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Abstract

Intertemporal budget constraint reasoning suggests that the current aggregate consumption to in-

come ratio may contain information about future returns on wealth. This paper investigates whether

this ratio has predictive power for real asset returns using historical data over the period 1870− 2015

for four major industrial economies (France, Germany, the UK and the US). The sign and strength

of the predictive relationship are investigated for the excess and raw returns obtained from hold-

ing equity and long-term government bonds. The short-run and long-run impact estimates of the

log consumption-income ratio on these asset returns are calculated using a Bayesian vector autore-

gression (VAR) approach with time-varying parameters and stochastic volatilities. We find that the

consumption-income ratio has substantial predictive power for, in particular, the real (excess) gov-

ernment bond returns of all countries considered. This supports the notion that bond returns may be

good proxy’s for the returns on total wealth, as is suggested in the literature. The predictive ability

of the consumption-income ratio does not appear to be driven by business cycle fluctuations.

JEL Classification: E21, C32, C11

Keywords: consumption, income, asset returns, return predictability, intertemporal

budget constraint, historical returns data, historical macro data

∗For constructive comments received, the author gratefully acknowledges Michel van der Wel and participants to different

conferences and seminars (2019 Tinbergen Institute macro research day, 2020 Virtual EEA conference, 2020 Virtual SNDE

conference, 2020 seminar at the Dutch Central Planning Bureau CPB).
†Department of Economics, P.O. Box 1738, 3000 DR Rotterdam, the Netherlands. Email: pozzi@ese.eur.nl. Website:

http://people.few.eur.nl/pozzi.

1



1 Introduction

Whether and to what extent returns on wealth are predictable is a question of great relevance for both

practitioners - who aim to enhance asset allocation and investment performance - and academics - who

aim to construct models that explain the data convincingly. A large literature has argued that wealth

returns, in particular US stock returns during the postwar period, can be predicted using economic

variables. We refer to Rapach and Zhou (2013) for a comprehensive overview of the literature. Ratios

consisting of financial and/or macroeconomic variables are among the predictors that have received

considerable attention. Prominent and widely used ratios are, for instance, the dividend-price ratio (see

e.g., Campbell and Shiller, 1988; Fama and French, 1989, for early evidence for respectively stock and

bond returns) and the consumption-wealth ratio or ’cay’ (see e.g., Lettau and Ludvigson, 2001).

This paper contributes to the literature by proposing an alternative ratio as a potential predictor for

returns on wealth, namely the aggregate private consumption to aggregate total disposable income ratio

(where total income refers to the sum of labor and capital income). This ratio, which we theoretically

motivate from intertemporal budget constraint logic, is sufficiently different from more conventional ratios

to warrant an investigation into its own distinctive predictability characteristics. For instance, unlike the

dividend-price ratio, it is consumption-based. Also, contrary to both the dividend-price and consumption-

wealth (’cay’) ratios, whose variation to a large extent reflects fluctuations in equity markets, the less

volatile and more persistent consumption-income ratio is less driven by financial markets.

We first derive the predictive relationship between the log consumption-income ratio and future real

returns on wealth from the intertemporal budget constraint of a representative consumer, i.e., the in-

tertemporal budget constraint can be satisfied if a high current consumption to total disposable income

ratio is followed by high subsequent returns on wealth. We then investigate whether this ratio has pre-

dictive power for both excess and raw returns on equity and long-term government bonds using historical

data over the period 1870− 2015 for four major industrial economies (France, Germany, the UK and the

US). Real equity returns are conventionally used to proxy returns on total wealth but recent research

argues that real long-term bond returns may be better proxies for returns on total wealth (see Lustig

et al., 2013). Our use of historical data is motivated by the theoretical underpinnings of our predictive

relationship which is the intertemporal budget constraint, a long-run concept. Moreover, more so than

the conventional ratios, the consumption-income ratio is a slow moving and highly persistent variable

that we use to predict highly volatile returns with a sizeable unpredictable component, i.e., the estima-

tions are characterized by a low signal-to-noise ratio. By using a long historical sample period and then

combining the results across countries, we obtain a more powerful test for the detection of a predictive
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relationship between these variables.

Methodologically, our main estimations are conducted using a Bayesian vector autoregression (VAR)

approach with time-varying parameters and stochastic volatilities (see e.g., Primiceri, 2005). We explicitly

test for time variation in parameters and volatilities following the approach of Frühwirth-Schnatter and

Wagner (2010). Allowing and testing for time variation in parameters and volatilities is useful given the

long time span 1870− 2015 of the data that we use. Furthermore, as we discuss in the paper, the VAR

set-up allows to deal with a number of statistical complications inherent to return prediction (see e.g.,

Stambaugh, 1999). From the VAR, we estimate both the predictive impact of the log consumption-income

ratio for (excess) returns in the short run (for a one-year horizon) and in the long-run (for 10-year and

20-year horizons). We further average our per country results across the four considered economies using

a ’mean-group’ approach. Finally, in line with previous literature on return prediction, we investigate

to what extent the predictive power of the consumption-income ratio for (excess) returns is driven by

business cycle fluctuations (see e.g., Fama and French, 1989; Dangl and Halling, 2012; Golez and Koudijs,

2018).

Our paper is related to four, not mutually exclusive, strands of the literature. First, it is related to

the literature on return predictability that uses intertemporal budget constraint logic (see e.g., Lettau

and Ludvigson, 2001, 2004, 2005; Whelan, 2008; Bianchi et al., 2017). Second, it is related to the

empirical literature that investigates return predictability using predictive regressions with time-varying

parameters (see e.g., Dangl and Halling, 2012). Third, it is related to the literature that focusses on

return predictability in an international context (see e.g., Ang and Bekaert, 2007). Finally, the paper is

in the vein of studies that use historical data to investigate whether asset returns are predictable (see

e.g., Chen, 2009; Della Corte et al., 2010; Golez and Koudijs, 2018).

Our results suggest that the consumption-income ratio has substantial predictive power for the (excess)

government bond returns of all four countries considered. On average over time and countries, if the

consumption-income ratio increases with 1%, gross excess bond returns increase with about 0.14% the

following year and with 1.7% to 2% the following 20 years. The evidence with respect to (excess) equity

returns is generally inconclusive however. These results imply that bond returns may be good proxy’s for

returns on total wealth as suggested by Lustig et al. (2013). We further find that the predictive ability

of the consumption-income ratio does not appear to be driven by business cycle fluctuations but may

reflect, in the words of Fama and French (1989), long-term structural ’business conditions’. Importantly,

when investigating the predictive impact of the log consumption-income ratio for (excess) equity and

bond returns using a more conventional dataset (i.e., quarterly postwar data for the US), we also find a

positive predictive impact of this ratio on both equity and bond (excess) returns but the results are not
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fully conclusive. This provides further support for the use of a historical dataset to explore the question

at hand.

Our findings are quite different from - and, therefore, complementary to - the findings reported in

the literature for conventional ratios used as predictors for returns. They reflect the different nature of

these ratios. The results reported in the literature for ratios like the dividend-price and consumption-

wealth ratios can generally be obtained using postwar data. These ratios have predictive ability for, in

particular, equity returns which reflects the fact that both these ratios are strongly driven by the stock

market.1 And these predictability results stem, at least to a certain extent, from cyclical fluctuations.

The predictability results that we report in this paper for the consumption to disposable income ratio

necessitate the use of long-run historical data to obtain conclusive results at the country level. This ratio

is shown to have predictive ability for bond returns more than for equity returns. And the reported

predictability results seem to be structural in nature, rather than cyclical.2

The paper proceeds as follows. In Section 2, we present a theoretical framework that links the current

consumption to disposable income ratio to expected future returns on wealth. Section 3 motivates and

details the dataset used and provides some preliminary evidence. Section 4 presents and discusses the

VAR approach, in particular the empirical specification and the estimation method. Section 5 reports

the basic predictability results. Section 6 investigates to what extent the predictability results are driven

by business cycle fluctuations. Section 7 concludes.

2 Theory

This section presents a simple framework that links the current consumption to (disposable) income

ratio to expected future returns on wealth. In line with the dataset used which is discussed in Section

3 below and which consists of consumption, income and returns data at the country level, we assume a

representative agent economy. Total wealth - i.e., the sum of asset and human wealth - is assumed to

be tradeable (see e.g., Campbell and Mankiw, 1989; Lettau and Ludvigson, 2005). The gross real rate

of return Rt on total tradeable wealth can be written as Rt+1 = Pt+1+Yt+1

Pt
where Pt is the ex-dividend

price of a share of total wealth and Yt is the real dividend or income obtained from total wealth which

consists of labor and capital income (as obtained from human wealth, respectively asset wealth). If the

1See, however, Afonso and Sousa (2011), for the predictive power of the consumption-wealth ratio for bond returns.
2As such, our paper adds to the literature on bond return predictability by identifying the consumption-income ratio

as a variable that has predictive power for real bond returns in the long-run, i.e., predictability is detected by using low

frequency historical data. This contrasts with the high frequency predictors typically considered in the literature (e.g.,

forward rates), whose predictive ability is typically related to business cycle fluctuations. See e.g., Gargano et al. (2019)

for a recent paper on postwar US bond return predictability at the monthly frequency.
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agent’s intertemporal budget constraint holds, we can approximate the aggregate log consumption to

income ratio ct − yt in period t by,

ct − yt = Et

∞∑
j=1

[
κj (∆yt+j − rt+j)− ρj (∆ct+j − rt+j)

]
(1)

where Et is the expectations operator conditional on period t information, rt is the log of the gross

real rate of return on total wealth Rt, ct is the log of real consumption Ct, yt is the log of real income

Yt, and where κ and ρ are discount rates which are close to one. We refer to Appendix A for the

derivation of equation (1). The intuition behind equation (1) is straightforward. If the budget constraint

holds intertemporally, a high consumption-income ratio in period t implies higher subsequent expected

discounted income growth rates or lower subsequent expected discounted consumption growth rates.

The direct impact of the log consumption-income ratio ct − yt on future returns rt+j in equation (1)

is ambiguous and most likely not substantial as the discount rates κ and ρ may not differ much. The

total, indirect as well as direct, impact of ct − yt on rt+j is obtained by noting that the variables ∆yt+1

and ∆ct+1 can be written as functions of returns rt+1.

First, we use the relationship between the gross return on, the income from and the price of wealth,

i.e., Rt+1 = Pt+1+Yt+1

Pt
, to write real income (dividend) growth as,

∆yt+1 = rt+1 + ωyt+1 (2)

where ωyt+1 ≡ −
(

ln
(

1 + Pt+1

Yt+1

)
− ln

(
Pt
Yt

))
.3 The term ωyt+1 is assumed to be uncorrelated with time t

information, i.e., we have Et(ω
y
t+1) = 0.4

Second, with time-varying returns on wealth and isoelastic utility, the log-linear version of the first-

order condition or Euler equation of a representative utility maximizing consumer is given by,

∆ct+1 = σrt+1 + ωct+1 (3)

where σ is the elasticity of intertemporal substitution and ωct+1 is an expectation error that is uncorre-

lated with time t information, i.e., we have Et(ω
c
t+1) = 0. Theoretically, the elasticity of intertemporal

substitution σ is positive while the empirical literature strongly suggests that this elasticity is smaller

than one.5 As such, we can write 0 < σ < 1.

3To see this, multiply both sides of Rt+1 =
Pt+1+Yt+1

Pt
by Pt

Yt
to obtain

Rt+1Pt
Yt

=
Pt+1+Yt+1

Yt
which can be

written as
Rt+1Pt
Yt

=
Yt+1

Yt

(
1 +

Pt+1

Yt+1

)
(see e.g., Cochrane, 2005, page 398). After taking logs, this gives rt+1 =

∆yt+1 + ln
(

1 +
Pt+1

Yt+1

)
− ln

(
Pt
Yt

)
.

4This can be justified by noting that Pt is typically large compared to Yt so that ln
(

1 +
Pt+1

Yt+1

)
≈ ln

(
Pt+1

Yt+1

)
while

ln
(
Pt+1

Yt+1

)
is a very persistent variable that approximates a random walk (see Cochrane, 2005, for evidence for equity).

5Using a meta-analysis of 169 studies - both at the micro and the macro level - that cover 104 countries, Havranek et al.

(2015) find a mean elasticity of intertemporal substitution equal to 0.5 with the largest value found for Japan at 0.9.
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Substituting equations (2) and (3) into equation (1), we obtain,

ct − yt = Et

∞∑
j=1

ρj [(1− σ)rt+j ] (4)

Given that we typically observe time variation in ct − yt, equation (4) implies that ct − yt has predictive

power for future returns on wealth.6 Moreover, since σ < 1, the predictive relationship between the log

consumption-income ratio and future returns is expected to be positive, i.e., a high consumption-income

ratio in period t is likely to be followed by high subsequent rates of return on wealth if the budget

constraint is to hold intertemporally.

We note, finally, that the predictive relationship derived between the consumption-income ratio and

future returns holds also under more general conditions. For instance, if the economy consists of both

permanent income consumers who consume according to equation (3) and rule-of-thumb consumers who,

in each period, consume a fraction λ (with 0 < λ < 1) of income growth, then we can replace (1 − σ)

in equation (4) by (1 − λ)(1 − σ), i.e., the predictive ability of the log consumption-income ratio for

future returns, while reduced, is still positive.7 Ultimately, the magnitude of the predictive impact of the

consumption-income ratio for returns is an empirical issue. To this issue, we now turn.

3 Data and preliminary evidence

We investigate whether the consumption-income ratio has predictive power for real asset returns using

historical data over the period 1870−2015 for four major industrial economies (France, Germany, the UK

and the US). Data availability determines the countries included in the dataset and the periods considered

per country. The use of a historical dataset to investigate the predictive ability of the consumption-income

ratio for the returns on wealth is motivated both by the underlying theory (i.e., the intertemporal budget

constraint, a long-run concept) and by the data characteristics (i.e., a highly persistent consumption-

income ratio and highly volatile returns with a sizeable unpredictable component). It is also motivated

by the lack of conclusive evidence obtained when estimating this relationship for individual countries

using a more conventional dataset. To show this, Appendix C presents predictability results obtained for

the consumption-income ratio using quarterly postwar data for the US. In the remainder of this section,

we discuss the data used for the log consumption-income ratio ct − yt and for the returns on wealth rt.

We also present some preliminary evidence on the predictive ability of the consumption-income ratio for

returns on wealth.

6To see this, note that var (ct − yt) = cov
(
ct − yt,

∑∞
j=1 ρ

j(1− σ)rt+j

)
.

7To see this, in line with Campbell and Mankiw (1989), use ∆ct+1 = (1− λ)σrt+1 + λ∆yt+1 + (1− λ)ωct+1 instead of

equation (3) when deriving equation (4).
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3.1 Consumption and income

The log of real per capita consumption ct is calculated from historical data on total consumer expenditures

as reported by (see Jordà et al., 2016) while the log of real per capita disposable income yt is calculated

from historical data on disposable income - i.e., national income after taxes - that accompanies Piketty

and Zucman (2014). The latter series are only available for the four countries considered. We have

conducted estimations also for other countries using the more widely available GDP series to proxy yt

which captures pre-tax income rather than disposable income, but the obtained results were generally

inconclusive. We refer to Appendix B for the construction of the data and for detailed information on

the data sources. In this appendix, we also outline how we calculate cleaned series for consumption and

income by taking out transitory variation due to measurement error and due the occurrence of both world

wars. Since the difference between log consumption and log income is the explanatory variable in our

predictive regressions, this transitory variation could potentially obscure a long-run predictive relationship

between the consumption-income ratio and asset returns. In Figure 1, we present graphs depicting both

the measured (raw) log consumption-income ratio and the adjusted (cleaned) log consumption-income

ratio for all four countries of our sample.

Figure 1: The log consumption-income ratio: raw and cleaned for measurement error and world wars
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3.2 Returns

For the variable rt, we consider two asset categories. The conventional variable used as a proxy for the

return on total wealth is the real return on equity (see e.g., Lettau and Ludvigson, 2001; Cochrane, 2005).
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Recent work by Lustig et al. (2013) argues, however, that human wealth in the US is much larger in size

than financial wealth and that total wealth (i.e., the sum of asset and human wealth) has return dynamics

that resemble that of long-term bonds rather than that of equity.8 Hence, we are also interested in the

predictive power of the consumption-income ratio for real long-term government bond returns. Following

most of the literature, we focus on excess returns, i.e., the difference between returns and a risk-free rate.

As such, we investigate the predictive power of the consumption-income ratio for the time-varying reward

for risk. Nonetheless, we also report results obtained from estimating our predictive relationship using

raw equity and bond returns. All returns used are expressed in real terms using the inflation rate. We

refer to Appendix B for further details on the construction of the returns data and on its sources. In

Figure 2 we present graphs of both equity excess returns and bond excess returns for all four countries

in our sample.

Figure 2: Excess returns on equity and long-term government bonds
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3.3 Preliminary evidence

Before turning to the more comprehensive VAR analysis, we take a look at the results of estimating

simple predictive regressions of the following form,

rt+1 = a+ b(ct − yt) + εt+1 εt+1 ∼ iidN
(
0, σ2

ε

)
(5)

8They estimate a correlation for the US economy between their calculated total wealth returns and asset returns equal

to 27% for stocks and equal to 94% for 5-year government bonds.
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with rt the period t log gross real return and ct − yt the log consumption to income ratio with the

parameter of interest being b. We estimate equation (5) using Bayesian OLS with uninformative priors.9

We use excess and raw equity and bond returns for rt and raw and cleaned data for yt and ct with the

data as described in the previous subsections.

Table 1 presents the posterior means and the 90% highest posterior density (HPD) intervals for

the parameter b. From the table, we draw two preliminary conclusions. First, the positive impact

of the consumption-income ratio on returns predicted by theory seems to hold for bond returns more

than for equity returns. Second, while the magnitude of the estimates differs, predictability for bond

returns is found both with cleaned and with raw income and consumption data. Similarly, we note that

the predictability results reported in the remainder of the paper, while based on cleaned income and

consumption data, can also be obtained using raw data.

Table 1: The predictive impact of ct − yt on rt+1: preliminary evidence

ct,yt raw ct,yt cleaned

France Germany UK US France Germany UK US

Excess equity returns for rt+1

0.16 -0.10 -0.15 -0.02 0.11 -0.27 -0.24 0.01

[-0.08,0.40] [-0.36,0.17] [-0.39,0.08] [-0.23,0.19] [-0.22,0.46] [-0.63,0.11] [-0.55,0.07] [-0.23,0.25]

Excess bond returns for rt+1

0.12 0.01 0.10 0.09 0.23 0.05 0.17 0.13

[0.01,0.24] [-0.05,0.07] [-0.05,0.25] [0.00,0.19] [0.07,0.39] [-0.03,0.13] [-0.03,0.36] [0.02,0.24]

Raw equity returns for rt+1

0.49 0.12 0.12 -0.03 0.40 0.09 0.00 -0.02

[0.25,0.74] [-0.15,0.41] [-0.13,0.38] [-0.24,0.18] [0.05,0.77] [-0.29,0.49] [-0.34,0.33] [-0.26,0.22]

Raw bond returns for rt+1

0.46 0.24 0.38 0.08 0.53 0.43 0.41 0.09

[0.33,0.60] [0.13,0.34] [0.22,0.54] [-0.03,0.19] [0.33,0.73] [0.28,0.58] [0.19,0.62] [-0.03,0.21]

Notes: Reported are the posterior mean and the 90% highest posterior density interval (in square brackets) of the parameter b in equation (5). Parameter

estimates for a and σ2
ε are unreported but available upon request. The estimation method is Bayesian OLS.

4 VAR estimation

In this section, we detail the VAR approach followed to investigate the predictive ability of the log

consumption-income ratio for returns. We first present and discuss the empirical specification. Next, we

elaborate on the Bayesian estimation approach.

9The Gaussian prior distributions used for a and b have mean zero and unit variance.
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4.1 Empirical specification

4.1.1 A time-varying parameter vector autoregression

Based on some of the previous literature on return predictability (see e.g., Stambaugh, 1999; Cochrane,

2008; Rapach and Zhou, 2013), we investigate the predictive ability of the log consumption-income ratio

ct − yt for asset returns by estimating the following restricted vector autoregression (VAR) model,

rt+1 = αt+1 + βt+1(ct − yt) + γt+1rt + ψt+1 (6)

ct+1 − yt+1 = π0,t+1 + π1,t+1(ct − yt) + π2,t+1(ct−1 − yt−1) + ηt+1 (7)

where rt is the period t log gross return on wealth (in real terms) and where
(
ηt+1 ψt+1

)′
∼

N (0,Ωt+1). The number of lags included in equations (6)-(7) is deemed sufficient based on estimated

autocorrelation and partial autocorrelation functions of the residuals.10 The intercepts αt and π0,t and

the slope coefficients βt, γt, π1,t and π2,t as well as the elements in the variance-covariance matrix Ωt are

assumed to be potentially time-varying, i.e., we estimate a time-varying parameter VAR (TVP-VAR) with

stochastic volatilities. Following Primiceri (2005), the variance-covariance matrix Ωt+1 is decomposed as,

∆t+1Ωt+1∆′t+1 = Σt+1Σ′t+1 (8)

where ∆t+1 is the lower triangular matrix

 1 0

−δt+1 1

 with δt+1 a transformation of the potentially

time-varying covariance between the error terms ηt+1 and ψt+1 and where Σt+1 is a diagonal matrix

containing the volatilities of the structural shocks of the VAR.11 Applying this decomposition to equations

(6)-(7), we can write, ηt+1

ψt+1

 = ∆−1t+1Σt+1

 η∗t+1

ε∗t+1

 =

 1 0

δt+1 1

 ση,t+1 0

0 σε,t+1

 η∗t+1

ε∗t+1

 (9)

where
(
η∗t+1 ε∗t+1

)′
∼ iidN (0, I2) and where ση,t+1 and σε,t+1 are the time-varying standard devi-

ations of the structural shocks ηt+1 = ση,t+1η
∗
t+1 and εt+1 = σε,t+1ε

∗
t+1. Using this result, we rewrite

equations (6)-(7) as,

rt+1 = αt+1 + βt+1(ct − yt) + γt+1rt + δt+1ηt+1 + ehε,t+1ε∗t+1 ε∗t+1 ∼ iidN (0, 1) (10)

ct+1 − yt+1 = π0,t+1 + π1,t+1(ct − yt) + π2,t+1(ct−1 − yt−1) + ehη,t+1η∗t+1 η∗t+1 ∼ iidN (0, 1) (11)

where hε,t+1 = lnσε,t+1 and hη,t+1 = lnση,t+1 are the potentially time-varying log volatilities of the

structural shocks. The error terms ε∗t+1 and η∗t+1 are independent while the covariance between the error

10More specifically, the autocorrelation and partial autocorrelation functions are calculated from the structural residuals

ε∗t+1 and η∗t+1 obtained from estimating equations (10)-(11) below. Results are unreported but available upon request.

11It can be shown that δt+1 =
cov(ψt+1,ηt+1)

σ2
η,t+1

where σ2
η,t+1 is the potentially time-varying variance of ηt+1.
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terms ψt+1 and ηt+1 of equations (6)-(7) is now captured through the term δt+1ηt+1 in equation (10).

This specification facilitates estimation as the equations can now be estimated one at a time, i.e., first

equation (11) and then, conditional on this, equation (10). Full details are provided in Appendix D.

Equations (10)-(11) constitute the observation equations from a state space model. The time-varying

parameters and time-varying log volatilities are all assumed to follow random walks with innovations

that are mutually independent as well as independent from the shocks ε∗t+1 and η∗t+1 in equations (10)-

(11). These random walks constitute the state equations of the state space model. More details on the

specification of the state space system are provided in Appendix D.

4.1.2 Discussion

The considered VAR has a number of features that allow for a sound investigation of the considered

predictive relationship. First, while the theory discussed above implies a stable predictive relationship

between the consumption-income ratio and returns, allowing and testing for structural shifts in parameters

and log volatilities through the modelling of these quantities as time-varying processes is nonetheless

useful from an empirical viewpoint given the long time span 1870−2015 of the data that we use. Indeed,

our sample includes fundamentally different episodes like the Great Depression, Bretton Woods, etc.

Even over more recent periods like the Great Moderation or the Great Recession, time variation in the

volatility of asset returns is well documented (see e.g., Tsay, 2005, and references therein) while many

studies also deal with potential changes in the volatility of macroeconomic variables like GDP growth

(see e.g., Hamilton, 2008; Nakamura et al., 2017). Second, the estimation of an equation for the predictor

variable ct+1 − yt+1 jointly with the equation for the predicted variable rt+1 allows for the estimation of

a non-zero covariance between the shocks to the variables rt+1 and ct+1 − yt+1. With a very persistent

predictor variable like ct − yt, if we do not control for the covariance between rt+1 and ct+1 − yt+1, the

detection of a predictive impact of ct − yt on rt+1 could be due to the impact of ct − yt on ct+1 − yt+1

rather than stemming from a true relationship between ct−yt and rt+1. This is related to the occurrence

in a frequentist context of biases of the type discussed by Stambaugh (1999). Third, our specification also

contains a lag of the return in the equation for rt+1. While this term is frequently omitted in empirical

studies on return predictability, controlling for rt in the regression of rt+1 on ct − yt serves to avoid

detecting a relationship between these variables that is driven by the potential covariance between rt

and ct − yt. Finally, our VAR approach allows for the calculation of the short-run impact of the log

consumption-income ratio ct − yt on the asset return in the next period, i.e., the parameter βt+1, but

also, indirectly, for the calculation of long-run impacts of ct − yt on asset returns, i.e., over horizons of

numerous years. Hence, when presenting the estimation results in Section 5 below, a subsection details
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the calculation of the long-run impacts of the consumption-income ratio on asset returns from our VAR

estimation and then presents these long-horizon results.

4.2 MCMC algorithm and stochastic model specification search

We estimate our TVP-VAR model in a state space framework using Bayesian methods. In particular, we

use a Gibbs sampling approach which is a Markov Chain Monte Carlo (MCMC) method that allows to

draw from the intractable joint posterior distribution of fixed parameters and latent states using tractable

conditional distributions (see e.g., Carter and Kohn, 1994; Kim and Nelson, 1999). Our Bayesian approach

is motivated from the presence of stochastic volatilities in the model that make the state space system non-

linear, the standard Kalman filter inapplicable and the exact likelihood hard to evaluate (see Kim et al.,

1998). It also provides a straightforward manner to test whether the time variation in the parameters αt,

βt, γt, δt, π0,t, π1,t, π2,t and in the log volatilities hε,t and hη,t - all of which are modelled as random walks

- is relevant or not. Our testing procedure follows the stochastic model specification search of Frühwirth-

Schnatter and Wagner (2010). For each of the parameters or volatilities that are potentially time-varying,

this procedure provides probabilities that time variation is a relevant model attribute. Through this type

of model specification, a more parsimonious VAR model can be obtained that helps to avoid potential

over-parameterization problems mentioned in the literature (see e.g., Giannone et al., 2015). Full details

of our approach are provided in Appendix D, where we also discuss our prior choices and provide details

on the steps of the Gibbs sampler and on its convergence.

5 Main predictability results

In this section, we present our main results. First, results on the prevalence of time variation in the

parameters and log volatilities of the estimated VAR are discussed. Second, we present the results from

estimating the VAR under the restrictions imposed on the time variation in parameters and log volatilities.

We note that, to save space, in these sections we only report the results obtained for excess equity returns

and excess bond returns and not for raw returns.12 Next, we discuss the results concerning the predictive

power of the log consumption-income ratio for excess equity and bond returns as well as raw equity and

bond returns for the four countries in our sample. We also report cross-country averages of this predictive

impact, i.e., mean group results. Finally, we present and discuss the predictability results obtained over

longer horizons, i.e., over periods of 10 and 20 years.

12The results for raw returns are available upon request.
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5.1 Testing for time variation

We start by testing whether the time variation that we allow for in the VAR of equations (10)-(11)

is actually relevant using the stochastic model specification search of Frühwirth-Schnatter and Wagner

(2010). Table 2 reports posterior probabilities of time variation in the parameters αt+1, βt+1, γt+1, δt+1

and πl,t+1 (with l = 0, 1, 2) and in the log volatilities hε,t+1 and hη,t+1 for the four countries that we

consider. The prior probability of time variation is set to 50% in all cases. From the table, we note that

there is evidence of substantial time variation only for the log volatility of excess equity and bond returns.

Except for the US for which the annual time series for excess equity returns reveals rather stable volatility

as can be seen in Figure 2, the posterior probabilities of time variation in the log volatility hε,t+1 are

very close to or exactly equal to one in all cases. The absence of time variation in the parameter βt+1,

i.e., the predictive impact of the log consumption-income ratio on returns, suggests that, despite the long

historical sample period considered, predictability - if present - is stable.13 Given the absence of time

variation in the AR parameters γt+1, π1,t+1 and π2,t+1, this also implies stable potential long-horizon

effects of ct − yt on returns.

Table 2: Posterior probabilities of time variation in the parameters and log volatilities of equations (10)-(11)

Country

Parameter/log volatility France Germany UK US

Equation (10) with excess equity returns for r

α 0.01 0.01 0.02 0.01

β 0.06 0.05 0.09 0.11

γ 0.03 0.03 0.05 0.03

δ 0.21 0.33 0.44 0.51

hε 1.00 1.00 1.00 0.07

Equation (10) with excess bond returns for r

α 0.01 0.00 0.03 0.04

β 0.06 0.01 0.06 0.07

γ 0.06 0.04 0.03 0.09

δ 0.17 0.10 0.17 0.15

hε 1.00 0.98 1.00 1.00

Equation (11) for log-consumption ratio c− y

π0 0.00 0.00 0.00 0.00

π1 0.01 0.00 0.01 0.01

π2 0.01 0.00 0.02 0.01

hη 0.02 0.03 0.02 0.02

Notes: The prior probabilities of time variation are set to 50% in all cases. For details on the calculation of these probabilities, we

refer to Appendix D.

13Golez and Koudijs (2018) also report stable predictive ability of the dividend-price ratio for equity returns using historical

data. Della Corte et al. (2010), on the other hand, document that there is no predictive ability of the consumption-wealth

ratio (’cay’) for equity returns prior to WWII.
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5.2 VAR estimation results

Based on the results reported in the previous section, we estimate the VAR presented in equations (10)-

(11) with restrictions imposed on the time variation of the parameters and log volatilities, i.e., time

variation is withheld only for the log volatility hε,t+1 of the innovation of the return equation. Hence, we

estimate,

rt+1 = α+ β(ct − yt) + γrt + δηt+1 + ehε,t+1ε∗t+1 ε∗t+1 ∼ iidN (0, 1) (12)

ct+1 − yt+1 = π0 + π1(ct − yt) + π2(ct−1 − yt−1) + ehηη∗t+1 η∗t+1 ∼ iidN (0, 1) (13)

As noted in Section 4.1.1, equations (12)-(13) of the VAR are estimated equation-by-equation with

equation (12) estimated conditional on equation (13), i.e., we estimate equation (12) with the innovation

ηt+1 to the log consumption-income ratio added as a regressor and with δ reflecting the covariance between

the shocks to rt+1 and ct+1−yt+1. Hence, we estimate equation (13) only once and then estimate equation

(12) conditional on equation (13) for every return considered. The estimation results for equations (12)

and (13) are therefore presented in separate tables.

The posterior means and 90% highest posterior density (HPD) intervals of the parameters π0, π1 and

π2 and the log volatility hη of the AR(2) process estimated in equation (13) are presented in Table 3.

From the table, we note that the log consumption-income ratio is very persistent in all countries - as

can also be observed in Figure 1 - with values for π1 and π2 close to the unit root case.14 This high

persistence is even more outspoken in our potential predictor of returns ct − yt, when compared to other

ratios commonly considered in the literature, such as the price to dividend ratio or the consumption to

wealth ratio.

Table 3: Estimation of the AR(2) process of equation (13) for the log consumption-income ratio

Country

Parameter/log volatility France Germany UK US

Dependent variable is ct+1 − yt+1

π0 -.002 -.004 -.000 .000

[-.007,.003] [-0.01,.005] [-.005,.004] [-.005,.005]

π1 1.32 1.49 1.46 1.48

[1.00,1.63] [1.26,1.72] [1.12,1.79] [1.17,1.79]

π2 -0.36 -0.52 -0.49 -0.50

[-0.67,-0.04] [-0.76,-0.29] [-0.82,-0.14] [-0.81,-0.19]

hη -3.36 -3.31 -3.39 -3.38

[-3.46,-3.26] [-3.40,-3.21] [-3.48,-3.29] [-3.47,-3.28]

Notes: Reported are the posterior mean of the parameters and constant log volatility of equation (13) with the 90% highest posterior

density interval in square brackets. Estimation details can be found in Appendix D.

14A unit root is present in ct − yy if π1 + π2 = 1, while it is stationarity if π1 + π2 < 1.
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In Table 4, we report the posterior means and 90% HPD intervals of the parameters α, β, γ and δ of

the predictive equation (12) for both excess equity and excess bond returns. The table further reports

the standard full-sample R-square and the out-of-sample R-square.15 Figures for the time-varying log

volatility hε,t+1 of the return innovations are relegated to Appendix D.

From the table, we note the following. First, the predictive impact β of the log consumption-income

ratio for excess equity returns is positive and of substantial magnitude for France and Germany but close

to zero for the US and even negative for the UK. Values for β obtained using excess bond returns however

are positive and of substantial magnitude for all four countries and in particular for France and the US.

In the next section, we provide more details on this result. Second, the impact of lagged returns captured

by the AR parameter γ in general is positive but in all cases has rather wide HPD intervals that contain

the value of zero suggesting that lagged returns have little predictive ability for current returns. Third,

the parameter δ, which reflects the contemporaneous covariance between innovations to ct − yt and rt,

has the expected negative sign for equity returns suggesting that controlling for this covariance through

a VAR set-up is useful. This seems less urgent when dealing with excess bond returns however. Finally,

we note that the values for the R2’s are low but are in line with values typically encountered in the

literature on return prediction using highly persistent predictors (see e.g., Lettau and Ludvigson, 2001;

Whelan, 2008; Golez and Koudijs, 2018). Consistent with our findings for the parameter β, the fit of

the equation for excess government bond returns is generally much better than the fit of the equation

for excess equity returns. With respect to out-of-sample predictability, we note that values found for

R2
OOS tend to be in accordance with the values found for R2. When the in-sample fit is good, the out-of-

sample predictability is also reasonably good. When the in-sample fit is not so good, the out-of-sample

predictability is not very good either resulting in negative values found for R2
OOS . As noted by Cochrane

(2008), the finding of a negative value for R2
OOS is not surprising when estimating predictive regressions

with a highly persistent predictor. Nor does it necessarily imply that (excess) returns are unpredictable.

Rather, it means that the predictor used - in this case, the highly persistent log consumption-income

ratio - is not useful for real time predictions. When looking at the predictive ability of ct − yt for excess

bond returns in the UK, for example, the results for β and the in-sample R2 reported in Table 4 imply

that the log consumption-income ratio does have some predictive power for bond returns. Nonetheless,

the R2
OOS is negative which suggests that it is not useful for out-of-sample prediction in this case.

15The out-of-sample R-square is calculated as R2
OOS = 1−

∑T
τ=1(rτ−r̂τ )2∑T
τ=1(rτ−r̄τ )2

where rτ is the actual return, r̂τ is the return

predicted from the VAR system of eqs.(12)-(13) estimated on the sample until period τ − 1, and r̄τ is the mean return up

to period τ −1 (see e.g., Golez and Koudijs, 2018). The first prediction r̂τ=1 is based on estimating the VAR on the sample

period until 1950, while the last prediction r̂τ=T is based on estimating the VAR on the sample period until 2014.
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Table 4: Estimation of the predictive regression equation (12) for excess returns on equity and government bonds

Country

Parameter/R2 France Germany UK US

Excess equity returns for rt+1

α 0.02 0.07 0.04 0.07

[.005,0.04] [0.01,0.13] [0.02,0.06] [0.04,0.10]

β 0.12 0.19 -0.10 0.01

[-0.05,0.29] [-0.12,0.49] [-0.38,0.19] [-0.23,0.25]

γ 0.13 0.05 0.07 0.02

[-0.02,0.28] [-0.09,0.20] [-0.08,0.23] [-0.12,0.17]

δ -0.32 -1.22 -1.44 -0.42

[-1.32,0.67] [-2.42,-.005] [-2.52,-0.40] [-1.80,0.95]

R2 0.02 .001 .003 .003

R2
OOS 0.02 -0.02 -0.02 -.008

Excess bond returns for rt+1

α 0.02 0.02 .003 .004

[0.01,0.03] [0.01,0.04] [-0.01,0.02] [-0.01,0.02]

β 0.21 0.06 0.11 0.15

[0.09,0.34] [-0.02,0.15] [-0.06,0.28] [0.06,0.25]

γ 0.06 0.08 -.001 0.04

[-0.10,0.22] [-0.10,0.26] [-0.16,0.16] [-0.12,0.21]

δ 0.44 -0.09 -0.77 0.25

[-0.32,1.18] [-0.57,0.37] [-1.65,0.09] [-0.46,0.95]

R2 0.10 0.02 0.01 0.10

R2
OOS 0.04 0.01 -0.01 0.03

Notes: Reported are the posterior mean of the fixed parameters of equation (12) with the 90% highest posterior density interval in square

brackets. R2 denotes the standard full-sample R-square while R2
OOS denotes the out-of-sample R-square. Estimation details can be found

in Appendix D.

The generally better fit of the predictive regression estimated for excess bond returns as compared

to excess equity returns can be observed graphically in Figures 3 and 4 which shows actual and fitted

returns for the cases reported in Table 4.
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Figure 3: Fit predictive regression for excess equity returns
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Figure 4: Fit predictive regression for excess government bond returns
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5.3 Predictive impact

We now take a closer look at the predictive impact of the log consumption-income ratio for returns as

captured by the parameter β. Table 5 reports, as before Table 4, the posterior mean and 90% HPD interval

of the parameter β estimated from equations (10)-(11) for equity excess returns and government bond

excess returns. Additionally, we now also report results for raw equity and bond returns. Furthermore,
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the table also reports the posterior probability that the predictive impact of ct − yt on rt+1 is larger

than zero, i.e., prob(β > 0). As discussed in Section 2, we theoretically expect a positive impact of the

log consumption-income ratio on future returns. Given the Gaussian prior centered at zero for β (see

Appendix D for details), the prior probability that β > 0 equals 0.5. From the table we note that, for

excess bond returns, the values for prob(β > 0) are generally well above 0.5 and even equal to one for

France and the US. For excess equity returns, these probabilities are high for France and Germany but

close to and even lower than 0.5 for the US, respectively the UK. When comparing excess and raw returns,

we note that the results for raw bond returns are rather similar to those for excess bond returns, while

the evidence in favor of predictability is a bit more convincing for raw equity returns in all countries but

the US.

Table 5: The predictive impact of ct − yt on rt+1

Country

France Germany UK US

Excess equity returns for rt+1

β 0.12 0.19 -0.10 0.01

[-0.05,0.29] [-0.12,0.49] [-0.38,0.19] [-0.23,0.25]

prob(β > 0) 0.87 0.85 0.28 0.52

Excess bond returns for rt+1

β 0.21 0.06 0.11 0.15

[0.09,0.34] [-0.02,0.15] [-0.06,0.28] [0.06,0.25]

prob(β > 0) 1.00 0.90 0.85 1.00

Raw equity returns for rt+1

β 0.23 0.30 0.17 -0.03

[0.04,0.42] [-.004,0.59] [-0.12,0.47] [-0.27,0.21]

prob(β > 0) 0.97 0.95 0.83 0.42

Raw bond returns for rt+1

β 0.28 0.04 0.29 0.11

[0.14,0.42] [-0.05,0.13] [0.11,0.47] [0.01,0.21]

prob(β > 0) 1.00 0.75 1.00 0.96

Notes: From the posterior distribution of the parameter β in equation (12), we report the posterior mean, the 90% highest posterior

density interval (between square brackets) and the posterior probability that β > 0. Estimation details can be found in Appendix D.

Table 6 then reports averages of the predictive impact of ct − yt on rt+1 over the four considered

economies, i.e., the mean-group (MG) results. The parameter βMG is calculated as the weighted average

of β over the four countries in our sample where the weights are either identical or determined by the

size of a country’s GDP (respectively, population) vis-a-vis total GDP (respectively, population) of all

four countries in the sample. From the table, we note again that the results for bond returns are more

conclusive than those for equity returns with probabilities that βMG > 0 (almost) equal to one. The

value for βMG for excess bond returns lies around 0.14 depending on the weights used in its construction.
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As the β’s can be interpreted as elasticities - i.e., β = dr
d(c−y) = d lnR

d ln(CY )
- this value implies that if the

consumption-income ratio C
Y increases with 1%, gross excess bond returns R increase with 0.14% the

following year (on average over time and countries). While an elasticity of 0.14 is not very large, the

numbers become more impressive once we consider longer horizons which is the topic of the next section.

Table 6: The predictive impact of ct − yt on rt+1: cross-country (weighted) averages

Weights

Equal GDP Population

Excess equity returns for rt+1

βMG 0.05 0.03 0.04

[-0.09,0.20] [-0.13,0.19] [-0.10,0.19]

prob(βMG > 0) 0.74 0.63 0.69

Excess bond returns for rt+1

βMG 0.13 0.14 0.14

[0.04,0.23] [0.05,0.23] [0.05,0.22]

prob(βMG > 0) 0.99 1.00 1.00

Raw equity returns for rt+1

βMG 0.17 0.07 0.10

[0.02,0.32] [-0.10,0.23] [-0.05,0.25]

prob(βMG > 0) 0.97 0.75 0.87

Raw bond returns for rt+1

βMG 0.18 0.14 0.15

[0.08,0.28] [0.04,0.24] [0.05,0.24]

prob(βMG > 0) 1.00 0.99 0.99

Notes: The mean-group parameter βMG is calculated as βMG =
∑4
i=1 weight

(i)β(i) where β(i) is β for country i and weight(i) is the

weight given to country i. For equal weights, we have weight(i) = 1/4. For GDP weights, weight(i) is equal to country i’s GDP (average

over the sample period) divided by the total GDP of all four countries in the sample (average over the sample period). For population

weights, weight(i) is equal to country i’s population (average over the sample period) divided by the total population of all four countries

in the sample (average over the sample period). From the posterior distribution of the parameter βMG, we report the posterior mean, the

90% highest posterior density interval (between square brackets) and the posterior probability that βMG > 0. Estimation details can be

found in Appendix D.

5.4 Long-horizon predictability

This section discusses the long-run impact of the log consumption-income ratio on (excess) returns. From

the estimates obtained when estimating the VAR system of equations (12)-(13), we calculate the total

(cumulative) impact of the log consumption-income ratio ct − yt on returns over a horizon of k years

through the following formula,

β(k) =

k∑
j=1

βj (14)

where βj denotes the impact of ct − yt on period t + j returns rt+j which can be calculated recursively

from,

βj = γβj−1 + β%j−1 (15)
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with initializations β0 = 0 and %0 = 1 and where β is the coefficient on the lagged log consumption-income

ratio in equation (12), where γ is the coefficient on the lagged return rt in equation (12) and where %j

is the j-th order sample autocorrelation coefficient of ct − yt. We calculate the posterior distributions of

the long-run coefficients β(k) for horizons of ten and twenty years by calculating β(k) for k = 10, 20 in

every iteration of the Gibbs sampler.

Table 7: Long-term k-year horizon impact β(k) of ct − yt on returns

Country Weighted average

France Germany UK US Equal GDP Population

Excess equity returns for rt+1

β(1) 0.12 0.19 -0.10 0.01 0.05 0.03 0.04

[-0.05,0.29] [-0.12,0.49] [-0.38,0.19] [-0.23,0.25] [-0.09,0.20] [-0.13,0.19] [-0.10,0.19]

β(10) 0.99 1.56 -0.86 0.08 0.44 0.26 0.36

[-0.48,2.46] [-0.94,4.04] [-3.30,1.68] [-2.07,2.17] [-0.78,1.68] [-1.20,1.68] [-0.95,1.63]

β(20) 1.27 2.44 -1.34 0.14 0.63 0.38 0.53

[-0.61,3.15] [-1.47,6.31] [-5.13,2.60] [-3.49,3.67] [-1.24,2.50] [-2.04,2.76] [-1.59,2.59]

Excess bond returns for rt+1

β(1) 0.21 0.06 0.11 0.15 0.13 0.14 0.14

[0.09,0.34] [-0.02,0.15] [-0.06,0.28] [0.06,0.25] [0.04,0.23] [0.05,0.23] [0.05,0.22]

β(10) 1.69 0.53 0.91 1.38 1.13 1.25 1.19

[0.72,2.65] [-0.16,1.23] [-0.52,2.36] [0.56,2.19] [0.37,1.89] [0.49,1.99] [0.46,1.91]

β(20) 2.16 0.83 1.41 2.34 1.68 2.01 1.87

[0.92,3.40] [-0.25,1.92] [-0.81,3.66] [0.95,3.70] [0.53,2.83] [0.78,3.20] [0.71,3.02]

Raw equity returns for rt+1

β(1) 0.23 0.30 0.17 -0.03 0.17 0.07 0.10

[0.04,0.42] [-.004,0.59] [-0.12,0.47] [-0.27,0.21] [0.02,0.32] [-0.10,0.23] [-0.05,0.25]

β(10) 2.00 2.42 1.64 -0.25 1.45 0.58 0.90

[0.34,3.66] [-0.03,4.85] [-1.08,4.41] [-2.39,1.86] [0.12,2.78] [-0.88,2.05] [-0.44,2.21]

β(20) 2.57 3.78 2.56 -0.41 2.12 0.83 1.31

[0.43,4.71] [-0.05,7.58] [-1.67,6.88] [-4.03,3.12] [0.10,4.13] [-1.59,3.26] [-0.85,3.43]

Raw bond returns for rt+1

β(1) 0.28 0.04 0.29 0.11 0.18 0.14 0.15

[0.14,0.42] [-0.05,0.13] [0.11,0.47] [0.01,0.21] [0.08,0.28] [0.04,0.24] [0.05,0.24]

β(10) 2.67 0.38 2.72 1.07 1.71 1.36 1.43

[1.38,3.96] [-0.55,1.33] [1.04,4.43] [0.08,2.05] [0.75,2.67] [0.44,2.25] [0.53,2.32]

β(20) 3.46 0.60 4.24 1.82 2.53 2.13 2.20

[1.78,5.11] [-0.87,2.10] [1.62,6.92] [0.14,3.48] [1.08,3.97] [0.65,3.59] [0.78,3.60]

Notes: The calculation of β(k) for k = 1, 10, 20 is given by equations (14)-(15). We note that the one-year horizon parameter β(1) equals the

coefficient β on the lagged log consumption-income ratio in the predictive equation (12). From the posterior distribution of the parameter β(k), we

report the posterior mean and the 90% highest posterior density interval between square brackets. Estimation details can be found in Appendix

D.

The results are reported in Table 7. We report long-run impact estimates of ct − yt on returns over

horizons of ten and twenty years, i.e., the parameters β(10) and β(20). To facilitate the comparison with

the short-run estimates discussed in the previous section, we also add the previously estimated β’s in the

table, denoted here by β(1). Per country estimates are reported as well as cross-country averages using
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either equal weights, GDP-based weights or weights based on population size. The returns considered are

excess and raw equity and government bond returns. We note that, in particular for the excess and raw

bond returns, the long-run impact estimates are considerably larger than their short-run counterparts.

The mean-group 20-year horizon elasticities for excess bond returns, for example, lie between 1.7 an 2

implying that if the consumption-income ratio C
Y increases with 1%, the increase in gross excess bond

returns R lies between 1.7% and 2% over the following 20 years. The long-run elasticities are even higher

for raw bond returns. For excess equity returns, the long-run impact estimates β(10) and β(20) are also of

larger magnitude (and more negative for the UK) but the per country results and the mean group results

are, in accordance with the short-run estimates β(1), all characterized by rather wide HPD intervals

that include the value of zero. As noted above, the results for raw equity returns are somewhat more

convincing than those for excess equity returns and this can also be observed in the long-horizon results.

The predictive power of the log consumption-income ratio for raw equity returns is substantial for France

and Germany and, to a lesser extent, for the UK. For the mean-group results based on equal weights

(which gives relatively less weight to the US) this translates into a long-run elasticity equal to 2.1 for the

20-year horizon.

6 Business cycle fluctuations

In this section, we investigate whether the predictability results presented in the previous section can

be (partially) attributed to business cycle fluctuations or whether they are more structural in nature.

Expected (excess) returns are generally considered to be countercyclical (see Fama and French, 1989,

for early evidence, and Golez and Koudijs, 2018, for recent evidence using historical data) while the

evidence that we present below suggests that the log consumption-income ratio in our sample tends to

be countercyclical as well. As such, the positive impact of the log consumption-income ratio on expected

returns reported for the cases discussed above could be (partially) driven by the business cycle, i.e., in

recessions the consumption-income ratio and expected (excess) returns both increase. First, we present

evidence on the cyclicality of the log consumption-income ratio in our sample. Next, we estimate an

extended VAR specification that also includes a variable that captures the business cycle and we check

whether our predictability results are robust to the inclusion of this variable in the predictive equation

for (excess) returns.
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6.1 Cyclicality of the consumption-income ratio: some evidence

We start by investigating the cyclicality of the consumption-income ratio in our historical dataset by

estimating regressions of the following form,

f (ct+1 − yt+1) = ϑ0 + ϑ1bct+1 + ζt+1 ζt+1 ∼ iidN
(
0, σ2

ζ

)
(16)

where ct− yt is the log consumption-income ratio used previously and where f(c− y) is a transformation

of c− y, i.e., either the first difference f(c− y) = ∆(c− y) or the deviation of c− y from its (stochastic)

trend f(c − y) = (c − y) − (c− y) where c− y is approximated via a five-year moving average filter

applied to c− y as c− y = 1
5

∑4
j=0(c−j − y−j). For informative purposes, we also report results obtained

from estimating equation (16) with the identity function f(c − y) = c − y even though this violates the

iid assumption on the error term ζt+1 as we know from the results in Section 5 that ct+1 − yt+1 is very

persistent. The variable bct is the business cycle indicator for which we use real per capita GDP growth.16

The estimation method is Bayesian OLS.17

Table 8: The cyclicality of the log consumption-income ratio ct+1 − yt+1

Country

f(c− y) Coefficient on bc France Germany UK US

∆(c− y) ϑ1 -0.03 -0.05 -0.14 -0.16

[-0.09,0.03] [-0.09,-0.01] [-0.27,-0.02] [-0.23,-0.09]

(c− y)− (c− y) ϑ1 -0.03 -0.07 -0.21 -0.19

[-0.11,0.03] [-0.11,-0.02] [-0.35,-0.07] [-0.28,-0.11]

c− y ϑ1 -0.24 -0.05 -0.55 -0.14

[-0.41,-0.06] [-0.18,0.08] [-0.90,-0.20] [-0.45,0.17]

Notes: Reported are the posterior mean and the 90% highest posterior density interval (in square brackets) of the parameter ϑ1 in equation

(16). Parameter estimates for ϑ0 and σ2
ζ are unreported but available upon request. The estimation method is Bayesian OLS.

Table 8 reports the mean and 90% HPD interval of the posterior distribution of the parameter ϑ1,

i.e., the impact of the business cycle indicator on both transformations of the log consumption-income

ratio and on the untransformed log consumption-income ratio. The reported results show that, over the

considered historical period, the estimates of ϑ1 are negative in all countries irrespective of the applied

transformation or lack thereof. While the evidence is weaker for France as far as both transformed log

16Historical data for this variable are calculated from the Jordà-Schularick-Taylor macro-history database (see Jordà

et al., 2016) which report real per capita GDP data for the countries we consider from 1870 onward, uninterrupted. The

website is http://www.macrohistory.net/data. The data has code ’rgdppc’.
17Gausian prior distributions are used for ϑ0 and ϑ1 with mean zero and variance equal to 10. The prior distribution

for σ2
ζ is inverse Gamma with belief equal to zero and strength equal to 0.01. See Bauwens et al. (2000) for details. The

posterior distributions of the parameters are calculated using Gibbs sampling based on 12.000 iterations of which 2000 serve

as burn-in.
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consumption-income ratios are concerned, the overall results suggest that the log consumption-income

ratio is (moderately) countercyclical.

6.2 Impact of the business cycle on predictability

6.2.1 Specification

To investigate whether our predictability results are (partially) driven by business cycle fluctuations, we

now estimate the following extended three-equation VAR,

rt+1 = αt+1 + βt+1(ct − yt) + γt+1rt + µt+1bct + ψt+1 (17)

ct+1 − yt+1 = π0,t+1 + π1,t+1(ct − yt) + π2,t+1(ct−1 − yt−1) + ηt+1 (18)

bct+1 = λ0,t+1 + λ1,t+1bct + χt+1 (19)

where
(
χt+1 ηt+1 ψt+1

)′
∼ N (0,Ωt+1). The extended VAR contains an additional equation - i.e.,

equation (19) - for the business cycle variable bct+1 which, as detailed in Section 6.1, is proxied by real per

capita GDP growth. We assume that bct+1 follows an AR(1) process. Moreover, the variable bct is added

as an additional predictor variable in the equation for the returns rt+1. Applying the decomposition of

equation (8) to the variance matrix Ωt+1 allows us to rewrite the VAR with independent (structural)

error terms so that it can be estimated one equation at a time. Hence, the Gibbs sampling procedure

discussed in Appendix D can again be applied. After testing for time variation in the parameters and log

volatilities, we withhold time variation only for the log volatility of the innovation in the return equation

and for the log volatility of the innovation in the business cycle equation. All other parameters, variances

and covariances are restricted to be constant.

6.2.2 Results

We investigate whether the inclusion of bct in equation (17) has an impact on the predictive power of

ct − yt for rt+1. As before, this potential impact is captured by the parameter β. If this parameter is

smaller after controlling for the business cycle, this suggests that the business cycle is a channel through

which the consumption-income ratio predicts returns. The impact of bct on expected (excess) returns is

captured by the parameter µ. If expected (excess) returns are countercyclical, then we expect µ < 0.
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Table 9: The predictive impact of ct − yt on rt+1, after controlling for the business cycle

Country

France Germany UK US

Excess equity returns for rt+1

β 0.13 0.18 -0.06 .000

[-0.04,0.31] [-0.13,0.48] [-0.34,0.22] [-0.23,0.23]

prob(β > 0) 0.90 0.83 0.36 0.51

µ -0.01 0.29 0.30 -0.23

[-0.32,0.28] [-0.07,0.69] [-0.25,0.85] [-0.81,0.34]

Excess bond returns for rt+1

β 0.19 0.06 0.08 0.15

[0.06,0.32] [-0.02,0.15] [-0.10,0.25] [0.06,0.25]

prob(β > 0) 0.99 0.90 0.77 0.99

µ -0.14 -0.01 -0.50 -0.03

[-0.34,0.05] [-0.09,0.08] [-0.92,-0.08] [-0.23,0.16]

Raw equity returns for rt+1

β 0.25 0.32 0.20 -0.04

[0.05,0.45] [0.02,0.61] [-0.09,0.49] [-0.28,0.19]

prob(β > 0) 0.98 0.96 0.87 0.39

µ 0.07 0.41 0.17 -0.35

[-0.30,0.44] [0.03,0.83] [-0.41,0.75] [-0.92,0.23]

Raw bond returns for rt+1

β 0.25 0.04 0.25 0.11

[0.11,0.41] [-0.04,0.14] [0.07,0.44] [.003,0.21]

prob(β > 0) 1.00 0.78 0.98 0.95

µ -0.03 0.04 -0.53 -0.16

[-0.31,0.23] [-0.05,0.13] [-0.99,-0.08] [-0.40,0.07]

Notes: The posterior distribution of the parameters β and µ are estimated from the VAR in equations (17)-(19) after decomposing the variance

matrix of the innovations according to equation (8) and after imposing restrictions on the time variation in the parameters and log volatilities.

We report the posterior mean and the corresponding 90% highest posterior density interval (between square brackets). For β, we also report

the posterior probability that β > 0. Estimation details can be found in Appendix D.

In Table 9, we report statistics of the posterior distributions of the parameters β and µ. We do not

report the results obtained for the other parameters estimated from the extended VAR but they are

available upon request.18 From a comparison of this table with Table 5 above, we only find evidence that

supports a role for the business cycle when looking at the excess and raw bond returns of the UK. In these

cases, we find a reduction in the posterior mean of β and in the probability prob(β > 0) after controlling

for the business cycle combined with a negative impact on rt+1 of the variable bct as captured by the

parameter µ. In both these instances, the magnitude of µ is quite substantial even though the reduction

18Of interest are, in particular, the covariances between the innovation to the log-consumption ratio in equation (18) and

the innovation to the business cycle variable in equation (19) which - in line with the countercyclicality results for ct − yt
reported in Section 6.1 - are found to be negative. The means with corresponding 90% highest posterior density intervals

for this covariance are respectively −0.03 with [−0.10, 0.05] for France, −0.02 with [−0.07, 0.03] for Germany, −0.14 with

[−0.31, 0.04] for the UK and −0.12 with [−0.22,−0.02] for the US.
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in the posterior mean of β is quite small. Hence, there is only very limited evidence that business cycle

fluctuations affect the predictive relationship between ct − yt and rt+1 documented in this paper. The

predictive ability of the log consumption-income ratio for in particular (excess) bond returns seems to

be more structural in nature or, in the words of Fama and French (1989), related to long-term ’business

conditions’.

7 Conclusions

We have investigated whether the log aggregate consumption to disposable income ratio has predictive

power for excess and raw returns on equity and long-term government bonds using historical data over the

period 1870− 2015 for four major industrial economies, i.e., France, Germany, the UK and the US. The

predictive ability of the consumption-income ratio for the returns on wealth is implied by intertemporal

budget constraint reasoning. The short-run and long-run impact estimates of the current log consumption-

income ratio on next period’s returns are calculated using a Bayesian vector autoregression (VAR) model

with time-varying parameters and stochastic volatilities. We further average our per country results

across the four considered economies using a ’mean-group’ approach. Finally, we investigate to what

extent the predictive power of the consumption-income ratio for (excess) returns is driven by business

cycle fluctuations.

Our results suggest that the consumption-income ratio has substantial predictive power for the (excess)

government bond returns of all four countries considered. On average over time and countries, if the

consumption-income ratio increases with 1%, gross excess bond returns increase with about 0.14% the

following year and with 1.7% to 2% the following 20 years. The evidence with respect to (excess) equity

returns is generally inconclusive however. These findings support the notion that bond returns may be

good proxy’s for the returns on total wealth, as is suggested in the literature. We find that the predictive

ability of the consumption-income ratio does not appear to be driven by business cycle fluctuations, but

rather may reflect long-term ’business conditions’. We consider our results as complementary to the

predictability results reported in the literature that use more conventional ratios, i.e., our results are

obtained from long-run lower frequency historical data rather than from postwar quarterly data, they

apply to bonds rather than equity, and they are structural in nature rather than cyclical.
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Appendices

Appendix A Derivation of equation (1)

This appendix briefly describes the steps in the derivation of equation (1) in the main text. We refer to

Campbell and Mankiw (1989) and Lettau and Ludvigson (2005) for more details. When total wealth is

tradeable, the period-by-period budget constraint of a consumer can be written as,

Wt+1 = Rt+1(Wt − Ct) (A-1)

where Wt is real total wealth. Dividing both sides by Wt, we can write Wt+1

Wt
= Rt+1

(
1− Ct

Wt

)
. After

taking logs, this gives ∆wt+1 = rt+1 + ln (1− exp(ct − wt)) with wt = lnWt, rt = lnRt and ct = lnCt.

We linearize this equation by taking a first-order Taylor approximation which gives,

∆wt+1 = rt+1 +

(
1− 1

ρ

)
(ct − wt) (A-2)

where we ignore the unimportant linearization constant and where ρ = W−C
W with W and C the average

or steady state values of Wt and Ct and with ρ slightly below one.1 Note that we can write ∆wt+1

as ∆wt+1 = ∆ct+1 + (ct − wt) − (ct+1 − wt+1). Upon combining this result with equation (A-2) and

rearranging terms, we obtain,

ct − wt = ρ(rt+1 −∆ct+1) + ρ(ct+1 − wt+1) (A-3)

Solving equation (A-3) forward ad infinitum, imposing the transversality condition ρ∞(ct+∞−wt+∞) = 0

and taking expectations at period t then gives,

ct − wt = Et

∞∑
j=1

ρj (rt+j −∆ct+j) (A-4)

Since total wealth is tradeable, we assume it consists of Nt shares with cum-dividend share price given

by Pt + Yt, i.e., we have Wt = Nt(Pt + Yt). From the main text, the gross real return on wealth is given

by Rt+1 = Pt+1+Yt+1

Pt
. By combining these results and rearranging terms, we obtain,

Wt+1

Nt+1
= Rt+1

(
Wt

Nt
− Yt

)
(A-5)

Equation (A-5) is in the same form as equation (A-1) so the same steps (linearization, forward solving)

can be applied to obtain,

yt − wt = −nt + Et

∞∑
j=1

κj (rt+j −∆yt+j) (A-6)

1Note that the linearization occurs around the point ct − wt = c− w with c− w = ln
(
C
W

)
.
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where nt = lnNt, yt = lnYt and where κ = W−Y
W with W and Y the average or steady state values of

Wt and Yt and with κ slightly below one.

By combining equations (A-4) and (A-6) while normalizing Nt to be equal to one so that nt = 0, we

obtain equation (1) in the main text.

Appendix B Data construction and data sources

This appendix provides details on the sources and on the construction of the data used in the paper.

First, the data for consumption and income are discussed. Then, we elaborate on the returns data.

B.1 Consumption and income

The log of real per capita consumption ct is calculated from historical data as reported in the the

Jordà-Schularick-Taylor macro-history database (see Jordà et al., 2016) which reports real per capita

consumption data for the countries we consider from 1870 onward, uninterrupted.2 These data correspond

to and update the historical consumption data reported by Barro and Ursúa (2008). The log of real per

capita income yt is calculated from historical data that accompanies Piketty and Zucman (2014).3 In

particular, from the reported real per capita national income series and from the reported series for the

ratio of national income after taxes to national income, a series is constructed for real per capita disposable

income (=national income minus taxes plus transfers). The data used are available uninterruptedly from

1870 onward for the countries in our sample.4,5 For other countries, these data are insufficiently available.

We calculate cleaned series for consumption and income by taking out two types of shocks of a

transitory nature - i.e., measurement error and the occurrence of both world wars - from the log of

measured real per capita consumption and the log of measured real per capita disposable income. To

this end, we estimate,

xmt+1 = xt+1 + It+1ξt+1 + νt+1 + θνt νt+1 ∼ N
(
0, σ2

ν,t+1

)
(B-1)

where xmt is either the log of measured real per capita consumption cmt or the log of measured real per

capita disposable income ymt so that xt is the corresponding adjusted (i.e., cleaned) variable ct or yt.

The shock νt+1 captures measurement error which, following the generalized specification suggested by

2The website is http://www.macrohistory.net/data. The data has code ’rconpc’.
3The website is http://piketty.pse.ens.fr/fr/capitalisback. The data used are in the country excel files, Table 1, columns

9 and 14.
4The ratio of disposable income to national income is only available from 1948 onward for the UK, however, so that for

this country we extrapolate the 1948 value of this ratio to the period 1870− 1947.
5We update the calculated historical real per capita disposable income series from 2011 to 2015 using data from OECD

Economic Outlook.

2



Sommer (2007), is modeled as an MA(1) process with MA parameter θ. Importantly, to account for

potential shifts in national accounts measurement around 1945, we allow for a structural break in the

variance of the measurement error σ2
ν,t in 1945 (see Nakamura et al., 2017, and references therein). The

shock It+1ξt+1 captures transitory variation in consumption and income that is caused by the occurrence

of both world wars (WWI, WWII). The variable It is a dummy variable that is set to one during the

period 1914 − 1920 (the official period of WWI plus two years) and during the period 1939 − 1947 (the

official period of WWII plus two years). For the world war shock ξt+1, we have ξt+1 ∼ iidN (ξ, 1), i.e.,

we fix its variance to one - which is a large value - to ensure that it soaks up all transitory variation in

consumption and income during both world wars. The specification of the term It+1ξt+1 is identical to

the specification considered by Nakamura et al. (2017) to capture disaster episodes in consumption but

we focus more narrowly on world wars.6 Our results are not qualitatively affected however when using

their disaster dummies instead of our world war dummies. We use a Bayesian state space approach to

estimate equation (B-1) for xmt = cmt , respectively xmt = ymt , for every country in the sample to obtain

the unobserved adjusted (i.e., cleaned) variable xt = ct, respectively xt = yt. Methodological details are

provided in Everaert and Pozzi (2019).

B.2 Returns

Historical data for equity returns, for long-term government bond returns and for returns on short-term

bills (which are used as a proxy for the risk-free rate) going back to the 1870’s are provided by Jordà

et al. (2019).7 For the US and the UK, time series for equity, bonds and bills returns are available

uninterruptedly starting in either 1870, 1871 or 1872. For France and Germany the returns data are

available from 1870 or 1871 onward but there are some missing observations during the sample period.

For France, data on bill returns are missing over the period 1915− 1921. For Germany, data are missing

for equity in the year 1923, for bonds over the period 1944− 1948 and for bills in the year 1923 and over

the period 1945 − 1949. We apply linear interpolation to deal with these missing values. With respect

to interpolation, we note that, since the log consumption-income ratio is a very persistent slowly moving

regressor, its impact - if present - is expected to be on the underlying low frequency trend movements

in (excess) returns. As interpolation tends to preserve the underlying trend in returns, the few instances

6The disaster dummies used by Nakamura et al. (2017) and identified in Nakamura et al. (2013) include both world wars

for France, Germany and the UK but include WWI and the Great Depression and exclude WWII for the US. Moreover, the

timing of their world war disasters is somewhat different from our ’official’ timing (see Table 2 in Nakamura et al., 2013).
7The data can be found at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GGDQGJ. The

nominal equity returns have code ’eq-tr’ the nominal bond returns have code ’bond-tr’ and the nominal bill returns have

code ’bill-rate’. Details on the data sources used for equity, bond and bill returns are discussed for all four countries in our

sample in appendices J and L of the online Appendix of Jordà et al. (2019)’s paper.
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where interpolation is applied to our returns data are not expected to have an important impact on our

results. Next, we deflate all nominal returns (equity, bonds, bills) using the inflation rate as calculated

from the Consumer Price Index (CPI). Historical data for this index are reported for all four countries

in our sample in the Jordà-Schularick-Taylor macro-history database (Jordà et al., 2016).8 Equity and

bond excess returns are then calculated as the difference between real equity returns, respectively real

bond returns, and real bill returns.

Appendix C Results using postwar quarterly data for the US

This appendix presents the results from estimating the predictive relationship between the log consumption-

income ratio and asset returns with the use of a conventional dataset, namely quarterly data for the US

over the period 1947Q2− 2015Q4.

C.1 Estimation

As in the main text, we investigate the predictive relationship by estimating a TVP-VAR with stochastic

volatility in the error terms. The VAR system consists of equation (10) and an AR(4) process for

ct+1 − yt+1. Estimation details are provided in Appendix D where - given that an AR(4) process for

ct+1 − yt+1 replaces the AR(2) process given by equation (11) - we replace l = 0, 1, 2 by l = 0, 1, 2, 3, 4.

We test for time variation in all parameters and log volatilities and withhold it only for the log volatility

of the return equation.9 Then, we estimate a VAR system consisting of equation (12) and a constant

parameter AR(4) process for ct+1 − yt+1 that replaces the AR(2) process given by equation (13).

C.2 Data

Data for consumption, personal disposable income, the price index for personal consumption expenditures

(all seasonally adjusted) and population are taken from the US National Income and Product Accounts

(NIPA) collected via the Bureau of Economic Analysis (BEA). For consumption, we take either personal

consumer expenditures (line 29, NIPA table 2.1) or personal outlays (line 28, NIPA table 2.1). The

latter series is used in the calculation of the personal saving series reported in the NIPA. For income, we

take disposable personal income (line 27, NIPA table 2.1). To obtain real per capita consumption and

income series, these data are deflated with the price index for personal consumption expenditures (line 1,

NIPA table 2.3.4) and further expressed in per capita terms using population data (line 40, NIPA table

2.1). For the returns, all series are from the Center for Research in Security Prices (CRSP) collected via

8The website is http://www.macrohistory.net/data. The data used has code ’cpi’.
9Results are unreported but available upon request.
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Wharton Research Data Services (WRDS). Equity returns are obtained from the value-weighted equity

index, government bond returns are obtained from the 10-year bond index and the risk-free rate used to

calculate excess equity and bond returns is obtained from the 90-day bill index. Raw and excess equity

and bond returns are deflated using the inflation rate as calculated from the price index for personal

consumption expenditures.

C.3 Results

Table C-1 presents the results. We report results only for the posterior distribution of β in equation (12),

i.e., the posterior mean, the 90% highest posterior density interval and the posterior probability that

β > 0.10 Results are reported both for excess and raw equity and bond returns. Additionally, results are

reported with ct being log real per capita personal consumer expenditures and with ct being log real per

capita personal outlays. In the latter case, the variable 1− ec−y equals the personal saving to disposable

income ratio. Finally, results are reported that are obtained with raw data used for ct and yt as well as

with data used for ct and yt that are cleansed of measurement error. Cleaned data are obtained through

the estimation of a simplified version of equation (B-1) following the methodology detailed in Everaert

and Pozzi (2019).11

The results in Table C-1 show that, in all cases, there is a positive predictive impact of ct − yt on

returns. The HPD intervals, however, are rather wide and always contain the value of zero. The posterior

probabilities that β > 0 are always larger - sometimes, considerably so - than the prior probability which

equals 50%. They never surpass 90% however. While these results suggest that the log consumption-

income ratio has predictive ability for (excess) returns on equity and government bonds, we do not obtain

fully conclusive results when using US postwar quarterly data.

10The results for the other parameters are unreported but available upon request.
11In particular, we estimate xmt+1 = xt+1 + νt+1 + θνt with νt+1 ∼ N

(
0, σ2

ν

)
where xmt is either the log of measured real

per capita consumption cmt or the log of measured real per capita disposable income ymt so that xt is the corresponding

adjusted (i.e., cleaned) variable ct or yt. The shock νt+1 captures measurement error and is modeled as an MA(1) process

with MA parameter θ and constant error variance σ2
ν .

5



Table C-1: The predictive impact of ct − yt on rt+1: quarterly US data (1947Q2-2015Q4)

Predictor ct − yt

Pers. cons. exp. for ct Pers. outlays for ct

ct, yt raw ct, yt cleaned ct, yt raw ct, yt cleaned

Excess equity returns for rt+1

β 0.13 0.15 0.07 0.06

[-0.21,0.48] [-0.21,0.52] [-0.21,0.35] [-0.23,0.37]

prob(β > 0) 0.75 0.77 0.66 0.64

Excess bond returns for rt+1

β 0.07 0.08 0.10 0.11

[-0.12,0.26] [-0.12,0.30] [-0.06,0.26] [-0.06,0.28]

prob(β > 0) 0.74 0.76 0.85 0.87

Raw equity returns for rt+1

β 0.09 0.11 0.06 0.05

[-0.25,0.43] [-0.25,0.47] [-0.23,0.34] [-0.25,0.35]

prob(β > 0) 0.68 0.70 0.64 0.61

Raw bond returns for rt+1

β 0.04 0.05 0.09 0.10

[-0.16,0.24] [-0.17,0.26] [-0.07,0.26] [-0.07,0.28]

prob(β > 0) 0.64 0.65 0.83 0.84

Notes: The estimated system consists of equation (12) and an AR(4) process for the equation for the log consumption-income ratio. The

effective sample period is 1948Q2− 2015Q4 due to the use of four lags in estimation. Estimation details can be found in Appendix D with

l = 0, 1, 2, 3, 4 replacing l = 0, 1, 2. From the posterior distribution of the parameter β in equation (12), we report the posterior mean, the

90% highest posterior density interval (between square brackets) and the posterior probability that β > 0. For the cleaned series for ct

and yt, measurement error has been taken out.

Appendix D Estimation details VAR

This appendix presents the details of the estimation of the VAR presented in Section 4. Details are given

on the state space system, on how we test for time variation, and on the use of parameter priors. Further,

the details of the Gibbs sampler are provided, followed by a convergence analysis. Finally, we present

some estimation results not reported in the main text, i.e., the estimated time-varying volatilities of the

return innovations.

D.1 State space system

The observation equations (10)-(11) are complemented by state equations for the time-varying parameters

αt+1, βt+1, γt+1, δt+1 and πl,t+1 with l = {0, 1, 2} and log volatilities hk,t+1 with k = {ε, η}. All are

assumed to follow random walks. We follow Frühwirth-Schnatter and Wagner (2010) and write these
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random walks in non-centered form as,

αt+1 = α+ ιασαα
∗
t+1 (D-1)

βt+1 = β + ιβσββ
∗
t+1 (D-2)

γt+1 = γ + ιγσγγ
∗
t+1 (D-3)

δt+1 = δ + ιδσδδ
∗
t+1 (D-4)

πl,t+1 = πl + ιπlσπlπ
∗
l,t+1 l = {0, 1, 2} (D-5)

hk,t+1 = hk + ιhkσhkh
∗
k,t+1 k = {ε, η} (D-6)

with standardized random walks given by,

α∗t+1 = α∗t +$α
t+1 α∗0 = 0 $α

t+1 ∼ iidN (0, 1)

β∗t+1 = β∗t +$β
t+1 β∗0 = 0 $β

t+1 ∼ iidN (0, 1)

γ∗t+1 = γ∗t +$γ
t+1 γ∗0 = 0 $γ

t+1 ∼ iidN (0, 1)

δ∗t+1 = δ∗t +$δ
t+1 δ∗0 = 0 $δ

t+1 ∼ iidN (0, 1)

π∗l,t+1 = π∗l,t +$π
l,t+1 π∗l,0 = 0 $π

l,t+1 ∼ iidN (0, 1) l = {0, 1, 2}

h∗k,t+1 = h∗k,t +$h
k,t+1 h∗k,0 = 0 $h

k,t+1 ∼ iidN (0, 1) k = {ε, η}

where α, β, γ, δ, πl and hk are constants which correspond to the initial values of the random walks

when the random walks are time-varying, where σα, σβ , σγ , σδ, σπl and σhk are the square roots of the

innovation variances of the random walks and where ια, ιβ , ιγ , ιδ, ιπl and ιhk are binary indicators that

are equal to either zero or one.

After applying a triangular reduction to the variance covariance matrix of the innovations of the VAR

given by equations (17)-(19) in Section 6.2.1, similar state equations are assumed for the time-varying

parameters and log volatilities of that model (which we leave out here due to space considerations).

D.2 Testing for time variation

The non-centered random walks put forward in the previous section facilitate the estimation of and testing

for time variation in parameters and log volatilities. First, these specifications improve on the estimation

of the posterior distributions of the variances σ2 of the random walk innovations. As the specifications

are in terms of the square roots of the innovation variances σ, rather than the variances σ2, the standard

inverse gamma (IG) prior normally used for σ2 can be replaced by Gaussian prior for σ centered at

zero.12 This is advantageous because the choice of the scale and shape parameters that define the IG
12The square roots of the innovation variances σ enter the model as regression coefficients. The centering of the Gaussian

prior distributions of these coefficients at zero makes sense as, for both σ2 = 0 and σ2 > 0, σ is symmetric around zero.
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prior distribution has a strong impact on the posterior distribution when the true value of the variance

is close to zero. In particular, as the IG distribution does not have probability mass at zero, using it

as a prior distribution tends to push the posterior away from zero. This is of particular importance

when estimating the variances σ2 of the random walk innovations as these variances determine whether

or not there is time variation in the parameters and log volatilities of the model. Frühwirth-Schnatter

and Wagner (2010) show that the posterior density of σ is much less sensitive to the parameters of the

Gaussian distribution and is not pushed away from zero when σ2 = 0. Second, in equations (D-1)-(D-6),

the signs of the square roots of the variance σ and of the corresponding standardized random walk can

be changed without changing their products. This non-identification provides further useful information

on whether σ2 = 0 or σ2 > 0. When σ2 > 0, the posterior distribution of σ is bimodal with modes −σ

and σ. When σ2 = 0, the posterior is unimodal around zero. Third, the non-centered parameterization

is useful for model selection because if the variance σ2 = 0, then σ = 0 and the time-varying part of

the random walk - i.e., the product of the square root of the innovation variance and the corresponding

standardized random walk - drops from the corresponding equation in (D-1)-(D-6). Hence, in the non-

centered parameterization, the presence or absence of the time-varying component in the random walk

can be expressed as a variable selection problem through the use of the binary selection indicator ι. If

ι = 0, the time-varying component of the corresponding parameter or log volatility is excluded from the

model and the constant represents the constant level of the parameter or log volatility. In this case, the

parameter σ is set to zero. If ι = 1, the time-varying component of the corresponding parameter or log

volatility is included in the model and the constant represents the initial (= period zero) value. In this

case, the parameter σ is estimated from the data. The binary indicators ι are sampled jointly with the

other parameters. From their posterior distributions, we can calculate the posterior probabilities that

the parameters and log volatilities are time-varying.

D.3 Parameter priors

Statistics for the prior distributions of the parameters of the VAR of equations (10)-(11) are presented in

Table D-1. For the binary selection indicators, we use a Bernoulli distribution with prior probability equal

to p0 = 0.5.13 For the other parameters, we use mean-zero Gaussian prior distributions with variances

chosen so that the support contains a sufficiently large range of relevant parameter values. In particular,

the initial/constant values of the random walk processes in equations (D-1)-(D-6) have prior variances

equal to one with the exception of the constants of the log volatility processes which have a prior variance

13The results are robust to the use of alternative prior probabilities such as p0 = 0.25 and p0 = 0.75. These results are

unreported but available upon request.
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equal to ten. The square roots of the innovation variances of the random walk processes all have prior

variances equal to one. These prior variances imply rather uninformative priors so that the reported

results are driven mostly by the data and are not sensitive to the chosen priors. We note, finally, that

the same prior values are used for the corresponding parameters of the extended three-equation VAR

discussed in Section 6.2.1.

Table D-1: Prior distributions fixed parameters VAR equations (10)-(11)

Gaussian priors N (m0, V0) Percentiles

mean (m0) variance (V0) 5% 95%

1. {α, β, γ, δ, πl} 0.00 1.00 -1.64 1.64

2. {hk} 0.00 10.00 -5.20 5.20

3. {σα, σβ , σγ , σδ, σπl , σhk} 0.00 1.00 -1.64 1.64

Bernoulli priors B(p0)

mean (p0) variance (p0(1− p0))

{ια, ιβ , ιγ , ιδ, ιπl , ιhk} 0.50 0.25

Notes: The constants of the random walks, i.e., α, β, γ, δ, πl and hk, and the square roots of the innovation

variances of the random walks, i.e., σα, σβ , σγ , σδ, σπl and σhk have Gaussian priors. The binary indicators ια,

ιβ , ιγ , ιδ, ιπl and ιhk have Bernoulli priors. We note that l = {0, 1, 2} and k = {ε, η}.

D.4 Gibbs sampler

D.4.1 Note

The equations that constitute the VAR can be estimated one equation at the time. The ordering of vari-

ables implied by the decomposition of the variance covariance matrix of the VAR innovations determines

the ordering in which sampling occurs. For equations (10)-(11), first, the equation for c− y is estimated

and then, conditional on this, the equation for r. After applying a triangular reduction to the variance

covariance matrix of the innovations of the VAR given by equations (17)-(19) in Section 6.2.1, first, the

equation for bc is estimated, then the equation for c− y and, finally, the equation for r.

D.4.2 Model

Each separate equation from the VAR systems considered in the paper can be written as,

xt+1 = zt+1ψt+1 + eht+1τt+1 τt+1 ∼ iidN (0, 1) (D-7)

where zt+1 is a 1 ×N vector of regressors - which includes the value of one for the intercept and which

can include one or more innovations from other equations - with ψt+1 the corresponding N × 1 vector of

time-varying coefficients and where ht+1 is log volatility. The time-varying parameters and log volatility
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follow random walks. Written in non-centered form, these are given by,

ψn,t+1 = ψn + ιnσnψ
∗
n,t+1 (D-8)

for n = 1, ..., N and,

ht+1 = h+ ιhσhh
∗
t+1 (D-9)

with standardized random walks given by,

ψ∗n,t+1 = ψ∗n,t +$ψ
n,t+1 ψ∗n,0 = 0 $ψ

n,t+1 ∼ iidN (0, 1) (D-10)

h∗t+1 = h∗t +$h
t+1 h∗0 = 0 $h

t+1 ∼ iidN (0, 1) (D-11)

where ψn (for n = 1, ..., N) and h are constants which correspond to the initial values of the random

walks when the random walks are time-varying, where σn (for n = 1, ..., N) and σh are the square roots of

the innovation variances of the random walks and where ιn (for n = 1, ..., N) and ιh are binary indicators

that are equal to either zero or one.

D.4.3 Offset mixture representation for the stochastic volatility component

The stochastic component eht+1τt+1 in equation (D-7) is nonlinear but can be transformed into a linear

component by taking the logarithm of its square, i.e., ln(eht+1τt+1)2 = 2ht+1 + ln τ2t+1 where ln τ2t+1 is

log-chi-square distributed with expected value −1.27 and variance 4.93. Following Kim et al. (1998), we

approximate this model by an offset mixture time series model as,

gt+1 = 2ht+1 + τ∗t+1 (D-12)

where gt+1 ≡ ln
(
(eht+1τt+1)2 + c

)
with c = 0.001 an offset constant and the distribution of τ∗t+1 a mixture

of J normal distributions given by,

J∑
j=1

qjfN (τ∗t+1|mj − 1.27, vj) (D-13)

with component probabilities qj , means mj − 1.27 and variances vj . Equivalently, this mixture density

can be written in terms of the mixture indicator variable `t+1 as,

τ∗t+1|(`t+1 = j) ∼ N
(
mj − 1.27, vj

)
(D-14)

with prob(`t+1 = j) = qj . We set J = 10 to make the approximation of the mixture distribution to

the log-chi-square distribution sufficiently good. We refer to Omori et al. (2007) who provide values for

{qj ,mj , vj}.
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D.4.4 Sampling algorithm

We use the Gibbs sampler to simulate draws from the joint posterior distribution the fixed parameters

(i.e., binary indicators, constants, square roots of variances) and unobserved states (i.e., time-varying

parameters and log volatilities). Conditional on the data, on the innovations of previous equations in the

VAR, on the prior distributions of fixed parameters and on initial draws of the unobserved time-varying

states taken from their prior distributions14, the following steps are implemented where each step is

conditional on the previous one:

1. Sample the binary indicators ιn (for n = 1, ..., N).

2. Sample the parameters ψn and σn (for n = 1, ..., N).

3. Sample the unobserved states ψ∗n,t+1 (for n = 1, ..., N).

4. Sample the mixture indicators `t+1 as introduced in Section D.4.3.15

5. Sample the binary indicator ιh.

6. Sample the parameters h and σh.

7. Sample the unobserved state h∗t+1.

These steps are iterated 12.000 times and in each iteration values for fixed parameters and states are

sampled. Of these draws, we discard the first 2.000 draws as a burn-in sequence. As such, we have 10.000

retained draws. We find that the Markov chain is sufficiently converged using this number of draws so

that the retained sequence of draws for fixed parameters and states can be considered a sample from the

posterior distribution. Convergence statistics are reported below in Section D.5 for the restricted VAR

of equations (12)-(13) presented in Section 5.2. For the other VAR’s estimated in the paper, convergence

statistics are not reported but they are available upon request.

D.4.5 Framework for sampling the fixed parameters

The fixed parameters can be sampled from a regression model with heteroskedastic Gaussian errors with

known variances,

u = wrbr + ε ε ∼ N (0,Γ) (D-15)

14These draws can be obtained for ψ∗n,t+1 and h∗t+1 from equation (D-10), respectively equation (D-11).
15The ordering is in line with Del Negro and Primiceri (2015) who note that the mixture indicators ` should be drawn

after the quantities that do not condition on ` directly but before the quantities that condition on `.
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where u is a T × 1 vector containing T observations on the dependent variable, wr is a T ×M matrix

containing T observations of M regressors, br is a M×1 parameter vector, ε is a T×1 vector of error terms

with T × T variance covariance matrix Γ. The binary indicators ι impose restrictions on the regressors.

If all binary indicators in the regression are equal to one, then wr = w and br = b where w and b are

the unrestricted regressor matrix and the corresponding unrestricted coefficient vector. Otherwise, the

restricted parameter vector br and the corresponding restricted regressor matrix wr exclude those elements

of w and b for which the corresponding binary indicators ι are equal to zero. The prior distribution of br

is given by br ∼ N (ar0, A
r
0) with ar0 a M × 1 vector and Ar0 a M ×M matrix. The posterior distribution

of br is then given by br ∼ N (ar, Ar) with,

Ar =
[
(wr)′Γ−1wr + (Ar0)−1

]−1
, (D-16)

ar = Ar
[
(wr)′Γ−1u+ (Ar0)−1ar0

]
, (D-17)

When sampling the binary indicators ι, as in Frühwirth-Schnatter and Wagner (2010), we marginalize

over the parameters in b that are subject to model selection. Next, we draw br conditional on ι. The

posterior distribution of the binary indicators ι is obtained from Bayes’ theorem as,

p(ι|u,w) ∝ p(u|ι, w)p(ι) (D-18)

where p(ι) is the prior distribution of ι and p(u|w, ι) is the marginal likelihood of regression (D-15). We

refer to equation (45) in Frühwirth-Schnatter and Wagner (2010) for the closed form expression of the

marginal likelihood for the regression model (D-15).

D.4.6 Framework for sampling the time-varying unobserved states

The time-varying parameters and log volatilities can be sampled using a state space framework. The

general form of the state space model is given by,

Yt+1 = Zt+1St+1 + Vt+1, Vt+1 ∼ N (0, Ht+1) (D-19)

St+1 = Tt+1St +Kt+1Et+1, Et+1 ∼ N (0, Qt+1) (D-20)

S0 ∼ N (s0, P0) (D-21)

where Yt+1 is a No× 1 vector of observations and St+1 an unobserved Ns× 1 state vector. The matrices

Zt+1, Tt+1, Kt+1, Ht+1, Qt+1 and the mean s0 and variance P0 of the initial state vector S0 are assumed

to be known (conditioned upon) and the error terms Vt+1 and Et+1 are assumed to be serially uncorrelated

and independent of each other at all points in time. Note that Et+1 is a Nss×1 matrix (where Nss ≤ Ns).

As equations (D-19)-(D-21) constitute a linear Gaussian state space model, the unknown state variables
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in St can be filtered using the standard Kalman filter. Sampling S = [S1, . . . , ST ] from its conditional

distribution is then implemented using the multimove Gibbs sampler of Carter and Kohn (1994) which

is discussed extensively in Kim and Nelson (1999).

D.4.7 Sampling details

Sampling ιn, ψn and σn (for n = 1, ..., N)

Conditional on ht+1 and ψ∗n,t+1 (for n = 1, ..., N), equation (D-7) combined with equation (D-8) can be

written in the general notation of equation (D-15) setting ut+1 = xt+1, b =
[
ψ1 ... ψN σ1 ... σN

]′
,

wt+1 =
[
z1,t+1 ... zN,t+1 ψ∗1,t+1z1,t+1 ... ψ∗N,t+1zN,t+1

]
, εt+1 = eht+1τt+1 and where we have

Γ = diag
(
e2h1 , ..., e2hT

)
. If one or more binary indicators (ι1, ..., ιN ) take on the value of zero, this

implies the restricted wrt+1 and br.

First, the binary indicators ι are sampled from their posterior distribution in equation (D-18). In

particular, we follow George and McCulloch (1993) and use a single-move sampler where the N binary

indicators ιn are sampled one-by-one. We calculate the marginal likelihoods p(u|ιn = 1, w, ι−n) and

p(u|ιn = 0, w, ι−n) (see Frühwirth-Schnatter and Wagner, 2010, for the expression). Upon combining the

marginal likelihoods with the Bernoulli prior distributions of the binary indicators p(ιn = 1) = p0 = 0.5

and p(ιn = 0) = 1−p0, the posterior distributions p(ιn = 1|u,w, ι−n) and p(ιn = 0|u,w, ι−n) are obtained

from which the probability prob(ιn = 1|u,w, ι−n) = p(ιn=1|u,w,ι−n)
p(ιn=1|u,w,ι−n)+p(ιn=0|u,w,ι−n) is calculated which is

used to sample ιn, i.e., draw a random number r from a uniform distribution with support between zero

and one and set ιn = 1 if r < prob(.) and ιn = 0 if r > prob(.).

Second, conditional on ι, the parameters ψ and σ can be sampled. If all binary indicators in the

regression are equal to one, then wr = w and br = b. If some binary indicators are equal to zero, the

unrestricted w and b are restricted to obtain wr and br by excluding those coefficients σn for which the

corresponding binary indicators ιn are zero. These σn are not sampled but set to zero. We sample br from

the distribution N (ar, Ar) with ar and Ar given by equations (D-16)-(D-17). The means and variances

of the prior distributions are ar0 and Ar0. For the estimation of the VAR’s of equations (10)-(11) and

equations (12)-(13), the numbers used are reported in Table D-1.

Sampling ψ∗n,t+1 (for n = 1, ..., N)

Conditional on ht+1, ψn and σn (for n = 1, ..., N), equation (D-7) combined with equation (D-8) can

be written as the observation equation xt+1 −
∑N
n=1 ψnzn,t+1 = σ1z1,t+1ψ

∗
1,t+1 + ...+ σNzN,t+1ψ

∗
N,t+1 +

eht+1τt+1 of a state space system with state equations given by equation (D-10) (for n = 1, ..., N).

Using the state space framework of equations (D-19)-(D-21), we then have the matrices Yt+1 = xt+1 −
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∑N
n=1 ψnzn,t+1, Zt+1 =

[
σ1z1,t+1 ... σNzN,t+1

]
, St+1 =

[
ψ∗1,t+1 ... ψ∗N,t+1

]′
, Vt+1 = eht+1τt+1,

Ht+1 = e2ht+1 , Tt+1 = IN , Kt+1 = IN , Et+1 =
[
$ψ

1,t+1 ... $ψ
N,t+1

]′
, Qt+1 = IN , s0 =

[
0 ... 0

]′
and P0 = 10−5IN .

For binary indicators ιn equal to zero, the corresponding values of σn are zero and the corresponding

terms σnzn,t+1ψ
∗
n,t+1 drop out of the observation equation. The states ψ∗n,t+1 for which ιn = 0 are then

excluded from the state vector St+1. They are sampled from their prior distribution using equation (D-

10). Using ψn, σn and ψ∗n,t+1 (for n = 1, ..., N), the centered random walks ψn,t+1 can be reconstructed

using equation (D-8).

Sampling `t+1

Conditional on gt+1 and ht+1, the mixture indicator series `t+1 is sampled from its conditional probability

mass function which is given by prob(`t+1 = j|gt+1, ht+1) ∝ qjfN (gt+1|2ht+1 + mj − 1.27, vj) (see Kim

et al., 1998). From the indicator series `t+1, we then obtain the mean series mt+1 and the variance series

vt+1 as for every j there is a corresponding value of mj and vj .

Sampling ιh, h and σh

Conditional on gt+1, h∗t+1 and `t+1, equation (D-12) combined with equation (D-9) can be written in

the general notation of equation (D-15) setting ut+1 = gt+1 − (mt+1 − 1.27), wt+1 =
[

2 2h∗t+1

]
,

b =
[
h σh

]′
, εt+1 = τ∗t+1 − (mt+1 − 1.27). Given the mixture distribution of τ∗t+1 defined in equation

(D-14), the centered error term τ∗t+1 − (mt+1 − 1.27) has a heteroskedastic variance vt+1 such that

Γ = diag (v1, ..., vT ). If the binary indicator ιh takes on the value of zero, this implies the restricted wrt+1

and br.

First, the binary indicator ιh is sampled from its posterior distribution in equation (D-18). We calcu-

late the marginal likelihood p(u|ιh = 1, w) and p(u|ιh = 0, w) (see Frühwirth-Schnatter and Wagner, 2010,

for the expression). Upon combining the marginal likelihoods with the Bernoulli prior distributions of the

binary indicators p(ιh = 1) = p0 = 0.5 and p(ιh = 0) = 1− p0, the posterior distributions p(ιh = 1|u,w)

and p(ιh = 0|u,w) are obtained from which the probability prob(ιh = 1|u,w) = p(ιh=1|u,w)
p(ιh=1|u,w)+p(ιh=0|u,w) is

calculated which is used to sample ιh, i.e., draw a random number r from a uniform distribution with

support between zero and one and set ιh = 1 if r < prob(.) and ιh = 0 if r > prob(.).

Second, conditional on ιh, the parameters h and σh can be sampled. If ιh is equal to one, then wr = w

and br = b. If ιh is equal to zero, the unrestricted b is restricted to obtain br by excluding σh. In this

case, σh is not sampled but set to zero. We sample br from the distribution N (ar, Ar) with ar and Ar

given by equations (D-16)-(D-17). The means and variances of the prior distributions are ar0 and Ar0.
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For the estimation of the VAR’s of equations (10)-(11) and equations (12)-(13), the numbers used are

reported in Table D-1.

Sampling h∗t+1

Conditional on h, σh and on the mixture indicator series `t+1 from which we have the time-varying means

mt+1 − 1.27 and variances vt+1 of the error term τ∗t+1, equation (D-12) combined with equation (D-9)

can be written as the observation equation gt+1 − (mt+1 − 1.27)− 2h = 2σhh
∗
t+1 + τ∗t+1 − (mt+1 − 1.27)

of a state space system with state equation given by equation (D-11). Using the state space framework

of equations (D-19)-(D-21), we then have the matrices Yt+1 = gt+1 − (mt+1 − 1.27) − 2h, Zt+1 = 2σh,

St+1 = h∗t+1, Vt+1 = τ∗t+1 − (mt+1 − 1.27), Ht+1 = vt+1, Tt+1 = 1, Kt+1 = 1, Et+1 = $h
t+1, Qt+1 = 1,

s0 = 0 and P0 = 10−5.

If the binary indicator ιh equals zero, the corresponding value of σh equals zero and the state h∗t+1 is

sampled from its prior distribution using equation (D-11). Using h, σh and h∗t+1, the centered random

walk ht+1 can be reconstructed using equation (D-9).

D.5 Convergence analysis Gibbs sampler

We analyse the convergence of the Gibbs sampler for the estimation of the restricted VAR of equations

(12)-(13) as presented in Section 5.2. To this end, we use the simulation inefficiency factors as proposed

by Kim et al. (1998) and the convergence diagnostic of Geweke (1992) for equality of means across

subsamples of draws from the Markov chain (see Groen et al., 2013, for a similar convergence analysis).

For the other VAR’s estimated in the paper, convergence statistics are not reported but they are available

upon request.

For each fixed parameter and for every point-in-time estimate of a state, we calculate the inefficiency

factor as IF = 1 + 2
∑m
l=1 κ(l,m)θ̂(l) where θ̂(l) is the estimated l-th order autocorrelation of the chain

of retained draws and κ(l,m) is the kernel used to weigh the autocorrelations. We use a Bartlett kernel

κ(l,m) = 1− l
m+1 with bandwidth m set equal to 4% of the 10.000 retained sampler draws. If we assume

that n draws are sufficient to cover the posterior distribution in the ideal case where draws from the

Markov chain are fully independent, then n×IF provides an indication of the minimum number of draws

that are necessary to cover the posterior distribution when the draws are not independent. Usually, n

is set to 100. Then, for example, an inefficiency factor equal to 20 suggests that we need at least 2.000

draws from the sampler for a reasonably accurate analysis of the parameter of interest. Additionally, we

compute the p-values of the Geweke (1992) test for the null hypothesis of equality of the means of the

first 20% and last 40% of the retained draws obtained from the sampler for each fixed parameter and for
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every point-in-time estimate of the states. We compute Newey and West (1987) robust variances using a

Bartlett kernel with bandwidth equal to 4% of the respective sample sizes.

Table D-2 presents the convergence analysis corresponding to the results reported in Tables 3 and

4 in the text. To economize on space, we group the results across parameters and periods. We report

the median and - if applicable - the minima and maxima of the distributions of the inefficiency factors.

We also report rejection rates of the Geweke (1992) test conducted both at the 5% and 10% levels of

significance. These rates are equal to the number of rejections of the null hypothesis of the test per

parameter group divided by the number of parameters in a parameter group. These rates can only be

zero or one for individual (non-grouped) parameters but can lie between zero and one for the grouped

parameters.

The calculated inefficiency factors show convergence of the chain of 10.000 draws for all parameters.

The highest maximum value of an inefficiency factor equals 86. Hence, our sampler would provide a

reasonably accurate analysis even with only 8.600 draws. The results for the Geweke (1992) test for

equality of means across subsamples of the draws are also good. The rejection rates are generally low

and often close to or equal to zero, suggesting that the means of the first 20% and last 40% of the draws

are equal. In a number of instances, somewhat higher rejection rates are reported. This is particularly

the case for the log volatility hε,t. We note, however, that the rejection rates in this case are the result

of applying the Geweke (1992) test on each of 142 or 143 point-in-time estimates of that state. Upon

rerunning the sampler using other seeds, we find that it is not always for the same hε’s - i.e., for the

same periods - that equality of means across subsamples of draws is rejected. Hence, we conclude that

the convergence of the sampler for the retained number of draws is generally satisfactory.
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Table D-2: Convergence analysis of the Gibbs sampler (corresponding to the results of Tables 3 and 4)

Inefficiency factors Geweke (1992) test

(Stats distribution) (Rejection rates)

Country Dependent variable Parameter/state Number Median Min Max 5% 10%

France Excess equity returns {α, β, γ, δ} 4 1.71 1.04 2.33 0.00 0.00

hε,t 143 3.27 1.52 67.25 0.26 0.34

Excess bond returns {α, β, γ, δ} 4 1.41 1.03 1.82 0.00 0.00

hε,t 143 3.29 1.57 42.49 0.15 0.23

Log consumption-income ratio {π0, π1, π2} 3 0.95 0.92 1.06 0.00 0.33

hη 1 3.71 - - 0.00 0.00

Germany Excess equity returns {α, β, γ, δ} 4 1.84 1.19 2.07 0.00 0.25

hε,t 143 2.96 1.58 86.19 0.24 0.33

Excess bond returns {α, β, γ, δ} 4 1.27 1.24 1.37 0.00 0.00

hε,t 143 2.86 1.52 41.62 0.13 0.25

Log consumption-income ratio {π0, π1, π2} 3 0.94 0.92 1.05 0.00 0.33

hη 1 3.34 - - 0.00 0.00

UK Excess equity returns {α, β, γ, δ} 4 1.57 1.19 2.04 0.00 0.50

hε,t 143 3.55 1.89 66.10 0.35 0.41

Excess bond returns {α, β, γ, δ} 4 1.36 0.93 1.77 0.00 0.00

hε,t 143 3.32 2.03 41.29 0.22 0.36

Log consumption-income ratio {π0, π1, π2} 3 0.95 0.93 1.05 0.00 0.33

hη 1 3.33 - - 0.00 0.00

US Excess equity returns {α, β, γ, δ} 4 1.28 1.13 1.43 0.00 0.25

hε,t 142 3.27 1.44 15.94 0.01 0.04

Excess bond returns {α, β, γ, δ} 4 1.81 1.18 1.87 0.00 0.25

hε,t 143 3.22 1.95 45.24 0.37 0.43

Log consumption-income ratio {π0, π1, π2} 3 0.94 0.93 1.06 0.00 0.33

hη 1 3.79 - - 0.00 0.00

Notes: The convergence analysis pertains to the estimation of equation (12) for either excess equity returns or for excess government bond returns

and to the estimation of equation (13) for the log consumption-income ratio. This analysis complements the results presented in Tables 3 and 4.

We note that the effective sample period (after lagging) is 1873 − 2015 for all countries and variables so that the effective sample size is T = 143

with the exception of the US when excess equity returns are used for which the effective sample period is 1874−2015 with corresponding effective

sample size T = 142. The statistics of the distribution of the inefficiency factors are presented in columns 5 to 7 for every parameter or group of

parameters. The inefficiency factors are calculated per fixed parameter and per point-in-time estimate of a state - in this case, the only estimated

state is the log volatility hε,t - using a Bartlett kernel with bandwidth equal to 4% of the 10.000 retained draws. The rejection rates of the

Geweke (1992) test conducted at the 5% and 10% levels of significance are reported in columns 8 and 9. These rates are equal to the number

of rejections of the null hypothesis of the test per parameter group divided by the number of parameters in a parameter group. These rates are

either 1 or 0 for parameters that are considered individually. They are based on the p-value of the Geweke test of the hypothesis of equal means

across the first 20% and last 40% of the 10.000 retained draws which is calculated for every fixed parameter and for every point-in-time estimate

of a state. The variances of the means in the Geweke (1992) test are calculated with the Newey and West (1987) robust variance estimator using

a Bartlett kernel with bandwidth equal to 4% of the respective sample sizes.

D.6 The estimated time-varying log volatilities of the return innovations

This section reports the time-varying log volatility hε,t+1 estimated from the VAR for both excess equity

returns and excess government bond returns in, respectively, Figures D-1 and D-2. These estimates

correspond to the estimation results reported in Tables 3 and 4 in the main text.
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Figure D-1: The log volatility hε,t+1 for the excess equity return innovations
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Figure D-2: The log volatility hε,t+1 for the excess government bond return innovations
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