a simplification of empirical
measurements, has demonstrated the usefulness of
anchor levels for multiattribute utility theory.

Appendix A. Proofs
Proof of Theorem 3.3. If U is of the form in the

theorem, then for all gi� bi ∈ Ai, U�giy	 − U�biy	 = vi�gi	 −
vi�bi	 is indeed independent of y. Hence, Ai is a set of
anchor levels. Conversely, assume that U�gix	 − U�bix	 is
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independent of x for all gi� bi ∈ Ai. Fix any r = �r1� � � � � rn	
with ri ∈Ai, and write, for any x with xi ∈Ai, U�x	=U�x	−
U�rix	 + U�rix	 = U�xir	 − U�r	 + U�rix	. Define vi�xi	 =
U�xir	−U�r	 and V �x1� � � � � xi−1�xi+1� � � � � xn	=U�rix	. �

Proof of Corollary 3.4. Statement (i) follows imme-
diately from Theorem 3.3. For statement (ii), the proof of
Theorem 3.3 is first applied to i = 1, and then proceeds
inductively. Fix x1 at any level, say r1, then decompose
V �x2� � � � � xn	 as v2�x2	+V ∗�x3� � � � � xn	, etc. �

Proof of Theorem 4.2. First assume that a decompo-
sition of U as described exists. Then, using independence
of V from the ith attribute, U�gix	 − U�bix	 = wi�ui�gi	 −
ui�bi		 = wi (the latter by Equations (4.3)–(4.5)), which is
indeed independent of x. By Equation (3.3), �gi� bi� are
anchor levels.
For the reversed implication, assume that �gi� bi� are

anchor levels. wi, ui, and V are defined as in the begin-
ning of §4; (i) and (ii) are satisfied. Because wi has to be
U�gix	 − U�bix	, it is unique up to the same scale factor
as U . Similarly, V is unique up to the same unit and loca-
tion as U . Substitution of expected utility shows that U�x	−
U�bix	 is wiui�xi� x	 for each of the three cases described in
Equations (4.3)–(4.5), which implies (iii). Uniqueness of ui

follows immediately from Equations (4.3)–(4.5) and, thus,
all uniqueness results have been established. �

Proof of Theorem 4.3. Note that the strict preferences
assumed in the beginning of the theorem imply that all
attributes affect preferences. First assume the decomposition
described in the theorem. Then, by (ii),

U�gix	−U�bix	=wi�ui�gi� x	−ui�bi� x		=wi

(the latter by (ii)), which is independent of x. By Equa-
tion (3.3), �gi� bi� are anchor levels.
Next, assume that all �gi� bi� are anchor levels. Define

wi = U�gix	−U�bix	, which, by Equation (3.3), is indepen-
dent of x and positive because U�gib	 − U�b	 is positive.
Hence, (i) holds. Define ui�xi� x	 as in Equations (4.3)–(4.5)
so that (ii) is satisfied, and

U�x	−U�bix	= ui�xi� x	�U�gix	−U�bix		�

We define

W�x	=
n∑

j=1
U�bjx	− �n− 1	U�x	�

To establish the form of U , we have

U�x	 =
n∑

j=1
�U�x	−U�bjx		− �n− 1	U�x	+

n∑

j=1
U�bjx	

=
n∑

j=1
�U�x	−U�bjx		+W�x	

=
n∑

j=1
uj�xj� x	�U�gjx	−U�bjx		+W�x	

=
n∑

j=1
uj�xj� x	wj +W�x	�

This establishes the form of U . For (iii), we have
∑

j �=i

wjuj �xj� x	+W�x	

=∑

j �=i

uj �xj� x	�U�gjx	−U�bjx		+W�x	

=∑

j �=i

�U �x	−U�bjx		+W�x	

=∑

j �=i

�U �x	−U�bjx		+
n∑

j=1
U�bjx	− �n− 1	U�x	

=U�bix	�

which is independent of the ith attribute level xi, establish-
ing the second part of (iii). The equivalence of the first and
second part of (iii) follows from substitution of the formula
for U , both parts being equivalent to
∑

j �=i

wjuj �xj� yix	+W�yix	−
∑

j �=i

wjuj �xj� zix	−W�zix	= 0�

The uniqueness results follow from Theorem 4.2. Let us add
that, by the definition of the wjs,

n∑

j=1
wj =U�g	−U�b	� � (10.1)

Proof of Observation 5.2. If A does not contain more
than one � indifference class, then for all x� i� �%ix� % ∈A� is
contained in one indifference class. All preferences between
prospects over the set are, therefore, indifferences and, thus,
are obviously independent of x and i. Then the first two
claims of the observation hold. Outcomes &�' as assumed
in the last claim of the observation then do not exist and,
hence, this claim is vacuously satisfied.
We assume henceforth that A contains two outcomes

' 	 &. A preference 'ix 	 &ix is independent of x and i,
for all &�' ∈ A and nonnull i. This independence implies
that the same & = bi and ' = gi can be used for all
nonnull i in Equations (4.3)–(4.5). By attribute indepen-
dence, the utility function ui�·�x	 in Equations (4.3)–(4.5)
is independent of x and i if i is nonnull. This implies
claim (iii) of the observation. For each x and nonnull i,
preferences over prospects over the set �%ix� % ∈ A� can
be represented by expected utility with the utility function
defined in Equations (4.3)–(4.5). This implies claim (i) of the
observation. It also implies claim (ii) of the observation by
the usual uniquess conditions of expected utility. �

Proof of Theorem 5.3. We first derive (i). Nonnull
attributes do not affect preferences and can be ignored. We
suppress them in this proof, and assume that all attributes
are nonnull. The constant alternative �%� � � �%	 is denoted
by %̄.
Assume i = 1. Let %1x ∼ �p � '1x�1− p �&1x	 for attribute-

independent anchor levels %�&�', and some x. We first
prove that %̄ ∼ �p � '̄�1− p � &̄	, and this will constitute the
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major part of the proof. Because �%�&�'� are attribute-
independent anchor levels,

%iy ∼ �p � 'iy�1− p �&iy	 for all y� i� (10.2)

We proceed by induction. Let '̄i denote the alternative
�'� � � � � '�%� � � � �%	 with the first i attributes equal to ' and
the remaining attributes equal to %. Similarly, &̄i denotes
the alternative �&� � � � �&�%� � � � �%	 with the first i attributes
equal to & and the remaining attributes equal to %.

ith induction hypothesis: %̄∼ �p � '̄i�1− p � &̄i	�

For i = 1, the induction hypothesis follows immediately
from Equation (10.2), with i = 1 and y = %̄. Assume that
the hypothesis has been proved for some i. We derive it for
i+1, with the following numbered indifferences and equal-
ities explained thereafter and �i+ 1	th attributes denoted in
bold printing.

%̄
1∼ �p � '̄i�1− p � &̄i	= �p ��i+1'̄

i�1− p ��i+1&̄
i	

2∼ (
p � �p ��i+1'̄

i� �1− p	 ��i+1'̄
i	�

1− p � �p ��i+1&̄
i� �1− p	 ��i+1&̄

i	
)

3= (
p2 ��i+1'̄

i� p�1− p	 ��i+1'̄
i�

p�1− p	 ��i+1&̄
i� �1− p	2 ��i+1&̄

i
)

4∼ �p2 ��i+1'̄
i� p�1− p	 ��i+1'̄

i� p�1− p	 ��i+1&̄
i� �1− p	2 ��i+1&̄

i	

= �p ��i+1'̄
i�1− p ��i+1&̄

i	

= �p � '̄i+1�1− p � &̄i+1	�

1∼: The induction hypothesis.
2∼ and 3=: Substituting '̄i and &̄i for y in Equation (10.2)

gives

'̄i = �i+1'̄
i ∼ �p ��i+1'̄

i� �1− p	 ��i+1'̄
i	 and

&̄i = �i+1&̄
i ∼ �p ��i+1&̄

i� �1− p	 ��i+1&̄
i	�

In expected utility under risk, replacing an alternative
('̄i or &̄i	 in a prospect by an indifferent prospect

(
�p ��i+1'̄

i� �1− p	 ��i+1'̄
i	 or �p ��i+1&̄

i� �1− p	 ��i+1&̄
i	
)

and multiplying out the probabilities leads to an indifferent
new prospect. In this manner, we substitute the two preced-
ing indifferences, with the two-stage-prospect notation fol-
lowing 2∼ only a shorthand notation for the corresponding
one-stage prospect (two-stage prospects are not considered
in our formal model).

4∼: Because & and ' are anchor levels for attribute i+1, we
may, by Equation (3.3) and expected utility, exchange these
attributes in the (equally likely!) second and third alterna-
tives in the prospect to obtain the indifferent prospect fol-
lowing 4∼. The induction hypothesis has been established
for i+ 1. Finally, it follows for i= n; i.e.,

%̄∼ �p � '̄n�1− p � &̄n	= �p � '̄�1− p � &̄	�

The implication

%1x ∼ �p � '1x�1− p �&1x	 ⇒ %̄∼ �p � '̄�1− p � &̄	

has been established.
To complete the proof of the logical equivalence claimed

in statement (i) of the theorem, a number of cases are dis-
tinguished. First, assume that '1x 	 &1x. Then,

�'�'� � � � �'	 	 �&�'� � � � �'		 �&�&�'� � � � �'	

	 · · · 	 �&� � � � �&�'		 �&� � � � �&�&	�

i.e., '̄ 	 &̄. The probabilities p and p′ in both

%ix ∼ �p � 'ix�1− p �&ix	 and %̄∼ �p′ � '̄�1− p′ � &̄	

are uniquely determined, and the first part of the proof
implies that p = p′. In this case, the logical equivalence in
the theorem holds. It similarly does if '1x ≺ &1x. Finally, we
consider the case '1x ∼ &1x. Then

�'�'� � � � �'	 ∼ �&�'� � � � �'	∼ �&�&�'� � � � �'	

∼ · · · ∼ �&� � � � �&�'	∼ �&� � � � �&�&	�

i.e., '̄ ∼ &̄. Hence,

%ix ∼ �p � 'ix�1− p �&ix	 and %̄∼ �p′ � '̄�1− p′ � &̄	

hold for all probabilities p�p′. Again, the logical equivalence
in statement �i	 in the theorem holds.
If &� %� ', then statement (ii) follows from statement (i)

by substitution. Other cases follow by exchanging the vari-
ables %�&, and ' and renormalizing utility. �

Proof of Corollary 5.5.
(i) The result is trivial if cix ∼ dix for all i� x� ci� di ∈ A;

then U is constant on An and u is the same constant on A,
and the qis can be chosen arbitrarily. Suppose, therefore, that
gix 	 bix for some i� x, and g�b in A. By attribute indepen-
dence, gix 	 bix for all x and nonnull i, and U�g� � � � � g	 >
U�b� � � � � b	 (the latter inequality follows because there is at
least one nonnull i). We may assume that U�g� � � � � g	 = 1
and U�b� � � � � b	 = 0 and use �g� b� in Equations (4.3)–(4.5)
for all i. For each x and nonnull i, we can interpret
ui�%i� x	 as a von Neumann-Morgenstern utility function for
prospects over the set �%ix� % ∈A�.
By Corollary 3.4(ii) applied to the restriction of � to

the prospects over An, U�a1� � � � � an	 is additively decom-
posable as

∑n
j=1 vj�aj 	 (where we write vj for the wjuj of

Equation (2.1)) on An. We may assume that vj�b	 = 0 for
all j . For all nonnull i,

ui�ai� x	= �vi�ai	− vi�b		/�vi�g	− vi�b		= vi�ai	/vi�g	

on A. By Observation 5.2(ii), the ui�·�x	s (for all i and x)
when restricted to A are the same up to unit and location;
hence, so are the vjs. Because the ui�·�x	s are 0 at b and 1 at
g for all nonnull i, they must be identical on A. Define u= ui
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for any nonnull i, and qi =wi =U�gix	−U�bix	= vi�g	 for
each i. Now vi = qiu, also for null i (that have qi = 0), and
the subjective expected utility representation follows.
(ii) The only-if part follows immediately from (i), and the

if part follows from substitution. �

Example 10.1 (Independence of Conditions (a) and (b)
in the definition of Attribute-Independent Anchor
Levels).
(i) U�x1�x2	 = x1x2 on �2

++ satisfies condition (b), with
%ix � �p � 'ix�1−p �&ix	 if and only if %≥ p'+ �1−p	& inde-
pendently of i (all nonnull) and x indeed, but there are no
nontrivial anchor levels.
(ii) For U�x1�x2	= x1+exp�x2	 on �2

++, all attribute levels
are anchor levels (condition (a)), but the preference between
%ix and �p � 'ix�1−p �&ix	 depends on i, with risk neutrality
for i= 1 and strict risk seeking for i= 2, so that condition (b)
is violated for all sets of three or more attribute levels. �
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