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Joint execution of maintenance activities can reduce costs because preparative
activities, like opening a machine, may be shared. Combining execution, however,
also implies that activities are carried out at times other than originally planned. In
this paper, we analyse the problem of determining which activities should be
combined at which moments in time. We develop a methodology to represent the
cost-effectiveness of combining activities, and to identify an optimal combination
plan. The method consists of three phases: one in which penalty cost functions are
derived, another in which combinations are evaluated, and finally one in which the
optimal combination is obtained through a set-partitioning algorithm.

1. Introduction

Maintenance management problems in the operational phases of technical systems
may be broken down into several subproblems that relate to various timescales, as
follows.

• Define maintenance activities and procedures which determine how and how
often equipment is to be maintained in the longer term, say two to five years.
This exercise is the so-called maintenance concept.

• Plan and prepare the major activities such as large overhauls and shutdowns.
Match the need and availability of maintenance resources (e.g. manpower and
materials) over shorter periods, six months say.

• Allocate (known) work to available manpower by setting priorities, resulting in
time-ordered work schedules that cover one or more weeks and satisfy all
(production) requirements.

To set up a maintenance concept, a technical installation should first be functionally
analysed, breaking equipment down into systems, subsystems, units, and components
or elements, down to the level where individual failure modes can be recognized.
Then, on the basis of a failure-mode, effect, and criticality analysis, preventive
maintenance activities can be defined to anticipate unwanted consequences. In the
maintenance concept, all these activities are individually defined, evaluated, and
possibly optimized, assuming unlimited resources. To reduce the resulting multitude
of activities, some combination of related activities into packages may have been
applied already. Yet it is likely that the number of packages remains large,
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interspersed with corrective maintenance activities. Also, since resources and require-
ments change with time, operational maintenance planning becomes an intricate and
unsurveyable task which is often overthrown by urgent corrective work that has
higher priority. Consequently, maintenance planners would be much helped by
quantitative techniques that can provide decision support.

One issue in cost-effective maintenance planning arises from the fact that mainten-
ance activities often require the same preparative work. If a maintenance job has to
be done on a remote unmanned platform, then simultaneous execution of other
maintenance activities saves travel costs. If a production system has to be shut down
to do some maintenance work, then other work may be done at the same time,
without incurring shutdown costs. These aspects can hardly be incorporated in the
concept phase because they would make the problem too complex, or because a
long-term combination may be undesirable. The objective of this paper is to formulate
and analyse a mathematical model that can assist a maintenance manager in
combining activities during his planning. Here we assume that some maintenance
management information system is present, in which essential data on maintenance
activities is stored (i.e. results from the maintenance concept phase).

This paper is organized as follows. Section 2 starts with a review of the open
literature, focusing on contributions to (cost-effective and) operational maintenance
planning techniques, and in particular, to the maintenance activity combination
problem resulting therefrom. Section 3 provides a mathematical problem formulation,
and presents penalty functions which allow for cost-centred maintenance planning.
Given a limited time horizon, these penalties are utilized to address the activity
combination problem, indicating how timing can be optimized and the cost-
effectiveness of combinations can be evaluated. The cost-optimal combinations
(which constitute a partition of the original set of maintenance activities) can be
obtained by applying set-partitioning methods (Section 4). As there are usually
numerous maintenance activities to deal with, one encounters large computational
problems if all possible combinations have to be evaluated. In setting up our
approach, we therefore assume an appropriate savings structure. Consequently we
prove three lemmas that considerably reduce the problem size. Section 5 presents a
numerical example to clarify the proposal's potential. Finally, the merits and
drawbacks of the approach are discussed in Section 6, resulting in some conclusions
(Section 7).

2. Literature survey

From the literature surveys of Sherif & Smith (1981) or Valdez-Flores & Feldman
(1989), for instance, it appears that most publications deal with so-called maintenance
optimization models. More specifically, the core of the literature focuses on models
aimed at identifying some long-term optimal maintenance strategy, be that an
individual, a collective, or even a dynamic one. The problem of cost-effective and
operational maintenance planning is rarely addressed, whereas references to the
activity combination problem (the topic of this paper) are even harder to find.

In one paper, Liang's (1985) so-called 'piggyback approach' defines time windows
for each activity, within which execution dates may be varied. Optimization is pursued
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only with respect to the number of combined activities, possibly resulting in many
'optimal' solutions between which one has to choose. Altogether this constitutes a
pragmatic but rather crude way of dealing with the combination problem. In two
other contributions, maintenance planning problems are tackled using LP-like
job-scheduling and combinatorial optimization approaches. In this context, Phillips
(1979) allows four different job types to be scheduled on the basis of minimal backlog,
minimal flow time, or maximal efficiency. Notice that, so far, costs are not considered
at all. Mann & Bostock (1983) apply network planning tools, postulating penalties/
preferences derived from what they refer to as downtime cost factors. These penalties
are both empirical and relative, being built up from factors relating to fixed and
variable costs, from the reliability of redundant equipment, and from service time or
product inventory. Combinations can be analysed, but only if maintenance activities
include pure waiting time.

The combining of maintenance work also occurs in opportunity maintenance
models. According to a review in Dekker & Smeitink (1991), models either consider
combination at one given opportunity only and then lack the planning aspect, or
they apply Markov decision chains, which are tractable for very few (say 3 to 4)
activities only. Thus, no real contribution from that side is found either.

Finally, combination may also pertain to general activities: e.g. joint ordering of
stock items to save preparative costs, or combining jobs in flexible manufacturing
systems to reduce tool-switching times. Although closely related, the maintenance
activity combination problem has a special structure which requires a specific analysis
(in the joint-ordering problem, one also has to decide on the number to be ordered; in
the job-grouping problem, the timing aspect is not important).

Our approach first of all focuses on cost-effectiveness. This way, any combination
can arise only when it yields savings gained from a supposed overlap in the individual
maintenance activities (such as savings on travelling to and from an oil-producing
platform). Secondly, we derive a methodology which is consistent with maintenance
optimization in the concept phase, in the sense that equivalent data, models, and
characteristics are used. Finally, as will be seen in the forthcoming sections, we rely
on only mild mathematical assumptions, which allows quite a wide application.

3. Problem formulation and analysis

3.1 Definition of the problem

Consider n independent maintenance activities which have been individually planned
at dates tl ,..., tH within a planning horizon [T0 , T J . In the combination problem of
this paper, one has the freedom to alter any of these planned execution dates, so as
to ensure joint execution of one or more activities. Each activity, however, should
be executed within the planning horizon. The time required to execute a single activity
is short compared to the planning horizon, and is therefore left out of consideration.
Once the plan has been made, one implements the results. Later on, one may make
a new plan, but that is a new instance of the problem.

We first consider a heuristic approach to this problem which is similar to Liang's
(1985) approach. Suppose that each activity has a window within which the execution
date may be varied to enable combination.
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Figure 1 presents an example of 16 activities; the activity number is positioned at
the planned execution date. Although the figure is helpful as a first step, it is unclear
which activities should be combined. One may optimize the number of activities
grouped, but this may produce several solutions (compare e.g. {{1,2,3,4,6},
{5, 7, 8, 9, 10}, {11 ,..„ 16}} with {{1}, {2 ,..., 9}, {10,..., 16}}). Next, one may minimize
the sum of absolute deviations from the planned execution dates, but this can no
longer be done by hand and is somewhat arbitrary. Altogether, such a simple
approach does not allow a balancing between deviations from the planned execution
times with the savings of combined execution and it does not come up with a 'best'
solution. Therefore we introduce a mathematical model which structures the problem
and allows a cost optimization.

3.2 A mathematical approach to the combination problem

Here, two types of costs are considered in the planning: execution costs and penalty
costs for deviating from original execution dates; the approach yields the optimal
balance between both. We will later show how the penalty costs can be derived from
so-called deterioration costs. These represent the expected costs incurred from
deterioration of the system(s) to be maintained, and constitute the reason for doing
the maintenance activity. They allow us to capture a number of optimization models.
We make the following assumptions:

• Cost savings, because of joint execution, are non-negative and depend only on
which activities are combined (and so not on when they are executed).

• The penalty cost for activity i for deviating x time units (x is positive when the
activity is delayed and negative when it is brought forward) from the planned
execution date tt is h£x), where /i,(») is a non-negative convex function with

= 0.
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Let A denote the set of all activities considered, numbered from 1 to n following
their planned execution date. Any combination of activities corresponds to a subset
of A. A partition T is a collection of mutually exclusive subsets St,..., Sk which cover
all activities, i.e. S, n Sj = 0, for all i ^ j , and St u • • • u Sk = A. A combination
structure is a partition of A with the requirement that all activities within each subset
are jointly executed. For each subset S ^ A we denote by Acf the savings obtained
from joint execution of all activities in S. The total cost incurred by combining
execution of all activities in S and executing them at time t, is expressed by the
function /!$(•), which is defined by

- t,) - Ac|.
IsS

Notice that hs(») is also a convex function. Also, since it is decreasing left of min,eS tt

and increasing right of max,eS th it has a unique minimum between these dates.
Denote the minimum by tj and the corresponding cost value by /ij. We will call
combining the activities in S cost-effective if /ij < 0. Analogously, splitting S up into
two subsets St and S2 is called cost-effective if /ij > /if, + /ij2. The total costs
associated with a combination structure T are given by Zs.? />* and a combination
structure will be called optimal if it minimizes this sum, over all partitions.

The combination problem consists of finding an optimal combination structure.
Since a combination structure corresponds to a set partition, of which there are a
finite number, there should be an optimal one. Hence, the problem can be formulated
as a set-partitioning problem. In principle, such a problem can be solved by
enumerating all set partitions and determining the associated cost for each combina-
tion in the partition. The number of set partitions, however, grows exponentially in
the number of activities; so this is not a practical approach when there are many
activities. In the sequel, we therefore investigate how to reduce this number.

3.3 Determination of the penalty costs

The combination method presented in this paper requires only convexity of the
penalty functions, but not a specific form. Penalty functions represent the expected
costs for deviating from the original plan, and the convexity property implies that
they are larger the more one deviates. Penalty functions are crucial to our method,
yet they may be difficult to obtain. The simplest solution is to use the absolute
deviation from the planned execution date, multiplied by a scaling factor, as the
penalty (note that this yields a convex function). If the scaling factor is taken low
enough, the method will not only maximize the number of activities combined, but
also minimize the sum of the deviations from the planned execution dates. In this
way the heuristic method from Section 3.1 is incorporated.

Scaled time, however, is a somewhat arbitrary penalty. One may ask questions to
obtain real penalty costs—a technique applied by Christer (1982) to optimize
inspection intervals (one should be careful in the question formulation, and all
consequences should be taken into account; it may be better to ask for the
deterioration costs). For instance, one may ask for the utmost deviations from the
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planned execution date for joining a combination cost-effectively (at these points, the
penalty costs equal Ac") and use a linear interpolation and extrapolation for all other
points. This approach may be applied to individual activities, but also to classes of
activities, where data for one characteristic activity are used for all other activities
in the class.

Another approach is to derive the penalty functions from the optimization model
which has been used to determine the planned execution date. Here we take a
long-term perspective and assume that each activity is carried out regularly, against
costs cf, and that nfoc) represents the expected deterioration cost, i.e. the expected
cost incurred during the x time units since the last execution of the activity. Long-term
optimization of the interval between executions is easily achieved by applying renewal
theory, obtaining the long-term average cost (p^t) as function of the interval length t:

Let t* denote the optimum interval and <f>* = <p(t*) the associated long-term average
cost. To specify the penalty cost for deviating from t*, we distinguish between two
cases. In the first case, called short-term shift, we change the execution interval only
once from t* to t* + x (x may be either positive or negative), implying that the next
execution date remains the same and that the time interval to it equals t* — x. In
the second case, called long-term shift, we replan all future execution dates as well,
so that all following execution intervals again equal t*. In the first case, the penalty
cost amounts to

* -x)-

while in the second it is

The latter is explained as follows. The quantity /i,(t* + x) — nt(t*) represents the
expected deterioration cost incurred by deferring the activity from t* to t* + x. The
term x<f>* represents the savings gained because we can defer all future executions
by a time x, which we value with the minimum average cost rate </>*. Notice that,
for both cases, we have /i(0) = 0. The convexity of /J*(») and /if(«) is induced by the
convexity of A*(>); further, /i*(») is even symmetric around zero.

Several models fit within this structure. For example, in the block-replacement
model (BRM; see Barlow & Proschan 1965) we have tit) = <?Kt\ where h(-)
indicates the renewal function which, under not too stringent conditions (c*/cp large
enough, Weibull lifetime distribution with shape parameter > 1), is locally convex
(h'(t) is increasing in t up to about the mean life; if(*/cp is large enough, then the block
replacement minimum will be well before that value). The minimal-repair model fits
the specification as well. In this case we have

tit) = c< \r(x)dx,
o

where r(») denotes the failure rate (of the failures requiring a minimal repair) and c'
the failure repair costs. The convexity of//(•) is implied by the increasingness of /•(•)•
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The final example of a model that fits into the structure, is the so-called modified
block replacement model (MBRM; see Dekker & Roelvink 1991). This is a mixture
of the BRM and the Age Replacement Model (ARM) for one component. The
MBRM takes the BRM as long-term reference model, yielding the optimum block
replacement interval tf and associated minimum costs <£J; however, the MBRM
takes into account the actual age (which is set back to zero upon a failure
replacement), to calculate local deterioration costs and the replacement time.
Whereas, in the BRM, we would replace a component preventively if

< V ( 0 -</»? = o,
it is replaced in the MBRM, if

crr(x(0) - </>? = 0,

where r( •) denotes the failure rate and x(t) the component age t time units since the
last preventive replacement. Let xrc be the replacement age. In the short-term plan,
we take the age at time T0, say x°, as a basis, and suppose that no failure occurs
within the planning horizon. Hence the planned execution time equals T0 + x" — x°.
Should a failure occur, a new plan is made with the new age. The associated penalty
cost is

= f
Jo

h\x) = f c*[r{x" + y)- r(xTC - >)] dy.
Jo

In case of a long-term shift, the penalty cost is

hB(x)
Jo

The MBRM has two advantages. First it yields a lower average cost than the optimal
block-replacement policy, and it can be extended to group replacement (see Dekker
& Roelvink 1991). Secondly, the penalty functions are much more easily calculated
than those for the BRM model, since the latter require calculation of the renewal
function, which in general has to be approximated.

The pure age replacement model is difficult to capture within the framework
presented here, since planning has to be conditioned on whether a component fails
within an interval or not, and if it fails, on when. Even for a few components, a large
number of cases have to be considered. In this respect, the MBRM is the preferred
compromise between the ARM and the BRM.

3.4 Discussion of the combination savings

We assumed that the combination savings are a function of the activities combined.
However, specifying the saving costs for each combination is a considerable
administrative task, because realistic numbers of activities are tens or more. In fact,
it is a major problem to identify potential execution savings. Therefore we make a
further simplifying assumption. We assume that all the maintenance activities of
interest can be divided into groups, where each group shares the same preparative
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work, unique for that group, while activities from different groups have no common
elements, and therefore have no savings because of joint execution. This assumption
implies that we need to consider combining activities only within one group, and
that the savings from combining k activities equal (fe — l)Acp, where Acp is the cost
involved in the preparative work. This savings structure is not that difficult to
implement, if one can identify the preparative work (e.g. one groups the activities per
unit). Signalling the combination potential can be done by defining one extra table
in the database (for the group composition) or by using an already existing hierarchy.
The number of activities within each group may still be considerable, but not too
large (say up to 100).

3.5 Execution windows

Another advantage of the constant-savings assumption is that it allows us to define
a number of simple rules to indicate whether combination needs to be considered.
We will develop them in the following lemmas. We start by recalling an immediate
property of convex functions which we will use implicitly in the sequel.

LEMMA 1 Suppose that / and g are convex functions with minima at tj and t*,
where tj < t*. Then / + g is convex as well and, for its minimum at tj+g, we have
tf < tf+g < tg.

Notice that, since /:,(•) is convex and the execution savings per activity are constant,
we can define an interval /, = [t, + x~ , tt + x + ] around th by solving for x+ and x~
from h^x) = Acp. This interval can be considered as an execution window for the
combination to remain cost-effective, which justifies the heuristic approach from
Section 3.1. Notice that the interval width is independent of £,, so it can be stored
in a database. The interval can be used to reduce the number of combinations that
need to be considered, as the next lemmas show.

LEMMA 2 Combining activities i and ; can only be cost effective if the intervals /,
and Ij overlap.

Proof. See the Appendix.

Notice that, for a combination {i,j} to be cost-effective, it is not required that f, e Ij.
The following lemma extends Lemma 2 to a set of activities.

LEMMA 3 A combination S can only be part of an optimal combination structure
if all activity intervals within the set overlap, i.e. if f]taS h # 0- The optimum
execution time tf lies within the intersection.

Proof. See the Appendix.

In the following, we assume that all activities have been numbered following their
originally planned execution date. Thus i < j implies t, < tj.

LEMMA 4 A combination V = {i1 ,..., in}, with ij < ih for; < h, cannot be part of an
optimal combination structure if it has a subset S of successive activities, say
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S = {ij,..., i,}, which can be split up cost-effectively into two subsets Sj = {iJt..., ik}
and S2 = {it + i,..., it} of successive activities.

Proof. See the Appendix.

This lemma implies that, if a combination can be split up cost-effectively into two
groups of successive activities, then it cannot be extended with earlier or later planned
activities to form an optimal combination. The restriction to later or earlier planned
activities is necessary, as the example illustrated in Fig. 2 shows. It will be clear that
combining activities 1 and 3 is not cost-effective (the penalty functions hl and h3

intersect above the line ^Acp). Yet adding activity 2 to the combination of 1 and 3
yields the optimal combination structure (notice that combination {1, 2, 3} is better
than e.g. {1, 2}, since h3 is well below Acp around t2).

Similarly it is not true that combinations that are part of the optimal structure
always consist of consecutive activities, as the counterexample depicted in Fig. 3
shows. Notice that combining 1 with 2, or 3 with 4, is not cost-effective. Combining
2 and 3 is, but its total cost savings are less than Acp. Combining 1 and 3 has a total
cost savings larger than ^Acp, and the same holds for 2 and 4. Hence {{1,3}, {2,4}}
is the optimal combination structure.

4. A set-partitioning algorithm to determine the optimal combination structure

In this section, we present an algorithm to determine an optimal combination struc-
ture. We assume that, for each activity i, the planned execution date t, and the interval
/, have already been determined. The algorithm consists of the following two phases:
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FIG. 3.

(1) Generate a list of combinations that may be present in the optimal combination
structure, and determine for each combination the total associated costs.

(2) Apply a set-partitioning algorithm to this list to determine the optimal combina-
tion structure.

Phase 1 is achieved by enumerating combinations according to an increasing
number of activities, concurrently applying Lemmas 2 to 4. More formally, we state
the algorithm as follows.

(a) Let list 1 consist of all single-activity combinations.
(b) Suppose that list k — 1, consisting of candidate combinations with k — 1

activities, has already been constructed, and let

ieS

for each combination S. List k is constructed as follows.
(bl) For each combination S = {i, ,..., j k _ j} from list k — 1, consider extension

with every activity ik for which ik > ik_lt and let V = {it,..., ik}.
(b2) If 7S n I{ik) = 0, then continue with the next extension. Otherwise check

whether {i2 ,..., ik} is in list /c — 1. If it is not, then continue with the next
extension; if it is, then evaluate /if. If h$ ^ /if, then add Kto list k; otherwise,
continue with the next extension.

(b3) If all extensions of S have been considered, then continue with the next
combination of list k — 1.

(c) If all combinations of list k — 1 have been dealt with, then list k is completed.
If k < n, then start making list k + 1; otherwise stop.
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Any set S of the optimal combination structure, say S = {it ,..., ik} can be generated
by successively adding i, to {ij,..., jj-j}, for / = 2,..., k. Following Lemmas 2-4, all
these additions have to be cost-effective. Thus the algorithm generates all sets that
can be part of the optimal combination structure. The largest part of the computa-
tional effort is in determining /ij for a set S, which can be done by applying e.g.
bisection or Newton-Raphson (if an explicit expression for h's(t) is available). The
number of sets that need to be considered depends on the problem at hand, and
could still equal the number of possible sets generated by n elements, namely 2",
minus n + 1 (i.e. n single-activity sets and the empty set). In the trivial case when all
execution dates are equal, the algorithm has to generate all combinations (Section 6
presents a way to circumvent this).

Following phase 1, the optimal combination structure is determined from the
remaining number of candidate combinations by solving a set-partitioning problem.
Let A denote the set of original activities, as before, and let C be the set of
remaining combinations, with m the total number of elements in C- Now recall that
optimal execution times t% for the combinations S in C are already known, since
these have been computed in step (b2) of phase 1. Consequently the minimal costs
#J are known as well; let g denote the the m x 1 vector of all these costs.
Applied to maintenance activity combination, the set-partitioning problem then may
be defined as that of identifying a partition T of k combinations SteC (i — 1,.»> k)
satisfying

k

(J S( = A, StnSj = 0 for all i # ; e {1,..., k},

such that Y!i-i 9st
 IS minimal (see also Syslo et al. 1983). In general, this is achieved

by representing C as an n x m boolean matrix C, where rows denote individual
activities and columns indicate the activities that are contained in each combination
of C For instance, let n = 4 and C = {{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {1, 2, 3}}, so
that m = 7. Then

C =

i o o o i o r
o I o o i I I

0 0 1 0 0 1 1

- 0 0 0 1 0 0 0 .

Note that the identity matrix is always contained in C, ensuring the existence of a
feasible solution (though against zero savings). Now the optimal partition T of A
is found from C by solving for the boolean vector x in the problem

minimize gTx subject to Cx = ln,

where 1B indicates the vector with all components equalling 1. Clearly the above
constitutes a 0-1 programming problem, which could, to begin with, be solved by
using ordinary branch-and-bound algorithms. However, the special structure of the
problem allows one to apply dedicated algorithms, as can be found in Syslo et al.
(1983). Some results of the algorithm are shown in the following example.
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5. Example

Consider 16 maintenance activities which have been planned over a two-year period.
Associated with each activity is a Weibull lifetime distribution for the component
addressed, with scale parameter a, (in days) and shape parameter /?,. Each activity
is individually optimized with respect to its execution interval, following the MBRM.
Here we consider an actual realization of the individually planned activities, where
activity 1 is just due, activity 2 three days from now, and so on (column t,); the age
at the planned date is given by x\c. The costs of corrective maintenance are given by
cj (repair plus down-time), and those of preventive replacement by cf (repair only).
Table 1 summarises the data (based on real data, though somewhat simplified). We
consider combining under the short-term-shift assumption. In this case, the penalty
function /i(») is given by

h(x) -f
Jo

~ r(xTC - jO] dy,

where r(x) = (f/a)(x/a.y " ' (x > 0), for a Weibull (a, P
With an assumed saving of 15 cost units (i.e.

) distribution.
about 10% of the average

preventive-maintenance cost) for a combination of 2 activities (so 30 for three, 45
for four, etc.), the corresponding penalty cost functions determine the same admissible
execution windows as depicted in Fig. 1 (the example is the same as the one in Section
3.1). One may interpret this figure as follows, taking activity 1 as an example. The
more execution of activity 1 is deferred with respect to its optimal timing (day 0), the
more this will cost, because corrective maintenance costs increase (in expectation).
This increase is outweighed by the savings of combining, as long as we remain within
the interval of 0 to 20 days. Outside this interval, activity 1 cannot be combined

TABLE 1

Example data for combining 16 activities

Activity a, (days) t, (day) x\< (days)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

1620
2380
1900
2850
1620
2850
1950
1350
1800
3200
1900
1750
2850
3900
3900
2850

1.70
1.70
2.00
2.00
1.70
2.00
1.25
1.75
1.50
1.50
2.00
1.70
1.75
1.75
1.75
2.00

4610
9090
1380
1510
8600
1510
4530
2480
3780
580
1380
3310
1810
1130
1130
1510

60
120
180
90
300
180
60
180
180
30
180
450
120
60
60
120

0
3
32
37
135
160
168
212
231
448
495
575
580
668
668
795

167
239
731
736
302

1062
202
379
398
746
731
742
747
904
904
848



COMBINING MAINTENANCE ACTIVITIES 327

cost-effectively with any other activity. On the other hand, cost-effective combination
possibilities involving activity 1 must have an execution moment that is part of
activity l's admissible execution window.

Applying the three lemmas that reduce the number of promising combinations,
only 200 out of 21 6 — 17 = 65519 possibilities need to be considered. Evaluating these
by our algorithm results in:

• the optimal combinations and the savings per combination
• the corresponding optimal moments of combined execution.

In this case, we calculated that optimal combining allows a reduction of 11 x 15 = 165
cost units on the preventive maintenance budget of 2370 (so 7.0%). The corresponding
penalties for changing execution times amount to 10.40 cost units, which results in
a total savings minus penalty costs of 154.60 (i.e. 6.5%). To accomplish this, the
following schedule should be executed:

activities 1 to 4 at day 6, saving 3 x 1 5 - 1.00 = 44.00 cost units (1.9%),
activities 5 to 7 at day 144, saving 2 x 15 - 1.80 = 28.20 cost units (1.2%),
activities 8 and 9 at day 222, saving 1 x 1 5 - 0.40 = 14.60 cost units (0.6%),
activities 10 to 13 at day 547, saving 3 x 1 5 - 4.60 = 40.40 cost units (1.7%),
activities 14 to 16 at day 732, saving 2 x 1 5 — 2.60 = 27.40 cost units (1.2%).

Compare this solution with the heuristic solution from Section 3.1: {1,2,3,4,6},
{5, 7, 8, 9,10}, and {11 ,..., 16}, which are executed at days 12, 171, and 589 against
penalty costs at 9.6, 26.0, and 24.7. Hence the total savings minus the penalty costs
amount to 134.7, which is 13% less than optimal.

All calculations were performed with a Turbo PASCAL implementation, using a
set-partitioning algorithm from Syslo et al. (1983). To obtain a rough indication of
the reduction power (with respect to the combinations remaining) and elapsed
execution time (on an 8 MHz PC-AT machine), the above example was evaluated
for different values of the savings. Table 2 summarizes the results so far.

Ac"

10
15
20

Some global
TABLE 2

results for 16 example

# comb, evaluated Total savings

143
200
297

94.7 (4.0%)
154.6 (6.5%)
209.8 (8.9%)

activities.

Response time (sec)

97
108
181

6. Discussion and extensions

The method presented here provides an optimal solution for the combination
problem, if penalty functions can be denned for each activity, and if combination
savings consist of fixed preparative costs. Two objections may be made against the
method.

First, one may argue that in practice it is difficult to obtain real penalty functions
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for the individual activities, and that no planned execution date is determined via an
optimization model. The latter is certainly true for present practice, but not
necessarily for the future. The first aspect is primarily a result of balancing the time
spent on optimization of the activity against the benefits obtained. The method
presented is flexible enough to work with various penalty functions—even a function
that simply represents scaled time deviations. The method further shows which data
one needs to solve the combination problem. In general, data shortage is often a
chicken-and-egg problem: if you do not know the value of data, you will not spend
much effort on getting them. Decision support systems, incorporating models like
the one presented here, help in breaking through that circle, as they can also indicate
the value of data.

Another objection against the method is that the number of combinations to be
evaluated may grow exponentially in the number of activities. This is true: although
Lemmas 2-4 can reduce the number significantly, there may still remain a very large
number of possibilities which all have to be stored in memory before set-partitioning
can take place. Yet this disadvantage primarily originates from the problem rather
than from the method, and one has to look for heuristics unless more simplifying
assumptions are made.

Despite these objections, there are almost no alternatives to the method proposed
here. The heuristic method presented in Section 3.1 works well in combining few
activities, but falls short if there are a number of them. Furthermore, the mathematical
method has some advantages: consistency with maintenance optimization models,
an explicit focus on cost-effectiveness, and quite a wide applicability. Also, the method
is easily extended in the following ways.

• Constraints on how many activities may be combined or on forbidden combina-
tions can both be incorporated by deleting the sets violating the constraints in
the first phase of the algorithm. The only requirement is that a constraint
formulated on a set should hold equally for all supersets.

• Constraints can be imposed on execution times. Here, we restrict the optimiza-
tion of the combined execution time ts of a combination S to some time
constraints. It is easily checked that Lemmas 2 and 3 remain valid, while Lemma
4 needs further study; checking all combinations is always an alternative.

• Corrective maintenance activities can be included by planning them at the start
of the planning horizon and defining a cost rate (which should be increasing)
for deferring the repair.

Finally, the total cost function h^*) for a given combination S can also be used to
determine the importance of delaying the execution of S. Splitting /is(«) into the
individual penalty functions gives additional information on which activities con-
tribute most to the savings of the combination. In fact, hg( •) — /»* serves as a penalty
cost function for S

One can therefore fix certain combinations beforehand and use S, t*, and h^*) as
input, instead of data on the individual activities. This opens the possibility for various
heuristics, e.g. applying the method first to a subset and then combining the outcomes
with the remaining activities. It also allows interactive planning, in which the user
defines some combinations and gets feedback on the total associated costs.
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7. Conclusions

In this paper we analysed a problem of combining maintenance activities, and
presented a general method to determine optimal combination structures, which can
enhance the cost-efficiency of maintenance planning. The method is fully consistent
with several optimization models to determine individual execution times. Applica-
tion depends on whether future maintenance management information systems can
provide the necessary data.

Appendix: proofs

Proof of Lemma 2

Suppose that the intervals do not overlap, so that any point t falls outside one interval,
say interval /,. Then h,(t — tt) > Ac" and therefore h{l ̂ (t) > 0 for all t; hence

Proof of Lemma 3

Suppose that P)ieS /, = 0 . We will show that any combination structure containing
the set S can be improved by splitting S up. Because the intervals do not overlap,
the minimum t* lies outside at least one of them, say Ij. Hence

fc/tj) - Ac" > 0.
Splitting 5 up into {_/'} and S\{j} lowers the costs, since (notice that hft) = 0, for all
ieA)

$) + W - c " = I ht$) ~ (Is! - OAC = h*s. •

Proof of Lemma 4

Let Vl = {/, ,..., ij_!} and V2 = {il+1 ,..., /„}. Then V= V1US1US2KJ V2. We will
show that V can be split up cost-effectively into Vl u S, and S2 u V2—in other
words, that the total penalty costs reduce by more than Ac" if we shift the execution
dates of activities in Vi u S, from tf to tJ,u K | , and of activities in V2 u S2 from tf
to (J l u K l . To this end, first notice that

from Lemma 1. A similar result holds for S2 and V2. The next step is to consider
the position of tf with respect to tj, and £j3. Let us first assume that tj, ^ tf < tj2.
All the relationships are shown in the following diagram.

I I I I I I I
r* t* t* t* t* i* i*
lVi lytKjS, ' s , lv ls2 'SJUKJ lv2

In this case, we will first shift the activities of Vl u Si from tf to t$t and then to t^^Vr

The activities of V2 u S2 are shifted in an analogous way. Notice that shifting execution
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of activities in Vx from tf to tj , is cost-effective:

Z ht(tl -t,)> Z hfcl - t,),
lev, ieV,

and the same holds for shifting activities of V2 from t? to tj2 . Since Sj and S2 do not
combine cost-effectively, we have

Z *,(*? - t,) - Ac" > E Wt - t,) + Z MS, - *«)•
/«S («Si ieSi

Hence

Z *»!«, - O + Z W«, - o + Z
IsKi (.S, (sS2

Z Mfl.uK, ~ t,) - (IS, u KJ - 1)

+
So splitting up is cost effective. We next consider the case when tf > £|2, which is shown
in the following diagram (the case when t* < t*, follows from symmetry arguments).

t* t* t* i* t*

In this case, we can no longer shift activities of V2 to t|2. So we leave all activities of
S2 arid V2 in first instance at tf and shift them later to t^2^Vl. Since S, and S2 do not
combine cost-effectively, executing them together at tj2 involves penalty costs larger
than Acp; hence

Z h&l - tt) - Ac" > Z hfrl - tt).
itS, fsSi

Since tf > tj2 in this case it follows that

Z HtZ - tt) - Ac" > Z hfcl - tt).
tsS, ItS,

Activities from Vl can also be shifted to t j , , and the remainder of the proof is similar
to that of the first case. D
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