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Chapter 1

Introduction

“Doing econometrics is like trying to learn the laws of electricity by playing the radio.”

− Guy Henderson Orcutt

1.1 Motivation

In the 20th century, the world economy has grown faster than at any time in the past.

Nowadays we do not only hope for economic progress, but it is considered a must to sustain

a high quality of life and a stable social environment1. For the economic policy-maker

to develop efficient policies that facilitate growth it is of key importance to have good

insights into the determinants of growth. Secondly, he or she should be provided with

reliable estimates of long-run economic growth in order to identify structural changes

in economic performance. In the 20th century, many national as well as international

economic policy research institutes were founded, with the objective of providing this

information. For a formal analysis of economic growth, models needed to be developed

and tested empirically. Not surprisingly, economic growth has therefore been one of the

major subdisciplines in 20th century macroeconomic research.

To understand economic growth, it has proved to be very useful to analyze macroeco-

nomic time series using dynamic models. Among the first to develop such models was Jan

Tinbergen (1939). Using a model, initially to describe the economy of the United States

over the period 1919-1932, he aimed at distinguishing long-run growth from short-run

fluctuations. In Tinbergen’s model, long-run growth is assumed to be constant, whereas

short-run fluctuations in growth, which are cyclical in nature, are analyzed in terms of

quantitative relations between production, wages, prices and investment, among other

variables. It was mainly for this work that he was the first to receive the Nobel Prize in

Economic Science, together with Ragnar Frisch, in 1969.

1To illustrate this, in many industrialized countries, enduring slowdowns in economic growth during

1973 and 1995 have shown to shake political foundations (Reich, 1992, and DeLong, 2000).
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Early ideas for further improvement of Tinbergen’s model were put forward by Guy

Orcutt (1948), another pioneer in time series econometrics. It is interesting to discuss

these ideas here, as they will prove to be of particular relevance for this research. Though

he was one of the greatest econometricians of his time, Orcutt used to be quite pessimistic

about the role of econometrics in economic policy-making (Orcutt, 1952). As the above

quote illustrates, he wished to emphasize that econometricians, macroeconometricians in

particular, should not claim a high degree of precision of their estimates. This is due

to the fact that macroeconometricians aim at describing highly aggregated quantities. It

is practically impossible to measure these quantities frequently and accurately2. Orcutt

argued that one could reduce the effect of this difficulty by treating a large number of time

series in one model, and thus using a whole number to obtain more accurate estimates.

He realized, however, that the validity of this approach depends on the level of similarity

in growth across the series under consideration. Though Orcutt could not measure the

level of similarity across the time series used in Tinbergen’s study, he did show that these

52 series appear to have the same underlying autoregressive structure. By pooling the

time series data over all economic quantities, he improved the efficiency of Tinbergen’s

estimates. Based on these estimates, Orcutt concluded that the series do not have a

tendency to revert to a constant long-run growth rate, as suggested by Tinbergen.

Since the seminal work of Tinbergen and Orcutt, a vast body of literature has been

devoted to the latter issue of persistence in economic growth, see Stock (1994) for an

excellent survey. In line with Orcutt’s findings, one may advocate the Schumpeterian

view that growth is fully driven by persistent, stochastic shocks (Schumpeter, 1939).

However, this view does not coincide with the slowly evolving trends that macroeconomic

time series usually exhibit. Therefore, nowadays, a widely expressed vision is that growth

tends to revert to a persistent long-run growth path. This path is typically nonlinear,

see, for instance, Granger et al. (1997), and Van Dijk (2004). However, it has proved

to be difficult to model these paths correctly. On the one hand, the specification of the

growth path should be flexible enough to describe the time variation in long-run growth,

whereas, on the other hand, it should evolve slowly over time. The key problem is to find

a balance between these two properties.

In contrast to the issue of persistence, little attention has been paid to Orcutt’s idea

to improve estimation efficiency by exploiting possible similarities in economic growth

across series in a legitimate manner. The aim of this thesis is to model 20th century

economic growth in industrialized countries by exactly doing so. In particular, we will

model the time series of annual real per capita gross domestic product (GDP) levels of 17

industrialized countries by exploiting possible similarities in long-run growth across the

2For example, reliable estimates of annual economic growth, in terms of gross domestic product (GDP),

are only available for a small group of industrialized countries from the end of the 19th century onwards.

Quarterly estimates are available from 1949.
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series3. Similarities in long-run growth across countries have been studied extensively. For

example, Baumol (1986, 1988) found that in the 19th century groups of countries have

emerged, catching up with one another and eventually having common long-run growth

paths. One of these so called convergence clubs is the group of industrialized countries

studied here. Note, however, that within this group, countries did not catch up at the

same speed. Some countries seem to have joined the club later, during the 20th century

(Abramovitz, 1986, Quah, 1997). Studying the 20th century in particular, obviously, there

are many other causes of disparities in growth, such as differences in involvement in the

Second World War (Cook, 2002). This illustrates that, even though there is evidence for

similarities in long-run growth across the economies under consideration, it is unrealistic

to assume that these economies all have similar growth paths during the 20th century. In-

stead, it is likely that within the group of industrialized countries, only smaller subgroups

of countries grow similarly (Hobijn and Franses, 2000). Ideally, the data should tell us

which countries belong to which groups and how many groups there are, if any. For this

purpose, we will use the methodology for endogenous clustering of time series, as proposed

recently in Paap et al. (2004). Using a latent class panel data model, countries are classi-

fied to clusters, based on similarities in their growth characteristics4. In particular, each

country has some probability of getting assigned to a latent class, such that within each

class countries have the same long-run growth characteristics, while these characteristics

are different across groups. Note that if we find the number groups to be smaller than

the number of countries, the model parameters that govern the characteristics of long-run

growth within each group are estimated over a larger number of observations, compared

to the univariate case. This improves the efficiency of the estimates, as desired. Apart

from the gain in efficiency, the fact that we pool groups of two or more time series might

also enable us to estimate more complex models. Using these models we may in turn

be able to obtain more realistic estimates of long-run economic growth, compared to the

estimates obtained using univariate models.

Additionally, if we find evidence for the existence of groups of countries that show

similar growth, this modelling framework allows us to address questions such as:

- Is the composition of the groups equal to a grouping based on partnerships due to

common history, culture, and/or geographical proximity?

- Does the number and/or the composition of groups change over time, or can we

consider these to be constant over the entire 20th century?

3Note that we will not try to establish causality. For recent empirical work on the determinants of

economic growth in industrialized countries, we refer to Bassanini and Scarpetta (2001), OECD (2003),

and the references cited there.
4In the economic growth literature, other applications of clustering techniques include Durlauf and

Johnson (1995), and Desdoigts (1999). Note, however, that in these studies countries are clustered based

on particular economic variables and not on growth characteristics themselves.
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- If the composition of groups is likely to have changed during the 20th century, which

economies tend to have switched from a lower growth group to a higher growth

group, and vice versa?

- During which periods of the century did the disparity in growth across industrialized

countries change?

- Do the long-run growth paths of established economies typically evolve more slowly

than the growth paths of emerging economies?

Prior to our model based analysis, we perform an exploratory data analysis. This analysis

will provide us some first guidance regarding the answers to the above questions and might

help us to refine these. However, let us first briefly outline the thesis.

1.2 Outline

Strictly speaking, long-run economic growth cannot be observed. Therefore, to be able

to distinguish long-run economic growth from short-run fluctuations, we need to define

what we consider to be the characteristics of both processes. The next chapter covers

empirical observations, theoretical, and economic historian’s viewpoints on this subject.

Firstly, the data set is introduced that is used throughout the thesis. Using graphical

and descriptive statistical techniques, we establish two sets of stylized facts of economic

growth. The first set concerns observations about the process of economic growth over

time, whereas the second set is related to cross-country similarities in growth.

Chapter 3 is devoted to univariate time series models for economic growth. We review

several models that have been proposed in the literature, discussing their properties and

economic implications. The conclusions of this review as well as the first set of stylized

facts established in Chapter 2 will guide the formulation of a novel nonlinear time series

model. This model may strike a better balance between flexibility and slowness of evolve-

ment of the long-run growth process. The model parameters are estimated for each of the

17 series of real per capita GDP levels, and we discuss the results in detail.

In Chapter 4, the focus is shifted towards panel data models. Panel data sets are

defined and the main advantages of analyzing panel data instead of aggregated data are

discussed. We proceed with discussing the issue of model specification. Apart from the

functional form, an important step in the specification of a panel data model is to impose

a structure on the parameters. We provide a modelling framework that may facilitate

this step. Finally, as we will use latent class panel data models in the remainder of the

thesis, this class of models is discussed more in depth.

Chapter 5 covers the formulation, estimation, model selection and evaluation of two

very basic static latent class models for the panel of economic growth rates of our series.

The first model is introduced to describe clusters of countries with common average growth

rates and growth rate volatility. We estimate the model separately for different subperiods
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of the 20th century. As a consequence, the clustering obtained for this model may be

different for each subperiod. In contrast to this, the second model can be used to obtain

a constant clustering over time, by incorporating shifts in the average growth rate and

growth rate volatility. The results of the models are compared to the results of the

exploratory data analysis of Chapter 2.

In Chapter 6 we hypothesize that the similarities in the long-run growth paths of

economies, established in Chapter 2, are due to cross-country similarities in the dynamics

of long-run growth. To evaluate this hypothesis, the univariate nonlinear time series model

of Chapter 3 is extended to a latent class panel data model. Essentially, in this model,

the building blocks of Chapters 3-5 are brought together. This results in a relatively

complex model, which incorporates dynamics, nonlinear growth over time and similarities

in the dynamics of long-run growth across countries. Special attention will be paid to the

economic interpretation of the estimation results of the model.

Chapter 7 concludes the thesis, summarizing the main findings of our research. Finally,

some directions for further research are suggested.





Chapter 2

Stylized Facts of Economic Growth

2.1 Introduction

Before diving into an analysis of economic growth using time series models, let us first

take a detailed look at what it is we are trying to understand. In the next section of this

chapter, we will discuss the measurement of economic growth briefly, and introduce the

data set that is used throughout the thesis. This data set consists of levels of average

output, produced per member of the population of a country, which are measured annually

over the 20th century. We will study the time series of these levels and the corresponding

growth rates for 17 industrialized countries.

To establish stylized facts of economic growth, we continue with a graphical presenta-

tion of the series and compute several summary statistics over the entire century. Average

growth and growth volatility are also computed for subperiods of the century, in order to

identify possible time variation. Traditionally, economic growth is believed to be stable

in the long run, that is, over decades, whereas it is subject to shocks in the short run.

Very large shocks, however, which can be caused by political or economic events, may also

affect growth in the long run. In that case, long-run economic growth varies over time.

Our graphical analysis may shed some light on this issue.

As pointed out earlier, a central question we will be researching is whether there is

reason to believe that economic growth is similar across groups of countries. In address-

ing this question, we distinguish between cross-country similarities in long-run economic

growth paths, or trends, on the one hand, and similarities in short-run fluctuations on

the other hand. Firstly, similarities in long-run growth are studied, comparing the lev-

els of our series across countries. To identify the long-run growth paths of the series, a

very intuitive visual estimation technique is used. Similarities in short-run fluctuations

are studied in Section 2.4. This is a more formal analysis of estimated correlations of

growth rates across countries. These correlations are visualized using multidimensional

scaling (MDS) techniques. Finally, we conclude the chapter by summing up the stylized



8 Stylized Facts of Economic Growth

facts established. These stylized facts will guide the choice of our time series models in

subsequent chapters.

2.2 The Data Set and Notation

As an indicator of economic development we will look at the Gross Domestic Product

(GDP) of a country. Obviously this is not a perfect measure, as, for example, it does not

convey information on income distribution with a country, nor does it reflect qualitative

dimensions of economic development, such as health or literacy. Nevertheless, it is widely

accepted as the best indicator available. In order to compare GDP levels over time and

across countries, we account for differences in purchasing power parity and convert the

levels to a single currency. Furthermore, as we are not interested in cross-country differ-

ences in scale, we divide the levels by the total population of each country to obtain a

measure for the average output that is produced per member of the population. This indi-

cates how many goods and services people are likely to have, and consequently, what their

standard of living is. The resultant real per capita GDP levels were measured annually

over the 20th century by the Organization for Economic Cooperation and Development

(OECD) for 17 industrialized countries. These countries include Australia, Canada, New

Zealand, Japan, the USA and 12 Western European countries (See Table 2.1).

The real per capita GDP levels for 1900-1949 were obtained from Maddison (1995)

whereas those for 1950-1998 were obtained from Maddison (2001). For 1999 and 2000,

the data were obtained from the GGDC Total Economy Database1. All the levels are

measured in 1990 US dollars converted at Geary-Khamis purchasing power parities (See

Maddison, 1995, for a full description). Consequently, our data set consists of 17 series

measured annually over the period 1900-2000. Since all GDP series show an exponential

trend across time, we apply a log transformation. The resultant data set will be denoted

by yi,t:

yi,t = ln(GDPi,t), i = 1, ..., 17, t = 1, ..., 101, (2.1)

where i is the cross-sectional index, t the time index and GDPi,t the real per capita GDP

level of country i in year t. Needless to say, the annual growth rates of the real per

capita GDP levels are a measure of economic growth. Measured in percentage terms,

these growth rates, denoted by ∆yi,t, are computed as:

∆yi,t = 100
(
ln(GDPi,t)− ln(GDPi,t−1)

)
, i = 1, ..., 17, t = 1, ..., 100. (2.2)

For brevity, we will refer to the series of the logarithmic levels, yi,t, and the series of the

growth rates in percentage terms, ∆yi,t, as the levels and the growth rates, respectively,

in the remainder of the thesis.

1Groningen Growth and Development Centre and The Conference Board, Total Economy Database,

July 2003, http://www.ggdc.net.
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Table 2.1: 17 industrialized countries
Country Abbr. Country Abbr.

Western Europe
Austria AT Italy IT
Belgium BE Netherlands NL
Denmark DM Norway NO
Finland FI Sweden SE
France FR Switzerland SW
Germany GE United Kingdom UK

Western Offshoots
Australia AU New Zealand NZ
Canada CA USA US

Japan JP

2.3 Graphical and Descriptive Analysis of the Data

The levels and the growth rates of the 17 countries are plotted in Appendix A.1. Further-

more, for the growth rates, we have computed several summary statistics, which are given

in Table 2.2. As we also want to gain some insights in the changes of average growth

and growth rate volatility over the 20th century, these two statistics are computed for

subperiods as well (See Table 2.3). The subperiods, discussed later on, correspond to five

distinct phases of economic development that are often considered in the literature. Let

us first discuss the tables, which provide the headline numbers of 20th century economic

growth. We will then discuss some stylized facts of economic growth that can be deduced

from the graphs. In particular, we distinguish between stylized facts of short-run and

long-run economic growth.

The distributions of economic growth rates

Strikingly, the average growth rates of the 17 economies over the 20th century are

very similar. They are close to 2%, which seems to have become a magic number in

economic growth research. For most countries, the median of the series is higher, which

indicates that the means are strongly influenced by some very low, or even negative ob-

servations. Canada, Finland, Germany, Italy, Japan and Norway have the highest median

growth rate, whereas Denmark, New Zealand, Switzerland and the UK fall behind. For

all the countries, maximum and minimum growth rates were observed around the two

world wars, which is not surprising. In contrast to the means, there is much cross-country

variation in the standard deviations of the series, though a quick look at Table 2.3 reveals

that this is due to some extreme observations in the Second World War period. Although

some countries, such as the USA and Canada, benefited from the war because of their

weapons industry, growth was at a nadir in general. Due to this period, the skewness
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Table 2.2: Summary statistics for the percentage growth rate series.

Mean Median Maximum Minimum S.D. Skew. Kurt.
∆ȳi ∆ỹi ∆yM

i ∆ym
i si Si Ki

Australia 1.61 2.37 10.05 (’41) -10.30 (’13) 3.54 -0.62 3.79
Austria 1.94 2.60 24.37 (’47) -87.87 (’44) 10.65 -6.04 52.19
Belgium 1.74 2.26 16.94 (’18) -20.67 (’17) 4.73 -1.33 9.89
Canada 2.09 2.81 15.05 (’41) -18.37 (’30) 5.36 -0.93 5.18
Denmark 2.04 2.01 13.11 (’45) -15.83 (’39) 4.22 -1.02 6.82
Finland 2.52 2.80 19.11 (’18) -18.01 (’16) 4.84 -0.93 7.31
France 1.99 2.27 40.43 (’45) -21.80 (’17) 7.39 0.48 11.11
Germany 1.78 2.68 16.47 (’26) -54.72 (’45) 8.95 -3.52 20.70
Italy 2.37 2.80 26.40 (’45) -24.79 (’44) 6.17 -1.17 10.14
Japan 2.92 3.19 13.96 (’38) -68.07 (’44) 8.49 -5.87 50.04
Netherlands 1.81 2.18 50.62 (’45) -40.71 (’43) 7.83 0.82 25.05
New Zealand 1.32 1.49 16.35 (’35) -12.43 (’47) 5.01 -0.17 3.66
Norway 2.64 3.07 14.69 (’18) -10.68 (’16) 4.05 -0.70 6.16
Sweden 2.07 2.15 9.17 (’45) -13.86 (’16) 3.12 -1.36 8.51
Switzerland 1.83 1.58 24.16 (’44) -11.71 (’16) 3.87 1.47 13.88
UK 1.47 2.10 9.06 (’39) -11.43 (’18) 3.29 -1.13 5.81
USA 1.93 2.35 17.16 (’41) -24.15 (’45) 5.83 -0.85 7.16

Average 2.00 2.39 19.83 -27.38 5.73 1.67 14.55

of the growth rates is mostly negative. Finally, the kurtosis of the series exceeds three,

which indicates that the tails of the distributions of the growth rates are fatter than the

tails of the normal distribution.

Short-run economic growth and the impact of shocks

Let us take a detailed look at the graphs of our growth rates in Appendix A.1 and

make some general observations. Firstly, we observe that in the short run, economic

growth fluctuates in patterns. To illustrate this, we compare the series of growth rates

to the average rates during subperiods, which are indicated by dashed horizontal lines.

Typically, the series evolve either above or below this average for two up to eight years at

a time. This cyclical process is commonly referred to as the economic cycle2. Secondly,

during some periods, economic growth tends to fluctuate more than in others. This

suggests that growth volatility is not constant over time. In particular, we observe that

volatility is relatively high before the Second World War, whereas is it low during the

postwar period. Finally, we observe that dramatic negative spikes are followed by catch-

up periods. Clearly, there is variation in the length of these periods across countries and

over time. We will now analyze growth during subperiods of the century in more detail,

and touch upon some important historical events, which are generally thought to be the

2Note that we do not refer to this process as the business cycle. Research on business cycles usually

deals with shorter run fluctuations in growth, such as quarterly fluctuations.
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Table 2.3: Average growth rates and sample standard deviations over different sub-
periods of the 20th century.

1901-1918 1919-1939 1940-1945 1946-1973 1974-2000
∆ȳi si ∆ȳi si ∆ȳi si ∆ȳi si ∆ȳi si

Australia 0.89 4.75 0.53 3.91 2.80 6.94 2.32 2.52 1.95 1.76
Austria -0.67 5.39 2.25 7.19 -14.42 36.24 6.67 5.11 2.17 1.56
Belgium -1.47 6.48 2.80 5.53 -2.88 7.09 3.76 1.95 1.99 1.76
Canada 2.35 5.88 0.34 8.43 6.71 7.41 2.56 2.93 1.75 2.20
Denmark 0.76 3.80 2.62 3.96 -2.80 10.72 3.75 3.20 1.75 1.90
Finland -1.10 6.38 4.34 5.37 0.20 6.26 4.27 2.64 2.21 3.05
France -1.02 7.74 3.30 6.97 -10.37 9.85 5.85 7.07 1.71 1.34
Germany 0.03 4.95 2.69 9.80 -4.15 16.11 3.63 11.89 1.63 1.86
Italy 3.57 4.37 0.18 5.98 -10.09 10.59 6.19 4.80 2.10 1.78
Japan 1.92 5.03 2.49 5.52 -12.30 27.45 7.78 2.45 2.26 1.85
Netherlands -0.43 3.76 2.40 5.61 -12.08 14.98 5.74 9.28 1.86 1.50
New Zealand 0.74 4.98 1.30 6.84 1.17 4.68 2.09 5.50 0.93 2.55
Norway 0.92 3.59 3.24 5.39 -1.90 7.18 4.00 3.00 2.91 1.78
Sweden -0.06 4.40 3.27 3.51 1.70 2.93 3.16 1.93 1.52 1.90
Switzerland 0.33 3.13 2.46 3.84 3.30 10.36 3.10 2.86 0.71 2.20
UK 1.08 2.43 0.33 5.06 1.99 6.07 2.07 2.22 1.87 1.91
USA 1.80 6.27 0.70 6.86 9.65 8.74 1.26 5.68 1.94 2.03

Average 0.57 4.90 2.07 5.87 -2.56 11.39 4.01 4.41 1.84 1.94

reason for these spikes. A chronological list of key political and economic events in the

20th century can be found in Appendix A.2. The events that are listed are believed to

have affected the economies of at least two of the countries considered in our study. Note

that, obviously, the list is not exhaustive.

The first period of the century, 1901-1918, is usually referred to as the Liberal Or-

der. Growth was particularly low, and very volatile. Clearly, its most important event is

the First World War, which affected growth negatively in most of the countries. Many

economies, however, recovered very rapidly. Only for Austria, Canada, Germany and the

UK, recovery took longer than three years3. The second period, the Roaring Twenties

and Dirty Thirties, 1919-1939, showed very volatile economic growth as well. In the late

twenties, the USA and the Canadian economies were booming, but this came to a swift

end with the stock market crash in 1929. It is believed that this event plunged many

countries in the decade-long Great Depression. Prices deflated and business activity fell

sharply. This caused very high unemployment in the Western Offshoots. It took these

economies, which are typically stable, about seven years to recover. Needless to say, the

third period, which is the Second World War, was the most serious event of the century.

Average growth fell below −10% in Austria, France, Italy, Japan and the Netherlands.

3At this stage, let us define the recovery period of an economy loosely as the period needed after a

trough to return to the real per capita GDP level before the depression.
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In the period thereafter, the Golden Age, 1946-1973, some countries, like Belgium, the

Netherlands and France caught up with their original output levels very quickly, whereas

for Austria, Germany, Italy and Japan recovery took much longer. Interestingly, most

economies managed to keep up the high growth rates for a very long time. Additionally,

growth rate volatility decreased significantly after the war. This may be the success of

postwar counter-cyclical economic policy and intensified economic relationships. Sadly,

the Golden Age did not last forever. In the final period of the century, the Neoliberal

Order, 1974-2000, average growth rates decreased gradually. For some countries, such

as Belgium, Denmark, France and Japan, this decrease seems to have occurred instan-

taneously in 1973. Therefore one may be inclined to conclude that the 1973 OPEC oil

crisis caused growth rates to change structurally. However, many economists agree that

it is more plausible to consider this event the straw that broke the camel’s back (See, for

instance, Baumol et al., 1989, and Maddison, 1991).

Long-run economic growth

To conclude this section, we will now take a bird’s eye view. If we would have been

asked to draw the long-run economic growth paths of the 17 countries in the graphs of the

levels as continuous lines, would these lines be linear4? Stated alternatively, is long-run

growth constant over time? To be able to answer this question, let us first try to estimate

these long-run growth paths visually. The following procedure is applied. Initially, the

paths are drawn as linear lines. In case the original series deviates from this line for a

period longer than a decade, the slope of the line is adjusted as to shorten this deviation,

resulting in a piecewise linear path. This procedure is continued until deviations longer

than a decade are no longer observed. Finally, during periods of 30 years or longer, where

the slope of the growth path had to be changed every decade, the line is curved, such as

to represent a continuous change5. The resultant long-run growth paths are represented

by the dotted lines in the left panels of the graphs in Appendix A.1. To be able to

compare these paths across countries, the paths are sorted by the number and magnitude

of adjustments needed, and shown together in four graphs in Appendix A.3.

Considering the growth paths obtained, we conclude that, in contrast to the traditional

view, long-run economic growth clearly varies over time. However, it tends to change only

very slowly. This observation is consistent with economic theory. After all, changes in

long-run output, which is a highly aggregated quantity, are due to changes in behaviour

of a very large number of economic agents. These agents may have different objectives,

and they may operate in markets with a different degree of efficiency. Moreover, changes

in their behaviour may require a different degree of institutional change. Therefore we do

4Note that if the logarithmic levels of the series, briefly referred to as the levels here, would be linear,

the untransformed series would show an exponential trend.
5Obviously, the outcome of this exercise would have been different if deviations from the long-run

growth path exceeding a decade had been tolerated. For a thorough analysis, long-run growth has to be

defined formally. This topic will be discussed in the next chapter.
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not expect them to react simultaneously to an economic stimulus. Instead, it takes a long

period of time for all agents to adjust. This consideration suggests that long-run output,

and, consequently, long-run output growth changes slowly, rather than abruptly (See, for

instance, Teräsvirta et al., 1994, and Greenaway et al., 2000, for a similar discussion).

Let us now compare long-run growth paths across countries. For the first group

shown in Appendix A.3, long-run growth is most stable. More precisely, growth tends

to be constant over periods of 50 years or longer. Remarkably, during the final 60 years

of the century, the growth paths of Australia, the UK and the US are equally sloped.

Recently, the two Scandinavian countries seem to have caught up with this group. In

the next two graphs, paths with minor changes in long-run growth are shown. Though

nonlinear, these growth paths have a typical curvature as well. In particular, for Belgium,

France, Germany and the Netherlands, the paths tend to overlap. The latter economies

are characterized by very fast growth after the Second World War, and a gradual decline in

long-run growth during the final three decades. The fourth graph shows growth paths with

relatively large changes in the slope. Interestingly, these changes seem to have occurred

at different points in time. Also for this group, the so called catch-up effect appears to

be strong, as the output levels of these countries are relatively low around 1900, whereas

they are relatively high around 2000. Finally, closely related to this, we observe that,

although there was relatively much cross-country disparity in growth at the beginning of

the century, output levels are very similar near the end. This observation is frequently

used as an indication of economic convergence across industrialized countries.

Though beyond the scope of our research, it is very interesting to analyze what caused

strong similarities within, and differences between, groups of countries to emerge. Let

us mention a few economic historians’ visions on this issue here. Firstly, similarities in

long-run growth are believed to be the result of strong historical (trading) partnerships.

Many of these partnerships are due to common history, culture, and/or geographical

proximity. Examples are the Scandinavian countries, and the first member states of the

EU. Differences arise as some economies are more mature than others. As mentioned

earlier, during the 20th century, economies that were relatively immature have caught

up with others (Abramovitz, 1986). Examples are Austria, Italy and Japan. Secondly,

shocks, such as the Second World War, seem to have had a more persistent effect on some

economies than on others. This may be simply because some countries were more involved

in the war, or because some economies managed to recover more quickly than others

(Cook, 2002). Some examples of the latter kind are Austria and the Netherlands. Finally,

it could be that some groups of countries were more successful in developing efficient

policies to facilitate growth, because of better institutions (Acemoglu et al., 2001).



14 Stylized Facts of Economic Growth

2.4 Time-varying Correlations Across Growth Rates

The graphical analysis of the real per capita GDP levels in the previous section suggests

that there are strong similarities in the long-run growth paths of some groups of countries.

In this section we will study cross-country similarities in the growth rates. As mentioned

earlier, growth rates represent annual percentage growth fluctuations. Therefore one may

consider this a study of short-run comovements in growth. To measure how strongly

growth rates are related across countries, we will analyze estimated correlations between

pairs of series6. It is not only interesting to look at correlations measured over the entire

sample period, but also to look at correlations in smaller subperiods. Especially, to look

how these correlations vary over time. An elegant way to study time-varying correlations,

is to visualize them using multidimensional scaling (MDS). Before we apply this technique

to our data set, let us first discuss the technique briefly. For details we refer to Kruskal

(1964), Groenen and Franses (2000), and the references cited there.

Multidimensional scaling

MDS can be used to visualize distances between entities, in our case correlations

between growth rates of countries, in a one- or multidimensional plot. In this plot each

country is represented by a point. Points at close distance correlate highly while points

at large distance correlate less or even negatively. Ideally, for each pair of countries,

the Euclidean distance between the two corresponding points in the plot is equal to one

minus the correlation. However, in most applications it is not possible to find such perfect

coordinates, and one has to resolve to an approximate solution of the problem. One way to

find such a solution is to minimize a criterion function that measures the disparity between

the desired and true distances between the points for a given matrix of coordinates. This

N × P matrix of coordinates will be denoted by X, where N is the number of countries

and P the dimensionality. A natural choice for the criterion function, called the Stress

function, S(X), is:

S(X) =

∑N

j=2

∑j−1
i=1

(
(1− ρi,j)− di,j(X)

)2

∑N

j=2

∑j−1
i=1 (1− ρi,j)2

, (2.3)

where ρi,j denotes the correlation between countries i and j, and di,j(X) the Euclidean

distance in the P -dimensional space. In the numerator, the sum of the squared differences

between one minus the correlations and the Euclidean distances is computed7. The de-

nominator of the function is a normalization factor, which ensures that the value of Stress

6Note that correlation is a linear measure of similarity. Therefore, estimated correlations should be

interpreted cautiously in case the underlying process is nonlinear.
7As both the matrix of ones minus the correlations and the matrix of Euclidean distances are sym-

metric, that is (1− ρi,j) = (1− ρj,i) and di,j(X) = dj,i(X) for all i and j, and furthermore the diagonal

elements of these matrices are zero, that is (1 − ρii) = 0 and dii(X) = 0 for all i, we only sum over the

upper triangular elements.
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Figure 2.1: Two-dimensional scaling solution for the matrix of estimated correlations,

measured over the 20th century. The dashed grid lines represent half unit distances,

where the origin is indicated by a cross.

lies in the unit-interval. This allows us to compare the values of the Stress function for

different MDS models. The value of (1−Stress) is a measure for the goodness-of-fit of the

model, similar to the R2 measure in a linear regression model. The solution of the problem

is not unique, as one can freely rotate the coordinates in the plane without affecting the

value of the Stress function. To overcome this, it is imposed that the coordinates sum

to zero per dimension. As it is not possible to solve the problem analytically, one has

to use a numerical algorithm8 to obtain this solution. MDS is an exploratory technique.

Therefore the choice of the dimensionality P may be based on the specific nature of the

problem. Alternatively, one can base the choice on the incremental contribution of each

dimension to the goodness-of-fit of the model.

Results of the MDS analysis

Let us first analyze a two-dimensional9 scaling solution for the matrix of estimated

correlations measured over the entire century, which is shown in Figure 2.1. As desired,

there seem to emerge groups, or clusters, of countries, which show similar growth rates

during the 20th century. The number of clusters and the classification of countries can

be determined by visual inspection. Note, however, that this is arbitrary. One may

8Following Groenen and Franses (2000) we use the SMACOF algorithm, which appears in the PROX-

SCAL program in SPSS 10+. We use the classical scaling solution as a starting configuration and stop

when the decrease in Stress between two iterations is less than 10−8.
9Based on the incremental contributions criterium, we established that the appropriate dimensionality

of our problem is two.
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opt for a division in three clusters. The first cluster covers Scandinavia, the majority

of the Western European countries and New Zealand. The second cluster covers North

America, the UK, Australia and Germany, and the third covers Austria, Italy and Japan.

Looking in more detail, one may consider Australia and Germany to be a separate cluster.

Furthermore, within the large first cluster, Switzerland and New Zealand tend to behave

quite differently compared to the other countries.

Although this graph provides us with an elegant overall picture, it does not tell us

anything about the stability of the correlations over time. Therefore, we compute the

two-dimensional scaling solutions for matrices of estimated correlations measured over

subperiods of 20 years10. This results in a sequence of 80 matrices of coordinates11, which

correspond to the periods 1901-1920 through 1980-1999. As mentioned earlier, one can

freely rotate the coordinates without affecting the distances between the countries. This

freedom is used to match the solutions in subsequent subperiods12. Finally, eight graphs

were constructed, each showing the coordinates of ten subsequent subperiods. The graphs

are shown in Appendix A.4. For each country the coordinates are connected by straight

lines. At the top of each graph, the midpoint of the window is given. The first position

is indicated by a white circle. From that point, a country moves along the line towards

the final position of the window, which is indicated by a black circle.

Considering the large changes in the coordinates of countries, the correlations between

their growth rates varied strongly over time. The first graph shows the solutions centered

around the First World War. During this period, correlations were relatively stable, and

strong clustering behaviour can be observed. A classification based on this graph would be

fairly equal to the classification obtained above for the entire century. Perhaps the most

prominent difference is that Italy is not highly correlated to Austria and Japan during this

period. The subsequent 20 solutions show great instability in the correlations. However,

the instability disappears all of a sudden in the period centered around the Second World

War. Also some clusters tend to emerge again. Compared to the classification based on

the First World War, Australia and Germany now joined the cluster of Australia, the

UK and the USA. Italy tends to move towards the European countries. The next three

graphs, which roughly cover the Golden Age, show a very unstable correlational structure.

These graphs are shown merely for the sake of completeness. A thorough analysis of the

individual solutions is needed to identify comovements of groups of countries during this

period. Only towards the end of the century, stability tends to re-emerge. However, in

contrast to earlier periods, this tendency does not coincide with the formation of distinct

10If the subperiods are long, the estimates of the correlations are less influenced by aberrant observa-

tions. However, if there is a structural change in the true correlation, its exact timing cannot be observed.

The choice of the length of our subperiods is a compromise between these two considerations.
11The values of the stress obtained for these 80 solutions are only slightly higher than the value of the

stress obtained for the solution of the entire century: S̄ = 0.0263 and sS = 0.0052.
12To match the solutions, Procrustes rotation is applied (Cliff, 1966).
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clusters. This could be interpreted as another sign of convergence across the countries

under consideration.

Obviously, interesting conclusions can also be drawn from the graphs regarding the

behaviour of individual countries, or small groups of countries. However, these are less

relevant for the purpose of this chapter. We will come back to the results in more detail

in Section 5.3, where we compare the results of a model based analysis to this analysis.

2.5 Conclusions

Throughout this thesis, we analyze the real per capita GDP levels and the corresponding

growth rates of 17 industrialized countries, measured annually over the 20th century.

A detailed analysis of the graphs and summary statistics of these series revealed some

important stylized facts of economic growth. These stylized facts will guide the choice of

our time series models in subsequent chapters.

Our first set of stylized facts concerns observations about the process of economic

growth over time. Firstly, we observed that short-run economic growth fluctuates in cycli-

cal patterns around a long-run level. The volatility of these fluctuations is not constant

over time. As regards the 20th century, summary statistics computed over subperiods

of the century indicated that growth volatility was very high before the Second World

War, whereas it was low after this period. This observation suggests the presence of a

structural break in volatility located around 1945-1950. Secondly, we established that

long-run economic growth tends to vary over time. We observed, however, that it changes

only slowly. Finally, economic growth is subject to shocks. These shocks are possibly

due to key political or economic events. For most shocks that occurred during the 20th

century, it took countries up to at most seven years to recover. Therefore we consider

the effects of these shocks to be temporary. Some shocks, however, also had an impact

on long-run economic growth. Typically, these shocks were due to events that concerned

many countries. Examples are the Great Depression and the Second World War.

The second set of stylized facts is related to cross-country similarities in economic

growth. Firstly, we established that, in general, short-run movements in economic growth

are very different across countries. Only for some pairs of countries, correlations are sta-

ble over prolonged periods of time. However, stable correlations and strong clustering

behaviour occurs during periods surrounding dramatic events. Interestingly, this is also

one of the conclusions of Groenen and Franses (2000), who studied time-varying correla-

tions across 13 stock markets. In contrast to the short run, long-run economic growth is

similar across countries for very long periods of time. For the 20th century, three groups

of countries seem to emerge. Firstly, there is a group for which the long-run growth paths

appear to be close to linear. In particular, for these countries, long-run growth was con-

stant over periods of 50 years or longer. For the second group of countries, only minor

changes in long-run growth can be observed. These economies are characterized by faster
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growth after the Second World War, and a gradual decline in long-run growth during the

final three decades. For the remainder of the countries, changes in long-run growth are

larger. During the 20th century, these countries seem to have caught up with others, as

average output was relatively low around 1900, whereas it is high around 2000.



Chapter 3

Univariate Analysis

3.1 Introduction

In this chapter we discuss univariate time series models to describe economic growth. A

basic premise of these models is that each of our series of real per capita GDP levels,

denoted by yt, can be decomposed as:

yt = nt + zt, (3.1)

where nt represents the trend of the series and zt the deviations from this trend. The zt
component is usually labelled as the cycle. For the trend to represent the long-run growth

path of a series, we established earlier that it should satisfy two conditions. Firstly, it

should evolve slowly over time. Secondly, it should be flexible enough to describe the

time variation in long-run growth. Recall that we satisfied the latter condition in our

visual estimation exercise by adjusting the trend in case the series deviates for a period

longer than a decade. This intuitive approach guides our thinking about trend modelling

in two ways. Firstly, to anticipate to structural changes in long-run growth, we might

allow the direction of our trend to adjust during periods of large deviations. Secondly,

to verify whether a trend is flexible enough, we could analyze whether the deviations

from the trend are temporary. Stated alternatively, we could analyze whether the series

reverts to the trend in the long run. For the trend to be flexible enough to consider

its deviations temporary, one may be inclined to specify a trend function that allows

for abrupt adjustments to unanticipated shocks. However, it is very unlikely that this

trend will evolve slowly over time. Such a trend function is not only inconsistent with

economic theory, it is also undesirable from a forecasting point of view. After all, the more

flexibility one introduces in the trend, the more forecast uncertainty is implied. The key

problem of trend modelling is therefore to find a balance between flexibility and slowness

of evolvement.

The chapter is organized as follows. At first, attention will be paid to models for the

deviations from the trend, or the economic cycle. This enables us to discuss two methods

to check whether deviations from a trend are temporary. Subsequently, in Section 3.3,
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we provide a concise overview of various trend specifications suggested in the literature,

and discuss whether these meet the two conditions stated above. Both this overview and

the first set of stylized facts established in Chapter 2 guide the formulation of a new time

series model for macroeconomic growth which is proposed in Section 3.4. Basically, our

model corresponds to the vision that one should allow the direction of the trend to change

stochastically over time. However, the extend to which long-run growth can change over

a year is limited and should be modelled accordingly. Finally, in Section3.5 we estimate

the model parameters for our 17 time series, and discuss the results in detail. Section 3.6

concludes the chapter.

3.2 Modelling Economic Cycles

In the previous chapter we observed that in the short run, economic growth fluctuates in

cyclical patterns around a long-run level. This level is represented by the trend in our

models. An implication of this observation is that the deviations from the trend may be

autocorrelated. To describe the autocorrelation in the trend deviations zt, one usually

considers autoregressive (AR) models:

φ(L)zt = εt, (3.2)

where εt is a stochastic error term, φ(L) is a lag polynomial, defined as φ(L) = 1−φ1L−

... − φpL
p, L is the lag operator, defined by Lkyt = yt−k, and p is the number of lags.

Alternatively, one can use an autoregressive moving average (ARMA) model. This model

is of particular interest when the number of lags p is large, in case of an AR representation.

It can be formulated as:

φ(L)zt = θ(L)εt, (3.3)

where θ(L) = 1−θ1L− ...−θqL
q. The model approximates an AR polynomial with a high

lag order by a ratio of two polynomials of order p and q, which involves less parameters.

To analyze whether the deviations from a particular trend are temporary, one could

simply check whether these deviations always revert to zero within a tolerable period of

time. However, often, a more formal treatment is desired. Therefore, one usually tests

whether the cycle is stationary. Note, however, that this is a somewhat stronger condition

than mean reversion1. Within the framework of an ARMA model, stationarity of the cycle

requires that all the p roots of the polynomial φ(x) are greater than one in absolute value.

Moreover, the process is invertible if the q roots of θ(x) are outside the unit circle. This

implies that yt is a stationary and invertible ARMA process around the trend nt. In case

one of the roots is equal to one, the series is said to have a unit root.

1Loosely speaking, stationarity requires that the mean, variance and autocovariance of a time series

are constant over time, see, for instance, Franses and van Dijk (2000) for a formal definition.
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Completing the specification of the cycle, it is usually assumed that the errors εt are

independently and identically normally distributed with zero mean and variance σ2:

εt ∼ NID(0, σ2). (3.4)

Obviously, one could also impose other distributions than the normal. For example,

Geweke (1993) and Hoek et al. (1995) suggest to use the Student-t distribution, as this

distribution is more robust to outlying observations. Considering the high kurtosis of our

growth rates (See Table 2.2), the assumption of normality might indeed be questioned in

our case as well. A second issue is related to the variance of the cycle. In the specification

above, the cycle is assumed to be homoscedastic. However, as we observed structural

changes in growth volatility over time, a relaxation of this assumption is desired.

3.3 Modelling Economic Trends

Let us first discuss two extreme choices for the trend. This will illustrate the key problem

of trend modelling, which we discussed above. Traditionally, a very popular choice for

the trend component has been the linear deterministic trend, or time trend,

nt = n1 + α(t− 1), (3.5)

written recursively as,

nt = nt−1 + α, (3.6)

where both the slope α and the initial value n1 are unknown parameters. It corresponds

to the vision that in the long run, an economy grows at a constant rate of α per year,

which is also referred to as the long-run sustainable rate of growth. Clearly, this trend

satisfies the condition of slowness of evolvement, as its direction does not change over

time. Another advantage is that it has no forecast uncertainty, since it is fully determin-

istic. However, Nelson and Plosser (1982) concluded that for most macroeconomic time

series, the deviations from this trend function are nonstationary2. Indeed, applying their

procedure to our series, using one lagged differenced term, we find that only for the series

of the USA, the deviations from the trend can be considered stationary. This suggests

that the linear deterministic trend is not flexible enough to represent the long-run growth

path of the 16 other series.

Alternatively, one could introduce a random variable in the trend, to allow for unan-

ticipated changes in its direction:

nt = nt−1 + α + βut, ut ∼ NID(0, 1), (3.7)

2The conclusion is based on the results of the Dickey-Fuller (1979) test for a unit root, carried out

on 14 long annual macroeconomic time series for the USA. For 13 of these series the null hypothesis of a

unit root could not be rejected at the 5% significance level.



22 Univariate Analysis

where α is a drift term, and ut denotes an unanticipated shock, which is multiplied by a

factor β. This trend corresponds to the Schumpeterian view that growth is fully driven

by persistent, stochastic shocks, or innovations, and is referred to as the random walk

with drift. Essentially, the direction of the trend is adjusted to every change in the level

of the series. Although this trend is very flexible, naturally, it does not evolve slowly over

time. Moreover, it leads to forecast uncertainty, which increases linearly over time (See

Paap, 1997, among others). For this reason, the random walk with drift is not particularly

useful to describe and forecast long-run economic growth.

The conclusions of Nelson and Plosser have spawned a vast literature on long-run

inference and the specification of variable macroeconomic trends (See Stock and Watson,

1988, and Stock, 1994, Section 5, for a survey). A first attempt to model the variability

of macroeconomic trends deterministically was made independently by Perron (1989) and

Rappoport and Reichlin (1989). They suggested to allow for structural breaks and/or

changes of the slope of the linear deterministic trend. These structural changes in the

series might be due to important political or economic events such as the ones discussed

in the previous chapter. Perron illustrated that if one models a structural break in 1929

(the Great Crash) and a change of the slope in 1973 (the OPEC oil crisis), the resultant

cycle is stationary for most of the series used in the work of Nelson and Plosser. This

result, however, is very sensitive to the choice of the breakpoints. Therefore Zivot and

Andrews (1992) suggested to treat these breakpoints as unknown parameters and adjust

the test for the null hypothesis of a unit root accordingly. Unfortunately, this approach

leads to an overturn of the verdict again.

The ease with which the null hypothesis of a unit root is not rejected, lead to the suspi-

cion that unit root tests have low power in small samples. In the late 1980s, a large body

of Monte Carlo evidence has been found in favour of this (See Stock, 1994, Section 3.2.4,

for a survey). Perron (1991) refined this statement by showing that the power of unit root

tests is more influenced by the span of the data than the number of observations. Stated

alternatively, the power of a unit root test will not increase by using higher frequency

data if this is at the cost of a smaller time span. Regrettably, this situation applies to

most quantities studied in macroeconomics. Quantities for which data are available over

a relatively large time span, are only measured annually, whereas for quantities measured

quarterly, data are only available from 1951 onwards. As a consequence, in this field

of research, attention was largely directed away from unit root tests. Apart from this,

for unit root testing in nonlinear models a formal distribution theory has not yet been

developed, as this is a very difficult problem. This is the reason why we will not be able

to perform unit root tests to the cycles estimated using our models.

To conclude this section, we discuss two more recent approaches to trend modelling.

The first trend specification, which is an alternative to the random walk with drift, is

proposed by Hamilton (1989). Hamilton suggested to exchange the continuous random
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variable ut in (3.7) for an unobserved first-order Markov process st:

nt = nt−1 + α + βst, st = 0, 1. (3.8)

The process st takes either the value zero or one, depending on the previous state of the

process, st−1, where the transition probabilities are given by:

Pr[st = 0|st−1 = 0] = p, Pr[st = 1|st−1 = 0] = 1− p with 0 < p < 1, (3.9)

Pr[st = 1|st−1 = 1] = q, Pr[st = 0|st−1 = 1] = 1− q with 0 < q < 1.

Consequently, the slope of this trend takes only two values, rather than a continuous

spectrum. If st equals zero, the slope of the trend is α, whereas, if st equals one, it is

α+β. Without going into further details, the reader will probably notice that this trend,

which is known in the literature as the Markov trend, is less flexible than the random walk

with drift but more flexible than the linear deterministic trend (Paap, 1997). Therefore

it may strike a better balance between flexibility and slowness of evolvement. Markov

trends were found to be particularly useful to describe alternating periods of expansion

and recession. For example, such periods can be detected from macroeconomic quantities

measured quarterly. However, to describe the long-run growth paths of our time series, two

different values for the slope of the trend might not be enough to describe the variability

over time.

The final trend specification we discuss is an alternative to the linear deterministic

trend given by (3.6). Greenaway et al. (2000) suggested to introduce a flexible nonlinear

deterministic function in the trend:

nt = nt−1 + α + βG(t|γ, τ), (3.10)

where G(·) denotes the logistic transition function, as considered in the class of logistic

smooth transition autoregressive (LSTAR) models, popularized by Teräsvirta (1994):

G(t|γ, τ) =
1

1 + exp
(
− γ(t− τ)

) . (3.11)

This function changes monotonically from 0 to 1 as t varies from −∞ to +∞, while

G(τ |γ, τ) = 1
2
. The parameter τ determines the timing of the transition midpoint. The

smoothness of the change in the value of the transition function is determined by the

parameter γ, which is restricted to be positive, where a low value of γ corresponds to a

smooth change and a high value to an abrupt change3. As a consequence, this specification

allows the slope of the trend to vary smoothly from α to α+β. This creates a rich class of

trends, which evolve slowly and smoothly over time by design, provided that the estimate

of γ is low. An obvious drawback of this trend is that it is fully deterministic. Although

the trend might be flexible enough to describe long-run growth within the time span of the

data under consideration, it does anticipate to any structural changes in future growth.

3A slightly different logistic transition function will be discussed in more detail in the next section.
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3.4 Introducing the STAAR Model

Our modelling approach aims at combining the beneficial properties of the Markov trend

and the nonlinear deterministic trend, as proposed by Greenaway et al. (2000). Similar

to the Markov trend specification, we allow the direction of the trend to change stochasti-

cally over time. However, the direction does not depend on the previous state of a Markov

process. Instead it depends on the standardized difference between the level of the series

and the trend in the previous year, (yt−1 − nt−1)/σ. We will refer to this value as the

standardized trend deviation. Furthermore, in contrast to the Markov trend, where the

slope can take only two different values, we allow the slope to take all values on a fixed

continuous interval. Note that this requires us to specify a function that maps standard-

ized trend deviations on this interval. As we do not want to fully impose the shape of this

function, a flexible transition function is used, similar to the function used in Greenaway

et al. (2000). The trend is formulated as follows:

nt = nt−1 + α + βF
(

(yt−1 − nt−1)/σ
∣
∣
∣γ
)

, (3.12)

where F (·) is a logistic transition function4, defined as:

F (xt|γ) =
1− exp(−γxt)

1 + exp(−γxt)
. (3.13)

Different to the transition function discussed earlier, this function changes monotonically

from −1 to 1 as xt varies from −∞ to +∞, while F (0) = 0. In Figure 3.1, the function is

plotted for different values of the smoothness parameter γ. As γ becomes very large, the

change of the function from −1 to 1 becomes almost instantaneous at xt = 0, while, as γ

approaches zero, the function becomes approximately zero for all values of xt in a finite

region around zero. If, in the previous year, the actual output level was higher than the

trend, the output of the transition function is a positive value between 0 and 1. Logically,

in case of a negative difference, the output of the transition function varies between −1

and 0. The parameter β determines the maximum positive or negative adjustment of the

trend allowed. Consequently, the slope of the trend may take all values on the closed

interval [α−β, α+β]. It is important to make clear at this point that one may not expect

the estimate of the constant α to be the same for this trend as for the linear deterministic

trend, since the estimate of β will be nonzero in general. Nevertheless, if β equals zero,

the trend function reduces to a linear deterministic trend. In contrast, if β is nonzero and

γ is large, the trend allows for abrupt adjustments to the long-run growth rate, similar to

the random walk with drift. Our trend therefore embeds these two extremes as limiting

cases.

4The function F (·) is a transformed version of the function G(·) in (3.11). In particular, F (·) =

2G(·)− 1, where the threshold τ is set equal to zero.
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Figure 3.1: The logistic transition function F (xt|γ) as given in (3.13) for different values

of the smoothness parameter γ.

Finally, let us discuss two potential weaknesses of this trend specification. Firstly, the

expectation of the argument of the transition function is zero5, while, in the immediate

neighbourhood of zero, the transition function changes most rapidly from −1 to 1. This

implies that trend adjustments due to small deviations from the trend are relatively

large, which is not desired in most cases. Ideally, the transition function should be stable

around zero, as an adjustment to the trend might not be strictly necessary for small

deviations. Note, however, that this problem is less severe if γ is small. Secondly, using

the transition function above, trend adjustments are assumed to be symmetric. That is,

an adjustment due to a positive difference between the level of the series and the trend

has the same magnitude as an adjustment due to an equal negative difference. Obviously,

one could also consider specifications which do not impose these restrictions. However,

these specifications are often heavily parameterized6. In the interest of parsimony and

ease of interpretation, we believe the trend specification given by (3.12) is a good starting

point.

5Assuming that zt is a stationary ARMA process with εt ∼ N(0, σ2), we obtain: E
(
(yt − nt)/σ

)
=

E
(
zt/σ

)
= σ−1E

(
zt

)
= 0, for t = 1, ..., T .

6To illustrate this, a possible way to incorporate both stability around zero, and asymmetry in down-

wards and upwards adjustments to the trend, is to use an LSTAR specification with three regimes (See

Franses and van Dijk, 2000, among others):

nt = nt−1 + (α− β1) + β1G1(xt−1|γ1, τ1) + β2G2(xt−1|γ2, τ2),

where xt = (yt − nt)/σ, Gj(·) is specified as in (3.11) , and βj and γj are positive, for j = 1, 2. The

parameters β1 and β2 respectively denote the magnitude of the maximum downwards and upwards

adjustments allowed, whereas τ1 and τ2 denote the thresholds between the middle and low regime, and

middle and high regime, where τ1 < τ2. Although this specification is interesting from a theoretical point

of view, it is too heavily parameterized for most empirical work in macroeconomics.
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To complete our time series model for macroeconomic growth, we assume that the cycle

can be described as an ARMA(p, q) process, where the error term εt is independently and

identically normally distributed with zero mean and variance σ2. In summary, the model

can now be written as:

yt = nt + zt (3.14)

nt = nt−1 + α + βF
(

(yt−1 − nt−1)/σ
∣
∣
∣γ
)

φ(L)zt = θ(L)εt

εt ∼ NID(0, σ2)

where n1 is treated as an unknown parameter and F (·) is specified in (3.13). We refer to

this model as the smooth trend adjustments autoregressive (STAAR) model.

3.5 Results

Due to the small sample size of the individual time series, one additional restriction has

to be imposed to estimate the parameters of the STAAR model. It is assumed that the

cycle zt is an AR process with a lag order of one7. Consequently, the specification for the

cycle reduces to:

zt = ρzt−1 + εt, εt ∼ NID(0, σ2) (3.15)

The parameter estimates of the model, shown in Table 3.1, are obtained by Maximum

Likelihood (ML), using the Newton-Raphson method to maximize the log-likelihood func-

tion. These estimates are asymptotically normally distributed with mean equal to the true

parameter vector and covariance matrix equal to the inverse of the information matrix.

The information matrix is estimated as minus the Hessian matrix evaluated at the esti-

mated vector of parameters, where the Hessian matrix is defined as the matrix of second

partial derivatives of the log-likelihood function. We set the estimate of the initial value

of a series, ŷ1, equal to the estimate of the initial value of the trend, n̂1. To analyze

the performance of the model in more detail, the estimated trend components are pre-

sented graphically in Appendix A.5. Also, the original series and the output series of the

transition function are shown.

A first look at Table 3.1 suggests that the univariate STAAR model has considerable

potential. For 13 of the 17 series, the estimated value of β is highly significant, which indi-

cates an important role for the nonlinear adjustment mechanism of the model. Moreover,

the estimates of the autoregressive parameter ρ are relatively small, or even insignificant.

This indicates a low degree of persistence of the cycle. Therefore, the trend appears to

be flexible enough to describe long-run growth, as desired.

7Note that the AR(1) process does not generate cyclical behaviour. If the purpose of ones analysis is

to study economic cycles, other specifications should be considered.
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Initial optimism fades, as we take a closer look at the graphs of the trends. For

many countries, the estimated trends tend to overlap the original series. Clearly, in these

cases, the trend does not evolve slowly over time and the STAAR model suffers from

overfitting the trend component. Typically, for these countries, the estimates of both β

and γ are high. Note that this is the limiting case where the model allows for large,

abrupt adjustments to the long-run growth rate, similar to the random walk with drift.

This is also confirmed by the output series of the transition function, which resemble the

series of growth rates of the particular countries. Scaled with an appropriate factor β, the

trend adjustment nearly equals the growth rate in the previous period. In these cases, it

is likely that the estimates of β and γ are highly influenced by shocks, due to, for example,

the Second World War and relatively high volatility in the first half of the century.

Finally, let us mention some more promising cases as well. For Australia and New

Zealand, the trend does evolve slower than the series, as deviations from the trend over

medium-run periods up to eight years are frequently observed. These deviation are even

longer for Denmark, France and Germany. For the latter group of countries, long-run

growth is close to zero or decreases slowly during the periods of the two world wars,

but, as expected, it does not fall sharply. During the Golden Age, trend growth is lower

than actual growth, indicating that the ‘golden growth rates’ would not last in the long

run. A possible drawback of these relatively stable trends is that the resultant cycles are

more persistent. However, the estimates of ρ are still smaller than 0.9, which is generally

considered to be not unacceptably close to one, given the small sample size. Ironically, for

Denmark, France and Germany, the estimates of β appear to be statistically insignificant8.

It is conjectured that more observations are needed in order to accurately estimate the

parameters of the adjustment mechanism in its desired role.

3.6 Conclusions

A basic premise of the models discussed in this thesis is that each of our time series of real

per capita GDP levels can be decomposed as the sum of a trend and a cycle component.

For the trend component to represent the long-run growth path of the series, it should

evolve slowly over time. Moreover, it should be flexible enough to describe the time

variation in long-run growth. The key problem of trend modelling is to specify a trend

that strikes a balance between these two possibly conflicting conditions. To illustrate this,

we have provided a concise overview of trend specifications that have been proposed in

the literature.

Traditionally, deterministic trends have been used very frequently, as these trends can

be made arbitrarily smooth. A popular choice in this class is the linear deterministic trend,

8Note that we cannot apply the standard t-test here, as the asymptotic distribution is nonstandard.

This is due to the fact that γ is not identified under the null hypothesis H0 : β = 0. The problem is

known as the Davies (1977) problem. See Hansen (1996), among others, for a solution.
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Table 3.1: Parameter estimates of the univariate STAAR model. Estimated
standard errors are in parenthesis.

Country n̂1 α̂ β̂ γ̂ ρ̂ σ̂

Australia 8.382*** 0.007* 0.031*** 1.802** 0.743*** 0.034***
(0.024) (0.004) (0.007) (0.801) (0.093) (0.002)

Austria 7.984*** 0.010 0.742*** 0.485*** −0.050 0.099***
(0.061) (0.017) (0.098) (0.088) (0.138) (0.007)

Belgium 8.209*** 0.014** 0.153*** 0.570*** 0.375** 0.044***
(0.042) (0.007) (0.042) (0.166) (0.154) (0.003)

Canada 7.910*** 0.018*** 0.115*** 1.581*** 0.304** 0.048***
(0.026) (0.005) (0.011) (0.287) (0.127) (0.003)

Denmark 7.973*** 0.020*** 0.019 1.092 0.811*** 0.041***
(0.042) (0.004) (0.012) (0.883) (0.133) (0.003)

Finland 7.406*** 0.020** 0.099*** 1.012** 0.437*** 0.045***
(0.038) (0.008) (0.035) (0.441) (0.133) (0.003)

France 7.963*** 0.017 0.047 1.093*** 0.819*** 0.072***
(0.090) (0.090) (0.045) (0.099) (0.090) (0.006)

Germany 8.052*** 0.018*** 0.012 2.011*** 0.899*** 0.087***
(0.104) (0.004) (0.011) (0.256) (0.059) (0.006)

Italy 7.449*** 0.019* 0.182*** 0.650*** 0.432*** 0.057***
(0.051) (0.010) (0.042) (0.189) (0.140) (0.004)

Japan 7.015*** 0.011 0.077*** 3.576* 0.715*** 0.080***
(0.039) (0.009) (0.010) (1.905) (0.079) (0.006)

Netherlands 8.188*** 0.017 0.077*** 1.523*** 0.605*** 0.072***
(0.062) (0.011) (0.023) (0.535) (0.109) (0.005)

New Zealand 8.374*** 0.013*** 0.048*** 0.651 0.582** 0.049***
(0.049) (0.003) (0.005) (0.522) (0.267) (0.003)

Norway 7.476*** 0.021*** 0.055*** 1.625 0.404 0.039***
(0.047) (0.003) (0.017) (1.839) (0.325) (0.003)

Sweden 7.855*** 0.011** 0.067*** 1.766*** 0.151 0.029***
(0.014) (0.005) (0.011) (0.497) (0.139) (0.002)

Switzerland 8.169*** 0.021*** 0.215*** 0.524*** 0.087 0.036***
(0.028) (0.006) (0.051) (0.155) (0.151) (0.003)

UK 8.440*** 0.014*** 0.417*** 0.147*** 0.369** 0.030***
(0.028) (0.005) (0.042) (0.024) (0.182) (0.002)

USA 8.291*** 0.020** 0.640 0.213 0.126 0.055***
(0.051) (0.007) (0.887) (0.312) (0.257) (0.004)

*** Significant at the 1% level, ** at the 5% level, * at the 10% level.
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which corresponds to the vision that in the long run an economy grows at a constant rate.

However, in line with our findings in Chapter 2, this trend is found to be too restrictive to

describe long-run growth. As a result, more flexible nonlinear deterministic trends have

been proposed. For example, Greenaway et al. (2000) considered deterministic trends

with an LSTAR component, as considered by Teräsvirta (1994). Although (nonlinear)

deterministic trends might be flexible enough to describe long-run growth within the time

span of the data under consideration, an obvious drawback of these trends is that they do

not anticipate to any structural changes in future growth. Therefore it may be necessary

to allow the slope of the trend to change stochastically over time. We concluded that

the random walk with drift is inappropriate for this purpose, as it tends to overreact to

short-run fluctuations. A way to overcome this problem is to restrict the number and/or

magnitude of changes in the direction of the trend allowed. For example, the Markov

trend, proposed by Hamilton (1989), allows for only two possible directions of the trend.

This trend is found to be particularly useful to describe alternating periods of expansion

and recession. However, to describe long-run economic growth a trend that incorporates

more than two possible directions is needed.

In Section 3.4 we proposed a trend function that allows the slope of the trend to vary

within a certain closed interval. The slope of the trend depends on the standardized

difference between the level of the series and the trend in the previous year, referred to

as the standardized trend deviation. In case the trend was higher than the level of the

series, we expect the slope of the trend to be adjusted downwards, and vice versa. As

the standardized trend deviations may take any value on the open interval (−∞,∞), a

logistic transition function is used to map these values to the closed interval [−1, 1]. An

important property of our trend specification is that it embeds the linear deterministic

trend and the random walk with drift as limiting cases. Completing the specification of

our model, which is referred to as the STAAR model, we assume that the cycle can be

described as an ARMA process, where the error term is independently and identically

normally distributed with zero mean and constant variance. The model parameters were

estimated using Maximum Likelihood. Regrettably, for 12 of our 17 series, the estimated

trends act like a random walk, as the model suffers from overfitting the trend component.

In these cases, it is likely that the parameter estimates are highly influenced by shocks,

due to, for example, the Second World War and relatively high volatility in the first half

of the century. The latter indicates that a careful treatment of changes in volatility is

needed. For the remainder of the series, the estimated trends appear to be substantially

better. However, for some of these, the parameter that governs the nonlinear adjustment

mechanism appears to be insignificant. This suggests that, in order to accurately estimate

the parameters of the adjustment mechanism in its desired role, more observations are

needed.





Chapter 4

Latent Class Panel Data Models

4.1 Introduction

In the previous chapter we concluded that it is very difficult to detect a trend from a

single time series that satisfies the desired characteristics of a long-run economic growth

path. Perhaps the most important reason for this difficulty is that the sample size of

our individual time series is relatively small. To overcome this problem, we will try to

exploit the similarities in long-run economic growth across countries, which we established

in Chapter 2. These similarities suggest that some groups of our time series belong

to a single population. By treating several time series in one model, we obtain more

accurate estimates of the parameters which describe trends of time series that belong to

this population. These trends may better represent the long-run economic growth path

of the time series under consideration than the trends obtained using univariate models.

Obviously, the quality of the results obtained depends critically on the level of similarity

across these time series. This issue immediately raises another question, which is how to

classify the time series in groups that supposedly belong to the same population. Ideally,

the data should tell us which time series belong to which groups, and, moreover, how

many groups there are. Multivariate models well suited for this type of problem are

called latent class panel data models. This chapter covers the theoretical material needed

to understand and estimate these models.

In order to make this thesis self-explanatory, we provide a brief introduction to panel

data modelling in the next two sections of the chapter. Firstly, panel data sets are

defined and the main advantages of analyzing panel data sets instead of aggregated data

are discussed. Apart from the functional form, an important step in the specification of a

panel data model is to impose a structure on the parameters. In section 4.3, a modelling

framework is provided that may facilitate this step. As we focus on latent class panel data

models, we discuss the estimation of these models in more detail in Section 4.4. Finally,

some practical considerations in latent class modelling are discussed, such as convergence

and model selection. Section 4.6 concludes the chapter.



32 Latent Class Panel Data Models

Figure 4.1: Four different types of data sets

4.2 The Analysis of Panel Data Sets

The data sets of the levels and growth rates of real per capita GDP, studied in this

thesis, are two typical examples of panel data sets. Panel data sets contain a unit, or

cross-sectional dimension, and a time dimension. Needless to say, in our case, these units

are countries. Formally, a panel data set, also called a longitudinal data set, is defined

as a data set that contains observations of a fixed set of units over a certain period of

time. In most panels that are used in microeconomics and in the field of marketing,

the units are individuals or households whereas in finance usually firms, stocks or stock

indices are considered. In macroeconomics, one focuses on countries or industry sectors.

Sometimes these units are a priori one of a kind, such as in our case of countries. In

other situations, the set of units observed can be considered as a random sample from

an underlying population. In that case, one is not interested in the characteristics of a

specific unit, but rather in the common characteristics of arbitrary units. Note that a

panel data set contains repeated observations on the same units. This is in contrast to

a repeated cross-section, where, at each point in time, a new random sample from the

population is drawn (Figure 4.1).

The advantage of analyzing panel data sets is that the researcher is able to study the

characteristics of units over time, incorporating the possible presence of individual char-

acteristics and/or common characteristics within subgroups of the units. If one would

aggregate the data over the cross-sectional dimension, it is very often uncertain to which

extent the common characteristics are preserved. Furthermore, the individual character-

istics might bias the common characteristics one is mainly interested in.

In the 1980s and 1990s, most panel data models were developed for the analysis of

data sets where either the cross-sectional population size, or the number of time periods is

small. For the latter class of data sets, especially vector autoregressions were popular. Due

to limited computer capacity, larger data sets could not be analyzed before aggregation

over the cross-sectional dimension, or at least over subgroups of the units. However, as

information technology has developed very quickly in recent decades, there is no need

to aggregate over units anymore. Moreover, very large panel data sets have become

available, especially in finance, marketing and labor economics. To analyze panels where
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both the population size and the number of time periods are large, new models need to

be developed (Granger, 1998, Franses, 2002).

4.3 A Panel Data Modelling Framework

Consider a panel data set yi,t, where i = 1, ..., N is the cross-sectional dimension and

t = 1, ..., T the time dimension. Suppose that yi,t can be described by k = 1, ..., K

explanatory variables xki,t. These explanatory variables can be constant over time, that is

xki,t = xki for all t, or, for example, include lagged values of the dependent variable yi,t, in

case of a dynamic model. In general terms, a descriptive model for yi,t can be formulated

as:

yi,t = h(xki,t, θ
k
i,t, εi,t), (4.1)

where h(·) is a possibly nonlinear function, θki,t are the model parameters and εi,t is an

error term. Usually, this term is assumed to be independent and identically distributed

over the cross-sectional and time dimension, with zero mean and variance σ2
i . A simple

example of such a model is the linear panel data model with a single explanatory variable

and an additive error term, written as:

yi,t = xi,tβi,t + εi,t. (4.2)

The researcher has to make two important steps in the specification of a panel data model.

Firstly, he or she should specify an appropriate functional form for h(·), that incorporates

the features of the time series under consideration, such as trends, seasonality, outliers

and nonlinearity. Secondly, he or she has to impose a structure on each of the k groups

of parameters θki,t. This structure may be different for each group, as the nature of the

corresponding explanatory variables xki,t usually differs. Different parametric structures

require different techniques to estimate these parameters. As a result, models are usually

classified by their parametric structure.

In the remainder of this section we review several structures that are widely used in

practice. Let us denote the parameters of a particular group k by θi,t, for ease of notation.

In most applications of panel data models, the parameters are assumed to be constant

over time, that is θi,t = θi for i = 1, ..., N . For ease of exposition, we restrict our attention

to this class of models. Firstly, one could make one of two extreme assumptions:

• Pooled parameters

The parameters θi are assumed to be constant over the cross-sectional dimension:

θi = θ for i = 1, ..., N. (4.3)

In case this assumption is made for all K explanatory variables, another way to

estimate the parameters consistently is to append the columns of the yi,t and xki,t
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matrices to obtain the vectors yl and xkl , l = 1, ..., NT . Accounting for possible

heteroscedasticity, one can now estimate the single equation:

yl = h(xkl , θ
k, εl). (4.4)

For most choices of the function h(·), this equation can be estimated using conven-

tional estimation techniques, such as Maximum Likelihood.

• Fixed effects

The parameters θi are assumed to be different across the N time series. In case one

assumes fixed effects for all K explanatory variables, and for the variance, one could

have also estimated the N separate equations:

yi = h(xk
i
, θki , εi) for i = 1, ..., N, (4.5)

where yi, x
k
i
and εi are T × 1 vectors.

For some variables, these specifications are very useful. However, one can imagine that

for others it is more convenient to choose a parametric structure that is in between these

two extremes. In broad outlines, there are three possibilities:

• Discrete random effects

Assume that the θi parameters can take J different values with probability πj:

θi ∈ {α1, ..., αJ}, Pr[θi = αj] = πj for j = 1, ..., J, (4.6)

where J < N and
∑J

j=1 πj = 1. As the true classification of series is unobserved,

models incorporating discrete random effects are also called latent class models.

Another frequently used name is mixture models. The parameters can be estimated

by ML, using the Expectation-Maximization (EM) algorithm by Dempster et al.

(1977), or using the simulated EM (SEM) algorithm, see Nielsen (2000).

• Continuous random effects

The parameters θi are assumed to be drawings from a continuous population distri-

bution:

θi ∼ IID(µθ, σ
2
θ), (4.7)

where, in practice, the normal distribution is often used. This approach is also

referred to as the Hierarchical Bayes approach. The parameters can be estimated

by Simulated Maximum Likelihood (SML). If the function h(·) is linear, it is also

convenient to use Bayesian techniques, such as the Gibbs sampler, see Gelfand et al.

(1990).
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Table 4.1: Overview of parametric structures, used in panel data modelling.

Type Graphical representation Number of Estimation
parameters method

Pooled 1 ML
parameters

Fixed N ML
effects

Discrete J (S)EM
random (J < N)
effects

Continuous 2 (S)ML or
random Bayesian
effects techniques

Discrete 2J SEM or
continuous Bayesian
random techniques
effects

• Discrete continuous random effects

Basically, the discrete continuous random effects specification is a combination of

the latter two specifications. Similar to the discrete random effects specification,

it is assumed that the θi parameters can take J different values with probability

πj as given in (4.6). These parameters θj are in turn drawings from a continuous

population distribution:

θj ∼ IID(µθj
, σ2

θj
) (4.8)

Parameter estimates can be obtained by the simulated EM algorithm or Bayesian

techniques.

The five parametric structures are summarized in Table 4.1. Recently, a number of

extensions have been proposed, some of which are discussed in Franses (2002). In general,

a thorough knowledge of the data underlying a specific problem is crucial for specifying

a proper parametric structure. Given the strong similarities in long-run growth across

groups of countries, it is evident that latent class panel data models might be appropriate

for our problem. Therefore, the estimation of these models is discussed in more detail

in the next section. Extensive discussions on panel data models can be found in recent

textbooks by Baltagi (2001), Arellano (2002) and Hsiao (2003), among others.
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4.4 Estimation of Latent Class Panel Data Models

Before we discuss the basic techniques that are used to estimate the parameters of the

latent class panel data model, we first have to introduce some notation for finite mixtures

and mixture distributions.

Mixtures and mixture distributions

For ease of notation, let us denote a panel data set yi,t by y, where y = {{yi,t}
N
i=1}

T
t=1.

The data vector of a particular unit i will be denoted by yi, where {yi,t}
T
t=1. Suppose

that the N units of this data set arise from a population that is a mixture of J clusters,

J < N , where, for the moment, we assume J is known a priori. Each unit is classified

to one of these clusters. However, it is unknown to which cluster a unit is classified. The

unobserved classification of unit i is represented by si, si ∈ {1, ..., J}. Furthermore, the

ex ante probability that a unit belongs to cluster j is specified as:

Pr[si = j] = πj,
J∑

j=1

πj = 1, πj ≥ 0, i = 1, ..., N. (4.9)

Given that unit i belongs to cluster j, the conditional distribution function of yi is defined

as fj(yi|ϑj). The vector ϑj contains all the unknown parameters associated with the

distribution function fj(·). The unconditional distribution of yi is now obtained as:

f(yi|θ) =
J∑

j=1

πjfj(yi|ϑj), (4.10)

with θ = (π,ϑ)′, the vector of all unknown parameters, π = {πj}
J
j=1 and ϑ = {ϑj}

J
j=1.

It lies upon the surface to estimate the parameters θ using Maximum Likelihood. In this

context, the likelihood function of θ is defined as the product over the densities of the N

vectors yi, which are assumed to be independent. It is formulated as:

L(y|θ) =
N∏

i=1

f(yi|θ). (4.11)

The maximum likelihood estimator of θ, denoted by θ̂ML, is obtained by maximizing the

likelihood function with respect to the restrictions in (4.9). Once the estimator θ̂ML is

obtained, for each vector yi the ex post probability that unit i belongs to cluster j after

observing the data, denoted p̂i,j, can be calculated using Bayes’ theorem:

p̂i,j =
π̂jfj(yi|ϑ̂j)

∑J

j=1 π̂jfj(yi|ϑ̂j)
. (4.12)

Subsequently, an estimate of the classification of unit i, denoted ŝi, can be computed as:

ŝi = argmax
j

p̂i,j . (4.13)



4.4 Estimation of Latent Class Panel Data Models 37

Ideally, for each unit, the highest ex post probability, p̂i,ŝi
, is close to one. In that case,

unit i almost certainly belongs to cluster ŝi.

Maximization of the likelihood function using the EM algorithm

For computational purposes, one usually maximizes the logarithm of the likelihood

function, instead of the likelihood function itself. As this is a monotone transformation,

the maxima are obtained for the same parameter values. The log-likelihood function

of a latent class model can be maximized directly, using numerical methods, such as the

Newton-Raphson method. However, in practice, these methods are often computationally

unattractive, as the log-likelihood function is relatively complicated. In that case, one

usually resolves to the Expectation-Maximization (EM) algorithm. The EM algorithm

was initially formulated by Dempster, Laird and Rubin (1977). It was presented as a

technique to compute maximum likelihood estimators from incomplete data problems.

‘Incomplete’ means that the data is partially unobserved. In the context of latent class

models, the observed part of the data is y, whereas the unobserved part is the vector s,

where s = {si}
N
i=1 (Laird, 1978).

Assume that the vector s, which represents the classification of the units, is known.

One could now facilitate this information by maximizing the complete data likelihood

function, defined as:

Lc(y, s|θ) =
N∏

i=1

J∏

j=1

(

πjfj(yi|ϑj)

)I[si=j]

, (4.14)

instead of the normal likelihood function, where I[·] denotes the indicator function, whose

value is one if the argument in brackets is true and zero otherwise. The complete data

log-likelihood function is written as:

lnLc(y, s|θ) =
N∑

i=1

J∑

j=1

(

I[si = j] ln πj + I[si = j] ln fj(yi|ϑj)

)

. (4.15)

In the first step for the algorithm, the ‘E-step’, the expectation is taken of the complete

data log-likelihood function with respect to s|y. It can be shown that this expectation

can be obtained by replacing the indicators I[si = j] by the ex post probabilities pi,j :

lnLc(y|θ) ≡ Es|y[lnLc(y, s|θ)] (4.16)

=
N∑

i=1

J∑

j=1

pi,j ln πj

︸ ︷︷ ︸

(a)

+
N∑

i=1

J∑

j=1

pi,j ln fj(yi|ϑj)

︸ ︷︷ ︸

(b)

In the second step, the ‘M-step’, this expectation is maximized with respect to the param-

eters θ. As the parameters πj appear only in part (a) of (4.16), whereas the parameters
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ϑj appear only in (b), we can maximize two parts of this equation separately:

max
πj

N∑

i=1

J∑

j=1

pi,j ln πj for j = 1, ..., J (4.17)

max
ϑj

N∑

i=1

J∑

j=1

pi,j ln fj(yi|ϑj) for j = 1, ..., J (4.18)

The maximization problem in (4.17) can be solved analytically. It can be written as:

max
πj

J−1∑

j=1

lnπj

N∑

i=1

pi,j + ln

(

1−
J−1∑

l=1

πl

)
N∑

i=1

pi,j for j = 1, ..., J − 1 (4.19)

where the restrictions on the ex ante probabilities are used, which are given in (4.9). The

first order conditions of this problem are written as:

∂ lnLc(y|θ)

∂πj
=

∑N

i=1 pi,j
πj

−

∑N

i=1 pi,J

1−
∑J−1

l=1 πl
= 0 for j = 1, ..., J − 1 (4.20)

It is now easily verified that the solution to the latter system of equations is given by:

πj =
1

N

N∑

i=1

pi,j for j = 1, ..., J − 1 (4.21)

Whether a solution to the problem given by (4.18) exist in closed form depends on the

shape of the distribution functions fj(·). The first order conditions are written as:

∂ lnLc(y|θ)

∂ϑj

=
N∑

i=1

pi,j
∂ ln fj(yi|ϑj)

∂ϑj

= 0 for j = 1, ..., J (4.22)

In case it is not possible to obtain closed-form expressions, numerical optimization tech-

niques, such as the Newton-Raphson method, can be used.

The E-step and the M-step are repeated until convergence has been achieved. As a

convergence criterion, one may use the (relative) change in the value of the log-likelihood

function or the (relative) change in the parameter values. Schematically, the resulting

estimation algorithm can be summarized as follows:

1. Fix the number of clusters J and generate starting values for the cluster-specific

parameters ϑj and the ex ante probabilities πj, for j = 1, ..., J1.

2. Given the current estimates of πj and ϑj , compute the ex post probabilities pi,j
using (4.12).

1As starting values for the ex ante probabilities, πj , it is convenient to use random numbers on the

unit-interval, satisfying
∑J

j=1 πj = 1.
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3. Given the current estimates of pi,j, update the estimates of ϑj , for j = 1, ..., J .

4. Compute the ex ante probabilities, πj, for j = 1, ..., J , using (4.21).

5. Compute the value of the log-likelihood function, lnL(y|θ), as given in (4.11).

6. Stop if convergence has been achieved, otherwise repeat steps 2-5.

The parameter estimates obtained have the same asymptotic properties as Maximum

Likelihood estimates. Standard errors can be computed as discussed in Section 3.5.

Convergence of the EM algorithm

In contrast to the Newton-Raphson method, the EM algorithm always converges to

a local maximum of the log-likelihood function if the value of the log-likelihood function

increases in each iteration. This is true regardless of the shape of this function or the

accuracy of the initial values for ϑj and πj (Titterington et al., 1985; McLachlan and

Basford, 1988). Although the algorithm may require many iterations, these iterations are

computationally very attractive compared to Newton-Raphson iterations, as small parts

of the likelihood function are maximized separately. Probably the most convenient way

to estimate the parameters of a mixture panel data model is therefore to combine both

techniques. Using random starting values, the EM algorithm can be used to find a solution

near a local maximum of the likelihood function. After a fixed number of iterations, the

parameter estimates of the solution with the maximum value of the likelihood function

can be used as the starting values of the Newton-Raphson method, which will probably

converge very quickly to the exact local maximum. To verify whether this procedure

yields the global maximum of a particular problem, one could carry out a large number

of runs, starting from a wide range of random starting values. It can be shown that if the

number of runs tends to infinity, then the probability that the global maximum is found

converges to one.

4.5 Model Selection

Using a latent class panel data model as defined in Section 4.3, we obtain an endogenous

classification of our time series. However, the number of clusters has to be identified a pri-

ori. Within the classical statistical framework, this problem is still without a satisfactory

solution2 (Wedel and Kamakura, 1999). Let us discuss the main difficulty of the problem.

Suppose one wishes to test the null hypothesis of J clusters against the alternative hy-

pothesis of J+1 clusters. One may be inclined to use the likelihood ratio statistic for this

test, which is simply the difference between the maximized values of the log likelihood of

the two models. However, this test statistic is not asymptotically χ2 distributed, as two

of the regularity condition of the likelihood ratio test are violated. Firstly, the cluster

2See, however, Gourieroux et al., 1982, for some first promising results.
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specific parameters that correspond to cluster J + 1 are unidentified under the null hy-

pothesis. This causes the likelihood function to be flat with respect to these parameters

at the optimum. As a result, the likelihood surface is not locally quadratic in this region.

Secondly, the null hypothesis yields a local optimum of the likelihood function. Therefore,

under the null hypothesis, the gradient vector of the likelihood function is identically zero

(See Davies, 1977, McLachlan and Basford, 1988, and Hansen, 1992, among others).

Alternatively, one could apply bootstrapping methods. However, these methods are

computationally very demanding, as the model under consideration has to be estimated for

many synthetic data sets. Therefore, in practice one usually relies on information criteria.

In the context of latent class models, information criteria strike a balance between the

increase in fit obtained by imposing an extra cluster against the additional number of

parameters required. The various information criteria differ in how to strike this balance.

Commonly used criteria are the Akaike Information Criterion (AIC), which is based on

the use of generalized entropy as a goodness-of-fit measure, defined as:

AIC = −
2 lnL(y|θ)

NT
+ 2

P

NT
, (4.23)

and the Schwartz/Bayesian Information Criterion (BIC), an asymptotic approximation

to the Bayes factor:

BIC = −
2 lnL(y|θ)

NT
+ ln(NT )

P

NT
, (4.24)

where P is the total number of parameters to be estimated. The BIC differs from the AIC

only in that the number of parameters P is multiplied by ln(NT ) instead of 2. Clearly,

the BIC penalizes additional parameters more if the number of observations is larger

than eight, which is usually the case. Due to the relatively severe penalty, a decision

based on the BIC may result in too few clusters, whereas, in practice, the AIC sometimes

tends to overestimate the number of clusters. In general, however, the performance of

information criteria in the context of latent class models is unknown. In a recent study,

Andrews and Currim (2003) compared the performance of seven information criteria to

retain the number of clusters for a finite mixture logit model, manipulating many data

characteristics. For this model, they found that the AIC, and especially a modified version

of this criterion, performed best. For the modified AIC, referred to as AIC3, the penalty

factor is three instead of two3:

AIC3 = −
2 lnL(y|θ)

NT
+ 3

P

NT
. (4.25)

Their results, however, are not completely consistent with the results of previous studies,

where different mixture models were used (See, for instance, Culter and Windham, 1994).

3The factor three shows up if one assumes the likelihood ratio test statistic to be asymptotically

distributed as a noncentral χ2 random variable with non-centrality parameter δ and 2(P1−P0) degrees of

freedom, where P0 and P1 denote the number of parameters estimated under the null and the alternative

hypothesis, respectively (Bozdogan, 1994).
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As a consequence, it is likely that no one information criterion is best for all types of

models in all situations. To decide upon the number of clusters, it therefore appears to be

wise to consider several criteria, and establish which criterion produces the most plausible

results in each particular case.

4.6 Conclusions

Our data sets of real per capita GDP levels and growth rates are typical examples of

panel data sets, as these data sets contain a unit, or cross-sectional dimension and a time

dimension. In this chapter, the theoretical fundamentals have been discussed to model

panel data sets. To specify a panel data model, one has to make two important decisions.

Firstly, one should decide upon the functional form of the model, that incorporates the

features of the time series under consideration. Secondly, one has to impose an appropriate

structure on the parameters of the model. To illustrate this, for some parameters it is

plausible to assume constancy over the cross-sectional dimension. Others, however, should

differ between groups, or perhaps all, of the units. We have provided an overview of five

parametric structures, which are widely used in practice.

A structure that seems relevant for the models we want to develop for our data sets

is the discrete random effects structure. Models based on this parametric structure are

called latent class models, or mixture models. Using discrete random effects, one assumes

that the units, in our case countries, can be classified into J different clusters. Within

each cluster of countries, one or more model parameters take the same value. These pa-

rameters might, for example, represent the average economic growth rate. To estimate

the parameters of a latent class panel data model by Maximum Likelihood it is conve-

nient to use the EM algorithm of Dempster et al. (1977). This method is computationally

more attractive than the Newton-Raphson method, as small parts of the likelihood func-

tion are maximized separately. However, one of its drawbacks is that it converges very

slowly to a maximum of the likelihood function, once it is near this solution. Therefore,

one usually applies the Newton-Raphson method after a large fixed number of iterations

of the EM algorithm. Apart from convergence, another important issue in latent class

modelling is the decision upon the number of clusters. In practice, one usually relies on

the verdict of information criteria. A problem with this approach is that it is likely that

no one information criterion is best for all types of latent class models in all situations.

Though strictly speaking this is subjective, one could therefore consider several criteria,

and establish which criterium produces the most plausible results for the model and data

set at hand.





Chapter 5

Multivariate Subperiod Analysis

Using Static Models

5.1 Introduction

To become familiar with the estimation, model selection and evaluation of latent class

panel data models in practice, we first consider two very basic static models and estimate

their parameters for our panel of growth rates. The models are formulated such as to

formalize our subperiod analysis of Section 2.3. It is interesting to compare the results

of this approach to the analysis of correlations using MDS. For the models used in this

chapter, we will establish that is it possible to solve the maximization problems in the

M-step of the EM algorithm analytically. Consequently, estimation of these models is

computationally very attractive.

In the next section, a model is introduced to describe clusters of countries having equal

average growth rates and growth rate volatility. The model is estimated separately for the

five subperiods, introduced in Section 2.3. As a consequence, the clustering obtained may

be different for each subperiod. In contrast to this, Section 5.3 proceeds with discussing a

model that can be used to obtain a constant clustering over time, by incorporating shifts

in the average growth rate and growth rate volatility. Section 5.4 concludes the chapter.

5.2 A Model for Constant Growth and Growth Rate

Volatility

Let us first assume that for each country i in our panel data set, the growth rates ∆yi,t, for

t = 1, ..., T , are drawings from a normal distribution with mean µi and variance σ2
i . These

parameters are to be interpreted as the average growth rate and the growth rate volatility.

Furthermore, assume that the countries can be classified into J clusters. For all countries

classified to cluster j ∈ J , the mean and variance, denoted by µj and σ
2
j , respectively, are

the same. Note that these means and variances are assumed to be constant over time.
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The corresponding latent class panel data model is given by:

∆yi,t = µsi
+ εi,t, εi,t ∼ N(0, σ2

si
),

Pr[si = j] = πj,
∑J

j=1 πj = 1, πj ≥ 0.
(5.1)

Given that country i belongs to cluster j, the conditional distribution of a series ∆yi is

defined as:

fj(∆yi|µj, σ
2
j ) =

T∏

t=1

φ(∆yi,t|µj, σ
2
j ), (5.2)

where φ(·|µ, σ2) denotes the probability density function of a normal random variable

with mean µ and variance σ2. The likelihood function can now be written as:

L(∆y|π,µ,σ2) =
N∏

i=1

J∑

j=1

πjfj(∆yi|µj, σ
2
j ) =

N∏

i=1

J∑

j=1

πj

T∏

t=1

φ(∆yi,t|µj, σ
2
j ). (5.3)

Estimation

The parameters of the model can be estimated using the EM algorithm. In Ap-

pendix A.6 it is verified that the ex post probabilities can be computed as:

pi,j ≡ Pr[si = j|∆y,π,µ,σ2] =
πj
∏T

t=1 φ(∆yi,t|µj, σ
2
j )

∑J

l=1 πl
∏T

t=1 φ(∆yi,t|µl, σ
2
l )
. (5.4)

For this model, it is also possible to derive closed-form expressions for the distribution-

specific parameters µj and σ
2
j :

µj =

∑N

i=1

(
pi,j
∑T

t=1 ∆yi,t
)

T
∑N

i=1 pi,j
for j = 1, ..., J, (5.5)

σ2
j =

∑N

i=1

(
pi,j
∑T

t=1(∆yi,t − µj)
2
)

T
∑N

i=1 pi,j
for j = 1, ..., J. (5.6)

Given the data and the current estimates of pi,j , these expressions will be used to update

the estimates of µj and σ
2
j . Using the complete algorithm specified in Section 4.4, param-

eter estimation is now straightforward.

Results

The data used to estimate the parameters of this model could span the entire 20th

century. However, it is very implausible to assume that growth rates and growth rate

volatility were constant over such a long period of time. We will therefore estimate the

model separately for five subperiods of the century. These subperiods, corresponding to

different phases of economic development, were introduced in Section 2.3. Obviously, the

assumption of parameter constancy is still questionable, but the results of this model are

a good starting point for a more elaborate analysis.
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Table 5.1: Selecting the number of clusters for model (5.1).

Subperiod Criterion Number of clusters J
2 3 4 5 6 Selected

1901-1918 AIC -3.116 -3.106 -3.089 -3.070 -3.051 2
AIC3 -3.096 -3.076 -3.050 -3.021 -2.992 2
BIC -3.059 -3.012 -2.959 -2.903 -2.847 2

1919-1939 AIC -2.773 -2.765 -2.751 -2.735 -2.718 2
AIC3 -2.756 -2.740 -2.718 -2.693 -2.668 2
BIC -2.722 -2.681 -2.635 -2.586 -2.536 2

1940-1945 AIC -1.300 -1.311 -1.277 -1.226 -1.167 3
AIC3 -1.241 -1.223 -1.159 -1.079 -0.990 2
BIC -1.181 -1.115 -1.003 -0.875 -0.739 2

1946-1973 AIC -3.395 -3.465 -3.488 -3.505 -3.504 5
AIC3 -3.382 -3.446 -3.463 -3.474 -3.467 5
BIC -3.353 -3.397 -3.394 -3.385 -3.358 3

1974-2000 AIC -4.998 -4.992 -4.982 -4.969 -4.956 2
AIC3 -4.985 -4.973 -4.956 -4.936 -4.917 2
BIC -4.955 -4.922 -4.885 -4.845 -4.805 2

To verify that the EM algorithm has converged to a maximum of the likelihood func-

tion, the parameter estimates obtained were used as the starting values for the Newton-

Raphson method, which is run after 200 iterations of the EM algorithm. As a convergence

criterion for the Newton-Raphson method, the change in the value of the log-likelihood

function is used, which should be smaller than 10−4. Each country i is assigned to the

cluster j for which the ex post probability p̂i,j is highest. This procedure is repeated

1000 times, starting from random starting values. It turned out that for J = 2, 80% of

the solutions obtained were identical, whereas for J = 5 this was approximately 5%. We

should therefore treat the estimation results with some care in case the number of clusters

is large.

We base the decision upon the number of clusters on the values of information criteria,

as discussed in Section 4.5. These values are shown in Table 5.1. In the right column,

the number of clusters with the minimum value of the criterion is reported. For each

subperiod, the AIC3 favours the same number of clusters as the AIC, except for the

period of the Second World War. Looking in more detail, we observe, however, that the

verdict of the AIC tends to be more unclear than the AIC3. Quite often, the values of

AIC do not differ more than 0.01, for choices of J close to the number of clusters selected.

In contrast to the AIC and AIC3, the BIC consistently selects only two clusters, due

to its very high penalty on the number of parameters. Given the above consideration,

we comply with the verdict of the AIC, giving it the benefit of the doubt as far as
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the period of the Second World War is concerned. The parameter estimates are shown

in Table 5.2. For each subperiod, the clusters, represented by rectangles, are ordered

vertically from high growth to low or even negative growth. Horizontally, the columns

are ordered chronologically. Note that the standard deviations σ of the growth rates are

shown instead of the variances σ2, for ease of comparison to Table 2.2.

For the period from 1901-1918, two groups can be distinguished, although only by a

difference in standard deviation. A group of European countries, including the Nether-

lands, the UK and three Scandinavian countries, showed more stable growth than the

other countries. While growth increases in the period from 1919-1939, this group stays

together and is complemented by a few other countries. In the other group, characterized

by many large economies, growth is substantially lower and more volatile. Obviously, this

is mainly due to the 1929 stock market crash and the Great Depression. In the Second

World War, the US and Canadian economies flourish as a result of the weapons indus-

try. Most severely damaged were the Austrian and the Japanese economy. During the

Golden Age the economies behaved very differently. This was also one of the conclusions

of our MDS analysis in Section 2.4. Most economies that were severely damaged by the

war, ended up in high growth clusters during the Golden Age. Especially Japan passed

through a strong catch-up phase. Since this period, Germany and the Netherlands grew

closely together due to their strong trading partnership. Remarkably, this group has very

high volatility during the Golden Age. Finally, in the final quarter of the century, growth

was very stable in most countries at a rate of two percent. In Finland, Sweden and New

Zealand it was a bit lower and more volatile, but not exceptionally.

We end this section with two general remarks. Firstly, the standard errors are typically

large. The size of the standard errors obviously depends on the length of the particular

subperiod. This explains why the confidence intervals of the parameter estimates do not

overlap for the two most recent subperiods, which are longer than the others, whereas

they do for a short subperiod like the Second World War. Apart from that, the standard

errors are relatively large for the first two periods, as there is more variation in the data of

the first half of the century, as we concluded in Chapter 2. Secondly, one may argue that

model solutions which imply one or more clusters to consist of a single country, should be

excluded from further analysis. In that case, we should have estimated a model with four

clusters for the period of the Golden Age, in which case Japan would have been classified

to the current cluster of Austria, France and Italy. Apart from this matter, there is a

significant difference, both in average growth and volatility, between Japan and the latter

cluster.
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5.3 A Model for Shifts in Growth and Growth Rate

Volatility

In the previous section, we have studied growth in subperiods separately. The number of

clusters and the classification varied over time. We observed however, that some countries

were classified to the same cluster in more than one subperiod. Examples are Canada and

the USA, and France and Italy. This indicates that groups of countries show common

growth patterns for prolonged periods of time, perhaps even over the entire 20th century,

which may be due to close geographical proximity, or, for example, because of historical

(trading) partnerships. In this section we propose a model that allows for a different

average growth rate and growth rate volatility in each of K predefined subperiods, while

the cluster membership is assumed to be constant over time. The model that we consider

is formulated as:

∆yi,t = µsi,κ(t) + εi,t, εi,t ∼ N(0, σ2
si,κ(t)),

Pr[si = j] = πj,
∑J

j=1 πj = 1, πj ≥ 0,
(5.7)

where the function κ(·) returns the index k of the subperiod the year t is linked to, with

k = 1, ..., K:

κ(t) = {k : Tk−1 < t ≤ Tk}. (5.8)

The parameter Tk denotes the final year of subperiod k, where T0 = 0, TK = T , and Tk−1 <

Tk, for all k, by definition. Given that country i belongs to cluster j, the conditional

distribution of a series ∆yi is defined as:

fj(∆yi|µj, σ
2
j ) =

T∏

t=1

φ(∆yi,t|µj,κ(t), σ
2
j,κ(t)). (5.9)

Consequently, we can write the likelihood function as:

L(∆y|π,µ,σ2) =
N∏

i=1

J∑

j=1

πj

T∏

t=1

φ(∆yi,t|µj,κ(t), σ
2
j,κ(t)). (5.10)

Estimation

Estimation of the parameters goes along exactly the same lines as for model (5.1). It

is easily verified that the ex post probabilities are computed as:

pi,j ≡ Pr[si = j|∆y,π,µ,σ2] =
πj
∏T

t=1 φ(∆yi,t|µj,κ(t), σ
2
j,κ(t))

∑J

l=1 πl
∏T

t=1 φ(∆yi,t|µl,κ(t), σ2
l,κ(t))

. (5.11)

Furthermore, µj,k and σ2
j,k are updated by:

µj,k =

∑N

i=1

(

pi,j
∑Tk

t=Tk−1+1 ∆yi,t

)

(Tk − Tk−1)
∑N

i=1 pi,j
for j = 1, ..., J , k = 1, ..., K, (5.12)

σ2
j,k =

∑N

i=1

(

pi,j
∑Tk

t=Tk−1+1(∆yi,t − µj,k)
2
)

(Tk − Tk−1)
∑N

i=1 pi,j
for j = 1, ..., J , k = 1, ..., K. (5.13)
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Table 5.3: Selecting the subperiods and the number of clusters for model (5.7).

K Subperiods Criterion Number of clusters J
2 3 4 5 6 Selected

3 1901-1939, 1940-1945, AIC -3.277 -3.298 -3.318 -3.327 -3.328 6
1946-2000 AIC3 -3.269 -3.286 -3.302 -3.307 -3.303 5

BIC -3.236 -3.235 -3.232 -3.219 -3.197 2

4 1901-1939, 1940-1945, AIC -3.511 -3.536 -3.552 -3.561 -3.560 5
1946-1973, 1974-2000 AIC3 -3.500 -3.520 -3.531 -3.535 -3.528 5

BIC -3.457 -3.453 -3.441 -3.421 -3.391 2

4 1901-1918, 1919-1939, AIC -3.286 -3.307 -3.328 -3.337 -3.336 5
1940-1945, 1945-2000 AIC3 -3.275 -3.291 -3.307 -3.310 -3.304 5

BIC -3.232 -3.225 -3.217 -3.197 -3.167 2

5 1901-1918, 1919-1939, AIC -3.520 -3.543 -3.564 -3.572 -3.570 5
1940-1945, 1945-1973, AIC3 -3.507 -3.524 -3.538 -3.540 -3.531 5
1974-2000 BIC -3.453 -3.442 -3.427 -3.400 -3.362 2

Again, we use both the EM algorithm as specified in Section 4.4 and the Newton-Raphson

method. The same convergence criteria are used.

Results

Similar to the previous section, we have estimated the model for different choices of

the number of clusters. Moveover, for this model we varied the number of subperiods

and the composition of these subperiods1. For each relevant combination, the AIC, AIC3

and BIC were computed, which are shown in Table 5.3. The mutual differences between

the selections of the criteria are similar to our earlier findings. The BIC always favours

the model with only two clusters, whereas the AIC3 and AIC tend to favour models with

more clusters. Regrettably, only very small differences between the values of the criteria

can be observed. Looking at the AIC, it is ambiguous whether five of six clusters are to

be preferred. In contrast to the results for the previous model, the AIC3 does not provide

more clarity. Combining the verdicts of both criteria, we slightly favour the model with

five clusters and five subperiods to its equivalent with four subperiods, where the first two

subperiods are combined. The estimation results are shown in Table 5.4.

In general, the clustering obtained is very natural. The first cluster consists of France

and Germany, the engine of the European Union, complemented by the Netherlands.

Growth in the first subperiod was particularly low, but it increased rapidly during the

period before the Second World War. Despite average growth rates of −9% during this

war, the group recovered very soon after. The second cluster consists of the countries that

1Models with more than five subperiods were also estimated. These estimates, however, proved to be

very instable due to the large number of parameters.
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bore the largest shocks during the Second World War, but passed through a very strong

catch-up period after the war. Cluster 3 consists of the core of the Western Offshoots.

Growth was typically low during the Great Depression and high during the Second World

War. The growth patterns of the countries classified to the fourth cluster are similar to

those of the first. The countries in this cluster, however, did not plunge into war, and

ended up with very high growth after the Golden Age. Finally, the fifth cluster contains

the most stable countries in terms of volatility. Growth in these countries was not harmed

by the war, nor by any other events.

Note that the number of clusters selected for this model is relatively large compared to

the number of clusters we selected for subperiods in our previous model. Comparing the

results of the two models, we observe that the composition of the clusters obtained using

model (5.7) is similar to that obtained for the Golden Age using model (5.1). Apparently,

the divergence during the Golden Age has determined the classification of our new model

to a large extent. Compared to model (5.1), the standard errors of model (5.7) are larger,

as more parameters had to be estimated for the same number of observations. As for

some periods the number of clusters is clearly too large, there is quite some overlap in the

confidence intervals of the parameter estimates.

Comparing the time series analysis to the MDS analysis

We end this section with a comparison between the results of our time series analysis

using latent class panel data models and our MDS analysis. Let us first discuss some

important differences between both approaches. Firstly, using the latent class models

discussed above, we forced each country to be classified unambiguously to a cluster. In

contrast, our MDS analysis provided distances, or similarities, between countries, leaving

the classification to the interpreter. Secondly, the classification of our latent class models is

based on both average growth and growth rate volatility. For the MDS solutions, we only

considered correlations between growth rates as a measure of similarity between countries.

Additionally, we could have studied correlations between absolute growth rates, which

supposedly measure volatility. Thirdly, an advantage of MDS is that the dynamic solutions

provided a continuous picture of similarities in growth between countries, whereas we only

considered predefined subperiods in our time series analysis. Finally, we have estimated

standard errors for the parameters of our latent class models only. Note, however, that

standard errors could have been obtained for the MDS solutions as well, by applying the

moving blocks bootstrap for time series (See Groenen and Franses, 2000).

Comparing our static MDS solution to the classification obtained using model (5.7),

we observe that the results of both approaches suggest strong similarities in growth within

the cluster of Austria, Italy and Japan, and the cluster of Belgium, Finland and Norway.

Furthermore, there are similarities in growth between Canada and the USA, and France

and the Netherlands. Let us now discuss some of the differences of the results from the two

approaches. Germany, which clearly has a strong trading partnership with the Nether-

lands and France, would not be interrelated to these countries based on the MDS results.
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We mentioned, however, that the MDS solutions show similarities in growth only. There-

fore, the classification of the latent class model may be based on similarities in growth

volatility of these three countries. New Zealand, which we considered to be an outsider

based on the MDS results, is added to the group of Canada and the USA by the latent

class model. Finally, discussing the results of model (5.7), we concluded that the countries

classified to the fifth cluster clearly belong together, because of their low volatility. In

contrast, looking at the MDS solutions we would classify the two Scandinavian countries

and Switzerland to the fourth cluster, Australia to the second cluster, and the UK to the

third cluster. For geographical and historical reasons, one may prefer the MDS solutions

for these countries.

5.4 Conclusions

In this chapter we have discussed two models to describe the variation in our panel data

set of real per capita GDP growth rates. For the first model we assumed average growth

and growth rate volatility of groups of countries to be constant over time. Its parameters

were estimated separately for five subperiods of the 20th century. This procedure implied

that the cluster membership of countries could vary over time. The results suggested

that the 17 economies have diverged radically during the Golden Age. Before the Second

World War, there was a large variation in the growth rate volatility of countries, whereas,

in the final 25 years countries seem to have converged in terms of both growth and growth

rate volatility. Finally, we observed that some countries were classified to the same cluster

in more than one subperiod.

In contrast to this modelling approach, we estimated a model in which it is assumed

that the cluster membership of countries is constant over the entire 20th century. Using

this model, the clustering obtained is very natural in the sense that countries with a

common history, or close geographical proximity are classified to the same cluster. The

number of clusters obtained, however, is relatively large. Only for the subperiod of the

Golden Age, we observed significant differences in the parameter estimates for the majority

of the clusters. As far as the variability of cluster membership over time is concerned, our

two models clearly reflected the extremes. Most likely, the truth is somewhere in between

both extremes.

Finally, we discussed some differences between our time series analysis and the MDS

analysis of Section 2.4. Perhaps the most important difference is that the classification

of our latent class models is based on both average growth and growth rate volatility,

whereas the MDS analysis is based on correlations in growth only. This might explain

why we obtained a larger number of clusters using our latent class models, compared to

the number of clusters we obtained studying the MDS solutions.



Chapter 6

Multivariate Analysis Using a

Dynamic Model

6.1 Introduction

The two latent class panel data models discussed in Chapter 5 allowed us to study possible

similarities in economic growth in a flexible way, in the sense that growth, growth volatil-

ity, and the cluster membership of countries could be varied over time. This approach

provided useful insights into our data. Note, however, that the results of these models

should not be interpreted as evidence for the similarities in the long-run growth paths of

countries, which we established in Section 2.3. After all, by analyzing a panel of growth

rates, we implicitly ignored possible differences in the absolute level of real per capita

GDP across countries. Moreover, we assumed growth to be constant over subperiods,

where our choice of subperiods was entirely subjective. Ideally, one should model similar-

ities in the levels of the series, whilst treating possible changes in growth endogenously.

The aim of this chapter is to develop such a model.

For this purpose, let us first elaborate on the nature of the similarities in long-run

growth we just mentioned. The graphs shown in Appendix A.3 reveal that, for some

countries, the path of long-run economic growth is close to linear, whereas, for others,

this path is typically curved. However, also within the latter group, we established that

there are strong similarities between the shapes of this curve. As we concluded that

changes in long-run growth are mostly due to dramatic events that affected many or even

all economies in our study, this may imply that economies recover from dramatic events

in a similar way. The latter implication leads to the more general hypothesis that the

dynamics of long-run economic growth are similar across countries.

To evaluate this hypothesis, we proceed as follows. Firstly, to model the dynamics

of long-run growth, we use the knowledge gained in Chapter 3. In that chapter we

concluded that our STAAR model may well describe long-run growth, provided that

sufficient observations are available. We will extend this model to a panel data model.
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To allow the dynamics of long-run growth to be equal across groups of countries, we treat

the parameters summarizing the dynamics of long-run growth as discrete random effects.

Again, to decide upon the number of clusters, information criteria will be used. Evidence

for the above hypothesis is gained if we find that the appropriate number of clusters is

considerably smaller than the number of countries in our study. Note that if this is the

case, the above mentioned parameters are estimated over a larger number of observations,

as desired. This increases the degrees of freedom and hence improves the efficiency of the

estimates. As a consequence, it may well occur that the estimated trends obtained using

this model better represent the long-run economic growth paths of our time series than

the trends obtained using the univariate STAAR model.

The chapter is organized as follows. In the next section, we will formulate the latent

class STAAR model, as briefly described above. As noted in Chapter 3, an important

concern of the STAAR model is a possible bias in the parameter estimates in presence

of heteroscedasticity in the error process. Therefore, in this chapter, attention is paid

to modelling the time variation in volatility. Similar to the models in Chapter 5, the

parameters of the model will be estimated using the EM algorithm. However, in this

case, it is not possible to solve the maximization problems in the M-step of the algorithm

analytically. Therefore, we have to resolve to numerical approximations of this solution.

This is discussed in Section 6.3. Finally, in Section 6.4, the estimation results of the

model are presented, and these are compared to our univariate results. This enables us

to address the question whether our estimates of long-run economic growth are improved

by exploiting cross-country similarities. Section 6.5 concludes this chapter.

6.2 A Multivariate Latent Class STAAR Model

To extend the univariate STAAR model of Chapter 3 to a panel data model, the most

important step is to impose a structure on each group of parameters. As argued in the

previous section, we want to treat the structural parameters characterizing the dynamics

of long-run growth as discrete random effects. Recall that, in the STAAR model, this

concerns the α, β, and γ parameters. The parameters α and β together determine the

cutoffs of the interval in which long-run growth may vary over time, whereas γ measures

the abruptness of changes in growth. Treating α, β, and γ as discrete random effects

implies that we restrict these parameters to be the same within each of the J clusters of

countries. As we want the classification of countries to be solely based on similarities in

long-run growth, the other model parameters are treated as country fixed effects. We can

now write the trend component as:

ni,t = ni,t−1 + αsi
+ βsi

F
(

(yi,t−1 − ni,t−1)/σi,t−1

∣
∣
∣γsi

)

,

Pr[si = j] = πj,
∑J

j=1 πj = 1, πj ≥ 0,
(6.1)
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where F (·) is the logistic transition function as specified in (3.13). The initial values

ni,1, for i = 1, ..., N , are assumed to be unknown parameters. Note that although these

parameters are part of the trend component, they are treated as country fixed effects, as

we do not want the classification to be (partly) based on initial welfare.

Similar to our univariate model, the cycle is modelled as an ARMA process. Recall that

we assumed the volatility of the cycle to be constant over time. However, this may have

caused the estimates of β to be very high. Therefore, in this model, we allow volatility to

change over time. Undoubtedly the most prominent change in volatility was the structural

break located around 1940-1950. In Chapter 2 we observed that volatility was very high

before this period, whereas it was low afterwards. Ideally, one should allow for smooth

changes in volatility over time and an endogenous determination of the location of this

structural break. However, the choice of our volatility component is severely restricted

by data limitations. Therefore we assume that volatility is constant during the first and

second half of the century, while we allow for a structural break in 19501:

σi,t =

{
ξ0
i for t = 1900, ..., 1950

ξ1
i for t = 1951, ..., 2000

(6.2)

In summary, the latent class STAAR model is formulated as:

yi,t = ni,t + zi,t (6.3)

ni,t = ni,t−1 + αsi
+ βsi

F
(

(yi,t−1 − ni,t−1)/σi,t−1

∣
∣
∣γsi

)

φi(L)zi,t = θi(L)εi,t

εi,t ∼ N(0, σ2
i,t)

where φi(L) = 1−φ1
iL− ...−φ

p
iL

p and θi(L) = 1− θ1
iL− ...− θ

q
iL

q. Finally, σi,t is defined

as in (6.2), si satisfies (4.9), and ni,1, for i = 1, ..., N , are unknown parameters.

6.3 Estimation

In order to facilitate the estimation of the model, let us impose a final restriction. Con-

sistent with our approach in Chapter 3, we assume that the cycle zi,t is an AR process

with a lag order of one2:

zi,t = ρizi,t−1 + εi,t (6.4)

1Our decision upon the location of the break is based on a detailed analysis of the graphs in Ap-

pendix A.1. Note that, in general, this location differs across countries. For example, in Germany, the

break is observed relatively late. Nevertheless, we consider the year 1950 to be a reasonably good overall

estimate.
2Similar to the decision upon the number of clusters J , one could also decide upon the lag orders

p and q using information criteria. However, this requires us to estimate the model for all plausible

combinations of J , p and q, which is computationally very intensive.
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For the latent class STAAR model, it is convenient to write the conditional distribution

of a series yi, given that country i belongs to cluster j, as:

fj(yi|ϑj) =
T∏

t=1

φ(εji,t|0, σ
2
i,t). (6.5)

Consequently, the likelihood-function of the model can be written as:

L(y|θ) =
N∏

i=1

J∑

j=1

πjfj(yi|ϑj) =
N∏

i=1

J∑

j=1

πj

T∏

t=1

φ(εji,t|0, σ
2
i,t), (6.6)

Note that we use the same notation here as we did in Section 4.4. The vector ϑj denotes

all country- and cluster-specific parameters associated with the distribution fj(·), and θ

summarizes the model parameters. More specifically, θ = (π,ϑ)′. Finally, the term εji,t
denotes the residual of country i at time t in cluster j. Given that the cycle is an AR(1)

process, this residual can be computed from (6.3) as:

εji,t = (1− ρiL)(yi,t − ni,t) (6.7)

= (yi,t − ρiyi,t−1)−
(

αj + βjF (zi,t−1/σi,t−1|γj)
)

−(1− ρi)
(

ni,1 + αj(t− 2) + βj

t−1∑

l=2

F (zi,t−l/σi,t−l|γj)
)

.

Recall that, to maximize the expectation of the complete data log-likelihood function with

respect to s|y, given by (4.16), we can consider two parts separately:

max
πj

N∑

i=1

J∑

j=1

pi,j ln πj for j = 1, ..., J (6.8)

max
ϑj

N∑

i=1

J∑

j=1

pi,j lnφ(ε
j
i,t|0, σ

2
i,t) for j = 1, ..., J (6.9)

The solution to the first system of equations is given in (4.21). In contrast to the models

discussed in Chapter 5, for the latent class STAAR model it is not possible to obtain

closed-form solutions to the second system of equations. This can be understood by noting

that the residuals εji,t depend on the model parameters in a nonlinear way. Therefore

we have to resolve to numerical approximations of this solution. Following Paap et al.

(2004), we maximize the country- and cluster-specific parameters separately in an iterative

manner. The estimation algorithm can be summarized as follows:

1. Fix the number of clusters J and generate starting values for the country- and

cluster-specific parameters ϑj , and the ex ante probabilities πj, for j = 1, ..., J .

2. Given the current estimates of πj and ϑj , compute the ex post probabilities pi,j
using (4.12).
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3. Repeat M times:

- For every country i, update the estimates of the country-specific parameters

ni,1, ρi, ξ
0
i and ξ1

i , given the current estimates of αj, βj, γj and pi,j, for j =

1, ..., J .

- For every cluster j, update the estimates of the cluster-specific parameters αj,

βj and γj, given the current estimates of ni,1, ρi, ξ
0
i , ξ

1
i and pi,j, for i = 1, ..., N .

4. Update the ex ante probabilities πj, for j = 1, ..., J , using (4.21).

5. Compute the value of the log-likelihood function, lnL(y|θ).

6. Stop if convergence has been achieved, otherwise repeat steps 2-5.

To update the estimates of the country- and cluster-specific parameters in step 3, it is

convenient to perform a fixed number of Newton-Raphson iterations, maximizing the

expectation of the complete data log-likelihood function over the parameters considered.

Note that, for the algorithm to convergence to a maximum of the log-likelihood function,

it is not necessary to perform a full maximization in this step. An improvement of the

complete data log-likelihood function suffices (Meng and Rubin, 1993).

It is often worthwhile to calibrate the algorithm carefully. A proper choice of the

number of repetitions M , and the number of Newton-Raphson iterations may speed up

convergence of the algorithm considerably. For our model and data set, it proved to be

efficient to set the number of repetitions M equal to one, and the number of Newton-

Raphson iterations equal to three. As a convergence criterion for the EM algorithm, we

used the change in the value of the log-likelihood function, which should be smaller than

10−4. Once the improvement of the log-likelihood was of order 10−2, we increased M to

five and the number of Newton-Raphson iterations to ten.

6.4 Results

The model is estimated with three, four and five clusters. Again, each country i is assigned

to the cluster j for which the ex post probability p̂i,j is highest. We select the appropriate

number of clusters using the information criteria discussed in Section 4.5. The values

of these criteria are shown in Table 6.1. Furthermore, the values of the log-likelihood

function at convergence are reported. Surprisingly, all criteria tend to favour the model

with four clusters, which leaves no room for subjective judgement. We note, however, that

for the AIC and AIC3 criteria there are only very small differences between the values

for four and five clusters. In all fairness, it is ambigious whether four or five clusters

are to be preferred if we base our decision on one of these two criteria. The parameter

estimates and the highest ex post probabilities of the latent class STAAR model with

four clusters are shown in Table 6.2 and Table 6.3. In Appendix A.7, the estimated trend
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Table 6.1: Selecting the number of clusters
for the latent class STAAR model.
Criterion Number of clusters J

3 4 5 Selected

AIC -3.493 -3.522 -3.521 4
AIC3 -3.447 -3.475 -3.472 4
BIC -3.246 -3.266 -3.255 4

Likelihood 3045.7 3073.5 3075.7

components are presented graphically, together with the original series and the output

series of the transition function. To construct the graphs, for each particular country,

the cluster specific parameter estimates are used that correspond to the cluster with the

highest ex post probability of this country.

Let us first make some general remarks. Firstly, as expected, the estimated standard

errors of the parameters are much lower than those of our univariate models, due to the

higher number of observations. For all clusters, the parameter β appears to be significant3,

which again indicates that the trend adjustment mechanism of the model is important.

However, although perhaps significant, trend adjustments are marginal for countries as-

signed to the third cluster. For these countries, the trend of the latent class STAAR model

practically reduces to a linear deterministic trend. Compared to our univariate results,

the estimates of β are substantially lower for all countries under consideration, except

for Denmark where β is only slightly higher. As a consequence, in general, the length of

the intervals in which growth may vary is smaller. This implies that the trends evolve

more slowly over time. A look at the graphs of the estimated trends and output series

of the transition function confirms this finding. Moreover, the model does not seem to

suffer from overfitting the trend component, in the sense that the direction of the trend

tends not to be adjusted to short-run deviations. A drawback of a small value of β is that

it limits the flexibility of the trend. Therefore the degree of persistence in our cycles is

higher. Nevertheless, the estimates of ρ, reported in Appendix A.7, are still acceptably far

from unity, exceeding 0.9 only in three cases. These three cases will be discussed below.

Finally, given the high estimates of ξ0
i compared to ξ1

i , volatility was indeed much higher

during the first half of the century than during the prewar era. As a consequence, smaller

deviations from the trend are tolerated during the latter period. This confirms our earlier

observation that a careful treatment of changes in volatility over time is needed in order

to obtain reliable estimates of long-run growth using the STAAR model.

We will now compare the characteristics of the different clusters obtained. For this

purpose, we plot the estimated trend adjustments for different values of the standardized

3Recall that we do not formally test for the significance of β. See Section 3.5.
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Table 6.2: Estimates of the cluster-specific parameters of the la-
tent class STAAR model with four clusters. Estimated standard
errors are in parenthesis.

j Countries π̂j α̂j β̂j γ̂j

1 AT, IT, JP 0.180** 0.038*** 0.054*** 1.289*
(0.095) (0.002) (0.003) (0.881)

2 AU, CA, NZ 0.192** 0.013*** 0.015*** 3.016**
(0.108) (0.001) (0.002) (1.457)

3 FR, GE, NL, US 0.219** 0.017*** −0.005*** 1.689***
(0.107) (0.000) (0.000) (0.047)

4 BE, DM, FI, NO, 0.4091 0.018*** 0.022*** 1.786**
SE, SW, UK (0.001) (0.002) (0.995)

*** Significant at the 1% level, ** at the 5% level, * at the 10% level.
1 π̂4 ≡ 1−

∑3
j=1 π̂j .

trend deviation. The resultant curves, shown in Figure 6.1, each provide a brief overview

of the dynamics of 20th century long-run growth in countries classified to a particular

cluster. The first cluster, which consists of Austria, Italy and Japan, will probably be

no stranger to the reader. Relatively immature at the beginning of the century, these

economies went through a strong catch-up period, as suggested by the relatively high

estimate of α. As the estimate of β exceeds α, periods of negative long-run growth may

also occur. This was the case, for example, during the Second World War. The second

cluster covers Australia, Canada and New Zealand. Growth in this cluster is typically low,

whereas the estimate of γ is somewhat higher compared to the other clusters. The latter

is to allow for several more abrupt changes in the slope of the trend of these countries,

of which the most prominent example is the change around 1940. Regrettably, the series

of Canada deviates from the trend for a very long time, and appears to require a higher

estimate of β. As a consequence, the degree of persistence in the cycle is high. The third

cluster consists of France, Germany, the Netherlands and the US, where, considering the

results of our earlier analyzes, the US is a newcomer in this group. The trends of these

countries are estimated as linear lines, and it is clear that this result is most plausible for

the US series. That the other economies are also classified to this cluster is not completely

unexpected either, considering the fact that, after the Second World War, these economies

seem to have returned to their prewar growth paths, which are approximately linear. Only

near the end of the century a slight change in the slope of the trend can be observed

for France and Germany. Note that the highest ex post probability of France is 0.72,

which is relatively low. With probability 0.28, it would have been assigned to the fourth

cluster. Interestingly, we estimated a fairly good, though more flexible trend for France
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Table 6.3: Estimates of the country-specific parameters
and the highest ex post probabilities of the latent class
STAAR model with four clusters. Estimated standard
errors are in parenthesis.

Country p̂i,ŝi
n̂i,1 ρ̂i ξ̂0i ξ̂1i

Australia 0.964 8.377 0.834 0.045 0.021
(0.044) (0.062) (0.001) (0.001)

Austria 1.000 7.954 0.691 0.148 0.026
(0.146) (0.062) (0.008) (0.001)

Belgium 1.000 8.208 0.844 0.058 0.020
(0.057) (0.057) (0.002) (0.001)

Canada 0.969 7.896 0.952 0.071 0.025
(0.063) (0.031) (0.003) (0.001)

Denmark 1.000 7.971 0.724 0.054 0.024
(0.054) (0.074) (0.002) (0.001)

Finland 0.937 7.400 0.874 0.060 0.030
(0.058) (0.057) (0.002) (0.001)

France 0.720 7.932 0.940 0.102 0.014
(0.052) (0.013) (0.001) (0.000)

Germany 1.000 7.934 0.899 0.124 0.017
(0.012) (0.011) (0.006) (0.000)

Italy 1.000 7.469 0.748 0.084 0.024
(0.084) (0.073) (0.004) (0.001)

Japan 1.000 7.039 0.735 0.115 0.024
(0.114) (0.034) (0.005) (0.001)

Netherlands 0.996 8.043 0.937 0.108 0.019
(0.028) (0.020) (0.004) (0.000)

New Zealand 0.947 8.369 0.641 0.059 0.036
(0.056) (0.088) (0.002) (0.001)

Norway 1.000 7.478 0.897 0.053 0.023
(0.051) (0.049) (0.002) (0.001)

Sweden 1.000 7.860 0.791 0.039 0.017
(0.039) (0.067) (0.001) (0.000)

Switzerland 1.000 8.170 0.873 0.049 0.022
(0.048) (0.045) (0.002) (0.001)

UK 0.616 8.442 0.820 0.043 0.020
(0.042) (0.063) (0.001) (0.001)

USA 1.000 8.326 0.895 0.074 0.023
(0.021) (0.048) (0.002) (0.001)

Note: All parameters are significant at the 1% level.
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Figure 6.1: Estimated trend adjustments ∆n̂i,t as a result of a standardized trend devia-

tion xi,t−1 = (yi,t−1 − ni,t−1)/σi,t−1.

using our univariate model. Comparing the parameter estimates of the two models, we

observe, for example, that the gain in slowness of evolvement of the trend obtained by

the multivariate model comes at the price of an increase in ρ from 0.82 to 0.94. Whether

this is an acceptable price depends on the purpose of ones analysis. Finally, we discuss

the fourth cluster, which consists of Belgium, Scandinavia, Switzerland and the UK. The

growth characteristics of countries classified to this cluster differ only slightly from the

second cluster. A closer look at Figure 6.1 reveals that, for negative deviations, the

trend adjustment curves of the two clusters nearly overlap. However, for large, positive

deviations, trend adjustments are substantially higher in the fourth cluster. This can be

explained by the fact that economies classified to the latter cluster experienced somewhat

higher growth spurts during the Golden Age. An exception to this rule is the UK. The

fact that the UK does not entirely fit into this cluster is again apparent when looking at

the highest ex post probabilities. After observing the data, the probability that the UK

belongs to the fourth cluster is only 0.62, whereas, it belongs to the second cluster with

probability 0.38.

6.5 Conclusions

In this chapter we hypothesized that the similarities in the long-run growth paths of

economies, established in Section 2.3, are due to cross-country similarities in the dynamics

of long-run growth. To evaluate this hypothesis, we extended the univariate STAAR

model of Chapter 3 to a latent class panel data model. In this model, the structural

parameters characterizing the dynamics of long-run growth are treated as discrete random

effects. This implies that we restrict these parameters to be the same within J clusters of

countries. The presence of strong similarities in the dynamics of long-run growth would
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coincide with a number of clusters J that is substantially smaller than the number of

countries in our data set.

A technical concern of the STAAR model is that the parameter estimates appear to

be biased in presence of time-varying volatility. To reduce the severity of this problem, we

allowed a structural break in volatility to occur in 1950, as this break is generally thought

to be the most prominent change in volatility during the 20th century. Once again,

the parameters of the model were estimated using Expectation-Maximization. However,

for this model, we presented a slightly different estimation algorithm, compared to the

algorithm introduced in Section 4.4. In this algorithm, estimates of the country- and

cluster-specific parameters are approximated numerically. It is efficient to update these

estimates separately in an iterative manner. We estimated the model parameters for our

panel data set of real per capita GDP levels. On the basis of information criteria, we

established that the appropriate number of clusters is four. This number is considerably

smaller than the number of countries considered, hence empirical evidence is gained for

the above hypothesis.

Our next step was to compare the results of the latent class STAAR model to the

results of the univariate model. We concluded that the trends obtained using the la-

tent class model seem to better represent the long-run growth paths of the series than

those obtained using the univariate model for the following reasons. Firstly, the trends

evolve more slowly over time, as the intervals in which growth may vary are smaller. Sec-

ondly, the latent class STAAR model does not seem to suffer from overfitting the trend

components, in the sense that the directions of the trends tend not to be adjusted to

short-run deviations. Thirdly, although the degree of persistence in the cycles is higher,

the estimates of the autoregressive parameters ρ are still far from unity, considering our

small sample size. On balance, we have obtained better estimates of economic growth by

exploiting cross-country similarities in the dynamics of long-run growth.

Finally, we discussed the characteristics of the different groups obtained. In Aus-

tria, Italy and Japan, the adjustments to long-run growth were typically high, as these

economies went through a strong catch-up period during the 20th century. In contrast,

for France, Germany, the Netherlands and the US, long-run growth is estimated to be

constant. After the Second World War, these economies seem to have returned to their

prewar growth paths, which are approximately linear. In between these two extremes are

two clusters representing economies that showed minor changes in long-run growth over

time. The difference between the countries classified to either of these clusters is that

countries classified to one of the two experienced higher growth during the Golden Age.



Chapter 7

Summary and Conclusions

The economic policy-maker should be provided with reliable estimates of long-run eco-

nomic growth in order for him or her to identify structural changes in economic perfor-

mance. For this purpose, one often aims at distinguishing long-run growth from short-run

fluctuations using time series models. In this thesis we took a two-dimensional view on

this problem. Guided by the results of an exploratory data analysis, we first studied the

dynamics of economic growth over time using univariate time series models. Secondly,

we studied similarities in long-run growth across a panel of time series. These similarities

were modelled using the latent class methodology, as put forward in this context by Paap

et al. (2004). This approach ultimately lead to the formulation of a dynamic latent class

panel data model in which the building blocks of these two studies were brought together.

Our methodology is applied to modelling 20th century economic growth, in terms

of real per capita GDP, in 17 industrialized countries. An exploratory data analysis

confirmed that, at least within this group of economies, growth tends to fluctuate around

a long-run growth path. Typically, this path is nonlinear. Secondly, volatility in growth

has changed over time. In particular, summary statistics computed over subperiods of

the 20th century indicated that it has decreased sharply during the first decade after the

Second World War. Thirdly, growth is subject to unanticipated shocks. Some of these

shocks appear to have an impact on long-run growth. Generally, such shocks are due to

key political or economic events that concern many countries. Examples are the Great

Depression and the Second World War. Finally, we observed that the long-run economic

growth paths of our countries show strong similarities over prolonged periods of time.

Let us first highlight the methodology as outlined above. We will then discuss the

empirical results of our models. Finally, we provide some directions for further research.

Methodology

To model possible nonlinearities in the dynamics of economic growth, we discussed

several univariate time series models. A basic premise of the models considered is that an

annual macroeconomic time series can be decomposed as the sum of a trend and a cyclical

component. For the trend component to represent the long-run growth path of the series
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it should evolve slowly over time whilst it is flexible enough to describe the time variation

in long-run growth. We put forward a novel nonlinear trend model, which is referred to

as the smooth trend adjustments autoregressive (STAAR) model. It is conjectured that

this model strikes a good balance between flexibility and slowness of evolvement of the

long-run growth process for a wide class of trending time series. The slope of our trend

is allowed to vary within a fixed continuous interval, where the boundaries of the interval

are to be estimated. If the length of this interval is zero, the model reduces to the linear

deterministic trend model, whereas, if the interval is wide, the trend component of the

model acts like a random walk with drift. It therefore embeds these two models as limiting

cases. In each year, the value of the trend slope is determined by the standardized trend

deviation in the previous year. A logistic transition function is used to map this deviation

to the estimated interval mentioned above.

The second step was to study similarities in growth across the 17 countries under

consideration. Countries were clustered based on common average growth rates and

growth volatility over five subperiods of the 20th century. Using two static latent class

panel data models, we allowed the number and the composition of the clusters either to

be different in each subperiod, or to be constant over the entire century. The models are

estimated using the EM algorithm by Dempster et al. (1977), and the decision upon the

number of clusters is based on the values of information criteria.

Finally, we proposed a latent class STAAR model, which is based on a finite mixture

of univariate STAAR models. By treating the structural model parameters that charac-

terize the dynamics of long-run growth as discrete random effects, countries are clustered

based on common long-run growth dynamics.

Empirical findings

In general, the results of our multivariate latent class models seem to demonstrate that

estimates of economic growth can be improved by exploiting cross-country similarities in

long-run economic growth. In particular, for most countries in our study, the trend

obtained using the latent class STAAR model appears to better represent the long-run

growth path of the series than the linear deterministic trend, the random walk, or the

trend obtained using the univariate STAAR model. Apart from that, for the multivariate

model, the standard errors of the parameter estimates are lower, due to the gain in

efficiency.

Secondly, from a macro-, as well as a socioeconomic perspective, it is interesting to

study the composition of the clusters obtained. For the latent class models discussed,

this clustering is generally very natural in the sense that it roughly coincides with a clus-

tering that is based on partnerships due to common history, culture and/or geographical

proximity. For example, the Scandinavian countries are usually classified to the same

cluster, as well as pairs of countries like Australia and New Zealand, and Germany and

the Netherlands. The multivariate subperiods analysis of our panel of growth rates in-

dicated that a clustering solely based on average growth and growth volatility tends to
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vary over time. Also the number of clusters is time varying. For example, we obtained

a relatively large number of clusters for the Golden Age period, due to the great diver-

gence in growth during this period. For the subperiods before and after this period, two

or three clusters are obtained. Comparing the composition of the clusters for these two

periods, we concluded that some economies that were initially classified to a low growth

cluster have switched to a high growth cluster during the Golden Age. This indicates that

these economies have caught up with the group of established economies. Examples are

Austria, Italy and Japan.

Ultimately, let us touch upon the results of the latent class STAAR model, where

countries are classified based on common long-run growth dynamics. For this model,

we obtained four groups of countries. In line with earlier findings, one of these groups

is Austria, Italy and Japan, where long-run growth, as well as adjustments to long-run

growth are typically high, possibly as a result of the catch-up phase these economies went

through. In contrast, for France, Germany, the Netherlands and the US, long-run growth

is estimated to be constant. After the Second World War, these economies seem to have

returned to their prewar growth paths, which are approximately linear. In between these

two extremes are two clusters representing economies that showed minor changes in long-

run growth over time. One of these clusters covers Australia, Canada and New Zealand.

These economies appear to have benefited less from the flourishing Golden Age, compared

to the other cluster, which includes Belgium, Scandinavia, Switzerland and the UK.

Further research

The nature of our modelling approach is exploratory in the sense that we did not

formally test for the adequacy of our models. In further research, misspecification tests

could be performed, such as tests for neglected serial correlation or nonlinearity. Moreover,

it would be useful to derive a test for the null hypothesis of the linear deterministic trend

model against the alternative of STAAR nonlinearity. Note, however, that this test is

likely to have a nonstandard distribution, as it suffers from the problem of unidentified

nuisance parameters under the null hypothesis (See Davies, 1977, and Hansen, 1996,

among others).

Secondly, a limitation of the latent class STAAR model is that the composition and

the number of clusters is assumed to be constant over time. Instead, the countries that

seem to have caught up with others might have switched to a lower growth cluster after

the Golden Age. It would be interesting to allow such changes in the composition over

time to occur within a similar nonlinear modelling framework as considered in this thesis.

Finally, from an empirical point of view, it would be particularly relevant to evaluate

the forecast accuracy of our models, and to compare this to the accuracy of competitive

models. Obviously, it would also be interesting to apply our methodology to modelling

other panels of (macroeconomic) time series, where the number of observations over the

time- and/or the cross-sectional dimension is possibly higher.




