Corrected Proof of Lemma 3 (p. 496) of
 Itzhak Gilboa, David Schmeidler, \& Peter P. Wakker (2002), "Utility in Case-Based Decision Theory," Journal of Economic Theory 105, 483-

 502.By Peter P. Wakker, August 18, 2004

As pointed out to me by Han Bleichrodt, the proof, incorrectly, assumes that the projection of a closed set is closed. This need not hold true in general. For example, within \mathbb{R}^{2}, project the graph of the function $1 / x$ for positive x (i.e. the set $\{(x, 1 / x)$: $x>$ $0\}$) on the x -axis. The graph is closed but its projection is the open, and not closed, set $\{x \in \mathbb{R}: x>0\}$ of positive numbers. The lemma is correct though, and V is continuous. A different proof is given hereafter.

Consider the set $\mathrm{V}^{-1}\{\beta \in R \mid \beta>\alpha\}$, and let $\left(\mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ be an element thereof. Then $\left(\gamma, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{I}_{\mathrm{ab}}$ for some $\gamma>\alpha$, and, by monotonicity and favorableness of problem $1, \mathrm{a}<_{\left(\alpha, x_{2}, \ldots, x_{n}\right)} \mathrm{b}$. For illustration, assume that problem 2 is favorable. By preference continuity and connectedness, either x_{2} is maximal (a case that is actually excluded by the other axioms, especially solvability, but we will not prove this) or there is an $x_{2}{ }^{\prime}>$ x_{2} such that still a $<_{\left(\alpha, x_{2}, x_{3}, \ldots, x_{n}\right)}$ b. For illustration, assume further that problem 3 is unfavorable. By preference continuity and connectedness, either x_{3} is minimal (which is actually excluded by the other axioms) or there is an $x_{3}{ }^{\prime}<x_{3}$ such that still a
$<_{\left(\alpha, x_{2}, x_{3}{ }^{\prime}, x_{4}, \ldots, x_{n}\right)}$ b. We end up with an inductively defined neighborhood of (x_{2}, \ldots, x_{n}) in $\mathrm{V}^{-1}\{\beta \in R \mid \beta>\alpha\}$ of the form $\mathrm{B}_{2} \times \ldots \times \mathrm{B}_{\mathrm{n}}$ where for each j :
$B_{j}=\left\{\delta: \delta<x_{j}{ }^{\prime}\right\}$ for an $\left.x_{j}{ }^{\prime}\right\rangle \mathrm{x}_{\mathrm{j}}$ if problem j is favorable and x_{j} is not maximal.
$\mathrm{B}_{\mathrm{j}}=\left\{\delta: \delta>\mathrm{x}_{\mathrm{j}}{ }^{\prime}\right\}$ for an $\mathrm{x}_{\mathrm{j}}{ }^{\prime}<\mathrm{x}_{\mathrm{j}}$ if problem j is unfavorable and x_{j} is not minimal. $\mathrm{B}_{\mathrm{j}}=R$ if problem j is neutral, or if problem j is favorable and x_{j} is maximal, or if problem j is unfavorable and x_{j} is minimal.

For every element of $\mathrm{V}^{-1}\{\beta \in R \mid \beta>\alpha\}$ we can construct a neighborhood within $\mathrm{V}^{-1}\{\beta \in R \mid \beta>\alpha\}$, so that the latter set must be open. Similarly, $\mathrm{V}^{-1}\{\beta \in R \mid \beta<\alpha\}$ is open for each α. Continuity of V follows.

