APPENDIX E. ALGEBRAIC ELABORATIONS

of
"A Truth-Serum for Non-Bayesians: Correcting Proper Scoring Rules for Risk Attitudes," by

Theo Offerman, Joep Sonnemans, Gijs van de Kuilen, \& Peter P. Wakker

DERIVATION OF FOOTNOTE 6 , for $r>0.5$:
Eq. 10 gives
$B(E)=w^{-1}\left(\frac{r}{r+(1-r) \frac{U^{\prime}\left(1-(1-r)^{2}\right)}{U^{\prime}\left(1-r^{2}\right)}}\right)=[$ because w is the identity $]=$
$\frac{r}{r+(1-r) \frac{U^{\prime}\left(1-(1-r)^{2}\right)}{U^{\prime}\left(1-r^{2}\right)}}=\left[\right.$ because $\left.U^{\prime}(p)=0.26 p^{-1.26}\right]=$
$\frac{r}{r+(1-r) \frac{0.26\left(1-(1-r)^{2}\right)^{-1.26}}{0.26\left(1-r^{2}\right)^{-1.26}}}$

DERIVATION OF THE INVERSE OF EQUATION (18).
$\exp \left(-\beta(-\ln (\mathrm{p}))^{\alpha}\right)=\mathrm{w}(\mathrm{p})=\mathrm{y}$
$-\beta(-\ln (\mathrm{p}))^{\alpha}=\ln (\mathrm{y})$
$(-\ln (\mathrm{p}))^{\alpha}=-\frac{\ln (\mathrm{y})}{\beta}$
$-\ln (\mathrm{p})=\left(-\frac{\ln (\mathrm{y})}{\beta}\right)^{1 / \alpha}$
$\ln (\mathrm{p})=-\left(-\frac{\ln (\mathrm{y})}{\beta}\right)^{1 / \alpha}$
$\mathrm{p}=\mathrm{w}^{-1}(\mathrm{y})=\exp \left(-\left(-\frac{\ln (\mathrm{y})}{\beta}\right)^{1 / \alpha}\right)$

DERIVATION OF THE EQUATION DISPLAYED ABOVE EQUATION (19)
We apply equation (10), and equation (E.1) as just derived.
We analyze the argument (input)
$\frac{r}{r+(1-r) \frac{U^{\prime}\left(1-(1-r)^{2}\right)}{U^{\prime}\left(1-r^{2}\right)}}$
of w^{-1} in equation (10), which was denoted y in equation (E.1), and show that it is
$\frac{r\left(2 r-r^{2}\right)^{1-\rho}}{(1-r)\left(1-r^{2}\right)^{1-\rho}+r\left(2 r-r^{2}\right)^{1-\rho}}$.
Substituting this in equation (E.1) then gives the desired result.
Here we go:
$\frac{r}{r+(1-r) \frac{U^{\prime}\left(1-(1-r)^{2}\right)}{U^{\prime}\left(1-r^{2}\right)}}=\left[\right.$ substituting $\left.U^{\prime}(x)=\rho x^{\rho-1}\right]=$
$\frac{r}{r+(1-r) \frac{\rho\left(1-(1-r)^{2}\right)^{\rho-1}}{\rho\left(1-r^{2}\right)^{\rho-1}}}=$ [dropping two ρ 's $]$
$\frac{r}{r+(1-r) \frac{\left(1-(1-r)^{2}\right)^{\rho-1}}{\left(1-r^{2}\right)^{\rho-1}}}=\left[1-(1-r)^{2}=2 r-r^{2}\right]$
$\frac{r}{r+(1-r) \frac{\left(2 r-r^{2}\right)^{\rho-1}}{\left(1-r^{2}\right)^{\rho-1}}}=\left[\right.$ multiplying nominator and denominator by $\left.\left(2 r-r^{2}\right)^{1-\rho}\right]$
$\frac{r\left(2 r-r^{2}\right)^{1-\rho}}{r\left(2 r-r^{2}\right)^{1-\rho}+(1-r) \frac{1}{\left(1-r^{2}\right)^{\rho-1}}}=$
$\frac{r\left(2 r-r^{2}\right)^{1-\rho}}{r\left(2 r-r^{2}\right)^{1-\rho}+(1-r)\left(1-r^{2}\right)^{1-\rho}}=$
$\frac{r\left(2 r-r^{2}\right)^{1-\rho}}{(1-r)\left(1-r^{2}\right)^{1-\rho}+r\left(2 r-r^{2}\right)^{1-\rho}}$.

Substituting this for y in equation (E.1) indeed gives the equation displayed above equation (19).

