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Abstract

This paper investigates stock market integration using a panel of monthly stock market returns

for 19 European countries over the period 1970-2015. We focus on the potentially time-varying nature

of integration and on the role played by EU and euro area membership. To this end, we set up a

dynamic factor model that decomposes equity risk premiums into a country-specific and a common

European risk factor, with time-varying factor loadings and stochastic volatilities. We estimate our

model using Bayesian Markov Chain Monte Carlo (MCMC) methods. We suggest a time-varying

measure for the degree of integration that is corrected for the bias induced by temporary volatility

shocks to the risk factors. The results suggest - in line with the existing literature - that integration

has increased in most European countries from the late 1980s/early 1990s onward but also - more

controversially - that neither EU nor euro area membership has increased stock market integration.
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1 Introduction

The environment in which European financial markets operate has changed drastically in recent decades.

From the mid 1980s onward, most European economies have implemented important financial reforms

such as credit and capital control relaxations, interest rate liberalization, and banking and securities

markets reforms (see e.g., Abiad et al., 2008). These reforms have been implemented to such an extent that

most European countries were almost fully liberalized by the end of the 1990s. During the same period,

the European economic and monetary unification process has complemented and reinforced these reforms

with measures like the Single European Act (1986), the Maastricht Treaty (1992) and the introduction

of the euro (1999). It is therefore not surprising that a considerable amount of research has been devoted

to investigate the implications of these changes for the development and - in particular - the integration

of financial markets in Europe.

A large part of the research on European financial market integration has focused on stock market

integration. There seems to be a consensus in the literature that stock market integration has increased in

European countries in recent decades (see e.g., Pukthuanthong and Roll, 2009; Eiling and Gerard, 2011;

Bekaert et al., 2009). There is less agreement however on whether this increase was mainly part of a global

integration process or whether it was to a large extent regionally driven, stemming in particular from the

European economic and monetary unification process. A number of studies have investigated the impact

of the start of EMU (European Monetary Union) and the introduction of the euro on European financial

market integration, see e.g., Fratzscher (2002), Baele et al. (2004), Hardouvelis et al. (2006) and Cappiello

et al. (2006). These studies document an increase in stock market integration of countries joining the

euro while other studies like Berben and Jos Jansen (2005) argue that stock market integration evolved

largely independent of monetary unification. Bekaert et al. (2013) assess the contribution of both the EU

(European Union) and the euro on equity market integration and find that EU membership increased

integration while the adoption of the euro had only minimal effects on European stock market integration.

Bekaert et al. (2009) however argue that the global integration of Europe was a more important reason

for measured permanent increases in equity return correlations than regional EU-driven stock market

integration.

This paper revisits these issues using a new methodological approach. In particular, we investigate

European stock market integration for 19 European countries over the period 1970-2015 focussing on the

potentially time-varying nature of integration and on the impact of institutions - i.e., of EU and euro area

membership - on integration. To this end, we set up a dynamic factor model which decomposes equity risk

premiums into a country-specific and a common European risk factor with time-varying factor loadings
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and stochastic volatilities. This type of decomposition can be rationalized by existing asset pricing

theories like the (international) CAPM. Estimates for the distributions of the unobserved factors, factor

loadings, stochastic volatilities and parameters are obtained through Bayesian Markov Chain Monte Carlo

(MCMC) methods. From a time-varying variance decomposition applied to the dynamic factor model,

time-varying stock market integration measures (i.e., variance ratios) are calculated for every country. In

the paper we provide a discussion of the advantages of using variance ratios as measures of stock market

integration. While variance ratios have been used before to estimate financial market integration (see

e.g., Errunza and Losq, 1985; Carrieri et al., 2007; Pukthuanthong and Roll, 2009), the method used in

the paper to estimate them is new.

Our methodology fits into the recent and growing empirical literature on the Bayesian estimation

of dynamic factor models with time-varying coefficients, i.e., time-varying factor persistence parameters,

time-varying factor volatilities, time-varying factor loadings, and time-varying factor covariances (see e.g.,

Canova et al., 2007; Del Negro and Otrok, 2008; Mumtaz and Surico, 2012). To the best of our knowledge,

these Bayesian state space methods have not yet been applied in the context of the measurement of

financial market integration.1 Besides the obvious advantages of these methods such as the possibility of

simultaneously analyzing a large number of countries, it is our contention that these methods provide a

number of useful properties that are of particular interest to the analysis of time-varying financial market

integration.

First, as noted by Kose et al. (2012) in the context of the measurement of common business cycles,

dynamic factor models allow for the estimation of common factors for which country weights are implicitly

derived as part of the estimation process. This is important in the analysis of stock market integration

as the country weights in the common factor are most likely endogenous to the degree of stock market

integration. For example, more segmented European countries should receive smaller weights in the

construction of the European portfolio and the weights received should increase as these countries become

more integrated. The common practice in the literature on stock market integration, however, is to proxy

the common risk factor using portfolio returns that are constructed as (weighted) averages of country-

specific equity returns or, alternatively, using existing equity indices which are themselves also constructed

as (weighted) averages of country-specific indices.2 The country weights used in these cases are often

fixed or even identical across countries. As a result, the use of these constructed returns may lead to

biased financial market integration estimates.

1While state space methods have been used previously to estimate CAPM models, they have not been used to simul-
taneously filter both factors and factor loadings. Typically, CAPM models are estimated as regression equations with
time-varying parameters (i.e., the states) and a proxy for the common factor (see e.g., Tsay, 2005, p. 510)

2It is furthermore worth noting that existing equity indices are not necessarily representative for the countries that are
included in the considered sample. The MSCI Europe index, for example, is based on only 15 out of the 19 European
countries that we analyze in this paper.
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Second, our state space approach is naturally well-suited to measure time-varying stock market inte-

gration through the use of variance ratios. These are constructed from factor loadings and factor volatil-

ities which in a state space framework can be easily modelled as time-varying stochastic processes.3 An

additional advantage of our Bayesian state space approach is that the Gibbs sampler used to estimate

the dynamic factor model provides the empirical distribution of the stock market integration measure in

every period. The obtained distributions are then used in the statistical tests that we conduct to inves-

tigate whether the degree of stock market integration differs across country groups (i.e., EU countries,

euro area countries) and subperiods.

Third, our approach makes it possible to correct our stock market integration measure for a potential

volatility or heteroskedasticity bias. In an influential paper, Forbes and Rigobon (2002) show that cross-

country correlations between stock returns are high when common volatility is high. A similar bias can

occur in our stock market integration measure which is a variance share that depends on the potentially

time-varying volatilities of the common and idiosyncratic factors. More specifically, if uncorrected, our

stock market integration measure may erroneously point to higher (lower) integration if the volatility

of the common factor is temporarily high (low) and/or if the volatility of the country-specific factor is

temporarily low (high). The bias-corrected measure of stock market integration calculated in this paper

avoids this problem since only the trend components of the volatilities are used in its construction.

Our results suggest that stock market integration has structurally increased in most European coun-

tries over the sample period, particularly from the late 1980s and early 1990s onward. Nonetheless,

the evolution was sometimes quite different across countries with some countries experiencing modest

increases and others integrating more rapidly. In most European countries the evolution of stock market

integration has followed the increasing trend in financial liberalization. From 2010 onward - i.e., after the

global financial crisis, the ensuing Great Recession and the euro area debt crisis - the trend increase in

stock market integration seems to have come to an end in all countries. At the end of the sample period,

the degree of stock market integration was well below 100% in all countries (with an average degree of

about 70% across all countries in the sample). This stands in contrast to the high degrees of financial

market liberalization - i.e., between 80% and 100% - attained in all European countries already by the end

of the 1990s. With respect to the impact of institutions, we find no evidence that countries belonging to

the EU or to the euro area have experienced higher levels of stock market integration or have integrated

faster than countries that are not members of these institutions. The core members of the EU (i.e., the

initial member states of the EU) and the so-called core members of the euro area (i.e., dubbed as such by

3By allowing equity excess returns to be characterized by time-varying and persistent variances, our approach also
exploits the typical characteristics of financial market data (see e.g., Tsay, 2005).
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the press in the recent media coverage of the euro area debt crisis) did however experience consistently

higher degrees of stock market integration compared to countries that do not belong to either the EU or

the euro core.

The remainder of the paper is organized as follows. Section 2 lays out the dynamic factor model

together with the estimation approach and shows how this model can be used to set up a bias-corrected

measure of time-varying stock market integration. Section 3 presents the data used. Section 4 reports

and discusses the estimation results. Section 5 concludes.

2 Empirical specification and methodology

In this section, we first lay out a dynamic factor model that is consistent with the international CAPM

and write down its state space representation. Next, we suggest a bias-corrected measure for stock market

integration. Finally, we present our econometric approach to estimate the state space system.

2.1 Dynamic factor model and state space representation

2.1.1 Dynamic factor model and link with asset pricing theory

Define rit as the period t excess return or risk premium for country i in deviation from its country-specific

mean4, then write

rit = µit + βitrpt + eit, i = 1, . . . , N, t = τi, . . . , T, (1)

where µit is the unobserved country-specific risk factor, rpt is the unobserved common European risk

factor which can be interpreted as the excess return or risk premium of a European equity portfolio, βit

is the country-specific time-varying loading on the common European risk factor and eit is measurement

error. As for a number of countries data are missing for the first years of the sample period (see Section

3 below), τi denotes the first available observation for country i.

Eq.(1) is consistent with asset pricing theory, in particular with the international CAPM (see e.g.,

Harvey, 1991; Bekaert and Harvey, 1995). If µit equals 0 (for all i and t) then eq.(1) is the full integration

international CAPM formulation for equity returns with the country-specific excess returns being pro-

portional to the international portfolio excess return. If µit is not equal to 0, then integration of country

i is incomplete as a country-specific risk premium affects equity returns, i.e., the higher the variance of

µit relative to the variance of rit, the more country i is segmented. This characteristic of our dynamic

4The reason for this demeaning is that prior inspection of the mean of the excess return showed no signs of time
variation. This was confirmed by Chow breakpoint tests. As such, it is not necessary to allow for a time-varying mean in
(the components of) rit and prior demeaning is sufficient to remove the time-invariant mean in excess returns.
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factor model constitutes the basis of the stock market integration measure discussed in section 2.2.

2.1.2 State space representation

Eq.(1) constitutes the observation equation from a state space model relating the observed excess return

rit to the unobserved states, i.e., the idiosyncratic risk factor µit, the unobserved factor loading βit, the

unobserved common European risk factor rpt and the additive noise eit, which we assume to be generated

as eit ∼ iidN
(
0, σ2

ei

)
. The state space model can be completed by assuming stochastic laws of motion

for each of the unobserved states. This is done in the state equations (2)-(8) below.

The idiosyncratic risk factor µit is assumed to follow a zero-mean AR(1) process with stochastic

volatility in the innovations

µi,t+1 = θiµit + ehitσψiψit, ψit ∼ iidN (0, 1) , (2)

for i = 1, . . . , N and t = τi, . . . , T . As it is well known that equity excess returns are typically characterized

by both temporary and persistent volatility changes (see e.g., Tsay, 2005), we model stochastic volatility

ehit as the sum of two distinct components, i.e., ehit = ehit+h̃it where hit is a permanent trend component

modeled as a driftless random walk process

hi,t+1 = hit + σγiγit, γit ∼ iidN (0, 1) , (3)

and h̃it is a temporary component modeled as a stationary AR(1) process

h̃i,t+1 = πih̃it + σγ̃i γ̃it, |πi| < 1, γ̃it ∼ iidN (0, 1) . (4)

The innovations ψit, γit and γ̃it are assumed to be mutually independent and iid over time and over cross-

sections. The latter assumption implies that any comovement in the data is attributed to the common

factor.

Likewise, the common factor rpt is assumed to follow a zero-mean AR(1) process with stochastic

volatility in the innovations

rp,t+1 = ρrpt + egtσξξt, ξt ∼ iidN (0, 1) , (5)

for t = 1, . . . , T . The stochastic volatility egt is again modeled as consisting of two distinct components,
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i.e., egt = egt+g̃t where gt is a permanent trend component modeled as a driftless random walk

gt+1 = gt + σλλt, λt ∼ iidN (0, 1) , (6)

and g̃t is a stationary component modeled as a stationary AR(1) process

g̃t+1 = %g̃t + σλ̃λ̃t, |%| < 1, λ̃t ∼ iidN (0, 1) . (7)

The innovations ξt, λt and λ̃t are assumed to be mutually independent and iid over time.

The time variation in the factor loadings βit is modeled as a driftless random walk

βi,t+1 = βit + σωiωit, ωit ∼ iidN (0, 1) , (8)

for i = 1, . . . , N and t = τi, . . . , T . The innovations ωit are assumed to be iid over time and over

cross-sections.

2.2 Measuring stock market integration

There is no generally accepted measure of financial market integration. Although some authors argue

that stock market integration can be measured directly via the factor loadings on the common factor

(i.e., the β’s in our model) (see e.g., Fratzscher, 2002; Baele et al., 2004), we do not believe that these

constitute an adequate measure of stock market integration. A country i can be fully integrated even if

its loading βit is low. And integration of a country can increase even if its loading βit falls, for instance

when its country-specific risk premium falls. In line with the international CAPM, a country is fully

integrated if its excess return is proportional to the international (European) portfolio excess return (i.e.,

if µit = 0), irrespective of the magnitude of the factor of proportionality βit.

A measure of stock market integration frequently used in the literature that focuses on the (relative)

importance of the country-specific risk factor µit in stock excess returns is the variance share, i.e., the

proportion of a country’s excess return that can be explained by the common risk factor (see e.g., Errunza

and Losq, 1985; Carrieri et al., 2007; Pukthuanthong and Roll, 2009). From eq.(1), a time-varying measure

for the degree of stock market integration of country i in period t is therefore given by

FMIit =
Vt(βitrpt)

Vt(rit − eit)
=

Vt(βitrpt)

Vt(µit + βitrpt)
= 1− Vt(µit)

Vt(µit + βitrpt)
, (9)

where 0 ≤ FMIit ≤ 1. If FMIit = 0, there is full segmentation or detachment of country i from

the international financial markets. This is the case if the variance of the country-specific risk factor
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Vt(µit) is relatively high compared to the variance induced by the common risk factor Vt(βitrpt) such

that Vt(βitrpt) � Vt(µit + βitrpt). This may be due to a low loading (βit ≈ 0) of country i on an

important common risk factor (Vt(rpt) � 0) or to the common risk factor being absent from the model

(Vt(rpt) ≈ 0). In the former case, country i is segmented from a relatively more integrated European

market constituting of countries other than country i, while in the latter case all countries are segmented.

If FMIit = 1, there is full international integration of country i. This is the case if the variance of the

country-specific risk factor Vt(µit) is relatively low and, as a result, Vt(βitrpt) ≈ Vt(µit + βitrpt). Note

from eq.(9) that stock market integration as measured by FMIit increases when - ceteris paribus - the

loading on the common factor βit increases, when the volatility of the common factor rpt increases, or

when the volatility of the country-specific factor µit falls. If µit = 0 however, changes in βit have no

further impact on stock market integration as FMIit equals 1 in this case.

Using the state space model in eqs.(1)-(8), the variance ratio based FMI measure proposed in eq.(9)

can be calculated as

FMIit =
β2
it (egt−1)

2
σ2
ξ

/(
1− ρ2

)
(ehi,t−1)

2
σ2
ψi

/(1− θ2
i ) + β2

it (egt−1)
2
σ2
ξ /(1− ρ2)

. (10)

A potentially important limitation of using the variance ratio in eq.(9) or (10) as a measure for

stock market integration is that it can be contaminated by a so-called heteroskedasticity or volatility

bias (see e.g., Pukthuanthong and Roll, 2009). Forbes and Rigobon (2002) argue that during periods of

turmoil, when the volatility of stock markets increases temporarily, standard (unadjusted) estimates of

cross-market correlations will be biased upward.5 A similar bias occurs when stock market integration is

measured using a variance share. The reason is that the variance share calculated in eq.(9) or (10) depends

on the potentially time-varying volatilities of the common and idiosyncratic factors. More specifically,

the variance share in eq.(9) or (10) may erroneously point to higher (lower) integration if the volatility

of the common factor is temporarily high (low) and/or if the volatility of the country-specific factor is

temporarily low (high).

To deal with this issue, we calculate a corrected version of the stock market integration measure

presented above. This corrected measure is based on the disentanglement of the transitory and permanent

components from the volatilities of the common and idiosyncratic risk premiums rpt and µit as presented

5This problem has been acknowledged in (early) studies on stock market integration that calculate correlations between
equity returns. Longin and Solnik (1995) find that, over the period 1960 − 1990, correlations between the stock markets
of 6 major economies and the US increase in periods when the conditional volatility of these markets is high. King et al.
(1994) argue that estimates pointing toward increased integration in the late 1980s are confounding transitory increases in
stock market correlations (i.e., due to the 1987 crash) with permanent ones. Similarly, Brooks and Del Negro (2002) argue
that the increase in comovement across national stock markets measured at the end of the 1990s and early 2000s is due to
large IT shocks rather than to increased stock market integration.
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in section 2.1. More specifically, our bias-corrected measure of stock market integration

FMIcit =
β2
it

(
egt−1

)2
σ2
ξ

/(
1− ρ2

)(
ehi,t−1

)2

σ2
ψi

/(1− θ2
i ) + β2

it

(
egt−1

)2
σ2
ξ /(1− ρ2)

, (11)

is constructed using only the permanent trend components hit and gt of the stochastic volatilities of

the factors µit and rpt. These should not be clouded by temporary volatility swings but reflect more

structural evolutions in the relative importance of country-specific and common risk factors and hence

signal the underlying trend in stock market integration.

2.3 Estimation method

2.3.1 Identification and normalization

As it stands, the model in eqs.(1)-(8) is not identified. We therefore impose a number of normaliza-

tions. First, the relative scale of the loadings and the common factor in the product βitrpt is not

identified as βit can be multiplied by a constant and rpt divided by the same constant without changing

their product. We address this identification issue by normalizing the average of the factor loadings

1
N

∑N
i=1

1
T−τi+1

∑T
t=τi

βit = 1 over both t and i. This has the additional advantage that, unlike nor-

malizations on one of the variances, the sign of the loadings and the common factor is determined.

Second, a similar identification problem arises in the products ehit+h̃itσψiψit and egt+g̃tσξξt, where

the level of hit and gt and the scale of the variances σ2
ψi

and σ2
ξ are not separately identified6, e.g.,

ehit+h̃itσψi = e(a+hit)+h̃it(σψi /ea) . Therefore, we impose the normalizations 1
T−τi+1

∑T
t=τi

ehit = 1

for each i and 1
T

∑T
t=1 e

gt = 1. As such, σ2
ψi

/(
1− θ2

i

)
and σ2

ξ

/(
1− ρ2

)
represent the unconditional

variances of µit and rpt respectively.

2.3.2 Gibbs sampling algorithm

Let ri = {rit}Tt=1 denote rit stacked over the available time period and r = {ri}Ni=1 denote ri stacked over

the available countries. Similar notation is used for the other variables rp, µ, β, h, h̃, g and g̃. Likewise,

we define θ = {θi}Ni=1 and similarly for the other parameter vectors.

In a standard linear Gaussian state space model, the Kalman filter can be used to filter the unobserved

components from the data and construct the likelihood function such that the unknown parameters can

be estimated using maximum likelihood. The introduction of the time-varying factor loadings βit and

the stochastic volatilities hit and gt implies that the state space model becomes non-linear such that

the standard Kalman filter is inapplicable and the exact likelihood function is hard to evaluate. Al-

6The levels of hit and gt are not identified as these are random walk processes. The levels of h̃it and g̃t in contrast are
identified as these are zero-mean AR(1) processes.
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though approximate filters for the unobserved states and maximum likelihood estimates for the unknown

parameters φ = [θ, ρ, π, %, σ2
e , σ

2
γ , σ

2
γ̃ , σ

2
λ
, σ2
λ̃
, σ2
ω, σ

2
ψ, σ

2
ξ ] are available, an exact treatment is feasible us-

ing simulation-based methods. More specifically, we use the Gibbs sampler (see e.g., Kim and Nelson,

1999, for an application of Gibbs-sampling to state space models) which is a Markov Chain Monte Carlo

(MCMC) method to simulate draws from the intractable joint and marginal posterior distributions of

the unknown parameters and the unobserved states using only tractable conditional distributions. Intu-

itively, this amounts to reducing the complex non-linear model into a sequence of blocks for subsets of

parameters/states that are tractable conditional on the other blocks in the sequence.

The posterior density of interest is f
(
rp, µ, β, h, h̃, g, g̃, φ|r

)
. Given an arbitrary set of starting values(

r0
p, µ

0, β0, h
0
, h̃0, g0, g̃0, φ0

)
:

1. sample r1
p from f

(
rp|r, µ0, β0, g0, g̃0, φ0

)
2. sample

(
µ1
i , β

1
i

)
from f

(
µi, βi|r, r1

p, h
0
, h̃0, φ0

)
for i = 1, ..., N

3. (a) sample h
1

i and h̃1
i from f

(
hi, h̃i|µ1

i , φ
0
)

for i = 1, ..., N

(b) sample g1 and g̃1from f
(
g, g̃|r1

p, φ
0
)

4. sample φ1 from f
(
φ|r, r1

p, µ
1, β1, h

1
, h̃1, g1, g̃1

)
Sampling from these blocks can then be iterated J times and, after a sufficiently long burn-in period

B, the sequence of draws (B + 1, ..., J) approximates a sample from the virtual posterior distribution

f
(
rp, µ, β, h, h̃, g, g̃, φ|r

)
. Details on the exact implementation of each of the blocks can be found in

Appendix A. The FMI measures defined in eqs.(9)-(10) are calculated in each sweep of the Gibbs

sampler to obtain their posterior distribution. The same holds for the different cross-country and time

averages of FMIit that are calculated to investigate European stock market integration in Section 4.2.

The results reported below are based on 15000 draws, with the first 10000 used as burn-in draws and

the last 5000 used to construct the posterior distributions of states, hyperparameters, statistics and FMI

measures.

2.3.3 Priors

For the AR parameters we use a Gaussian prior N (b0, V0) defined by setting a prior mean b0 and prior

variance V0. For the variance parameters we use the inverse Gamma prior IG(s0, S0) where the shape

s0 = ν0T and scale S0 = s0σ
2
0 parameters are calculated from the prior belief σ2

0 about the variance

parameter and the prior strength ν0 which is expressed as a fraction of the sample size T 7. Details on

7Since this prior is conjugate, ν0T can be interpreted as the number of ficticious observations used to construct the prior
belief σ2

0 .
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the notation and implementation are provided in Appendix A.4.

Our prior choices are reported in Table 1. For the AR parameters of the factors µit and rpt we note

that under the efficient market hypothesis equity excess returns are unpredictable. Therefore we set the

prior mean to zero for the AR(1) parameters θi (∀i) and ρ. For the AR parameters πi (∀i) and % in the

stationary components of the stochastic volatilities, h̃it and g̃t, we set the prior mean equal to 0.8. Given

the monthly frequency of our dataset, this implies the prior belief that the half-life of transitory shocks

to the variances of the factors is about 3 months or a quarter. We set relatively uninformative priors for

all of these AR parameters.

Table 1: Details on prior choices

Gaussian priors N (b0, V0) Percentiles

AR(1) parameters mean (b0) stdv (
√
V0) 5% 95%

Common factor ρ 0.00 0.25 −0.4113 0.4113

Transitory SV common factor % 0.80 0.50 −0.0225 1.6225

Idiosyncratic factor θ 0.00 0.25 −0.4113 0.4113

Transitory SV idiosyncratic factor π 0.80 0.50 −0.0225 1.6225

Inverse Gamma priors IG(ν0T, ν0Tσ
2
0) Percentiles

Standard deviations belief (σ0) strength (ν0) 5% 95%

Measurement error σe 0.01 0.10 0.0086 0.0120

Shock to factor loadings σω 0.01 0.10 0.0086 0.0120

Shock to common factor σξ 1.00 0.01 0.6728 2.0866

Shock to idiosyncratic factor σψ 3.00 0.01 2.0298 6.1289

Permanent shock to SV common factor σγ 0.01 0.10 0.0086 0.0120

Transitory shock to SV common factor σγ̃ 0.05 0.10 0.0432 0.0595

Permanent shock to SV idiosyncratic factor σλ 0.01 0.10 0.0086 0.0120

Transitory shock to SV idiosyncratic factor σλ̃ 0.05 0.10 0.0432 0.0595

Notes: We set IG priors on the variance parameters σ2 but in the bottom panel of this table we report details on the
implied prior distribution for the standard deviations σ as these are easier to interpret. Likewise, in the top panel of
the table we report the prior standard deviation

√
V0 instead of the prior variance V0.

For the variances, our prior belief for σ2
ei (∀i) embodies the belief that measurement error in eq.(1)

is small and is therefore set to 0.012. Our prior beliefs for the random walk error variances σ2
γi

(∀i),

σ2
λ

and σ2
ωi (∀i) are also set to the relatively low value of 0.012, which embodies the belief that the

permanent components of the stochastic volatilities, hit and gt, and the factor loadings βit are slowly

evolving over time and pick up permanent structural changes in the economy. Given the more volatile

transitory components of the volatilities, h̃it and g̃t, the prior beliefs for the variances σ2
γ̃i

(∀i) and σ2
λ̃

are set to a somewhat higher value, namely 0.052. The prior beliefs for the variances σ2
ψi

(∀i) and σ2
ξ

are set to 9 and 1 respectively.8 The reason for the smaller prior on the variance of the shock to the

common factor σ2
ξ is that we do not want to put too much prior weight on financial market integration.

Robustness checks with smaller values for σ2
ψi

and larger values for σ2
ξ do not show any marked differences

8Note that the unconditional variances of the actual equity excess returns (expressed in percentage terms) over the
sample period 1970:1-2015:12 lie between 30 and 120.
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compared to the results of the baseline simulation, though. We use relatively loose priors by setting the

prior strength equal to either 0.1 or 0.01. Note that we use the least informative priors for the innovations

to the idiosyncratic and common factors as we do not want to be informative on the relative importance

of these two factors.

3 Data

We use monthly data over the period 1970:1-2015:12 on the excess returns for 19 European countries:

Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy,

Netherlands, Norway, Poland, Portugal, Spain, Sweden, Switzerland, and the UK. The maximum number

of observations per country is 552. For some countries we have fewer observations. This makes the panel

unbalanced. Those countries are Finland, for which the sample starts in 1982:1 (408 observations), Greece,

Ireland and Portugal, for which the sample starts in 1988:1 (336 observations), Poland, for which the

sample starts in 1993:1 (276 observations), and Czech Republic and Hungary, for which the sample starts

in 1995:1 (252 observations). To calculate monthly excess returns in % we use continuously compounded

returns in deviation from the risk free rate

Rit =

(
log

(
Sit
Si,t−1

))
· 100−Rft

where Sit is the value of the stock market index in country i at time t and Rft is the risk-free rate in

the US at time t. This calculation of country equity excess returns follows Bekaert et al. (2009). For Sit

we use the country-specific MSCI equity return index expressed in USD9 provided by Morgan Stanley

(and obtained from Datastream). The MSCI index is widely used in the literature. It covers 90-95%

of the investable market capitalization. Note that the MSCI country indices are value weighted and are

calculated with dividend reinvestment. For Rft we use the 3-month US Treasury Bill rate. It is provided

by the US Federal Reserve in annualized % terms (and obtained from Datastream). We convert it to

monthly numbers by dividing it by 12. We then subtract the country-specific means from Rit for each i

to obtain the variable rit used in the estimations.

4 Estimation results

In this section we report the results of estimating the dynamic factor model in state space form as given

by equations (1)-(8). We first present the estimated stochastic factor volatilities and the factor loadings,

9To alleviate exchange rate noise, it is common practice in the literature to work with equity returns expressed into a
common currency (see e.g., Pukthuanthong and Roll, 2009).
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both of which are expected to drive stock market integration. Second, we discuss the estimated measures

of time-varying European stock market integration. The discussion tackles the country-specific FMI

measures as well as cross-country and time averages of the FMI measures.

4.1 Factor volatilities and factor loadings

The estimation of the dynamic factor model in state space form given by equations (1)-(8) provides

estimates for the country-specific factors µit, the common European factor rpt and corresponding factor

loadings βit, the stochastic volatilities hit and gt, and the hyperparameters φ. The components βit, hit

and gt that, from eqs.(9)-(11), are expected to drive stock market integration are presented in Figures

1-3. Figures for the factors µit and rpt as well as figures with histograms of the posterior distributions of

the parameters φ are not reported but are available from the authors upon request.

The graph of the estimated stochastic volatility eḡt+g̃t of the common European risk factor is presented

in Figure 1. A number of familiar episodes of global financial turmoil are clearly visible. The 1973-1975

period was characterized by the end of the Bretton Woods era, the first oil crisis and the ensuing recession

which led to a sharp drop in global stock prices and in excess returns and to a sharp increase in their

volatility. In October 1987 stock markets around the world crashed (“Black Monday”). In the period

1997-2003 several global events occurred that also affected European financial markets, i.e., the crisis in

Asia, Argentina and Russia, the failure of the LTCM hedge fund, and the dot com bubble burst. The

last spike in volatility that can be observed in the figure reflects the financial crisis, the ensuing Great

Recession of 2008-2009 and the euro area debt crisis of 2010-2012. As we note in Section 2.2 however,

the measurement of stock market integration should not depend on such transitory episodes. In Figure 1

we also report the estimated trend component of the volatility of the common European factor, i.e., eḡt .

From the figure it is clear that there is a moderate structural increase in the volatility of the common

factor over the sample period up until 2010, signaling an increase in the importance of the common

European factor. After 2010, this upward trend seems to have been reversed.

The estimated stochastic volatilities eh̄it+h̃it of the country-specific risk factors are presented in Figure

2 for each of the 19 countries in our sample. On these graphs, it is possible to discern certain country-

specific episodes of financial turmoil. Examples are the property price crash and banking crisis in the

UK in the period 1973-1975 and an increase in uncertainty in Germany after the federal election in

West Germany in January 1987. Again, these are temporary changes in volatility that should not be

included in a measure of stock market integration. To adequately measure stock market integration, it

is the structural evolution in the stochastic volatility of the country-specific risk factors that matters.

The estimated trend components in the volatilities of the country-specific risk factors, i.e., eh̄it , are also
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presented in Figure 2. From the figure it is clear that, over the sample period, the volatility of the

country-specific risk factors decreases substantially in almost all European countries. Notable exceptions

are Ireland for which the trend volatility eh̄it of its country-specific risk premium µit has been stable over

the sample period and Greece for which we observe a trend decline in the volatility of µit until the end

of the 2000s, after which the trend in the volatility increases quite substantially again.

Figure 1: Stochastic volatility in the common European risk factor
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In Figure 3 we present the time-varying loadings βit on the common European factor for each of

the 19 countries in our sample. Some countries fluctuate (slightly) more than the European portfolio

return (i.e., those countries with β’s that tend to be higher than 1) while others fluctuate (slightly)

less (i.e., those countries with β’s that tend to be lower than 1).10 From the figure we note that the

country-specific exposures to the common European risk factor have remained relatively stable over the

sample period for most countries.11 The finding of relatively stable factor loadings suggests that if our

stock market integration measures FMIit and FMIcit do reveal structural changes in European stock

market integration, these changes are mainly driven by structural volatility changes of the risk factors

(common and/or country-specific) rather than by structural changes in the exposures to common risk.

This conclusion reemphasizes the inadequacy of using factor loadings in and of themselves as measures

10Note that imposing the average of the β’s (over i and t) to be equal to 1 as an identification restriction (see the
discussion in Section 2.3.1) provides a natural benchmark value (i.e., 1) for the sensitivity of country i’s return to the
European portfolio return (i.e., for the loading βit).

11The exceptions are Austria which shows an increase in βit and the UK and Switzerland which show a decline in βit.
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of stock market integration as we have discussed in Section 2.2.

Figure 2: Stochastic volatility in the country-specific risk factors
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Figure 3: Factor loadings on the common European risk factor
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4.2 Measures of stock market integration

4.2.1 Individual country results and average over all countries

In Table 2 we report country-specific time averages of the estimated measures of stock market integration

over balanced subsamples with starting dates according to data availability (see Section 3 for details

on data availability). In particular, we report FMI
c

i = 1
T−τi+1

∑T
t=τi

FMIcit where τi denotes the first

period for which data is available for country i. Since we are looking at time averages, the integration

measures corrected for volatility bias are very close to the uncorrected integration measures, so we only

report the former ones. We also report the cross-country average of FMI
c

i over all countries, namely

FMI
c

= 1
N

∑N
i=1 FMI

c

i . From the table we note that the average degree of stock market integration

across countries lies between 0.58 and 0.63 depending on the subsample considered. Of course, while

indicative of the average degree of integration of all European countries in recent decades, this number

may hide important differences in the degree of stock market integration across countries. For instance,

the numbers in column 1 in the table - where countries are included for which data are available from

1970:1 onward - show stock market integration time averages that vary between low values of about 0.5

for Austria, Italy and Denmark to high values of about 0.7 for France, Germany and the Netherlands.

These numbers, however, are uninformative about changes in the evolution of stock market integration

over time.

Figure 4 therefore plots the country-specific time-varying indicators of stock market integration FMIit

and FMIcit. The cross-sectional averages of FMIit and FMIcit over all countries in the sample are

presented in Figure 5. Note that this figure contains four vertical bars indicating the moment at which

countries are added to the sample. As explained in Section 3, the panel is unbalanced as data for Finland

are only available from 1982:1 onward (first vertical bar), data for Greece, Ireland and Portugal are only

available from 1988:1 onward (second vertical bar), data for Poland are only available from 1993:1 onward

(third vertical bar), and data for Czech Republic and Hungary are only available from 1995:1 onward

(fourth vertical bar). These bars are added to the figure because, given the relatively small cross-sectional

dimension N of our sample, adding countries to the sample causes - in the period of addition - a small

shift in FMIt and particularly in the smoother FMI
c

t .

From Figures 4 and 5 we observe that there are clear differences between the uncorrected FMIit

measures and the FMIcit measures which are corrected for temporary volatility fluctuations. The higher

volatility of the former indicators may lead to erroneous conclusions about stock market integration.

Consider, for instance, the period of the financial crisis, the Great Recession and the euro area debt crisis.

Based on the graph for FMIt in Figure 5, one could argue that there has been a significant increase
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Table 2: FMI, country averages over balanced subsamples

Start period - 2015

Countries 1970 1982 1988 1993 1995

Austria 0.49 0.54 0.58 0.62 0.64

Belgium 0.62 0.61 0.61 0.62 0.63

Finland 0.43 0.46 0.48 0.49

France 0.69 0.74 0.77 0.81 0.83

Germany 0.66 0.70 0.72 0.75 0.76

Greece 0.45 0.48 0.49

Ireland 0.52 0.53 0.53

Italy 0.50 0.57 0.61 0.65 0.68

Netherlands 0.70 0.71 0.72 0.75 0.76

Portugal 0.56 0.59 0.60

Spain 0.52 0.60 0.64 0.67 0.69

Denmark 0.49 0.54 0.58 0.61 0.62

UK 0.58 0.64 0.67 0.70 0.71

Sweden 0.54 0.61 0.64 0.67 0.68

Czech Republic 0.47

Poland 0.50 0.52

Hungary 0.57

Norway 0.53 0.58 0.61 0.63 0.64

Switzerland 0.62 0.61 0.61 0.61 0.62

Average over countries 0.58 0.61 0.61 0.63 0.63

Notes: We report the mean of the posterior distribution (over the
5000 Gibbs draws) of the time averages of the FMIc measure over
balanced subsamples with starting dates according to data availability
of the individual countries in our sample. In particular, for Finland,
the sample starts in 1982:1, for Greece, Ireland and Portugal, the
sample starts in 1988:1, for Poland, the sample starts in 1993:1, and
for Czech Republic and Hungary, the sample starts in 1995:1.

in average stock market integration in Europe over the period 2008 − 2012. Of course, this measured

increase stems from the drastic rise in the volatility of the European risk factor observed during this

period (see Figure 1) and cannot be interpreted as a structural increase in integration. Rather, as we

argue below, stock market integration in Europe seems to have stagnated and even fallen after 2010. To

draw valid conclusions about time-varying structural stock market integration one should therefore focus

on FMIcit rather than on FMIit which is what we do in the remainder of the paper.

The graphs for the country-specific FMIcit measures reported in Figure 4 show that no country is

fully integrated at any moment in time, i.e., the FMIcit measures are smaller than 1 for all countries in

all periods. Additionally, in almost all countries FMIcit is (often substantially) larger in the last year

of the sample period (2015) compared to the first year of the sample (which is 1970 for most countries)

so that we can conclude that stock market integration has structurally increased in most European

countries under consideration. These results confirm earlier findings for European countries by Bekaert

et al. (2009), Pukthuanthong and Roll (2009), and Eiling and Gerard (2011). For some countries the
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degree of stock market integration was already quite high in 1970 and shows a rather modest increase

afterwards (e.g., Switzerland, Germany). Other countries start from a relatively low degree of integration

after which integration rises rapidly (e.g., Austria, Italy) and sometimes very rapidly (e.g., Poland). Still

other countries start from a low degree of integration and have experienced a rather modest subsequent

increase (e.g., Greece). Hence, the evolution of stock market integration over the sample period was

markedly different across countries. Of particular relevance in the light of the recent economic events is

that for almost all countries the increasing trend in stock market integration seems to have come to an

end after 2010. For many countries the trend now even appears to be falling. After the financial crisis

and the euro debt crisis, European countries have implemented new banking rules and have experienced

higher sovereign risk and political uncertainty which may be responsible for this (potential) trend reversal

in stock market integration. It is interesting to note from Figure 4 that European countries have not

experienced reversals in integration before 2010 (at least not over the available sample period). This

observation stands in sharp contrast to what has been observed for emerging markets where reversals in

integration have been quite frequent (see e.g., Bekaert and Harvey, 1995; Carrieri et al., 2007).

The conclusions drawn for individual countries are confirmed by the graph for the evolution of the

cross-sectional average FMI
c

t presented in Figure 5. Average stock market integration in Europe shows

a steady increase starting in the mid 1980s until 2010 after which the increase halts and the trend starts

to slightly fall.
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Figure 4: Country-specific FMI measures
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Figure 5: Average FMI measure, all countries
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Note: The vertical bars indicate the addition of countries to the sample: (i) Finland in 1982:1, (ii) Greece, Ireland and Portugal in

1988:1, (iii) Poland in 1993:1, (iv) Czech Republic and Hungary in 1995:1.

One of the main explanations given to the process of stock market integration in the literature is finan-

cial liberalization (see e.g., Bekaert et al., 2013, for European countries or Bekaert and Harvey, 1995, for

emerging markets). Successive financial reforms have loosened investment impediments encountered by

foreign investors on European stock markets and these looser investment restrictions may have increased

stock market integration. In Figure 6 we compare our corrected FMI measure FMIcit to the financial

reform indicator constructed by Abiad et al. (2008). This indicator is available for all countries in our

sample on an annual basis over the period 1973-2005 (and normalized to lie between 0 and 1). It includes

reforms on capital controls and reforms of securities markets (among which are stock markets). From the

figure we note that, for many countries, both stock market integration and financial liberalization show

an increasing trend, with the trend in stock market integration lagging the trend in financial reforms (see

also Bekaert et al., 2002, who show for emerging economies that integration tends to lag liberalization).

For example, Switzerland which has not experienced a large increase in financial liberalization - the re-

form indicator equals 0.8 already in the early 1970s - has also experienced a stable and relatively high

degree of stock market integration over the sample period. Poland, on the other hand, has experienced

a steep increase in both financial market liberalization and in stock market integration over a relatively

brief period.
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Figure 6: Financial liberalization and FMI
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Note: The financial reform index is taken from Abiad et al. (2008). The monthly FMIcit measure is annualized by taking averages

over the 12 months of each year.

While in most countries (almost) full financial liberalization has been achieved by the end of the 1990s,

the same is not true for stock market integration. At the end of the sample period average FMI across

Europe equals ‘only’ 0.7 (see Figure 5) with - as noted above - the trend increase seemingly halted and

22



reversed after 2010. Of course, full financial liberalization need not necessarily imply full stock market

integration because, for instance, even with fully liberalized financial markets certain investors may still

favor to invest at home rather than abroad (i.e., the home bias puzzle).

4.2.2 Country groups and subperiods

While the previous section documents an increase in stock market integration over the sample period

in almost all European countries but also shows that the evolution was sometimes quite different across

countries, this section focusses on the possibility that the evolution of integration was different for different

groups of countries. Since one of the goals of the establishment of the EU and the euro area was the

increase of the integration of financial markets of the member states, the country groups that we consider

are, first and foremost, the European Union and the euro area. In particular, we investigate whether stock

market integration is higher for EU and euro area countries compared to other European economies. We

also investigate whether stock market integration is higher for EU core countries - i.e., the initial member

states of the EEC (European Economic Community) and EU (i.e., Belgium, France, Germany, Italy,

Netherlands) - and for the euro core countries (i.e., Austria, Belgium, France, Germany, Netherlands,

Finland).12

Table 3 presents the means and 5th and 95th percentiles of the posterior distributions of the average

FMIc measures over countries belonging to the different country groups reported in the table. The

construction of the country groups is detailed in the notes to the table. It should be noted that the

construction of the country groups takes into account the successive (i.e., staggered) accession dates of

countries to the EU and to the euro area. In the same table we also report the means and 5th and 95th

percentiles of the posterior distributions of the differences in these statistics between country groups, i.e.,

we compare EU to non-EU, euro to EU non-euro,... .

From the table we note that, over the full sample period, EU countries do have a higher degree of stock

market integration compared to non-EU countries. This difference however can be completely attributed

to the higher degree of integration of EU core countries (i.e., the member states belonging to the EU

from the beginning of the sample) versus non-EU countries. This difference is as large as the difference

in integration between EU core countries and EU non-core countries so that the difference in integration

between EU non-core countries and non-EU countries is in fact zero. From the table we also note that,

over the period 1999-2015, euro countries do have a slightly higher degree of stock market integration

compared to non-euro countries. Again, however, this difference can be attributed to the higher degree of

12Unreported cross-sectional dependence tests conducted on the country-specific factor µit after estimation of the dynamic
factor model given by equations (1)-(8) suggest that neither of these country groups (the EU, the euro area, the EU core,
the euro core) commands an additional common risk factor in the stock excess returns of their member countries.
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Table 3: Average FMI for country groups

mean percentiles mean percentiles

Country groups 5% 95% Differences 5% 95%

(c1) all 0.55 0.51 0.58

(c2) EU 0.57 0.53 0.61 (d1) EU - non-EU 0.07 0.05 0.09

(c3) non-EU 0.50 0.46 0.54

(c4) EU core 0.63 0.60 0.67 (d2) EU core - EU non-core 0.13 0.10 0.15

(d3) EU core - non-EU 0.13 0.11 0.16

(c5) EU non-core 0.51 0.47 0.55 (d4) EU non-core - non-EU 0.00 −0.02 0.03

(c6) euro 0.67 0.61 0.71 (d5) euro - EU non-euro 0.01 −0.02 0.04

(d6) euro - all non-euro 0.03 0.01 0.06

(c7) EU non-euro 0.66 0.59 0.71

(c8) all non-euro 0.63 0.57 0.68

(c9) euro core 0.71 0.65 0.75 (d7) euro core - euro non-core 0.09 0.06 0.12

(d8) euro core - EU non-euro 0.05 0.02 0.08

(d9) euro core - all non-euro 0.08 0.05 0.10

(c10) euro non-core 0.62 0.55 0.67 (d10) euro non-core - EU non-euro −0.04 −0.07 −0.01

(d11) euro non-core - all non-euro −0.02 −0.05 0.01

Notes: We report the mean and the 5th and 95th percentiles of the posterior distribution (over the 5000 Gibbs draws) of the
FMIcit measure averaged over countries belonging to the country groups mentioned.

Country group ‘all’ consists of the 19 European countries over the full sample period (depending on data availability at a given
point in time).

Country group ‘EU’ consists of all countries that are members of the EU taking into account staggered accession dates. Hence
Belgium, France, Germany, Italy and the Netherlands belong to the EU group from the beginning of the sample onwards while
the following countries enter the EU group at a later stage: Denmark, Ireland and the UK in 1973:1; Greece in 1982:1; Spain and
Portugal in 1986:1; Austria, Finland and Sweden in 1995; the Czech Republic, Poland and Hungary in 2004:5. Together with
Norway and Switzerland, the 12 countries entering at a later stage belong to the ‘non-EU’ group prior to their EU accession
dates (and depending on data availability at a given point in time). Country group ‘EU core’ consists of Belgium, France,
Germany, Netherlands and Italy (from the beginning of the sample) while ‘EU non-core’ are all other EU countries.

The average FMI measure for the ‘euro’ group is calculated from 1999:1 onwards and consists of the 10 countries (Austria,
Belgium, Finland, France, Germany, Ireland, Italy, the Netherlands, Portugal and Spain) that introduced the euro in 1999:1
with Greece being added to the group from 2001:1 onwards. Country group ‘EU non-euro’ consists of Denmark, Sweden and the
UK from 1999:1 onwards, Greece between 1999:1 and 2000:12, and Czech Republic, Poland and Hungary from 2004:5 onward.
Country group ‘all non-euro’ includes Denmark, Sweden, UK, Czech Republic, Poland, Hungary, Norway and Switzerland
from 1999:1 onwards and Greece between 1999:1 and 2000:12. Similarly, the average FMI measure for the ‘euro core’ group is
calculated from 1999:1 onwards and consists of Austria, Belgium, France, Germany, Netherlands, Finland. The ‘euro non-core’
group consists of Greece, Ireland, Italy, Portugal, Spain.

stock market integration of the euro core countries versus all other countries in the sample. The peripheral

euro area countries do not show higher degrees of stock market integration compared to countries that

have not (yet) adopted the euro. In fact, they seem to be somewhat less integrated than the non-euro

economies.

In Table 4 we focus in more detail on EU accession and its relation to stock market integration by

investigating the evolution in stock market integration over subperiods. Hence, in this table average FMIc

measures are reported both over countries that belong to EU related country groups (i.e., the previously

defined groups EU, non-EU, EU core, and EU non-core) and over subperiods which are delineated by

the accession dates of countries to the EU. We refer to the notes to Table 3 for the countries accessing

at every date and for the composition of the country groups EU, non-EU, EU core, and EU non-core.

Again, the table also reports the differences in the FMIc measures between country groups.

The top part of the table compares stock market integration between the EU and the non-EU countries
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Table 4: Average FMI for EU country groups and subperiods

Subperiods mean percentiles

5% 95%

EU non-EU EU - non-EU

(1) 1970.1-1972.12 0.56 0.39 0.17 0.11 0.23

(2) 1973.1-1981.12 0.51 0.41 0.10 0.05 0.14

(3) 1982.1-1985.12 0.51 0.42 0.09 0.05 0.13

(4) 1986.1-1994.12 0.51 0.46 0.06 0.02 0.09

(5) 1995.1-2004.4 0.59 0.49 0.10 0.06 0.13

(6) 2004.5-2015.12 0.68 0.67 0.01 −0.03 0.05

EU core non-EU EU core - non-EU

(1) 1970.1-1972.12 0.56 0.39 0.17 0.11 0.23

(2) 1973.1-1981.12 0.55 0.41 0.14 0.09 0.18

(3) 1982.1-1985.12 0.55 0.42 0.13 0.08 0.17

(4) 1986.1-1994.12 0.57 0.46 0.11 0.07 0.15

(5) 1995.1-2004.4 0.66 0.49 0.18 0.14 0.21

(6) 2004.5-2015.12 0.78 0.67 0.11 0.07 0.16

EU non-core non-EU EU non-core - non-EU

(1) 1970.1-1972.12 0.39

(2) 1973.1-1981.12 0.40 0.41 −0.01 −0.08 0.05

(3) 1982.1-1985.12 0.43 0.42 0.01 −0.05 0.07

(4) 1986.1-1994.12 0.46 0.46 0.01 −0.03 0.05

(5) 1995.1-2004.4 0.54 0.49 0.05 0.02 0.09

(6) 2004.5-2015.12 0.64 0.67 −0.03 −0.07 0.01

Notes: We report the mean and the 5th and 95th percentiles of the posterior distri-
bution (over the 5000 Gibbs draws) of the FMIcit measure averaged over country
groups and subperiods. The subperiods correspond to the staggered accession dates
of countries to the EU. See the notes to Table 3 for the countries accessing at every
date and for the composition of the country groups EU, non-EU, EU core, and EU
non-core.

over the six reported subperiods. The EU countries were on average clearly more integrated than non-EU

countries during the 1970s, 1980s and 1990s but this difference has gradually vanished. Over the last

subperiod 2004:5-2015:12 the difference in stock market integration between both country groups was

essentially zero. While this result seems to suggest that EU membership leads to earlier and faster stock

market integration, this conclusion would be premature. The middle part of the table compares stock

market integration between EU core countries (i.e., the initial EU member states) and non-EU countries

over the 6 reported subperiods. The EU core countries have experienced consistently higher degrees

of stock market integration compared to the non-EU countries. The same cannot be said for the EU

non-core countries however. The lower part of Table 4 compares stock market integration between EU

non-core countries and non-EU countries over 5 subperiods (i.e., there are no EU non-core countries for

the period 1970:1-1972:12 so that this subperiod drops out in the lower part of the table). Here, we note

that EU non-core countries and non-EU countries show very similar degrees of stock market integration

and a rather similar evolution of integration over the subperiods. These results seem to indicate that,
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in line with our findings for the EU reported in Table 3, stock market integration in Europe was not

EU-driven. All country groups (EU core, EU non-core, non-EU) have experienced a considerable increase

in stock market integration over the sample period and while the degree of integration was clearly higher

for the initial EU members, the countries subsequently accessing the EU have experienced neither earlier

nor faster integration when compared to countries that accessed at a later date or not at all. The speed

at which both EU non-core members and non-EU countries caught up with the EU core countries is very

similar.

Table 5: Average FMI for euro area country groups and subperiods

Subperiods mean percentiles

5% 95%

euro all non-euro euro - all non-euro

(1) 1992.2-1998.12 0.52 0.49 0.03 −0.01 0.06

(2) 1999.1-2010.3 0.65 0.61 0.04 0.02 0.07

(3) 2010.4-2015.12 0.71 0.67 0.03 0.00 0.07

euro core all non-euro euro core - all non-euro

(1) 1992.2-1998.12 0.55 0.47 0.07 0.03 0.12

(2) 1999.1-2010.3 0.69 0.60 0.09 0.06 0.12

(3) 2010.4-2015.12 0.76 0.67 0.09 0.05 0.13

euro non-core all non-euro euro non-core - all non-euro

(1) 1992.2-1998.12 0.49 0.47 0.01 −0.03 0.06

(2) 1999.1-2010.3 0.60 0.60 0.00 −0.03 0.04

(3) 2010.4-2015.12 0.65 0.67 −0.02 −0.07 0.02

Notes: We report the mean and the 5th and 95th percentiles of the posterior distribution
(over the 5000 Gibbs draws) of the FMIcit measure averaged over country groups and sub-
periods. Countries are assigned to the same group across all subperiods (i.e., we do not
use staggered accession dates for this table). The ‘euro’ group consists of the 11 countries
that introduced the euro (Austria, Belgium, Finland, France, Germany, Ireland, Italy, the
Netherlands, Portugal, Spain, Greece), while the ‘all non-euro’ group includes the other 8
countries in the sample (Denmark, Sweden, UK, Czech Republic, Poland, Hungary, Nor-
way and Switzerland). The ‘euro core’ group consists of Austria, Belgium, Finland, France,
Germany and the Netherlands while the ‘euro non-core’ group holds Greece, Ireland, Italy,
Portugal and Spain.

In Table 5 we investigate the role played by the introduction of the euro in the evolution of stock

market integration. Average FMIc measures are reported over countries that belong to euro area related

country groups and over euro related subperiods. The table also reports the differences in the FMIc

measures between country groups. The country groups contain the same countries in every subperiod

(i.e., we do not use staggered accession dates for this table). The ‘euro’ group consists of the 11 countries

in the sample that have adopted the euro while the ‘all non-euro’ group consists of the remaining 8

countries in the sample. The ‘euro core’ and ‘euro non-core’ groups are as defined previously. We refer to

the notes to Table 5 for the exact composition of the groups. The subperiods considered are delineated

by three important euro area related events, namely the signing of the Maastricht Treaty in February
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1992 (1992:2) which can be considered the starting point of the monetary unification process in Europe,

the introduction of the euro in January 1999 (1999:1), and the downgrading of Greek debt to junk status

in April 2010 (2010:4) which marked the beginning of the euro area debt crisis.

The top part of the table compares stock market integration between euro and non-euro countries

over the three reported subperiods. The euro countries are only slightly more integrated over all three

subperiods with the positive difference remaining constant over time. The difference is only substantial

in a statistical sense (i.e., in the sense that the 5% percentile of the distribution of the difference in

integration is also positive) during the period 1999:1-2010:3. In the middle part of the table we compare

stock market integration between euro core and non-euro countries over the three reported subperiods. We

note that, similar to our findings for the EU core economies, the euro core countries are substantially more

integrated than the non-euro countries. This is true for the period after the introduction of the euro but

also during the run-up to the euro, albeit to a lesser extent. In the lower part of Table 5 we investigate the

difference in stock market integration between euro non-core countries (i.e., the peripheral euro countries)

and non-euro countries over all subperiods and find that there are no substantial differences in integration

between both country groups.13 Hence, similar to our findings for the EU, the slightly higher degrees of

integration for euro area countries reported in the top part of the table are due to the higher degrees of

integration experienced by the euro core countries and are not representative of the euro area as a whole.

To summarize, we find no evidence that countries belonging to the EU or to the euro area have

experienced higher levels of stock market integration or have integrated substantially faster than countries

that are not members of these institutions. The core members of the EU and the euro area however show

consistently higher degrees of stock market integration compared to non-core EU or euro countries.

Previous studies that suggest that membership of either the EU or the euro increased European stock

market integration may therefore be picking up EU core or euro core effects instead of true EU-wide or

euro area-wide effects.

5 Conclusions

We investigate time-varying European stock market integration for 19 European countries over the period

1970-2015 focussing on the role played by institutions, i.e., EU and euro area membership. To this end

we estimate a dynamic factor model with time-varying factor loadings and stochastic volatilities using

MCMC methods. The empirical specification can be linked to existing asset pricing models such as the

international CAPM. From a time-varying variance decomposition applied to the dynamic factor model,

13If anything, as we have noted also when discussing the results for the period 1999-2015 reported in Table 3, during the
last subperiod (2014:4-2015:12) the euro non-core countries have become slightly less integrated than the non-euro countries.
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bias-corrected time-varying stock market integration measures are calculated for every country.

To the best of our knowledge, the Bayesian state space methods employed in this paper have not yet

been applied in the context of the measurement of financial market integration. These methods provide

a number of useful properties that are of particular interest to the analysis of stock market integration.

First, dynamic factor models allow for the estimation of common factors for which country weights are

implicitly derived as part of the estimation process. This is important in the analysis of stock market

integration as the country weights in the common factor are most likely endogenous to the degree of stock

market integration. Second, a state space approach is particularly useful when using variance ratios as

measures of time-varying stock market integration. These variance ratios are constructed from the factor

loadings and the factor volatilities of our dynamic factor model which can be modelled as time-varying

stochastic processes. Moreover, the Gibbs sampler used to estimate the Bayesian dynamic factor model

provides the full empirical distributions of the time-varying variance ratios which can be used in statistical

tests. Third, the approach allows for a correction of the stock market integration measure for a potential

volatility bias so that it is not contaminated by temporary volatility shocks to the country-specific and

common risk factors.

Our results suggest that stock market integration has structurally increased in most European coun-

tries over the sample period, particularly from the late 1980s and early 1990s onward. Nonetheless, the

evolution was sometimes quite different across countries with some countries experiencing modest in-

creases and others integrating more rapidly. In many European economies the evolution of stock market

integration clearly lags the increasing trend in financial liberalization. From 2010 onward - i.e., after the

global financial crisis, the ensuing Great Recession and the euro area debt crisis - the trend increase in

stock market integration seems to have come to an end in all countries. With respect to the impact of

institutions, we find no evidence that members of the EU and the euro area have experienced higher

levels of stock market integration or have integrated faster than countries that are not members of these

institutions. Hence, despite the efforts of political leaders to improve the integration of European markets

through European economic and monetary unification, our results suggest that the increase in European

stock market integration has occurred largely independently of countries’ participation in institutions like

the EU or the euro area.
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Appendix A Detailed outline of the blocks in the Gibbs sampler

In this appendix we outline the Gibbs approach to jointly sample the states (rp, µ, β, h, g, h̃, g̃), and the

hyperparameters (φ). In the first 3 blocks, we use a forward-filtering-backward-sampling approach for

the states based on a general state space model of the form

yt = Ztαt + εt, εt ∼ iidN (0, Ht) , (B-1)

αt+1 = Ttαt +Ktηt, ηt ∼ iidN (0, Qt) , t = τ, . . . , T (B-2)

ατ ∼ iidN (aτ , Pτ ) , (B-3)

where yt is a p × 1 vector of observations and αt an unobserved m × 1 state vector. The matrices Zt,

Tt, Kt, Ht, Qt and the expected value aτ and variance Pτ of the initial state vector ατ are assumed

to be known (conditioned upon) and the error terms εt and ηt are assumed to be serially uncorrelated

and independent of each other at all points in time. As eqs.(B-1)-(B-3) constitute a linear Gaussian

state space model, the unknown state variables in αt can be filtered using the standard Kalman filter.

Sampling α = [ατ , . . . , αT ] from its conditional distribution can then be done using the multimove Gibbs

sampler of Carter and Kohn (1994).

A.1 Block 1: filtering and sampling the common factor rp

In this step of the Gibbs sampler, we simultaneously filter and sample the common factor rp conditioning

on the idiosyncratic components µ and β, the stochastic volatilities g and g̃ and the hyperparameters ρ,

σ2
e and σ2

ξ . The state space representation for the conditional model in this block is given by:

yt︷ ︸︸ ︷
r1t − µ1t

...

rNt − µNt

 =

Zt︷ ︸︸ ︷
β1t

...

βNt


αt︷ ︸︸ ︷[
rpt

]
+

εt︷ ︸︸ ︷
e1t

...

eNt

, (B-4)

[
rp,t+1

]
︸ ︷︷ ︸
αt+1

=
[
ρ
]

︸ ︷︷ ︸
Tt

[
rpt

]
︸ ︷︷ ︸
αt

+
[
egt+g̃tσξ

]
︸ ︷︷ ︸

Kt

[
ξt

]
︸ ︷︷ ︸
ηt

, (B-5)

and Ht =


σ2
e1 0. . .

0 σ2
eN

, Qt = 1, a1 =
[

0
]
, P1 =

[ (
eg1+g̃1

)2
σ2
ξ

/(
1− ρ2

) ]
, for t = 1, . . . , T .

Instead of taking the entire observational vectors yt as the items for analysis, we follow the univariate
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treatment of multivariate series approach of Koopman and Durbin (2000) in which each of the elements

yit in yt is brought into the analysis one at a time. This not only offers significant computational gains,

it also avoids the risk that the prediction error variance matrix becomes nonsingular. Moreover, it allows

to take into account the unbalancedness of the panel by varying the dimension of yt over time, i.e., if

no data are available for country i at time t the element rit − µit is dropped from the vector yt (also

dropping the appropriate elements in Zt, αt and εt).

A.2 Block 2: filtering and sampling µ and β

In this step of the Gibbs sampler, we filter and sample the idiosyncratic components µ and β conditioning

on the common factor rp, the stochastic volatilities h and h̃ and the hyperparameters θ, σ2
e , σ2

ψ and σ2
ω.

As these components are cross-sectionally independent, this can be done country-by-country. The state

space representation of the model for country i in this block is given by:

yt︷ ︸︸ ︷[
rit

]
=

Zt︷ ︸︸ ︷[
1 rpt

]
αt︷ ︸︸ ︷ µit

βit

+

εt︷ ︸︸ ︷[
eit

]
, (B-6)

 µi,t+1

βi,t+1


︸ ︷︷ ︸

αt+1

=

 θi 0

0 1


︸ ︷︷ ︸

Tt

 µit

βit


︸ ︷︷ ︸
αt

+

 ehit+h̃itσψi 0

0 σωi


︸ ︷︷ ︸

Kt

 ψit

ωit


︸ ︷︷ ︸

ηt

, (B-7)

and Ht =
[
σ2
ei

]
, Qt = I2, aτi =

 0

0

, Pτi =

 (ehiτi+h̃iτi)2

σ2
ψi

/(
1− θ2

i

)
0

0 1000

, for t = τi, . . . , T .

After drawing µi and βi for all countries, we divide βit by a normalizing constant. In order to leave

the product βitrpt unaltered, we multiply rpt by the same normalizing constant. As a result, the average

of the factor loadings over both t and i equals 1
N

∑N
i=1

1
T−τi+1

∑T
t=τi

βit = 1.

A.3 Block 3: filtering and sampling h, h̃, g and g̃

A key feature of the stochastic volatility components ehit+h̃itσψiψit and egt+g̃tσξξt is that they are

nonlinear but can be transformed into linear components by taking the logarithm of their squares

log
(
ehit+h̃itσψiψit

)2

= 2hit + 2h̃it + log σ2
ψi + logψ2

it, (B-8a)

log
(
egt+g̃tσξξt

)2

= 2gt + 2g̃t + log σ2
ξ + log ξ2

t , (B-8b)
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where logψ2
it and log ξ2

t are log-chi-square distributed with expected value −1.2704 and variance 4.93.

Following Kim et al. (1998), we approximate the linear models in (B-8) by an offset mixture time series

model as

h∗it = 2hit + 2h̃it + log σ2
ψi + ψ∗it, (B-9a)

g∗t = 2gt + 2g̃t + log σ2
ξ + ξ∗t , (B-9b)

where h∗it = log

((
ehit+h̃itσψiψit

)2

+ c

)
, g∗t = log

((
egt+g̃tσξξt

)2
+ c
)

, with c = .001 being an offset

constant, and the distributions of ψ∗it and ξ∗t being the following mixtures of normals

f (ψ∗it) =

M∑
j=1

qjfN
(
ψ∗it|mj − 1.2704, ν2

j

)
, (B-10a)

f (ξ∗t ) =

M∑
j=1

qjfN
(
ξ∗t |mj − 1.2704, ν2

j

)
, (B-10b)

with component probabilities qj , means mj − 1.2704 and variances ν2
j . Equivalently, these mixture

densities can be written in terms of the component indicator variables sit and wt as

ψ∗it| (sit = j) ∼ N
(
mj − 1.2704, ν2

j

)
, with Pr (sit = j) = qj , (B-11a)

ξ∗t | (wt = j) ∼ N
(
mj − 1.2704, ν2

j

)
, with Pr (wt = j) = qj . (B-11b)

We follow Kim et al. (1998) by selecting M = 7 and using the parameters {qj ,mj , ν
2
j } in their Table 4 to

make the approximation of the mixture distributions to the log-chi-square distribution sufficiently good.

The conditional probability mass functions for sit and wt are given by

Pr
(
sit = j|hit, h̃it, ψ∗it

)
∝ qjfN

(
ψ∗it|2hit + 2h̃it + log σ2

ψi +mj − 1.2704, ν2
j

)
, (B-12a)

Pr (wt = j|gt, g̃t, ξ∗t ) ∝ qjfN
(
ξ∗t |2gt + 2g̃t + log σ2

ξ +mj − 1.2704, ν2
j

)
. (B-12b)

Below we use the notation si = {sit}Tt=τ1 and w = {wt}Tt=1.

Following Del Negro and Primiceri (2013), in this block we first sample the mixture indicators sit and

wt from their conditional probability mass functions (B-12a) and (B-12b), where sit is only sampled over

the period for which data for country i are available while wt is sampled over the full sample period.

Next, we filter and sample the stochastic volatilities hit, h̃it, gt and g̃t conditioning on the transformed

states h∗it = log
(

(µi,t+1 − θiµit)2
+ 0.001

)
and g∗t = log

(
(rp,t+1 − ρrpt)2

+0.001), on the mixture indi-

cators sit and wt and on the hyperparameters σ2
ψi

, σ2
ξ , σ2

γi
, σ2

γ̃i
, σ2

λ
and σ2

λ̃
.
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The state space representation of the model for hit and h̃it is given by:

yt︷ ︸︸ ︷[
h∗it −

(
log σ2

ψi
+msit − 1, 2704

) ]
=

Zt︷ ︸︸ ︷[
2 2

]
αt︷ ︸︸ ︷ hit

h̃it

+

εt︷ ︸︸ ︷[
ψ̃∗it

]
, (B-13)

 hi,t+1

h̃i,t+1


︸ ︷︷ ︸

αt+1

=

 1 0

0 πi


︸ ︷︷ ︸

Tt

 hit

h̃it


︸ ︷︷ ︸
αt

+

 σγi 0

0 σγ̃i


︸ ︷︷ ︸

Kt

 γit

γ̃it


︸ ︷︷ ︸

ηt

, (B-14)

and Ht =
[
ν2
sit

]
, Qt = I2, aτi =

 0

0

, Pτi =

 1000 0

0 σ2
γ̃i
/(1− π2

i )

 for t = τi, . . . , T . For given

values of sit, the values for msit and ν2
sit are taken from Table 4 in Kim et al. (1998) and ψ̃∗it = ψ∗it −

(msit − 1, 2704) is ψ∗it recentered around zero. After drawing hit we normalize 1
T−τi+1

∑T
t=τi

ehit = 1 for

each i.

Similarly, the state space representation of the model for gt and g̃t is given by:

yt︷ ︸︸ ︷[
g∗t −

(
log σ2

ξ +mwt − 1, 2704
) ]

=

Zt︷ ︸︸ ︷[
2 2

]
αt︷ ︸︸ ︷ gt

g̃t

+

εt︷ ︸︸ ︷[
ξ̃∗t

]
, (B-15)

 gt+1

g̃t+1


︸ ︷︷ ︸
αt+1

=

 1 0

0 %


︸ ︷︷ ︸

Tt

 gt

g̃t


︸ ︷︷ ︸
αt

+

 σλ 0

0 σλ̃


︸ ︷︷ ︸

Kt

 λt

λ̃t


︸ ︷︷ ︸
ηt

, (B-16)

and Ht =
[
ν2
wt

]
, Qt = I2, a1 =

 0

0

, P1 =

 1000 0

0 σ2
λ̃
/(1− %2)

 for t = 1, . . . , T . For given

values of wt, the values for mwt and ν2
wt are again taken from Table 4 in Kim et al. (1998) and ξ̃∗t =

ξ∗t − (mwt − 1, 2704) is ξ∗t recentered around zero. After drawing gt we normalize 1
T

∑T
t=1 e

gt = 1.

A.4 Block 4: estimating and sampling the hyperparameters φ

In the final block of the Gibbs sampler we estimate and draw the hyperparameters φ. Conditioning on

the idiosyncratic components µ and β, the common factor Rp and the stochastic volatilities h, h̃, g and

g̃, these are all unknown parameters in the standard static linear regression model

yt = b′xt + ut, ut ∼ N
(
0, σ2

)
, (B-17)

where xt and b are (` × 1) vectors. The matrix version of (B-17) is y = Xb + u with obvious notations

X (T × ` matrix), y and u (T × 1 vectors). We follow the approach outlined in Bauwens et al. (1999)
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(pages 56-61). Prior information is represented through the following normal-inverted gamma-2 density

ϕ
(
b, σ2

)
= fNIg

(
b, σ2|b0,M0, s0, S0

)
, (B-18)

with the prior information being summarized by the hyperparameters (b0, V0, σ
2
0 , v0). First, b0 is the

prior belief about the coefficient vector b with prior variance V0 such that the prior precision M0 = V −1
0 .

Second, σ2
0 is the prior belief about the error variance σ2, such that s0 = σ2

0S0 is the prior belief about

the residual sum of squares s = u′u with S0 being the corresponding prior strength defined as S0 = v0T

where v0 is the prior degrees of freedom proportional to the sample size T .

The posterior density of b and σ2 in the linear regression model (B-17) with prior density (B-18) is a

normal-inverted gamma-2 distribution

ϕ
(
b, σ2|y,X

)
= fNIg

(
b, σ2|b∗,M∗, s∗, S∗

)
, (B-19)

with hyperparameters defined by

b∗ = M−1
∗

(
M0b0 +X ′Xb̂

)
, M∗ = M0 +X ′X,

s∗ = s0 + s+
(
b0 − b̂

)′ (
M−1

0 + (X ′X)
−1
)−1 (

b0 − b̂
)
, S∗ = S0 + T,

with b̂ the LS estimator for b in (B-17). Sampling b and σ2 from the posterior distribution (B-19) can

then be done separately from

b ∼ N
(
b∗,

s∗
S∗ − 2

M−1
∗

)
, (B-20)

σ2 ∼ IG2 (S∗, s∗) . (B-21)

If X = [.], the posterior density in (B-19) reduces to

ϕ
(
σ2|y,X

)
= fIg

(
σ2|s∗, S∗

)
, (B-22)

with s∗ = s0 + s and S∗ as defined above.

The hyperparameters φ can now be sampled as:

• Obtain the posterior distribution of σ2
ei in (1) for each country i separately conditioning on µit, βit

and rpt by using (B-22) setting yt = rit− µit− βitrpt and xt = [.] in (B-17). Next, sample σ2
ei from

(B-21).

• Obtain the posterior distribution of θi and σ2
ψi

in (2) for each country i separately conditioning on
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µit, hit and h̃it by using (B-19) setting yt = µi,t+1

/
ehit+h̃it and xt = µit

/
ehit+h̃it in (B-17) such

that this becomes a GLS-type regression model. Next, sample θi and σ2
ψi

from (B-20) and (B-21).

• Obtain the posterior distribution of σ2
γi

in (3) for each country i separately conditioning on hit by

using (B-22) setting yt = hi,t+1 − hit and xt = [.] in (B-17). Next, sample σ2
γi

from (B-21).

• Obtain the posterior distribution of πi and σ2
γ̃i

in (4) for each country i separately conditioning on

h̃it by using (B-19) setting yt = h̃i,t+1 and xt = h̃it in (B-17). Next, sample πi and σ2
γ̃i

from (B-20)

and (B-21).

• Obtain the posterior distribution of ρ and σ2
ξ in (5) conditioning on rpt, gt and g̃t by using (B-

19) setting yt = rp,t+1

/
egt+g̃t and xt = rpt

/
egt+g̃t in (B-17) such that this becomes a GLS-type

regression model. Next, sample ρ and σ2
ξ from (B-20) and (B-21).

• Obtain the posterior distribution of σ2
λ

in (6) conditioning on gt by using (B-22) setting yt = gt+1−gt

and xt = [.] in (B-17). Next, sample σ2
λ

from (B-21).

• Obtain the posterior distribution of % and σ2
λ̃

in (7) conditioning on g̃t by using (B-19) setting

yt = g̃t+1 and xt = g̃t in (B-17). Next, sample % and σ2
λ̃

from (B-20) and (B-21).

• Obtain the posterior distribution of σ2
ωi in (8) for each country i separately conditioning on βit by

using (B-22) setting yt = βi,t+1 − βit and xt = [.] in (B-17). Next, sample σ2
ωi from (B-21).
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