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1 Introduction

The Covid-19 pandemic and the lockdown measures implemented to contain it in countries around the

world have triggered significant changes in the consumption and saving of households. Large downward

shifts have been reported in the propensities to consume of US and European households during 2020 (see

e.g., Dossche and Zlatanos, 2020; Vandenbroucke, 2021). Currently, the Russian invasion of Ukraine and

its potential geopolitical and economic repercussions - i.e., escalation of the conflict, political instability,

ever-increasing prices, supply chain disruptions, energy crises and even famines - again have the potential

to strongly affect consumption across the world. Indeed, past macroeconomic disaster episodes - i.e.,

pandemics, wars and depressions - have been characterized by drastic declines in private consumption

far above and beyond what we typically observe during ordinary recessions (see e.g., Barro and Ursúa,

2008; Nakamura et al., 2013).

This paper investigates whether rare macroeconomic disaster periods are characterized by reductions

in welfare-optimizing consumption smoothing opportunities. The drastic falls in consumption that occur

during disasters which, as noted by Barro and Ursúa (2008), often coincide with large falls in income, sug-

gest that the relationship between consumption and income may be substantially different when disasters

strike.1 In particular, it is conceivable that consumption and income are more in tandem during disasters,

implying less decoupling of consumption from income and, as a consequence, less consumption smooth-

ing. The reason why consumption smoothing may falter during extreme crises that confront consumers

with large income shocks is market incompleteness. During wars and depressions, it is much more likely

that banks and financial markets malfunction or fail. For example, the causes and consequences of the

numerous US bank failures during the Great Depression have been discussed extensively in the literature

(see e.g., Richardson, 2013, and references therein). As for financial markets, Silber (2005) discusses the

liquidity repercussions of the temporary New York Stock Exchange (NYSE) suspension during World

War I while Frey and Kucher (2000) document drastic government bond price reductions in Austria,

Belgium, France and Germany at the onset of World War II.2 And while banks appear to have been

more resilient during the Covid-19 pandemic, the literature does document severe Covid-related financial

market disruptions, in particular in corporate bond markets (see Goldstein et al., 2021, and references

therein). With respect to the consequences of market incompleteness for consumers, Parker and Preston

1Rare historical macroeconomic disaster periods are defined by Barro and Ursúa (2008) as peak-to-trough cumulative

declines in GDP and/or private consumption of at least 10%.
2An impression of the breaking down of financial markets in continental Europe during World War I is given by a

comment in a contemporaneous newspaper article, i.e., ’...in Belgium, where people with securities in their pockets, and

fleeing from war and starvation, sold them for cash at thirty and forty percent discount to some itinerant peddler’ (Wall

Street Journal, January 7th 1915).
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(2005) note that missing markets to transfer consumption across time imply credit constraints while

missing markets to transfer consumption across states of the world imply precautionary saving motives.

Hence, a priori, the channels through which a reduction in consumption smoothing could occur during

disasters are consumers facing tighter credit constraints and consumers having a stronger precautionary

saving motive.

The paper’s contribution is both theoretical and methodological. Theoretically, we investigate the

impact of disasters on consumption smoothing using a standard consumer intertemporal budget con-

straint (IBC) that relates consumption and income in the long run. More specifically, the IBC can be

expressed as a relationship between the current log consumption-income ratio and future income and

consumption growth rates. The question is then how disasters affect this relationship. Does the current

log consumption-income ratio have a stronger or a weaker link with future income and consumption

growth rates during disasters? If the link is stronger (weaker), then the IBC holds more (less) strictly

and consumption and income are less (more) decoupled during disasters. When consumption and income

are less (more) decoupled, this is indicative of a lower (higher) degree of consumption smoothing. Sub-

sequently, we investigate the channels through which consumption smoothing is affected during disasters

by imposing structure on consumer behavior. To this end, we consider a savers-spenders type of model in

the spirit of Mankiw (2000) where the spenders consume according to their current income - for instance,

because they face binding credit constraints - and where the savers optimize and have a precautionary

saving motive. Changes in the structural parameters of this model - in particular, in the parameters gov-

erning rule-of-thumb behavior and the strength of the precautionary motive - affect the link between the

current log consumption-income ratio and future income and consumption growth rates and the degree

of consumption smoothing.

Methodologically, we estimate the IBC-implied relationship between the consumption-income ratio

and future income and consumption growth rates using predictive regressions. In effect, according to the

IBC, the log consumption-income ratio should have predictive power for future income and/or consump-

tion growth rates. To find out whether disaster episodes affect the IBC and the degree of consumption

smoothing, we then check whether the predictive power of this ratio differs between normal times and dis-

aster periods. While less common in macroeconomics, our focus on predictive regressions borrows from

the finance literature (see e.g., Cochrane, 2005).3 It has the advantage that the predictive regression

equations follow immediately from the forward-looking nature of consumption theory, i.e., both the IBC

and the savers-spenders set-up that we consider imply that the log consumption-income ratio depends on

(expected) future variables and therefore should have predictive power for these variables. This approach

3For an application in international macro, i.e., in exchange rate modeling, we refer to Sarno and Schmeling (2014).
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is also advantageous because it avoids complications related to causal inference as the error term in a

predictive regression is expected to be orthogonal to the regressor.4 Violations of this orthogonality are

possible but are, as we show in the paper, easily dealt with. With respect to the data, we use historical

annual data over the period 1870− 2016 for sixteen industrial economies to estimate cross-country panel

predictive regressions. These data are taken from Jordà et al. (2016)’s macro-history database. Further-

more Barro and Ursúa (2008), and more recently Nakamura et al. (2013), provide start and end dates

of rare disasters over the full sample period for all countries in the sample. The use of historical data,

while not without complications, is motivated by the absence of major macro disasters in most postwar

industrial economies.5 While the magnitude of the shifts in consumption and income during the Covid-

19 pandemic is comparable to that of the shifts that occurred during historical disaster episodes, the

Covid-19 pandemic constitutes only one (ongoing) crisis and, as such, provides insufficient information

from which to draw general conclusions about consumption smoothing during disasters. We do however

check whether our historical findings also hold for the ongoing Covid-19 pandemic by supplementing our

results based on historical data with results obtained from recent quarterly data for twenty industrial

countries over the period 1995Q1 − 2021Q4. With respect to the estimation method, we use a variety

of mean-group (MG) estimators that, facilitated by the long time series at our disposal, allow for full

parameter heterogeneity to obtain estimates for the average predictive effects across countries (see e.g.,

Pesaran and Smith, 1995; Pesaran, 2006; Chudik and Pesaran, 2015).

Our findings suggest that the predictive ability of the log consumption-income ratio for future income

and consumption growth rates is significantly higher during macroeconomic disaster episodes. This new

result survives a battery of robustness checks. While it holds both for historical disaster episodes and for

the ongoing Covid-19 pandemic, we do not find evidence of a structural change in predictability when

looking at conventional postwar recessions. Interpreted through the lens of the theory, it implies that the

IBC holds more strictly and that consumption and income are significantly less decoupled during disaster

episodes. This, in turn, points to a structural decrease in consumption smoothing during disasters, the

like of which cannot be observed during ordinary recessions. From our savers-spenders framework, we

argue that the increased predictive power during disasters of the log consumption-income ratio for future

income growth rates can be attributed to an increase in rule-of-thumb consumption behavior while the

increased predictive power of the log consumption-income ratio for future consumption growth rates can

be attributed to a stronger precautionary saving motive of the optimizing consumers. Importantly, the

precaution result does not (merely) pertain to additional saving resulting from higher uncertainty during

4As argued by Cochrane (2005, page 392), predictive regressions do not have causes on the right and effects on the left.

Rather, regressions are run with the variable that is orthogonal to the (prediction) error on the right.
5An important complication when using historical data is measurement error, for which we control in our estimations.
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disasters, a finding which is commonly reported for more conventional recessions (see e.g., Mody et al.,

2012). Rather, it refers to a structural shift, namely that a given amount of uncertainty has a larger

impact on saving during these rare crises. As our evidence suggests that disasters are characterized both

by tighter credit constraints - i.e, the increased rule-of-thumb behavior - and by stronger precautionary

saving motives, it supports an incomplete markets based interpretation of the decrease in consumption

smoothing observed during rare disasters.

There is a large literature that focusses on the asset pricing and, to a lesser extent, business cy-

cle implications of the presence of ex-ante disaster risk in the economy (see e.g., Rietz, 1988; Barro,

2006, 2009; Gourio, 2012; Barro and Ursúa, 2012; Nakamura et al., 2013; Gillman et al., 2015; Farhi

and Gabaix, 2016). Our paper, on the other hand, contributes to a growing literature that looks at the

ex-post macroeconomic effects of rare disasters, i.e., the effects of both historical and current disasters

on the real economy, in particular on consumption and saving. Jordà et al. (2020), for example, use

aggregate time series data for European countries going back to the 14th century and argue that his-

torical pandemics lead to medium-term reductions in the real (natural) interest rate that are potentially

caused by increases in (precautionary) saving. Coibion et al. (2020) use US survey data to investigate

how local lockdown measures implemented in reaction to Covid-19 affect consumer spending and the

macroeconomic expectations of households. Ludvigson et al. (2020) use aggregate monthly data for the

US to study the dynamic and potentially non-linear impact of (natural) disaster shocks on industrial

production, employment and uncertainty. Using US micro data, Levine et al. (2021) observe a large flow

of household deposits into bank branches in US counties with high Covid infection rates and attribute

this to precautionary saving motives. We note that our paper is also related to a literature that inves-

tigates how and why conventional recessions affect consumption and saving (see e.g., Mody et al., 2012;

Alan et al., 2012; Adema and Pozzi, 2015; Carroll et al., 2019, who generally point to the role of higher

uncertainty during recessions). Our paper deviates from these studies, however, by focussing on shifts

that characterize consumption behavior - i.e., consumption smoothing - during macro disasters and that

do not seem to be present during ordinary recessions.

The outline of the paper is as follows. Section 2 discusses the IBC, its predictability implications and

how it is related to consumption smoothing. Section 3 presents the results of estimating cross-country

panel predictive regressions to investigate the IBC and consumption smoothing, both during normal

times and during disaster episodes. Section 4 proposes a savers-spenders model to give a theoretical

interpretation to our predictability findings, i.e., we look at channels that affect consumption smoothing

and provide additional empirical evidence to support these channels. Section 5 concludes.
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2 The intertemporal budget constraint and consumption smooth-

ing

In this section, we discuss the intertemporal budget constraint (IBC) and show that it implies that the

log consumption-income ratio has predictive power for future income and consumption growth rates. We

then discuss what different degrees of predictability imply for consumption smoothing.

2.1 The intertemporal budget constraint and the predictive ability of the

consumption-income ratio

The intertemporal budget constraint (IBC) implies that we can write the period t log consumption to

income ratio ct − yt (up to a constant and an approximation error) as,

ct − yt =

∞∑
j=1

ρj [Et(∆yt+j)− Et(∆ct+j)] (1)

(see Campbell and Mankiw, 1989) where ρ is the discount factor (with 0 < ρ < 1), where Et is the

expectations operator conditional on period t information, where ct is the log of real consumption Ct,

where yt is the log of real total income Yt which equals the sum of labor and capital income. We

refer to Appendix A for the derivation.6 The intuition behind eq.(1) is straightforward. In ex-post

form (i.e., without the expectations operator Et), the budget constraint tells us that a high current

consumption-income ratio (or, conversely, a low current saving ratio) coincides with high future income

growth rates and/or low future consumption growth rates while a low current consumption-income ratio

(or, conversely, a high current saving ratio) coincides with low future income growth rates and/or high

future consumption growth rates. In ex ante form, the budget constraint tells us that expected future

income decreases and expected future consumption increases lower the current consumption-income ratio

(or, conversely, augment the current saving ratio) while expected future income increases and expected

future consumption decreases augment the current consumption-income ratio (or, conversely, lower the

current saving ratio).

Importantly, eq.(1) implies that the log consumption-income ratio ct − yt may have predictive ability

for future income and consumption growth rates. To see this, we first write eq.(1) in ex-post form (i.e.,

without the expectations operator Et) and then write the variance of ct − yt as,

V (ct − yt) =

∞∑
j=1

ρj [cov(ct − yt,∆yt+j)− cov(ct − yt,∆ct+j)] (2)

6The derivation includes a more general expression for ct − yt that includes expected real rates of return on wealth. We

note that the IBC-based link between the current log consumption-income ratio and expected future returns is ambiguous

and not substantial if the discount factor for future income growth rates is close to that of future consumption growth rates.

6



where V(.) denotes the variance and cov(.) denotes the covariance. This equation shows that, unless

ct − yt is constant so that V (ct − yt) = 0, ct − yt has predictive power for either future income growth

rates, future consumption growth rates or both. We refer to Cochrane (2005, pages 398-399) for a similar

argument in the context of asset pricing.7 We can therefore write down the following predictive equations

for ∆yt+j and ∆ct+j ,

∆yt+j = φyj (ct − yt) + ηyt+j (3)

∆ct+j = φcj(ct − yt) + ηct+j (4)

with error terms ηyt+j and ηct+j . These prediction errors should, in principle, be orthogonal to the predictor

variable ct − yt but, as we discuss in Section 3 below, there are reasons why this may not be the case.

Furthermore, we note that the IBC itself does not impose restrictions on the coefficients φyj and φcj

for particular horizons j. In general, however, the predictive ability is expected to be positive for future

income growth rates and/or negative for future consumption growth rates, i.e., we generally expect φyj > 0

and/or φcj < 0. Moreover, we expect that, in absolute value, the coefficients φyj and φcj are decreasing

with the horizon j. These expectations are confirmed by our empirical evidence reported below.

We note that by subtracting eq.(4) from eq.(3), we obtain a predictive equation for the income-

consumption growth differential ∆yt+j −∆ct+j ,

∆yt+j −∆ct+j = φj(ct − yt) + ηt+j (5)

where φj = φyj − φcj and ηt+j = ηyt+j − ηct+j . For φyj > 0 and/or φcj < 0, we generally expect φj > 0.

2.2 Predictability and consumption smoothing

The magnitude of the coefficients φyj and φcj is informative about the horizon over which the IBC holds.

When φyj and φcj are close to zero, the current consumption-income ratio coincides with relatively small

future adjustments in income and consumption, i.e., the IBC holds more loosely over a longer horizon.

Hence, the decoupling episodes between ct and yt, i.e., the deviations from the long-run equilibrium

implied by the IBC, are more prolonged. More prolonged saving and dissaving episodes, in turn, suggest

more consumption smoothing. On the other hand, when the coefficients φyj are more positive or when the

coefficients φcj are more negative, the current consumption-income ratio coincides with relatively large

future adjustments in income and consumption, i.e., the IBC holds more strictly over a shorter horizon.

Hence, the decoupling episodes between ct and yt, i.e., the deviations from the long-run equilibrium

7In asset pricing, this concerns the predictive ability of the equity price-dividend ratio for future returns and/or future

dividend growth rates.
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implied by the IBC, are less prolonged. Less prolonged saving and dissaving episodes, in turn, suggest

less consumption smoothing.8

In the next section, we empirically investigate how macroeconomic disasters affect the predictive power

of ct − yt for future income and consumption growth rates. Our main finding is that, during macro dis-

asters, the log consumption-income ratio has a more positive predictive impact on future income growth

rates while it has a more negative predictive impact on future consumption growth rates. This suggests

that the IBC holds more strictly and consumption and income are less decoupled during macro-economic

disaster episodes. This, in turn, points to a structural reduction in consumption smoothing during these

crises. In Section 4, we impose additional theoretical structure on our set-up by explicitly specifying con-

sumption behavior and we give a model-based interpretation to the reduction in consumption smoothing

observed during disasters.

3 Empirical results

In this section, we investigate whether disaster episodes affect the IBC by looking at the predictive

ability of the log consumption-income ratio for future income and consumption growth rates both during

disasters and more normal times. To this end, we estimate predictive regressions for a panel of industrial

economies.

3.1 Data

For most estimations, we use long-term historical macro data over the period 1870 − 2016. These are

available at the annual frequency. Data availability determines the countries included in the dataset and

the periods considered per country.9 Our sample consists of sixteen economies, i.e., N = 16. These

are Australia, Belgium, Denmark, Finland, France, Germany, Italy, Japan, the Netherlands, Norway,

Portugal, Spain, Sweden, Switzerland, the UK and the US. For ct, we use the log of per capita real

consumption, while for yt we use the log of per capita real GDP. Per capita real personal consumer

expenditures and per capita real GDP are taken from the Jordà-Schularick-Taylor macro-history Database

8An alternative way to look at our set-up is by noting that if ∆yt+1 and ∆ct+1 are stationary, then, given eq.(1),

ct − yt should also be stationary and ct and yt are cointegrated. By Engle and Granger (1987), there then exists an error

correction model between ct and yt where deviations from the long-run equilibrium relationship between ct and yt implied

by the IBC affect next period’s values of ct and yt. Hence, our eqs.(3)-(4) written for j = 1 can be considered an error

correction model with the predictability parameters φy1 and φc1 reflecting the speed of adjustment towards equilibrium. A

more positive predictability parameter φy1 or a more negative parameter φc1 implies a faster adjustment towards equilibrium,

i.e., less prolonged saving and dissaving episodes.
9For some countries and variables, a number of data points are missing at the beginning of the sample period which

renders the panel unbalanced.
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(Jordà et al., 2016).10

To investigate the impact of macroeconomic disasters on the predictive ability of the log consumption-

income ratio, we construct country-specific disaster dummies that take on the value of one during disaster

episodes. They are constructed from the macroeconomic disaster episodes identified by Barro and Ursúa

(2008). The authors define a disaster as a peak-to-trough cumulative decline in real per capita GDP

and/or real per capita personal consumer expenditure of at least 10%. We construct a general dummy

that contains all identified disaster episodes over the sample period. Additionally, we also consider specific

disaster episodes. In particular, we construct dummies for each of the four principal world economic crises

identified by Barro and Ursúa (2008), i.e., World War I (WW1), the Spanish flu pandemic of the late

1910s/early 1920s (PAN), the Great Depression (GRD) and World War II (WW2). More details on the

construction of the disaster dummies are provided in Appendix B.

3.2 Baseline setting and results

3.2.1 Specification and method

Our discussion in the previous sections suggests that the current log consumption-income ratio may

have predictive power for future income and consumption growth rates and that this predictive ability

may be different during disaster episodes. To check this empirically, we estimate the following baseline

specification,

xi,t+1 = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + εi,t+1 (6)

where xi,t+1 is the predicted variable in period t+1 in country i (with i = 1, ..., N), where µi is a country

fixed effect, where dit is a country-specific dummy variable that is equal to zero in normal times and

equal to one during disaster episodes, where cit − yit is the log consumption-income ratio, and where

εi,t+1 is the error term. Given the relatively long time series at our disposal for every country i, we allow

for heterogeneity across countries in all slope coefficients.

With respect to the regressors of interest, from IBC logic, we expect that the current log consumption-

income ratio cit − yit has a positive impact on next period’s income growth rate ∆yi,t+1. If during

macroeconomic disaster episodes the IBC holds more strictly, we further expect that this predictive

ability is higher - i.e., more positive - during such episodes. As such, for xi,t+1 = ∆yi,t+1, we expect

βi > 0 and γi > 0. On the other hand, from IBC logic, we expect that the current log consumption-

income ratio cit − yit has a negative impact on next period’s consumption growth rate ∆ci,t+1. If during

10The website is http://www.macrohistory.net/data. The series have codes ’rconpc’ and ’rgdppc’. We note that the series

that we use are both expressed as indices.
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macroeconomic disaster episodes the IBC holds more strictly, we further expect that this predictive

ability is higher - i.e., more negative - during such episodes. As such, for xi,t+1 = ∆ci,t+1, we expect

βi < 0 and γi < 0. We further add the disaster dummy separately to eq.(6) to control for a potential

predictive impact of disasters on the dependent variable that is unrelated to the predictive impact of the

consumption-income ratio.

The error term εi,t+1 is a prediction error that should, in principle, be unpredictable based on period

t information. It is nonetheless possible that it is autocorrelated, however, where the autocorrelation is

of the moving average (MA) type. For example, it could follow an MA(1) process due to measurement

error or time aggregation in the data.11,12 Further complications include the possibility that the error

term is correlated across countries (cross-sectional dependence) and that it is correlated with the included

regressors. These complications are dealt with in the robustness checks discussed in Section 3.3.

For the baseline results reported below, we estimate eq.(6) country-by-country using ordinary least

squares (OLS). Pesaran and Smith (1995) then show that for a heterogeneous (dynamic) panel with

country-specific parameter vector Ψi and with a sufficiently large T and N , consistent estimates of the

average effects Ψ = N−1
∑N
i=1 Ψi can be obtained by averaging over the country-specific coefficient

estimates, i.e., Ψ̂ = N−1
∑N
i=1 Ψ̂i. The average over the N country-specific OLS estimates is referred to

as the mean-group (MG) estimator. It is consistent provided that the country-specific coefficients are

consistently estimated by OLS. Following Pesaran et al. (1996), the asymptotic covariance matrix Σ for

the mean-group estimator is consistently estimated nonparametrically by,

Σ̂ =
1

N − 1

N∑
i=1

(
Ψ̂i − Ψ̂

)(
Ψ̂i − Ψ̂

)′
(7)

Finally, we note that our estimation method requires regression equations that include stationary

variables. This is true for the OLS-based estimations considered in this section but also for results

obtained using alternative estimators like the common correlated effects (CCE) or instrumental variables

(IV) estimators which are applied in the robustness checks. The log consumption-income ratio cit − yit,

while expected to be stationary on theoretical grounds, is the one variable in our estimations for which

stationarity is not immediately evident in the data. In Appendix C, we report the results of panel

unit root tests applied to this variable. From these tests, we conclude that, over the historical period

1870 − 2016, the regressor cit − yit is stationary for the overall panel and for a majority of countries in

our sample. In the robustness checks discussed in Section 3.3, we check whether the presence of a unit

root in cit − yit in some countries has an impact on our findings by conducting estimations that use a

11See e.g., Sommer (2007) for measurement error in aggregate consumption data and its implications.
12The error term εi,t+1 can also be conditionally heteroskedastic (see e.g., Hamilton, 2008; Nakamura et al., 2017, who

document changes over time in the volatilities of macroeconomic variables like GDP growth).
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stochastically detrended version of the log consumption-income ratio.

3.2.2 Baseline results

Turning to our findings, Table 1 (columns 2-4) presents the baseline results from estimating eq.(6) for the

sixteen economies in our sample over the period 1870− 2016 with xi,t+1 = ∆yi,t+1, xi,t+1 = ∆ci,t+1 and

xi,t+1 = (∆yi,t+1−∆ci,t+1). The table reports the OLS-based mean-group estimates of the coefficients αi,

βi and γi and their corresponding standard errors calculated from eq.(7). The country-specific coefficient

estimates βi and γi that are used in the calculation of the mean-group coefficient estimates for the

regressors cit − yit and (cit − yit)dit are reported in Appendix D. Table 1 further reports the average

Cumby and Huizinga (1992) autocorrelation test and its corresponding p-value which tests the null

hypothesis that there is no autocorrelation in the error term.13,14

From the baseline results reported in the table, we note the following. First, a look at Cumby and

Huizinga (1992)’s test for autocorrelation shows that for none of the conducted regressions the null

hypothesis of no autocorrelation is rejected. Second, while it can be expected that the disaster dummy

d negatively affects income and consumption growth in the same period, the reported results show that

it also negatively affects next period’s income growth. It has no predictive impact for consumption

growth however. Third, in accordance with the discussion in Section 2 of the IBC and its predictability

implications, the log consumption-income ratio c − y has significant positive predictive ability for next

period’s income-consumption growth differential. The separate results for ∆y and ∆c as dependent

variables then show that this stems mainly from the significant predictive power that c − y has for the

consumption growth rate where the sign of the coefficient on c− y is in accordance with IBC logic, i.e., a

high consumption-income ratio today is followed by future decreases in consumption growth.15 Finally,

from the estimated coefficients on the regressor (c− y)d, we note that the predictive ability of c− y for

both ∆y and ∆c is significantly higher during disasters as opposed to normal times, i.e., during disasters

13More specifically, it tests the null hypothesis that the error term follows a moving average process of known order

q ≥ 0 against the alternative that the autocorrelations of the error term are nonzero at lags greater than q. Most statistics

reported in this paper are for q = 0. We note that this test is particularly suitable as, besides allowing to test for MA

errors, it provides an autocorrelation test that is valid also if the errors are conditionally heteroskedastic. Moreover, it can

also be applied when using estimators other than OLS, such as IV (see Cumby and Huizinga, 1992, for details).
14We calculate the statistic per country and then average it across countries. The Cumby and Huizinga (1992) test

statistic follows a χ2 distribution. Assuming that the country-specific test statistics are independent, the average Cumby

and Huizinga (1992) test still follows a χ2 distribution with the same number of degrees of freedom as its country-specific

counterparts.
15The coefficient on the regressor c − y is a semi-elasticity. For example, for the coefficient of ∆y on c − y, we have

∂∆y
∂(c−y)

= ∂∆y

∂ ln(C
Y

)
, i.e., the coefficient equals the change in ∆y divided by the percentage change in C

Y
. A coefficient equal

to 0.1 then implies that if C
Y

increases with 1% (e.g., from 100% to 101%), then ∆y increases with 0.1 percentage points

(e.g., from 1% to 1.1%). A coefficient equal to 1 then implies that if C
Y

increases with 1% (e.g., from 100% to 101%), then

∆y increases with 1 percentage point (e.g., from 0.5% to 1.5%).
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c − y has a positive predictive impact on ∆y and a more negative predictive impact on ∆c. Whereas

during normal times a one percent increase in C
Y implies a next period increase in ∆y of only one basis

point on average (across time and countries) and a next period decrease in ∆c of only three basis points,

these numbers equal twelve, respectively seventeen basis points during disaster episodes. Interpreted

through the lens of the intertemporal budget constraint, these findings suggest that the IBC holds more

strictly and that there is substantially less decoupling between consumption and income during disaster

episodes. This, in turn, points to a reduction in consumption smoothing during disasters.

Table 1: Baseline results: OLS-based mean-group estimates

Baseline results With lagged dependent variable

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.043∗∗∗ -0.014 -0.029 -0.036∗∗ -0.010 -0.023

( 0.014 ) ( 0.016 ) ( 0.022 ) ( 0.016 ) ( 0.016 ) ( 0.023 )

(cit − yit) 0.014 -0.035∗ 0.049∗∗∗ 0.013 -0.038∗ 0.052∗∗∗

( 0.026 ) ( 0.020 ) ( 0.014 ) ( 0.027 ) ( 0.020 ) ( 0.013 )

(cit − yit)dit 0.111∗ -0.136∗ 0.247∗∗∗ 0.115∗ -0.158∗∗ 0.270∗∗∗

( 0.058 ) ( 0.078 ) ( 0.062 ) ( 0.066 ) ( 0.081 ) ( 0.060 )

xit 0.048 0.030 0.096∗∗

( 0.045 ) ( 0.049 ) ( 0.047 )

Cumby-Huizinga AC 2.503 3.902 2.243 2.320 2.502 2.244

[ 0.286 ] [ 0.142 ] [ 0.326 ] [ 0.314 ] [ 0.286 ] [ 0.326 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(6) (baseline results) and eq.(8) (results with lagged

dependent variable). Estimation is based on panel data for sixteen countries over the period 1870 − 2016. Standard errors are

in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The

Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing

the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags

greater than zero (with maximum lag equal to two).

To conclude, our baseline results suggest that the predictive ability of the consumption-income ratio

for next period’s income and consumption growth rates is significantly higher during disaster episodes.

In the following section, we first conduct a number of robustness checks to more firmly establish our

empirical finding. In Section 3.4, we then check to what extent our results hold up at longer horizons

while in Section 3.5, we investigate whether we can draw the same conclusions when looking at ordinary

recessions. Finally, we look at the predictive impact of the log consumption-income ratio during specific

disaster episodes, i.e., we look at major historical disaster periods in Section 3.6 and at the current

Covid-19 pandemic in Section 3.7.
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3.3 Robustness checks

This section checks the robustness of our baseline results with respect to the regression equation specifi-

cation, estimation methodology and variables included in the regression equation.

Lagged dependent variable

Our first robustness check consists of looking at a dynamic panel setting where the regression equation

includes a lag of the dependent variable under consideration. Controlling for the lagged dependent variable

is useful to make sure that, when detecting a relationship between cit − yit and the dependent variable

xi,t+1, this relationship is not driven solely by the combination of an autocorrelated xi,t+1 variable and

the possible covariance between cit − yit and xit, i.e., cit − yit only affects xi,t+1 because it is correlated

with xit and xit has predictive power for xi,t+1. To deal with this, we estimate an extended version of

eq.(6) where one lag of the dependent variable is added as a control variable, i.e., we have,

xi,t+1 = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + δixit + εi,t+1 (8)

where xi,t+1 = ∆yi,t+1,∆ci,t+1, (∆yi,t+1 − ∆ci,t+1). We add only one lag of the dependent variable

because, when conducting estimations with more lags, we find that the coefficient estimates on additional

lags are not significant.

Table 1 (columns 5-7) presents the OLS-based mean-group estimates obtained from estimating eq.(8)

using our historical sample.16 While the significance of the impact of the regressors c − y and (c −

y)d is somewhat higher compared to our baseline results, our findings are generally not affected much

when including a lagged dependent variable to the regression equation (which itself enters the regression

equation significantly only in column 7).

Detrended log consumption-income ratio

While panel unit root tests suggest that the regressor c − y is stationary for the overall panel and for

a majority of countries in our sample, for some countries the hypothesis of a unit root in c − y cannot

be rejected. Moreover, the number of countries for which a unit root can/cannot be rejected varies

depending on the considered panel unit root test. We refer to Appendix C for details. In this section, we

therefore check the robustness of our results to stochastically detrending the variable c− y. We detrend

c− y by calculating the deviation of c− y from its stochastic trend c− y. The latter is approximated by

a ten-year moving average as c− y = 1
10

∑9
j=0(c−j − y−j).17

16Since T is large, the time series bias in OLS - and, therefore, in MG - that results from including the lagged dependent

variable to the specification can be considered negligible.
17This detrending approach takes out the low frequency movements (i.e., long swings) in the data as well as high frequency

noise as opposed to a first-differencing approach which takes out low and medium frequency movements (see e.g., Sarno and
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Table 2: Results using detrended c− y variable: OLS-based mean-group estimates

Stoch. detrended c− y for all countries Stoch. detrended c− y for a subset of countries

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.024 -0.053∗∗∗ 0.029 -0.023 -0.032∗∗ 0.010

( 0.022 ) ( 0.011 ) ( 0.031 ) ( 0.023 ) ( 0.015 ) ( 0.033 )

(cit − yit) 0.060 -0.042 0.102∗∗ 0.004 -0.033 0.036∗∗

( 0.058 ) ( 0.044 ) ( 0.050 ) ( 0.029 ) ( 0.024 ) ( 0.015 )

(cit − yit)dit 0.082 -0.171∗∗ 0.254∗∗ 0.131∗ -0.187∗∗ 0.318∗∗∗

( 0.083 ) ( 0.068 ) ( 0.105 ) ( 0.071 ) ( 0.078 ) ( 0.095 )

Cumby-Huizinga AC 3.261 3.838 2.734 2.643 3.846 2.214

[ 0.196 ] [ 0.147 ] [ 0.255 ] [ 0.267 ] [ 0.146 ] [ 0.330 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(6). Columns 2-4 report the results based on

using the stochastically detrended log consumption-income ratio for all sixteen countries in the sample. Columns 5-7 report

the results based on using the stochastically detrended log consumption-income ratio only for those countries for which the

hypothesis of a unit root in c − y cannot be rejected. For the remaining countries, the actual variable c − y is used after

removal of a deterministic linear time trend (if present). Estimation is based on panel data for sixteen countries over the period

1870 − 2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5%

and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992)

autocorrelation tests, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the

error term are nonzero at lags greater than zero (with maximum lag equal to two).

The results obtained with this stochastically detrended version of the log consumption-income ratio

are presented in Table 2. In columns 2-4, we report the results of estimating eq.(6) where the detrended

version of c − y is used for all sixteen countries in the sample. The results obtained for the dependent

variables ∆c and (∆y −∆c) are generally in accordance with the baseline results from Table 1. For the

dependent variable ∆y however, the positive impact of c − y during disasters is no longer significant.

This may be the result of unnecessarily throwing away potentially relevant information when detrending

c − y variables that, according to our unit root tests, are not stochastically trended. We therefore also

estimate eq.(6) with the stochastically detrended version of c− y used only for those countries for which

a unit root in c− y cannot be rejected.18 For the other countries, we use the actual c− y variable (albeit

cleansed from a deterministic linear time trend, if one is present). The results are presented in columns

5-7 of Table 2 and now unequivocally support our baseline results.

From the findings reported in this section, we generally conclude that our predictability results are

not driven by the presence of stochastic or deterministic trends in the regressor c− y.

Schmeling, 2014). Note that if we proxy the stochastic trend using a moving average calculated over five or twenty years

instead of ten years, we obtain similar results.
18Based on the CIPS and CIPS* panel unit root tests that control for the presence of cross-sectional dependence and a

deterministic linear time trend in c− y, the six countries (out of sixteen) for which the null hypothesis of a unit root cannot

be rejected are Denmark, Finland, Germany, Japan, Norway and Portugal. See Appendix C for details.
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Cross-sectional dependence

Our baseline estimations do not control for cross-sectional dependence in the regression error term.19

The latter may be caused by unobserved factors that are common across countries. Examples of common

factors are international business or financial cycles or changes in trade or financial integration that

occur simultaneously in most or all countries of the sample. Ignoring these common factors may imply

less efficient estimation and, more seriously, may lead to biased and inconsistent OLS estimates if the

unobserved common factors are correlated with the regressors. To control for unobserved common factors,

we consider the following specification,

xi,t+1 = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + κift+1 + εi,t+1 (9)

where xi,t+1 = ∆yi,t+1,∆ci,t+1, (∆yi,t+1 − ∆ci,t+1) and where the regression equation now includes a

vector of unobserved common factors ft+1 with a corresponding vector of country-specific factor loadings

κi. To estimate eq.(9), we follow Pesaran (2006) and use cross-sectional averages of the dependent

variable and all regressors as proxies for ft+1. After replacing ft+1 by these cross-sectional averages, we

estimate eq.(9) country-by-country using OLS. This is the common correlated effects (CCE) estimator.

The average over the N country-specific CCE estimates is referred to as the common correlated effects

mean group (CCEMG) estimator. For a dynamic setting such as ours, Chudik and Pesaran (2015) propose

to additionally include lagged cross-sectional averages of the dependent variable and the regressors. In

this case, we obtain N country-specific dynamic CCE estimates from which we calulate the dynamic

CCEMG estimator. Standard errors of both mean-group estimators are calculated from eq.(7).

The results of estimating eq.(9) using the standard and the dynamic CCEMG estimator for the sixteen

economies in our sample over the period 1870−2016 are presented in Table 3. The estimation results are

in accordance with our baseline results as we find that the predictive ability of the consumption-income

ratio for future income and consumption growth rates is significantly higher during disasters, i.e., more

positive for income growth and more negative for consumption growth.

19When testing explicitly for cross-sectional dependence in the error terms of our baseline specification, we reject cross-

sectional independence. These results are not reported but are available upon request.
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Table 3: Results controlling for cross-sectional dependence: CCE-based mean-group estimates

CCEMG estimator dynamic CCEMG estimator

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.066∗∗∗ -0.003 -0.052∗∗ -0.065∗∗∗ -0.020 -0.035

( 0.018 ) ( 0.016 ) ( 0.022 ) ( 0.018 ) ( 0.023 ) ( 0.028 )

(cit − yit) 0.076∗ -0.149∗∗∗ 0.216∗∗∗ 0.047 -0.181∗∗∗ 0.213∗∗∗

( 0.039 ) ( 0.030 ) ( 0.057 ) ( 0.029 ) ( 0.047 ) ( 0.062 )

(cit − yit)dit 0.150∗∗ -0.134∗∗ 0.290∗∗∗ 0.157∗∗ -0.117∗ 0.270∗∗∗

( 0.065 ) ( 0.060 ) ( 0.066 ) ( 0.067 ) ( 0.071 ) ( 0.081 )

Cumby-Huizinga AC 2.465 2.518 3.510 2.639 3.062 4.975

[ 0.292 ] [ 0.284 ] [ 0.173 ] [ 0.267 ] [ 0.216 ] [ 0.083 ]

Notes: Reported are the mean-group results based on static CCE estimation (see Pesaran, 2006) and dynamic CCE estimation

(see Chudik and Pesaran, 2015) of eq.(9). In the former case, we proxy the unobserved common factors ft+1 by adding the

cross-sectional averages of the dependent variable and all regressors into the regression equation. In the latter case, we proxy

the unobserved common factors ft+1 by adding contemporaneous values as well as lags of the cross-sectional averages of the

dependent variable and all regressors into the regression equation. Given the sample size, we add five lags of each cross-sectional

average. We refer to Chudik and Pesaran (2015) for details. Estimation is based on panel data for sixteen countries over the

period 1870−2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%,

5% and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga

(1992) autocorrelation tests, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations

of the error term are nonzero at lags greater than zero (with maximum lag equal to two).

Measurement error

The estimations so far have been conducted under the assumption that the regressors are uncorrelated

with the error term. The lack of autocorrelation implied by the results of the Cumby-Huizinga tests

reported in Table 1, for instance, suggests that the error term εi,t+1 in eqs.(6) or (8) is indeed iid,

so uncorrelated with the period t regressors. However, if a potential correlation between regressors

and error term renders OLS estimation inconsistent, then the results of autocorrelation tests based on

these OLS results may also be flawed. Hence, more scrutiny is needed here. We focus in particular on

the case of measurement error. Measurement error most likely is present in our historical dataset and

may be more important during macroeconomic disasters as it may be harder to construct GDP and its

components during wars and swift economic declines. It is easy to show that if the variables yit and

cit are measured with noise, this leads to correlation between the regressors and the error term in our

regression specifications.20 In this case, an instrumental variables (IV) approach is necessary. Using

20To see this, assume that the observed log income and log consumption variables are given by yt = ȳt+νyt and ct = c̄t+νct

with ȳt and c̄t denoting true log income and true log consumption and with νyt and νct denoting noise terms. If for the

true data we have ∆ȳt+j = ψy
j (c̄t − ȳt) + eyt+j and ∆c̄t+j = ψc

j (c̄t − ȳt) + ect+j with Et(e
y
t+j) = 0 and Et(ect+j) = 0,

then the corresponding empirical specifications based on observed data are given by ∆yt+j = ψy
j (ct − yt) + εyt+j and

∆ct+j = ψc
j (ct − yt) + εct+j where εyt+j = eyt+j + ∆νyt+j +ψy

j ν
y
t −ψ

y
j ν

c
t and εct+j = ect+j + ∆νct+j +ψc

jν
y
t −ψc

jν
c
t . As such,
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our historical sample, we therefore estimate eq.(6) country-by-country using IV and calculate the mean-

group results, i.e., the average of the country-specific IV estimates across countries. Standard errors

of the mean-group estimates are calculated from eq.(7). With respect to the choice of instruments, we

note that log consumption-income ratio is highly persistent.21 It therefore makes sense to use lags of

the regressors as instruments which, on top of being sufficiently correlated with the regressors, can be

expected to be uncorrelated with the error term. To make sure our findings are robust across instrument

sets, we consider two instrument sets, one with four lags of each regressor (instrument set 1) and one with

two lags of each regressor (instrument set 2). We calculate the Sargan-Hansen overidentifying restrictions

statistic that tests the null hypothesis that the instruments are orthogonal to the error term. We also

calculate the Cragg-Donald statistic of instrument strength which tests the null hypothesis that the

instruments are weak, i.e., that the instruments used are not sufficiently correlated with the potentially

endogenous regressors. The latter test is a multivariate extension of the first-stage F statistic used to

evaluate instrument strength in the case of one endogenous regressor.

The results presented in Table 4 confirm our baseline findings that macroeconomic disasters magnify

the predictive impact of the log consumption-income for both future income and consumption growth

rates. We further note that the magnitude and significance of the estimates is generally higher compared

to the baseline results and that our findings are robust across both instrument sets. The reported statistics

support the validity and quality of the instruments used. First, based on the Sargan-Hansen OR test,

we cannot reject orthogonality of instruments and error term.22 Second, based on the Cragg-Donald WI

test, we do reject the null hypothesis that the used instruments are weak.23

there is correlation between the regressor ct − yt and the error terms εyt+j and εct+j (irrespective of the horizon j > 0).
21The OLS-based mean-group AR parameter of an AR(1) process estimated for cit − yit equals 0.918 (with standard

error 0.020). While persistent, the variable cit − yit does not contain a unit root for a majority of countries and for the

overall panel, however, as can be concluded from the panel unit root tests reported in Appendix C.
22Establishing the validity of the instrument sets through this test is important as this validity is not necessarily guaranteed

a priori. For example, if measurement error in cit or yit takes the form of an autocorrelated MA process instead of an iid

process, then some lagged instruments (e.g., for period t − 1 in case of an MA(1) process) may be invalid and it may be

necessary to start with deeper lags (e.g., starting from t− 2 in case of an MA(1) process). This typically is detrimental to

instrument quality.
23Stock and Yogo (2004) in their Table 1 provide the 5% critical values for the null hypothesis that the bias of the IV

estimator relative to the bias of the OLS estimator exceeds the threshold of x% (see the notes to Table 4 for the critical

values).
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Table 4: Results controlling for measurement error: IV-based mean-group estimates

Instrument set 1 Instrument set 2

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.039∗∗ 0.004 -0.043 -0.034∗ 0.024 -0.058

( 0.016 ) ( 0.021 ) ( 0.030 ) ( 0.018 ) ( 0.031 ) ( 0.037 )

(cit − yit) 0.000 -0.026 0.026∗∗∗ -0.002 -0.025 0.023∗∗

( 0.021 ) ( 0.021 ) ( 0.010 ) ( 0.023 ) ( 0.021 ) ( 0.011 )

(cit − yit)dit 0.195∗∗∗ -0.185∗∗ 0.380∗∗∗ 0.270∗∗ -0.210∗∗ 0.480∗∗∗

( 0.072 ) ( 0.092 ) ( 0.082 ) ( 0.113 ) ( 0.107 ) ( 0.095 )

Cumby-Huizinga AC 2.735 3.105 1.839 3.004 2.443 2.076

[ 0.255 ] [ 0.212 ] [ 0.399 ] [ 0.223 ] [ 0.295 ] [ 0.354 ]

Sargan-Hansen OR 10.335 9.573 9.065 5.310 4.470 3.895

[ 0.324 ] [ 0.386 ] [ 0.431 ] [ 0.150 ] [ 0.215 ] [ 0.273 ]

Cragg-Donald WI 9.577 15.537

Notes: Reported are the mean-group results based on IV estimation of eq.(6). Estimation is based on panel data for sixteen

countries over the period 1870 − 2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate

significance at the 10%, 5% and 1% level respectively. Instrument set 1 consists of a constant and lags one to four of the

regressors dit, (cit − yit) and (cit − yit)dit. Instrument set 2 consists of a constant and lags one to two of the regressors dit,

(cit − yit) and (cit − yit)dit. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga

(1992) autocorrelation tests, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations of

the error term are nonzero at lags greater than zero (with maximum lag equal to two). The Sargan-Hansen OR test reported is

the average of the country-specific Sargan-Hansen overidentifying restrictions statistics that test the null hypothesis of the joint

validity of the instruments used (see Sargan, 1958; Hansen, 1982). The Cragg-Donald WI test is the average of the country-

specific Cragg-Donald weak instrument test statistics (see Cragg and Donald, 1993). Stock and Yogo (2004) in their Table 1

provide the 5% critical values for the null hypothesis that the bias of the IV estimator relative to the bias of the OLS estimator

exceeds the threshold of x%. Assuming all three regressors in eq.(6) are measured with noise and are therefore potentially

endogenous, these critical values are 10.01 (for x = 10%), 5.90 (for x = 20%) and 4.42 (for x = 30%) for instrument set 1 (which

contains twelve instruments excluding the constant) and 7.77 (for x = 10%), 5.35 (for x = 20%) and 4.40 (for x = 30%) for

instrument set 2 (which contains six instruments excluding the constant).

Alternative disaster dummy

Our results so far have been based on disaster dummies constructed from the consumption and GDP

disaster episodes identified by Barro and Ursúa (2008). More recently, Nakamura et al. (2013) estimate a

model of consumption disasters that generates endogenous estimates of the timing and length of disasters.

We use the start and end dates of their identified disaster episodes (see Table 2 in Nakamura et al., 2013)

to construct an alternative disaster dummy.

Table 5 then presents our predictability results when estimating eqs.(6) and (8) with this alternative

dummy variable for d. We report results both without and with a lagged dependent variable included in

the equation as, in contrast to the results obtained with our standard disaster dummy which are reported

in Table 1, the lagged dependent variable is now significant in all regressions. The reported results - in
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particular, those obtained from the equation that includes the lagged dependent variable - confirm our

main finding that the predictive power of c− y is higher for both future income and consumption growth

rates during macro disasters.

Table 5: Results using an alternative disaster dummy: OLS-based mean-group estimates

Without lagged dependent variable With lagged dependent variable

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.022∗∗ 0.017 -0.038∗∗ -0.016 0.025∗ -0.039∗∗

( 0.009 ) ( 0.014 ) ( 0.015 ) ( 0.010 ) ( 0.014 ) ( 0.018 )

(cit − yit) -0.026∗∗∗ -0.054∗∗∗ 0.028 -0.022∗∗ -0.048∗∗∗ 0.025∗∗

( 0.009 ) ( 0.018 ) ( 0.018 ) ( 0.011 ) ( 0.017 ) ( 0.012 )

(cit − yit)dit 0.196∗∗∗ -0.080 0.276∗∗∗ 0.196∗∗∗ -0.131∗∗ 0.311∗∗∗

( 0.071 ) ( 0.069 ) ( 0.037 ) ( 0.071 ) ( 0.067 ) ( 0.041 )

xit 0.149∗∗∗ 0.120∗∗∗ 0.110∗∗

( 0.038 ) ( 0.043 ) ( 0.046 )

Cumby-Huizinga AC 3.340 3.329 2.066 2.270 3.207 2.225

[ 0.188 ] [ 0.189 ] [ 0.356 ] [ 0.321 ] [ 0.201 ] [ 0.329 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(6) (results without lagged dependent variable) and

eq.(8) (results with lagged dependent variable) using a disaster dummy dit based on disasters identified by Nakamura et al.

(2013). Estimation is based on panel data for sixteen countries over the period 1870−2016. Standard errors are in parentheses,

p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga

test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis

of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags greater than zero

(with maximum lag equal to two).

Disposable income

The baseline results are based on estimations that use real GDP as a proxy for income. Theoretically,

using an after-tax measure of income is more appropriate but historical data on disposable income are

not widely available. Piketty and Zucman (2014) provide historical data on national income after taxes

which are available for only four countries out of the sixteen considered when using GDP data.24 These

countries are France, Germany, the UK and the US.

24The website is http://piketty.pse.ens.fr/fr/capitalisback. The data used are in the country excel files, Table 1, columns

9 and 14. From the reported per capita real national income series and the reported series for the ratio of national income

after taxes to national income, a series is constructed for per capita real disposable national income (=national income

minus taxes plus transfers). Note that, in line with our consumption data (see Section 3.1), we express this series as an

index. The data used are available uninterruptedly from 1870 onward. One exception is the UK where the ratio of after-tax

national income to national income is only available from 1948 onward. Here, we extrapolate the 1948 value of this ratio to

the period 1870− 1947. Note further that we update the calculated historical per capita real disposable income series from

2011 to 2016 using data from OECD Economic Outlook.
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Table 6: Results using disposable income: OLS-based mean-group estimates

Disposable income GDP (for comparison)

Dependent variable xi,t+1 Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

dit -0.015 -0.026∗∗∗ 0.010 -0.040∗ -0.029∗∗∗ -0.012

( 0.021 ) ( 0.003 ) ( 0.020 ) ( 0.021 ) ( 0.003 ) ( 0.023 )

(cit − yit) -0.013 -0.085∗∗∗ 0.072∗∗ -0.016∗ -0.050∗∗∗ 0.034∗∗

( 0.016 ) ( 0.031 ) ( 0.036 ) ( 0.009 ) ( 0.018 ) ( 0.015 )

(cit − yit)dit 0.173∗∗ 0.047 0.125∗∗ 0.173∗∗∗ -0.006 0.179∗∗∗

( 0.080 ) ( 0.069 ) ( 0.064 ) ( 0.046 ) ( 0.065 ) ( 0.021 )

Cumby-Huizinga AC 4.274 3.501 3.905 3.939 4.308 3.160

[ 0.118 ] [ 0.174 ] [ 0.142 ] [ 0.140 ] [ 0.116 ] [ 0.206 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(6) using log per capita real disposable national

income for yit. Estimation is based on panel data for four countries over the period 1870 − 2016. The results for this sample

when using per capita real GDP for yit are added for comparison. Standard errors are in parentheses, p-values are in square

brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average

of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis of no autocorrelation

against the alternative that the autocorrelations of the error term are nonzero at lags greater than zero (with maximum lag

equal to two).

In Table 6 (columns 2-4), we therefore report the OLS-based mean-group estimates obtained from

estimating eq.(6) with y now calculated as the log of per capita real national disposable (after-tax) income.

For reasons of comparison, the table also reports the mean-group estimates obtained from this reduced

sample of four countries when using our standard variable for y, namely the log of per capita real GDP

(columns 5-7). We note that the results obtained for both measures of y are quite similar. The results

for xi,t+1 = ∆yi,t+1 and xi,t+1 = (∆yi,t+1 − ∆ci,t+1) confirm our baseline findings, i.e., during macro

disasters, the predictive power of c− y for ∆y and ∆y −∆c is higher. Contrary to our baseline results,

however, we do not find a significantly higher predictive impact of c− y on ∆c. Importantly, this result

is obtained for both measures of income and therefore cannot be attributed to our use of an alternative

income measure. Rather, it stems from the low N dimension of the panel used here (i.e., N = 4) which

can make the mean-group results less stable and driven by outliers.25

3.4 Longer horizons

The intertemporal budget constraint discussed in Section 2 implies that the current log consumption-

income ratio may have predictive power, not only for next period’s income and consumption growth rates,

25Specifically, the insignificant mean-group estimate for the coefficient of ∆c on (c − y)d is driven by the outlier result

for Germany for which the estimate for γi in this regression is positive rather than negative. To see this for the GDP-

based result, we refer to Appendix D which reports the country-specific estimates of βi and γi that underlie our baseline

mean-group results.
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but also for income and consumption growth rates further into the future. In this section, we therefore

investigate how macro disasters affect the predictive power of cit − yit at longer horizons. To this end,

we consider our baseline specification at longer horizons, i.e., we estimate,

xi,t+j = µi + αidit + βi(cit − yit) + γi(cit − yit)dit + εi,t+j (10)

with horizon j and where xi,t+j = ∆yi,t+j ,∆ci,t+j , (∆yi,t+j −∆ci,t+j).

Table 7: Results at longer horizons: OLS-based mean-group estimates

Horizon j = 2 Horizon j = 3

Dependent variable xi,t+j Dependent variable xi,t+j

∆yi,t+j ∆ci,t+j (∆yi,t+j −∆ci,t+j) ∆yi,t+j ∆ci,t+j (∆yi,t+j −∆ci,t+j)

dit -0.024∗ 0.001 -0.025 -0.010 0.002 -0.012

( 0.012 ) ( 0.018 ) ( 0.022 ) ( 0.011 ) ( 0.017 ) ( 0.011 )

(cit − yit) -0.013 -0.038∗∗ 0.025∗∗∗ -0.019∗ -0.032∗∗ 0.013∗

( 0.012 ) ( 0.015 ) ( 0.009 ) ( 0.010 ) ( 0.015 ) ( 0.008 )

(cit − yit)dit 0.143∗∗ -0.094∗ 0.237∗∗∗ 0.022 -0.116∗∗ 0.138∗∗∗

( 0.057 ) ( 0.054 ) ( 0.048 ) ( 0.048 ) ( 0.054 ) ( 0.031 )

Cumby-Huizinga AC 3.438 3.893 2.483 3.297 4.071 3.044

[ 0.329 ] [ 0.273 ] [ 0.478 ] [ 0.509 ] [ 0.396 ] [ 0.550 ]

Notes: Reported are the mean-group results based on OLS estimation of eq.(10) for horizons j = 2 and j = 3. Estimation

is based on panel data for sixteen countries over the period 1870 − 2016. Standard errors are in parentheses, p-values are in

square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the

average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests. For j = 2, we test the null hypothesis of

autocorrelation of either order zero or order one against the alternative that the autocorrelations of the error term are nonzero

at lags greater than one (with maximum lag equal to three). For j = 3, we test the null hypothesis of autocorrelation of either

order zero, order one or order two against the alternative that the autocorrelations of the error term are nonzero at lags greater

than two (with maximum lag equal to four).

The OLS-based mean-group estimates obtained from estimating eq.(10) for j = 2 and j = 3 are

reported in Table 7. Compared to the baseline results reported in Table 1, the coefficients on our

regressor of interest (c − y)d are generally somewhat smaller (in absolute value). With the exception

of the impact of (c − y)d on ∆y at horizon j = 3, they are all significant. We note that the impact of

(c − y)d is significant until j = 4 for ∆c and until j = 5 for ∆y −∆c (results unreported but available

upon request). Hence, while also significant for j > 1, the predictive ability of c − y during disasters

clearly decreases with the horizon j.

In sum, in line with the validity of the IBC, we also find evidence of the predictive power of the log

consumption-income ratio - and of its different impact during disasters - at horizons larger than one.
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3.5 What about ordinary recessions?

We now investigate whether our results hold, not only for disasters, but also for more conventional

recessions. To this end, we conduct estimations using recession dummies instead of the disaster dummies

considered previously. To focus on ordinary recessions, we restrict our sample to the period 1960− 2016

with the same N = 16 countries considered in the analysis of historical disasters. Over this period,

almost no disasters of the type defined by Barro and Ursúa (2008) have occurred, while a large number

of ordinary recessions have taken place. We calculate an annual recession dummy drec from the OECD

Composite Leading Indicator (CLI) of activity which provides monthly data on recession dates - i.e.,

turning points - for each country in our sample.26 The other data used in the estimations are those used

in the baseline regressions, albeit taken over a smaller sample period.

In Table 8, we report OLS-based mean-group estimates obtained when estimating eq.(6) with drec

for x = ∆y and x = ∆c (we leave out the results for x = (∆y − ∆c) to save space). For these results,

however, we cannot reject the null hypothesis of no autocorrelation based on the Cumby-Huizinga test.

As such, we also look at the results obtained when estimating eq.(8) where the lagged dependent variable

is included as a regressor. By adding this regressor, the autocorrelation issue can be tackled to some

extent as can be seen from the improved autocorrelation tests. The reported results suggest that, during

ordinary recessions, the predictive ability of c−y is significantly higher for ∆y but not for ∆c. The impact

of c− y on ∆y, while in accordance with the results found for ∆y in disasters, is quantitatively smaller,

however, and less robust. An example of this lack of robustness is given by the CCEMG estimates that

we also report in the table. The CCEMG estimator corrects for cross-sectional dependence as detailed

above. Based on these CCEMG estimates, we do not find an increase in the predictive ability of c − y

during ordinary recessions, neither for ∆c nor for ∆y.27

Hence, while our previous results show that the consumption-income ratio has more predictive ability

for future income and consumption growth rates during disaster episodes, we cannot robustly draw the

same conclusion when looking at ordinary recessions, even severe ones like the Great Recession (2007-

2009).

26We first calculate a monthly recession dummy per country which is set to one for the months after the peak and up to

and including the trough. A quarterly recession dummy for that country then equals one if the monthly dummy equals one

during at least two months of the quarter under consideration. An annual recession dummy for that country then equals

one if the quarterly dummy equals one during at least two quarters of the year under consideration.
27This is also true when estimating the regressions with drec using IV (results unreported but available upon request).
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Table 8: Results for ordinary recessions: OLS-and CCE-based mean-group estimates

Dependent variable xi,t+1

∆yi,t+1 ∆ci,t+1

OLS CCE OLS CCE

(1) (2) (1) (2)

drecit -0.015∗∗∗ -0.011∗∗∗ -0.009∗∗∗ -0.009∗∗∗ -0.004∗∗∗ -0.007∗∗∗

( 0.001 ) ( 0.001 ) ( 0.001 ) ( 0.002 ) ( 0.001 ) ( 0.002 )

(cit − yit) 0.041 0.054 0.005 -0.020 -0.045 -0.089∗∗∗

( 0.046 ) ( 0.035 ) ( 0.023 ) ( 0.047 ) ( 0.031 ) ( 0.022 )

(cit − yit)drecit 0.049∗∗ 0.062∗∗ 0.024 0.011 0.037 0.002

( 0.024 ) ( 0.026 ) ( 0.025 ) ( 0.033 ) ( 0.030 ) ( 0.032 )

xit 0.270∗∗∗ 0.421∗∗∗

( 0.054 ) ( 0.052 )

Cumby-Huizinga AC 7.939 3.421 4.206 9.427 3.039 4.103

[ 0.019 ] [ 0.181 ] [ 0.122 ] [ 0.009 ] [ 0.219 ] [ 0.129 ]

Notes: Reported are the mean-group results based on either OLS or static CCE estimation of eq.(6) or eq.(8) with either

xi,t+1 = ∆yi,t+1 or xi,t+1 = ∆ci,t+1 and with recession dummy drecit instead of disaster dummy dit. The recession dummy drecit

is constructed from the OECD Composite Leading Indicator (CLI) of activity. Estimation is based on panel data for sixteen

countries over the period 1960 − 2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate

significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’

Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis of no autocorrelation against the alternative that

the autocorrelations of the error term are nonzero at lags greater than zero (with maximum lag equal to two).

3.6 Major historical disasters

We also investigate whether all disaster episodes magnify the predictive impact of the log consumption-

income ratio or whether only particular episodes do so. To look at this issue, we investigate the separate

impact of the major disaster episodes that occurred during the sample period according to Barro and

Ursúa (2008), i.e., World War I (WW1), the Spanish flu pandemic of the late 1910s/early 1920s (PAN),

the Great Depression (GRD) and World War II (WW2). The estimation details and the obtained re-

sults of this exercise are provided in Appendix E. For all major disasters considered, we find that the

predictive power of the log consumption-income ratio becomes significantly higher during the occurrence

of these major crises. Hence, the reduction in decoupling between consumption and income and the

implied reduction in consumption smoothing is not limited to one particular disaster type but seemingly

characterizes every major crisis type that we consider in our historical dataset.

3.7 The Covid-19 pandemic

We now take a look at the impact of the Covid-19 pandemic, a contemporaneous macroeconomic disaster,

on the predictive ability of the log consumption-income ratio. To this end, we use quarterly data over
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the period 1995Q1 − 2021Q4 for twenty industrial economies, i.e., N = 20.28 In line with our previous

estimations, our specification is given by,

xi,t+1 = αidt + βi(cit − yit) + γi(cit − yit)dt + εi,t+1 (11)

with dependent variable xi,t+1 and where dt denotes the Covid-19 dummy which is set to one over

the period 2020Q1 − 2021Q4 for all countries. For cit, we use the log of per capita real private final

consumption expenditures, while for yit we use the log of per capita real GDP.29

The OLS-based mean-group results of estimating eq.(11) are presented in Table 9 (column ’No lag

dep. var.’). Results are reported only for xi,t+1 = (∆yi,t+1 − ∆ci,t+1) because of space considerations

and because the results obtained for ∆yi,t+1 and ∆ci,t+1 separately are considerably less precise. In

line with our previous discussion and findings, we observe that this period’s log consumption-income

ratio c− y has a positive impact on next period’s income-consumption differential ∆y−∆c and that this

predictive ability is significantly higher during the Covid-19 pandemic. This suggests that also during the

Covid-19 pandemic there is less decoupling between consumption and income which points to a reduction

in consumption smoothing. The reported results are robust to adding the lagged dependent variable

as a regressor to eq.(11) (column ’Lag dep. var.’), to detrending the predictor variable c − y (column

’Detrended c− y’), and to using log per capita real disposable income instead of log per capita real GDP

as a proxy for y (column ’Disp. inc.’).30,31

28These are Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy, Japan, the Nether-

lands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, the UK and the US.
29Real private final consumption expenditures and real GDP are taken from OECD Economic Outlook (No.110) and we

calculate per capita measures using quarterly population data from Datastream.
30In contrast to what we find for the historical period 1870 − 2016 (see Appendix C), panel unit root tests applied to

the variable c − y over the period 1995Q1 − 2021Q4 do not reject that c − y is stochastically trended. To deal with this,

we consider c− y in deviation from its stochastic trend c− y where the latter is approximated by a twenty-quarter moving

average as c− y = 1
20

∑19
j=0(c−j − y−j). Our findings are also robust if instead we proxy the stochastic trend using a

moving average calculated over either ten or forty quarters.
31Data for nominal disposable income of households and non-profit institutions serving households are taken from OECD

Economic Outlook (No.110) and are available for seven countries, i.e., Australia, Canada, France, Germany, Japan, the UK

and the US. They are put in per capita real terms using the deflator of private final consumption expenditures from OECD

Economic Outlook and population data from Datastream.
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Table 9: Results for the Covid-19 pandemic: OLS-based mean-group estimates

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

Excluding ordinary recessions Including ordinary recessions

No lag dep. var. Lag dep. var. Detrended c− y Disp. inc. No lag dep.var. Lag dep. var.

dt 0.624∗∗∗ 0.641∗∗∗ 0.030∗∗ 0.175∗∗∗ 0.708∗∗∗ 0.691∗∗∗

( 0.082 ) ( 0.082 ) ( 0.014 ) ( 0.023 ) ( 0.082 ) ( 0.078 )

(cit − yit) 0.044∗∗∗ 0.042∗∗∗ 0.050∗∗∗ 0.161∗∗∗ 0.039∗∗∗ 0.033∗∗∗

( 0.009 ) ( 0.009 ) ( 0.012 ) ( 0.022 ) ( 0.011 ) ( 0.010 )

(cit − yit)dt 0.903∗∗∗ 0.926∗∗∗ 0.873∗∗∗ 1.031∗∗∗ 1.012∗∗∗ 0.988∗∗∗

( 0.095 ) ( 0.100 ) ( 0.097 ) ( 0.063 ) ( 0.097 ) ( 0.101 )

xit 0.014 -0.032

( 0.045 ) ( 0.045 )

drecit 0.007 0.010

( 0.011 ) ( 0.010 )

(cit − yit)drecit 0.016 0.022

( 0.018 ) ( 0.017 )

Cumby-

Huizinga AC

4.247 3.144 3.619 1.517 4.689 2.870

[ 0.120 ] [ 0.208 ] [ 0.164 ] [ 0.468 ] [ 0.096 ] [ 0.238 ]

Notes: Reported are the mean-group results based on OLS estimation of eqs.(11) and (12). dt denotes the Covid-19 dummy

which equals one over the period 2020Q1 − 2021Q4. drecit denotes the recession dummy which is constructed from the OECD

Composite Leading Indicator (CLI) of activity. Columns two to five present the results of the estimation of eq.(11). Column ’No

lag dep. var.’ presents the baseline results of the estimation of eq.(11). In column ’Lag dep. var.’, the first lag of the dependent

variable is added as a regressor to eq.(11). In column ’Detrendfed c − y’, the detrended log consumption-income ratio is used

for c−y in eq.(11). In column ’Disp. inc.’, log per capita real disposable income is used for y in eq.(11) instead of log per capita

real GDP. Both final columns present the results of the estimation of eq.(12) where in column ’Lag dep. var.’ the first lag of

the dependent variable is added as a regressor to eq.(12). Estimation is based on panel data for twenty countries (columns 2, 3

and 4), seven countries (column 5) or nineteen countries (columns 6 and 7) over the period 1995Q1 − 2020Q4. Standard errors

are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The

Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation test, testing

the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags

greater than zero (with maximum lag equal to two).

As before, we ask ourselves whether the increased predictive ability of the log consumption-income

ratio during the Covid-19 pandemic is specific to this disaster episode or whether it occurs also during

more conventional recessions that have taken place over the considered sample period. To investigate

this, we estimate,

(∆yi,t+1 −∆ci,t+1) = αidt + βi(cit − yit) + γi(cit − yit)dt + αreci drecit + γreci (cit − yit)drecit + εi,t+1 (12)

where, as before, dt is the common Covid-19 dummy and where drecit denotes the country-specific recession

dummy. The latter is calculated from the OECD Composite Leading Indicator (CLI) of activity which
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provides monthly data on recession dates - i.e., turning points - for each country in our sample.32 If

ordinary recessions also increase the predictive power of the log consumption-income ratio, we should not

only find a significantly positive impact of the regressor (cit−yit)dt but also of the regressor (cit−yit)drecit .

The OLS-based mean-group results of the estimation of eq.(12) - without and also with the inclusion of

the lagged dependent variable - are presented in the final two columns of Table 9. In line with the findings

for annual historical data reported and discussed in Section 3.5 above, there is no evidence that suggests

that conventional recessions have an impact on the predictive ability of the consumption-income ratio,

i.e., the coefficient on the regressor (cit − yit)d
rec
it is never significantly different from zero. As such,

in terms of its impact on the long-run IBC-implied relationship between consumption and income, the

Covid-19 pandemic is more akin to historical disaster episodes and has less in common with more typical

recessions (including the Great Recession of 2007 − 2009). This conclusion supports the sentiment of

Goldstein et al. (2021) who argue that the Covid-19 crisis is not just ’another’ large-scale shock but is

fundamentally different from previous financial and economic crises, including the Great Recession.

4 Theoretical interpretation of the results

The previous section has provided robust evidence that consumption and income are more closely linked

(or, less decoupled) during rare macroeconomic disasters, implying that consumption smoothing oppor-

tunities are reduced. In this section, we investigate how this evidence relates to consumption theory.

To this end, we impose additional structure on the predictive relationship obtained from the IBC by

specifying consumer behavior.

4.1 Consumption growth

We consider a savers-spenders set-up where one consumer type is optimizing intertemporally and the

other type follows a rule-of-thumb and consumes current income in every period (see e.g., Campbell and

Mankiw, 1989; Mankiw, 2000). Mankiw (2000) suggests that rule-of-thumb consumer behavior may stem

both from consumers who deviate from rational expectations and/or from consumers who face a binding

liquidity constraint. This gives the following expression for total consumption growth,

∆ct+1 = λ∆yt+1 + (1− λ)∆c∗t+1 (13)

where λ reflects the fraction of income going to rule-of-thumb consumers (with 0 ≤ λ < 1) and where

∆c∗t+1 is the consumption growth rate of intertemporally optimizing consumers. The latter is derived in

32See footnote 25 above for details. Since these data are missing for New Zealand in 2020 and 2021, estimations with the

recession dummy - i.e., both final columns of Table 9 - are based on a panel of nineteen countries instead of twenty.
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Appendix A and is given by,

∆c∗t+1 = −1

θ
δ +

1

θ
Etrt+1 +

σ

θ
Etνt+1 + ωt+1 (14)

where θ > 0 is the coefficient of relative risk aversion, δ > 0 is the rate of time preference and rt+1 is the

real rate of return on wealth. The term ωt+1 for which Et(ωt+1) = 0 reflects the part of consumption

growth related to the arrival of new information. The component 1
θEtrt+1 is related to intertemporal

substitution in consumption in response to expected changes in the rate of return, i.e., a period t expected

increase (resp. decrease) in the rate of return of period t + 1 implies an increase (resp. decrease) in

consumption growth from t to t + 1 as consumption is shifted from t to t + 1 (resp. from t + 1 to t).

The component σ
θEtνt+1 is the part of consumption growth of the optimizing consumer that reflects

a precautionary saving motive, i.e., the precautionary component (see e.g., Parker and Preston, 2005).

As precautionary saving reduces period t consumption and augments period t+ 1 consumption, thereby

raising consumption growth from t to t+ 1, we show in Appendix A that this component is positive. The

parameter σ > 0 reflects the strength of the precautionary saving motive.

Our model for consumption growth nests several consumption models considered in the literature.

Upon setting rt+1 = δ (∀t), λ = 0 and σ = 0, we obtain the log-linear version of the standard permanent

income model with log consumption following a random walk (see e.g., Campbell and Mankiw, 1989). We

then have ct+1 = ct+ωt+1 with Et(ωt+1) = 0. In this setting, there is maximal consumption smoothing as

consumers expect the same consumption in every period, i.e., we have Et(ct+1) = ct (∀t). The log-linear

permanent income model with intertemporal substitution in consumption in response to return variation

is obtained for λ = 0 and σ = 0 (see e.g., Hall, 1988). If this model is extended with rule-of-thumb

consumers and we therefore only restrict our set-up by imposing σ = 0, we obtain a standard savers-

spenders model (see e.g., Campbell and Mankiw, 1989; Mankiw, 2000). Finally, if the only imposed

restriction is λ = 0, we have the consumption growth rate obtained from a typical buffer stock model of

saving (see Carroll, 1992; Parker and Preston, 2005).

4.2 The consumption-income ratio

Taking into account consumer behavior, the log consumption-income ratio can be obtained by substituting

eqs.(13) and (14) into the IBC given by eq.(1) to obtain,

ct − yt = (1− λ)

∞∑
j=1

ρj
[
Et(∆yt+j) +

1

θ
δ − 1

θ
Et(rt+j)−

σ

θ
Et(νt+j)

]
(15)

From this equation, we note that, since 0 ≤ λ < 1, the consumption-income ratio depends on expected

future income changes, on expected future rates of return on wealth and on the expected future precau-

tionary components. Under the standard (log-linearized) permanent income model for which we have

27



rt+1 = δ (∀t), λ = 0 and σ = 0, eq.(15) then reduces to ct − yt =
∑∞
j=1 ρ

jEt(∆yt+j) which is the

log-linear version of Campbell (1987)’s ’saving for a rainy day’ expression, i.e., if income is expected to

fall, the consumer saves. With respect to the other determinants of ct − yt, we note that it is negatively

affected by expected rates of return Etrt+j and by the expected precautionary components Etνt+j , i.e.,

saving increases when Etrt+j increases (i.e., intertemporal substitution) and when Etνt+j increases (i.e.,

precautionary saving).

4.3 Implications for predictability

With respect to our findings of Section 3, as it turns out, both deviations from the standard (log-linearized)

permanent income model with time-varying returns discussed above - i.e., rule-of-thumb consumption

and precautionary saving - can explain our documented changes in the predictive impact of the log

consumption-income ratio for income and consumption growth rates during disasters.

First, a reduction in consumption smoothing can occur because of an increase in rule-of-thumb con-

sumer behavior. This is captured by the parameter λ where an increase in λ implies - all else constant -

a more positive predictive impact of ct − yt on future income growth rates ∆yt+j . This can immediately

be observed from eq.(15) above by multiplying both sides of the equation by 1
1−λ so that future income

growth rates can be written as a function of the current log consumption income ratio ct − yt times

1
1−λ . An increase in λ, however, cannot explain the observed more negative impact of ct − yt on future

consumption growth rates ∆ct+j . Indeed, a rise in λ, by increasing the positive predictive impact of

ct − yt on ∆yt+j , tends to also lead to a less negative or even positive predictive impact of ct − yt on

future ∆ct+j as, from eq.(13), ∆ct+1 is driven by ∆yt+1.33

Second, a reduction in consumption smoothing can occur because of a stronger precautionary saving

motive of the optimizing consumers. This is captured by the parameter σ where an increase in σ may lead

- all else constant - to a more negative predictive impact of ct − yt for future consumption growth rates

∆ct+j . To see this, suppose initially that σ = 0, i.e., there is no precautionary component in consumption

growth. In this case, if ct − yt has a negative predictive impact for future consumption growth, it must

stem from its negative relationship with Etrt+j , i.e., it is due to intertemporal substitution. If the

precautionary component in consumption growth then becomes more important so that σ > 0, then the

predictive ability of ct − yt for future consumption growth increases - i.e., becomes more negative - as

ct − yt then has predictive power not only for rt+j but also for νt+j .
34

33For a large λ, for instance, income and consumption growth rates are highly positively correlated so that the positive

impact of ct − yt on ∆yt+j more than likely implies a positive impact of ct − yt on ∆ct+j .
34It can be shown that, all else constant, the relationship between σ and the predictive ability of ct− yt for next period’s

consumption growth ∆ct+1 is in fact non-linear. For lower values of σ, an increase in σ renders the predictive power of
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4.4 Empirical evidence

We shed light on the theoretical channels underlying the results of Section 3 by focussing on the predictive

relationships implied by eq.(15). As such, we avoid the direct estimation of the specification for consump-

tion growth given by eqs.(13)-(14). Apart from the theoretical objections that can be formulated against

attempting to estimate structural parameters such as risk aversion from aggregate data, there are also

practical considerations that complicate this estimation. A major issue concerns the use of instruments

for the potentially endogenous regressors. The variables ∆yt+1 and rt+1, for instance, are notoriously

hard to instrument which renders the instrumental variables estimation of a regression for consumption

growth largely unreliable.35

4.4.1 Approach

According to eq.(15), the log consumption-income ratio ct−yt may predict ∆yt+j , rt+j and νt+j . Evidence

of the predictive ability of ct − yt for ∆yt+1 has been provided in Section 3 above. Given the theory

presented in this section, the finding that ct − yt has a more positive predictive impact on future income

growth ∆yt+1 during disaster episodes can be attributed to an increase in rule-of-thumb consumption

behavior during these episodes. This, in turn, may be the result of liquidity constraints becoming more

binding during disasters. In what follows, we present evidence of the predictive ability of ct − yt for νt+1

as this channel constitutes our explanation for the finding reported above that, during disasters, ct − yt

has a more negative predictive impact on future consumption growth ∆ct+1. The problem, however, is

that the component νt+1 is unobserved. To deal with this, our approach is twofold. First, we look at

the predictive impact of ct − yt for future returns rt+1 in normal times and during disasters. In doing

so, we investigate whether we can rule out the alternative explanation for observing a more negative

predictive impact of ct − yt on consumption growth ∆ct+1 during disasters, namely that it is due to a

more negative predictive impact of ct − yt on rt+1. Second, the precautionary saving motive is induced

by uncertainty about the future (see e.g., Deaton, 1992; Carroll, 1992; Carroll et al., 2019). Hence, we

proxy the precautionary component νt+1 using an uncertainty measure. Then, we investigate whether

ct − yt has predictive power for this proxy and whether this predictive power is higher during disasters.

ct − yt for ∆ct+1 more negative while for higher values of σ, a further increase in σ renders the predictive power of ct − yt
for ∆ct+1 less negative.

35This is confirmed by the values obtained for the Cragg-Donald weak instrument test calculated when estimating regres-

sions of consumption growth on income growth and returns using our historical dataset. Using a variety of instrumental

variables for income growth and returns, we find values for the Cragg-Donald weak instrument test are typically below one

(whereas the rule-of-thumb value for this test equals ten). These results are not reported but are available upon request.
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4.4.2 Data

The estimations are conducted with the historical dataset used in most previous estimations and detailed

in Section 3.1. Additionally, for real returns on wealth rt+1, we use the real rate of return on equity.

Historical data for the nominal rate of return on equity are reported by Jordà et al. (2019).36 We

deflate nominal returns using the inflation rate calculated from the Consumer Price Index (CPI) which

is obtained from the Jordà-Schularick-Taylor macro-history Database.37

To proxy the precautionary component νt+1 using an uncertainty measure, there are few possibilities

as, over the historical period considered, data are often unavailable, in particular during the disaster

periods that we investigate. A viable option is to follow Mody et al. (2012) who, in their paper on

precautionary saving during the Great Recession, consider the variance of per capita real GDP growth

as an uncertainty measure. To this end, we estimate a first-order GARCH process for per capita real

GDP growth ∆yi,t+1 for every country included in our historical dataset. Details on the GDP data used

are provided in Section 3.1. From these estimations, we calculate the conditional variance series ht+1 of

shocks to per capita real GDP growth. Graphs of these series are presented in Appendix F and they

clearly show a pattern of increased uncertainty during the delineated historical disaster episodes.

4.4.3 Results

Table 10 presents the results of estimating the predictive impact of the log consumption-income ratio

cit− yit on the real rate of return on equity ri,t+1 and on the conditional variance hi,t+1 of shocks to per

capita real GDP growth, i.e., we estimate eq.(6) above with xi,t+1 = ri,t+1 and with xi,t+1 = hi,t+1. We

report both OLS-based and IV-based mean-group estimates where the latter control for measurement

error as discussed in Section 3.3 above. The Sargan-Hansen OR and Cragg-Donald WI test statistics

suggest that the instruments used - i.e., lags of the regressors - are valid and of good quality. The results

reported for the conditional variance hi,t+1 include estimates obtained from estimating a specification that

includes the lagged dependent variable as a regressor, i.e., the estimation of eq.(8) above with xi,t+1 =

hi,t+1. This is necessary as the conditional variance series are highly persistent so that excluding the

lagged dependent variable in these instances implies poor results for the Cumby-Huizinga autocorrelation

test statistic, i.e., the null hypothesis of no autocorrelation is strongly rejected.

The results for the returns on equity suggest that cit− yit has a significant negative impact on ri,t+1.

This finding supports the theory of intertemporal substitution, i.e., high (expected) returns coincide with

36The data can be found at https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/GGDQGJ

where the nominal equity returns have code ‘eq-tr’. Details on the data sources are discussed in the online Appendix

of Jordà et al. (2019)’s paper.
37The website is http://www.macrohistory.net/data. The data used has code ‘cpi’.
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a low consumption-income ratio or, conversely, with a high saving ratio. This relationship is unaffected

by macroeconomic disasters, however, as can be concluded from the positive but insignificant impact of

the regressor (cit − yit)dit on ri,t+1. As such, it seems that the more negative predictive ability of the

log consumption-income ratio for consumption growth during disasters that we document in Section 3

cannot be attributed to a more negative predictive impact of the log consumption-income ratio for real

returns.

Table 10: Results for the determinants of consumption growth: OLS- and IV-based mean-group estimates

Dependent variable xi,t+1

ri,t+1 hi,t+1

OLS IV OLS IV

(1) (2) (1) (2)

dit -0.049 -0.033 0.006∗ 0.000 0.007 0.000

( 0.043 ) ( 0.054 ) ( 0.003 ) ( 0.002 ) ( 0.004 ) ( 0.002 )

(cit − yit) -0.058∗ -0.078∗∗ 0.010 0.007 0.014∗ 0.006

( 0.035 ) ( 0.035 ) ( 0.008 ) ( 0.005 ) ( 0.008 ) ( 0.005 )

(cit − yit)dit 0.201 0.368 -0.024∗ -0.029∗ -0.048∗ -0.030∗∗

( 0.178 ) ( 0.251 ) ( 0.015 ) ( 0.016 ) ( 0.029 ) ( 0.015 )

xit 0.769∗∗∗ 0.774∗∗∗

( 0.035 ) ( 0.033 )

Cumby-Huizinga AC 4.014 3.528 15.559 3.054 14.331 2.475

[ 0.134 ] [ 0.171 ] [ 0.000 ] [ 0.217 ] [ 0.001 ] [ 0.290 ]

Sargan-Hansen OR 7.724 11.900 15.472

[ 0.562 ] [ 0.219 ] [ 0.217 ]

Cragg-Donald WI 9.080 9.495 7.692

Notes: Reported are the mean-group results based on either OLS or IV estimation of eq.(6) or eq.(8) with either

xi,t+1 = ri,t+1 or xi,t+1 = hi,t+1. The variable ri,t+1 is the real rate of return on equity. The variable hi,t+1 is the

conditional variance of shocks to per capita real GDP growth ∆yi,t+1 as estimated from a first-order GARCH process.

Estimation is based on panel data for sixteen countries over the period 1870 − 2015 for the results with xi,t+1 = ri,t+1

and over the period 1870 − 2016 for the results with xi,t+1 = hi,t+1. Standard errors are in parentheses, p-values are in

square brackets. ∗,∗∗,∗∗∗ indicate significance at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows

the average of the individual countries’ Cumby and Huizinga (1992) autocorrelation tests, testing the null hypothesis of

no autocorrelation against the alternative that the autocorrelations of the error term are nonzero at lags greater than

zero (with maximum lag equal to two). The Sargan-Hansen OR test reported is the average of the country-specific

Sargan-Hansen overidentifying restrictions statistics that test the null hypothesis of the joint validity of the instruments

used (see Sargan, 1958; Hansen, 1982). The Cragg-Donald WI test is the average of the country-specific Cragg-Donald

weak instrument test statistics (see Cragg and Donald, 1993). For the critical values, we refer to the notes to Table 4

and to Stock and Yogo (2004). The instrument set used both for xi,t+1 = ri,t+1 and xi,t+1 = hi,t+1 consists of a constant

and lags one to four of the regressors dit, (cit − yit) and (cit − yit)dit.

The results obtained for the conditional variance in the relevant cases where a lagged dependent

variable is included as a regressor suggest that, during normal times, there is no link between the log

consumption-income ratio cit − yit and our uncertainty measure hi,t+1. During macroeconomic disaster
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episodes, however, a significant negative relationship is uncovered between cit − yit and hi,t+1, i.e., high

(expected) uncertainty coincides with a low consumption-income ratio or, conversely, with a high saving

ratio. While our uncertainty measure is only an (imperfect) proxy for the theoretical precautionary com-

ponent in aggregate consumption growth discussed in Section 4.1, this result nonetheless suggests that the

precautionary saving motive of optimizing consumers is significantly higher during disasters, i.e., not only

is there more uncertainty during disaster episodes, a given degree of uncertainty also matters more for

saving during these times of turmoil. Importantly, this result supports a precautionary saving interpreta-

tion of the empirical finding documented in Section 3 that, during disasters, the log consumption-income

ratio has a more negative predictive impact on aggregate consumption growth, i.e., during disasters, the

log consumption-income ratio has a more negative predictive impact on consumption growth because it

has a negative predictive impact on the precautionary component in consumption growth.

5 Conclusions

This paper uses a large historical dataset (1870-2016) for sixteen industrial economies to investigate

whether rare macroeconomic disasters (wars, pandemics, depressions) affect consumption smoothing

opportunities. Through the estimation of predictive panel regressions, we find that the current log

consumption-income ratio has more predictive power for future income and consumption growth rates

during rare macroeconomic disasters. This result survives a battery of robustness checks and also holds

for the ongoing Covid-19 pandemic, though not for more conventional postwar recessions. It implies

that the intertemporal budget constraint (IBC) holds more strictly and that consumption and income

are significantly less decoupled during disaster episodes. This, in turn, points to a structural reduction

in consumption smoothing. Using a savers-spenders type of model, we show that this reduction can be

interpreted as stemming from an increase during disasters of rule-of-thumb consumer behavior which po-

tentially reflects tighter credit constraints as well as from a stronger precautionary saving motive of those

consumers who do optimize. Hence, our evidence supports an incomplete markets based interpretation

of the reduction in consumption smoothing observed during rare disasters.
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Appendices

Appendix A Derivation of eqs.(1) and (14)

A.1 Derivation of eq.(1)

This appendix describes the steps in the derivation of eq.(1) in the main text. For details, we refer to

Campbell and Mankiw (1989). When total wealth is tradeable, the period-by-period budget constraint

of a consumer can be written as,

Wt+1 = Rt+1(Wt − Ct) (A-1)

where Wt is real total wealth, Ct is real consumption and Rt is the gross real return on total wealth.

Dividing both sides by Wt, we can write Wt+1

Wt
= Rt+1

(
1− Ct

Wt

)
. After taking logs, this gives

∆wt+1 = rt+1 + ln (1− exp(ct − wt)) (A-2)

with wt = lnWt, rt = lnRt and ct = lnCt. We linearize the term ln (1− exp(ct − wt)) by taking a

first-order Taylor approximation which gives,

ln (1− exp(ct − wt)) ≈ −
C

W − C (ct − wt) = (1− 1

ρ
)(ct − wt) (A-3)

where we ignore the linearization constant and where W and C are the average or steady state values of

Wt and Ct.
1 The second step replaces − C

W−C by 1− 1
ρ with ρ ≡ 1− C

W where 0 < ρ < 1. Substituting

eq.(A-3) into eq.(A-2), we obtain ∆wt+1 = rt+1 +
(

1− 1
ρ

)
(ct − wt). Note that we can write ∆wt+1 as

∆wt+1 = ∆ct+1 + (ct − wt) − (ct+1 − wt+1). Upon combining these results and rearranging terms, we

obtain,

ct − wt = ρ(rt+1 −∆ct+1) + ρ(ct+1 − wt+1) (A-4)

Solving eq.(A-4) forward ad infinitum, imposing the transversality condition ρ∞(ct+∞ − wt+∞) = 0 and

taking expectations at period t then gives,

ct − wt =

∞∑
j=1

ρjEt (rt+j −∆ct+j) (A-5)

with Et the expectations operator conditional on period t information.

Following Campbell and Mankiw (1989), we derive an income-based budget constraint by assuming

total wealth Wt consists of Nt shares with ex-dividend price given by Pt and where Yt is real income (i.e.,

the real dividend) obtained from total wealth. As such, we have Wt = Nt(Pt + Yt) where Pt + Yt is the

1Note that the linearization occurs around the point ct − wt = c− w with c− w = ln
(

C
W

)
.
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cum-dividend price of a share. The gross real return on total wealth is given by Rt+1 = Pt+1+Yt+1

Pt
. By

combining these results and rearranging terms, we obtain,

W ∗t+1 = Rt+1 (W ∗t − Yt) (A-6)

with W ∗t ≡ Wt

Nt
. Eq.(A-6) is in the same form as eq.(A-1) so the same steps (linearization, defining the

discount factor, forward solving) can be applied to obtain,

yt − w∗t =

∞∑
j=1

κjEt (rt+j −∆yt+j) (A-7)

where w∗t = lnW ∗t and yt = lnYt. The discount factor κ is given by κ ≡ 1− Y
W∗ where 0 < κ < 1.

We then combine eqs.(A-5) and (A-7) where, after imposing the normalization Nt = 1 or lnNt = 0,

we obtain,

ct − yt =

∞∑
j=1

[
κjEt (∆yt+j − rt+j)− ρjEt (∆ct+j − rt+j)

]
(A-8)

We note that the link between ct − yt and expected future returns on wealth rt+j is ambiguous and not

substantial if, as can be expected, the discount factor for future income growth rates κ is close to that

of future consumption growth rates ρ. Hence, we follow Campbell and Mankiw (1989), and set ρ = κ to

obtain eq.(1) in the main text.

A.2 Derivation of eq.(14)

This appendix describes the steps in the derivation of eq.(14) in the main text. Consider the following

first-order condition for a utility-maximizing consumer who faces uncertainty about future labor income

and returns, i.e.,

Et

(
(1 + rt+1)

(1 + δ)

U ′(C∗t+1)

U ′(C∗t )

)
= 1 (A-9)

where rt denotes the real return on wealth and U(C∗t ) denotes utility as a function of the level of real

consumption of the optimizing consumer C∗t and where δ is the rate of time preference. This equation

can also be written as, (
(1 + rt+1)

(1 + δ)

U ′(C∗t+1)

U ′(C∗t )

)
= 1 + χt+1 (A-10)

where χt+1 is an expectation error uncorrelated with period t information, i.e., we have Etχt+1 = 0.

Using the isoelastic utility function U(C∗) = C∗1−θ

1−θ with coefficient of relative risk aversion θ > 0, we can

rewrite eq.(A-10) as, (
(1 + rt+1)

(1 + δ)

C∗−θt+1

C∗−θt

)
= 1 + χt+1 (A-11)
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After taking logs of both sides of this expression and solving for the growth rate in consumption ∆c∗t+1,

we obtain,

∆c∗t+1 = −1

θ
δ +

1

θ
rt+1 +

1

θ
υt+1 (A-12)

where υt+1 ≡ − ln(1+χt+1) and where we use the approximation ln(1+x) ≈ x for δ and r. The variables

rt+1 and υt+1 can be decomposed into the expected parts Etrt+1 and Etυt+1 and the unexpected parts

(rt+1 − Etrt+1) and (υt+1 − Etυt+1) to obtain,

∆c∗t+1 = −1

θ
δ +

1

θ
Etrt+1 +

1

θ
Etυt+1 + ωt+1 (A-13)

where ωt+1 ≡ 1
θ [(rt+1 − Etrt+1) + (υt+1 − Etυt+1)] with Et(ωt+1) = 0 and where 1

θEtυt+1 is the part

of consumption growth related to the precautionary saving motive of the optimizing consumer, i.e., the

precautionary component (see e.g., Parker and Preston, 2005). This component is positive, i.e., we have

Etυt+1 > 0.2 For expositional purposes, we rescale the precautionary component by dividing it by its

standard deviation σ. As such, we have Etυt+1 = σEtνt+1 where Etνt+1 is the standardized precautionary

component with unit variance and where σ > 0 captures the strength of the precautionary saving motive.

We substitute this expression for Etυt+1 into eq.(A-13) to obtain eq.(14) in the main text.

Appendix B Historical disaster episodes and dummies

Table B-1 presents the disaster periods used in the construction of the disaster dummies. The reported

periods are obtained by combining the consumption and GDP disasters reported in Tables 6 and 8 in

Barro and Ursúa (2008). The grouping of consumption and GDP disasters according to principal world

economic crises (World War I, Spanish flu pandemic, Great Depression, World War II) is based on Tables

7 and 9 in Barro and Ursúa (2008).3,4,5

2This can be shown by noting that ln(Et(1 + χt+1)) = ln(1) = 0 (this follows from Et(χt+1) = 0). For the concave log

function, we have that ln(Et(.)) > Et(ln(.)) so that Et(ln(1 + χt+1)) < 0 and −Et(ln(1 + χt+1)) = E(υt+1) > 0.
3To illustrate, the UK experienced a consumption disaster over the period 1915−18 attributed to World War I and a GDP

disaster over the period 1918−21 attributed to the Spanish flu pandemic. Hence, the overall disaster period is 1915−21 and

the general dummy dit for the UK takes on the value of one during this period. Additionally, the episode-specific dummies

dWW1
it and dPAN

it take on the value of one during the periods 1915− 18, respectively 1918− 21.
4We slightly deviate from the grouping considered in Barro and Ursúa (2008) by allocating a number of their post-World

War II disaster episodes, occurring in the immediate aftermath of World War II, to our World War II category. This is the

case for Denmark (the 1946 − 48 consumption disaster), Spain (the 1946 − 49 consumption disaster, UK (the 1943 − 47

output disaster) and US (the 1944− 47 output disaster). This minor change has a minimal impact on the estimates and no

impact on the conclusions of the paper.
5The Spanish flu pandemic is based on the 1920s grouping of Barro and Ursúa (2008) where we include an episode if the

first year of the GDP or consumption disaster is either 1918 or 1919. Hence, some episodes from Barro and Ursúa (2008)’s

1920s grouping are unrelated to the pandemic and are therefore not included in our Spanish flu pandemic group. Examples

are Germany (1922− 23) and Portugal (late 1920s).
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Table B-1: Disaster periods used in the construction of disaster dummies

Episodes Episodes

All WW1 PAN GRD WW2 All WW1 PAN GRD WW2

Australia 1889-95 1910-18 1926-32 1938-46 Netherlands 1889-93 1913-18 1929-34 1939-44

1910-18 1912-18

1926-32 1929-34

1938-46 1939-44

Belgium 1913-18 1913-18 1930-34 1937-43 Norway 1916-21 1916-18 1919-21 1939-44

1930-34 1939-44

1937-43

Denmark 1914-21 1914-18 1919-21 1939-41 Portugal 1913-19 1913-19 1939-42

1939-41 1946-48 1927-28

1946-48 1934-36

1939-42

1974-76

Finland 1876-81 1913-18 1928-32 1938-44 Spain 1892-96 1913-15 1929-33 1940-49

1913-15 1913-15

1913-18 1929-33

1928-32 1935-38

1938-44 1940-49

1989-93

France 1870-71 1912-18 1929-35 1938-44 Sweden 1913-18 1913-18 1939-45

1874-79 1920-21

1882-86 1939-45

1912-18

1929-35

1938-44

Germany 1912-19 1912-19 1928-32 1939-46 Switzerland 1870-72 1912-18 1939-45

1922-23 1875-79

1928-32 1881-83

1939-46 1885-88

1912-18

1939-45

Italy 1918-20 1918-20 1939-45 UK 1915-21 1915-18 1918-21 1938-47

1939-45 1938-47

Japan 1937-45 1937-45 US 1906-08 1917-21 1929-33 1944-47

1913-14

1917-21

1929-33

1944-47

Notes: The periods in the table correspond to periods reported by Barro and Ursúa (2008) as either GDP disaster episodes, consumption

disaster episodes or both. The grouping of episodes according to principal world economic crises in columns ‘WW1’ (World War I), ‘PAN’

(Spanish flu pandemic), ‘GRD’ (Great Depression) and ‘WW2’ (World War II) follows the grouping reported by Barro and Ursúa (2008).
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The episodes in column ‘All’ are used to construct the general dummy dit which is equal to one over

the reported periods in the column. The episodes in columns ‘WW1’ (World War I), ‘PAN’ (Spanish

Flu pandemic), ‘GRD’ (Great Depression) and ‘WW2’ (World War II) are used to construct the episode-

specific dummies djit with j = WW1, PAN,GRD,WW2 which are equal to one over the reported periods

in the respective columns. The episode-specific dummies are used in the estimations discussed in Section

3.6.

Appendix C Panel unit root test consumption-income ratio

The table below reports panel unit root tests applied to the log consumption-income ratio cit − yit

constructed using the historical panel data discussed in Section 3.1. Reported are the Im et al. (2003)

heterogeneous panel unit root test that does not control for cross-sectional dependence in the data (the IPS

statistic) and the Pesaran (2007) heterogeneous panel unit root test that does control for cross-sectional

dependence. We report both the standard CIPS statistic and the truncated CIPS* statistic (see Pesaran,

2007, for details). The statistics are reported both for the case without and with a deterministic linear

time trend included in the underlying country-specific augmented Dickey-Fuller regressions. We find that

in all cases the null hypothesis of a unit root in all countries is strongly rejected in favor of the alternative

hypothesis of no unit root in at least one country. Besides the reported p-values (in square brackets)

the table also reports the number of countries for which the null hypothesis of a unit root is rejected (in

rounded brackets). For these countries, cit − yit is not stochastically trended but rather is stationary,

possibly around a deterministic trend. For the CIPS (or CIPS*) test with deterministic linear time trend,

the ten countries for which the null hypothesis of a unit root is rejected are Australia, Belgium, France,

Italy, the Netherlands, Spain, Sweden, Switzerland, the UK and the US. For a majority of countries and

for the overall panel, we therefore reject the presence of a unit root in the log consumption-income ratio.
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Table C-1: Heterogeneous panel unit root tests applied to the log consumption-income ratio cit − yit

Panel unit root test

IPS CIPS CIPS*

Without linear time trend -2.791 -3.104 -3.093

[ < 0.010 ] [ < 0.010 ] [ < 0.010 ]

( 5 ) ( 9 ) ( 9 )

With linear time trend -6.819 -3.560 -3.554

[ < 0.010 ] [ < 0.010 ] [ < 0.010 ]

( 7 ) ( 10 ) ( 10 )

Notes: Estimation is based on panel data for the log consumption income ratio cit − yit for sixteen countries over the

period 1870 − 2016. Reported are the Im et al. (2003) heterogeneous panel unit root test that does not control for

cross-sectional dependence (IPS statistic) and the Pesaran (2007) heterogeneous panel unit root tests that do control

for cross-sectional dependence (the CIPS statistic and the truncated version, CIPS*). Test statistics are reported both

for the case without and with a deterministic linear time trend included in the underlying country-specific augmented

Dickey-Fuller regressions. The number of lags included in these regressions is based on the Schwarz information criterion.

P-values for testing the null hypothesis of a unit root are between square brackets. Between rounded brackets is the

number of countries (out of sixteen) for which the null hypothesis of a unit root is rejected at the 10% level of significance

based on the conducted country-specific augmented Dickey-Fuller tests.

Appendix D Per country baseline estimates

The following table reports the per country OLS estimates of the coefficients βi and γi obtained from

estimating the baseline specification eq.(6). These estimates are used in the calculation of the mean-group

estimates reported in Table 1 in the text. Also reported, between brackets, are heteroskedasticity- and

autocorrelation-consistent standard errors (see Newey and West, 1987).
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Table D-1: Per country OLS estimates of βi and γi in the baseline specification eq.(6)

Dependent variable Dependent variable

Country Regressor ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1) Country Regressor ∆yi,t+1 ∆ci,t+1 (∆yi,t+1 −∆ci,t+1)

Australia (cit − yit) 0.001 -0.023 0.024 Netherlands (cit − yit) 0.187 0.092 0.095

( 0.015 ) ( 0.018 ) ( 0.015 ) ( 0.173 ) ( 0.095 ) ( 0.083 )

(cit − yit)dit -0.053 -0.100 0.047 (cit − yit)dit 0.129 -0.339 0.467

( 0.063 ) ( 0.075 ) ( 0.095 ) ( 0.213 ) ( 0.345 ) ( 0.239 )

Belgium (cit − yit) 0.280 0.072 0.208 Norway (cit − yit) -0.015 -0.020 0.005

( 0.109 ) ( 0.043 ) ( 0.106 ) ( 0.010 ) ( 0.010 ) ( 0.007 )

(cit − yit)dit -0.148 -0.080 -0.068 (cit − yit)dit 0.156 -0.042 0.199

( 0.171 ) ( 0.203 ) ( 0.178 ) ( 0.181 ) ( 0.167 ) ( 0.070 )

Denmark (cit − yit) 0.023 0.020 0.004 Portugal (cit − yit) -0.179 -0.259 0.080

( 0.012 ) ( 0.018 ) ( 0.011 ) ( 0.064 ) ( 0.049 ) ( 0.042 )

(cit − yit)dit 0.231 -0.142 0.374 (cit − yit)dit 0.157 0.240 -0.082

( 0.113 ) ( 0.227 ) ( 0.159 ) ( 0.164 ) ( 0.134 ) ( 0.084 )

Finland (cit − yit) -0.035 -0.090 0.055 Spain (cit − yit) 0.001 -0.021 0.022

( 0.036 ) ( 0.033 ) ( 0.023 ) ( 0.037 ) ( 0.044 ) ( 0.014 )

(cit − yit)dit -0.081 -0.083 0.002 (cit − yit)dit -0.214 -0.592 0.379

( 0.097 ) ( 0.098 ) ( 0.112 ) ( 0.089 ) ( 0.177 ) ( 0.110 )

France (cit − yit) 0.004 -0.038 0.042 Sweden (cit − yit) 0.021 0.017 0.004

( 0.023 ) ( 0.022 ) ( 0.020 ) ( 0.015 ) ( 0.013 ) ( 0.011 )

(cit − yit)dit 0.158 -0.033 0.191 (cit − yit)dit -0.129 -0.335 0.206

( 0.063 ) ( 0.103 ) ( 0.132 ) ( 0.219 ) ( 0.242 ) ( 0.093 )

Germany (cit − yit) -0.018 -0.085 0.066 Switzerland (cit − yit) 0.086 -0.020 0.106

( 0.065 ) ( 0.054 ) ( 0.060 ) ( 0.045 ) ( 0.052 ) ( 0.045 )

(cit − yit)dit 0.307 0.181 0.126 (cit − yit)dit -0.092 -0.969 0.877

( 0.238 ) ( 0.061 ) ( 0.209 ) ( 0.175 ) ( 0.214 ) ( 0.155 )

Italy (cit − yit) -0.046 -0.058 0.011 UK (cit − yit) -0.041 -0.074 0.033

( 0.020 ) ( 0.021 ) ( 0.015 ) ( 0.024 ) ( 0.021 ) ( 0.018 )

(cit − yit)dit 0.601 0.314 0.287 (cit − yit)dit 0.121 -0.051 0.172

( 0.290 ) ( 0.166 ) ( 0.186 ) ( 0.057 ) ( 0.079 ) ( 0.117 )

Japan (cit − yit) -0.040 -0.070 0.030 US (cit − yit) -0.010 -0.005 -0.005

( 0.018 ) ( 0.018 ) ( 0.013 ) ( 0.023 ) ( 0.017 ) ( 0.020 )

(cit − yit)dit 0.533 -0.021 0.554 (cit − yit)dit 0.105 -0.122 0.227

( 0.100 ) ( 0.219 ) ( 0.297 ) ( 0.049 ) ( 0.047 ) ( 0.058 )

Notes: Reported estimates are for βi and γi in equation (6). Heteroskedasticity- and autocorrelation-robust Newey-West standard errors are in parentheses

(see Newey and West, 1987). The OLS estimates reported are used to calculate the baseline mean-group estimates reported in Table 1.

Appendix E Results for major historical disaster episodes

In this appendix, we investigate the separate impact of the major disaster episodes that occurred during

the sample period according to Barro and Ursúa (2008), i.e., World War I (WW1), the Spanish flu

pandemic of the late 1910s/early 1920s (PAN), the Great Depression (GRD) and World War II (WW2).

To this end, we estimate predictive regression equations of the following form,

xi,t+1 = αid
j
it + α−ji d−jit + βi(cit − yit) + γi(cit − yit)djit + γ−ji (cit − yit)d−jit + εi,t+1 (E-1)

where, as before, we have xi,t+1 = ∆yi,t+1, xi,t+1 = ∆ci,t+1 or xi,t+1 = (∆yi,t+1−∆ci,t+1). We estimate

the equation per major disaster episode j (with j = WW1, PAN,GRD,WW2) while controlling for all
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other disasters. To achieve this, we include the specific disaster dummy variable dj that equals one during

disaster period j, but also a dummy variable d−j that takes on the value of one when disasters other

than j occur. We note that the dummy d−j equals d − dj where d is the disaster dummy used in the

main text. Both dummies dj and d−j enter the equation separately as well as interacted with the log

consumption-income ratio. As not all specific disasters occur in all sixteen countries of our sample, the

estimations are conducted with a different number of countries for each particular disaster episode j. We

refer to Appendix B for an overview of the exact dates of the major disaster episodes in each country.

In particular, estimation is based on panel data for thirteen countries when j = WW1, for five countries

when j = PAN , for eight countries when j = GRD and for fifteen countries when j = WW2.6

In Table E-1, we report mean-group estimates obtained from estimating eq.(E-1) for every major

disaster episode j. To control for measurement error, we report not only OLS-based but also IV-based

estimates. We refer to Section 3.3 in the main text for details. Results are reported only for xi,t+1 =

(∆yi,t+1 −∆ci,t+1) because the results obtained for ∆yi,t+1 and ∆ci,t+1 separately are considerably less

precise.7 From looking at the results in the table, we note that the largest disasters also tend to have

the largest impact on the predictive ability of the log consumption-income ratio, i.e., the estimates on

the regressor (c− y)dj (with dj the dummy for the major disaster episode j under scrutiny) are generally

larger in magnitude than those on the regressor (c − y)d−j (with d−j the dummy for the other major

disasters but also all the minor ones). Furthermore, we find that for all major disasters considered

(with the exception of j = PAN in the IV case), the predictive power of the log consumption-income

ratio becomes significantly higher during the occurrence of these major crises. Hence, the reduction in

decoupling between consumption and income and the implied reduction in consumption smoothing is not

limited to one particular disaster type but seemingly characterizes every major crisis type that we consider

in our historical dataset. Finally, we acknowledge that IV estimation does not necessarily improve on OLS

estimation here. While a priori it can be expected that the IV-based estimates control for measurement

error as detailed in Section 3.3 in the main text, we find, based on the reported Cragg-Donald statistics,

that the instruments used in the estimations reported in Table E-1 are not very strong.

6We note that since estimations occur at the country level, a country can only be included in the panel estimation if

both dummies dj and d−j are defined for that country (i.e., if both dummies take on the value of one at least once over

the sample period for that country). For example, even though for j = WW2 the dummy variable dj is defined for all

sixteen countries, we cannot include Japan in the sample as the dummy d−j is not defined for Japan, i.e., the only disaster

identified by Barro and Ursúa (2008) for Japan is WW2. Hence, for j = WW2, we have N = 15 instead of N = 16. If we

do not include the dummy d−j in the estimations, we can add Japan to the sample when j = WW2 and we find that the

results with respect to the impact of WW2 on the predictive impact of c − y are very similar to those reported in Table

E-1. These results are not reported, but are available upon request.
7These results are not reported but are available from the authors upon request.
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Table E-1: Results for major disaster episodes: OLS- and IV-based mean-group estimates

Dependent variable xi,t+1 = (∆yi,t+1 −∆ci,t+1)

OLS IV

Disaster episode j Disaster episode j

WW1 PAN GRD WW2 WW1 PAN GRD WW2

djit -0.178 -0.137∗∗∗ -0.146∗∗∗ -0.049 -0.637 0.016 -0.241∗ -0.048

( 0.123 ) ( 0.041 ) ( 0.056 ) ( 0.035 ) ( 0.579 ) ( 0.208 ) ( 0.140 ) ( 0.039 )

d−jit -0.056∗∗∗ -0.029 -0.019 -0.093∗∗∗ -0.056∗∗∗ -0.006 -0.046 -0.106∗∗∗

( 0.019 ) ( 0.031 ) ( 0.018 ) ( 0.025 ) ( 0.021 ) ( 0.055 ) ( 0.029 ) ( 0.026 )

(cit − yit) 0.057∗∗∗ 0.010 0.064∗∗∗ 0.050∗∗∗ 0.046∗∗∗ 0.109 0.020 0.040∗∗

( 0.016 ) ( 0.006 ) ( 0.023 ) ( 0.014 ) ( 0.017 ) ( 0.096 ) ( 0.025 ) ( 0.016 )

(cit − yit)djit 0.718∗∗∗ 0.615∗∗∗ 0.529∗∗∗ 0.487∗∗∗ 1.470∗ 0.192 0.848∗∗∗ 0.338∗∗∗

( 0.210 ) ( 0.089 ) ( 0.129 ) ( 0.057 ) ( 0.793 ) ( 0.558 ) ( 0.294 ) ( 0.098 )

(cit − yit)d−jit 0.245∗∗∗ 0.268∗∗∗ 0.187∗∗∗ 0.324∗∗∗ 0.330∗∗∗ 0.044 0.362∗∗∗ 0.342∗∗∗

( 0.077 ) ( 0.080 ) ( 0.069 ) ( 0.087 ) ( 0.123 ) ( 0.085 ) ( 0.096 ) ( 0.094 )

Cumby-Huizinga AC 1.735 3.213 1.507 2.543 1.910 3.588 1.533 2.196

[ 0.420 ] [ 0.201 ] [ 0.471 ] [ 0.280 ] [ 0.385 ] [ 0.166 ] [ 0.465 ] [ 0.334 ]

Sargan-Hansen OR 13.325 18.253 13.859 14.344

[ 0.577 ] [ 0.250 ] [ 0.536 ] [ 0.500 ]

Cragg-Donald WI 3.963 0.588 2.643 3.693

Notes: Reported are the mean-group results based on OLS and IV estimation of eq.(E-1). The dummy variable dj (with j =

WW1, PAN,GRD,WW2) equals one during the considered major disaster episode (World War I, Spanish flu pandemic, Great

Depression, World War II). We refer to Appendix B for details on the exact dates of these disasters. The dummy d−j takes on the

value of one when disasters other than j occur (i.e., it equals d− dj where d is the general disaster dummy used in previous sections).

Estimation is based on panel data for thirteen countries (WW1), five countries (PAN), eight countries (GRD) or fifteen countries

(WW2) over the period 1870 − 2016. Standard errors are in parentheses, p-values are in square brackets. ∗,∗∗,∗∗∗ indicate significance

at the 10%, 5% and 1% level respectively. The Cumby-Huizinga test shows the average of the individual countries’ Cumby and Huizinga

(1992) autocorrelation test, testing the null hypothesis of no autocorrelation against the alternative that the autocorrelations of the

error term are nonzero at lags greater than zero (with maximum lag equal to two). The Sargan-Hansen OR test reported is the average

of the country-specific Sargan-Hansen overidentifying restrictions statistics that test the null hypothesis of the joint validity of the

instruments used (see Sargan, 1958; Hansen, 1982). The Cragg-Donald WI test is the average of the country-specific Cragg-Donald

weak instrument test statistics (see Cragg and Donald, 1993). For the critical values, we refer to the notes to Table 4 and to Stock

and Yogo (2004). The instrument set used for IV estimation consists of a constant and lags one to four of the regressors of eq.(E-1).

Appendix F Per country uncertainty measures

The following figure presents the conditional variance series hi,t+1 of shocks to GDP growth for all sixteen

countries in our historical dataset. These are obtained from the per country estimation of a first-order

GARCH process for per capita real GDP growth. These conditional variance series capture uncertainty

and are used as proxies for the precautionary component in aggregate consumption growth as detailed

in Section 4. It is clear from the figure that the delineated historical disaster episodes are characterized

by substantially higher uncertainty.
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Figure F-1: The conditional variance of shocks to per capita real GDP growth
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Notes: The blue line denotes the conditional variance hi,t+1 of shocks to per capita real GDP growth. Shaded areas

correspond to disaster episodes as identified by Barro and Ursúa (2008). We refer to Sections 3.1 and 4.4.2 for more

details on the data used in this figure.
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