Corrected Proof of Lemma 3 (p. 496) of

Itzhak Gilboa, David Schmeidler, & Peter P. Wakker (2002), "Utility in

Case-Based Decision Theory," Journal of Economic Theory 105, 483-

502.

By Peter P. Wakker, August 18, 2004

As pointed out to me by Han Bleichrodt, the proof, incorrectly, assumes that the projection of a closed set is closed. This need not hold true in general. For example, within \mathbb{R}^2 , project the graph of the function 1/x for positive x (i.e. the set {(x,1/x): x > 0}) on the x-axis. The graph is closed but its projection is the open, and not closed, set {x \in \mathbb{R}: x>0} of positive numbers. The lemma is correct though, and V is continuous. A different proof is given hereafter.

Consider the set $V^{-1}{\{\beta \in R | \beta > \alpha\}}$, and let $(x_2, ..., x_n)$ be an element thereof. Then $(\gamma, x_2, ..., x_n) \in I_{ab}$ for some $\gamma > \alpha$, and, by monotonicity and favorableness of problem 1, a $<_{(\alpha, x_2, ..., x_n)}$ b. For illustration, assume that problem 2 is favorable. By preference continuity and connectedness, either x_2 is maximal (a case that is actually excluded by the other axioms, especially solvability, but we will not prove this) or there is an $x_2' > x_2$ such that still a $<_{(\alpha, x_2', x_3, ..., x_n)}$ b. For illustration, assume further that problem 3 is unfavorable. By preference continuity and connectedness, either x_3 is minimal (which is actually excluded by the other axioms) or there is an $x_3' < x_3$ such that still a $<_{(\alpha, x_2', x_3', x_4, ..., x_n)}$ b. We end up with an inductively defined neighborhood of $(x_2, ..., x_n)$ in $V^{-1}{\{\beta \in R | \beta > \alpha\}}$ of the form $B_2 \times ... \times B_n$ where for each j: $B_j = {\delta: \delta < x_j'}$ for an $x_j' > x_j$ if problem j is favorable and x_j is not maximal. $B_j = {\delta: \delta > x_j'}$ for an $x_j' < x_j$ if problem j is favorable and x_j is not minimal. $B_j = R$ if problem j is neutral, or if problem j is favorable and x_j is maximal, or if problem j is unfavorable and x_j is minimal. For every element of $V^{-1}{\{\beta \in R | \beta > \alpha\}}$ we can construct a neighborhood within

For every element of $\nabla^{-1}{\{\beta \in R | \beta > \alpha\}}$ we can construct a neighborhood within $\nabla^{-1}{\{\beta \in R | \beta > \alpha\}}$, so that the latter set must be open. Similarly, $\nabla^{-1}{\{\beta \in R | \beta < \alpha\}}$ is open for each α . Continuity of V follows. \Box