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Overview of Online Appendix

This online appendix is available at the homepage of one of the authors. It contains ad-

ditional information on the paper “Riding Bubbles”. Section A discusses the robustness

checks and Section B shows our results for all 48 industries. Section C provides a de-

tailed explanation and results of the simulations discussed in the paper in Section 4.1. In

Section D we show the mathematical details for the derivations discussed in Section 5.3

and 5.4 of the paper.

The tables belonging to each section are directly included after each section. Plain ref-

erences refer to equations, figures and tables in the original paper. References to equations

and tables in the appendix are preceded by a capital letter.
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A Robustness Checks

This section contains the robustness checks. Sections A.1 to A.3 examine the robustness of

our method to obtain bubble signals in Section 1.2. Section A.4 provides robustness checks

on our portfolio results. Sections A.5 and A.6 discuss in detail the robustness checks on

the investor’s asset allocation decision in Section 3.

In the robustness checks we focus on the risk-return trade-off and on the optimal port-

folio choice that we report in Tables 4 and 6 for the standard parameter settings. Results

of robustness checks for the other analyses in the original paper are available on request.

A.1 Significance Level of Bubble Signal

We examine the robustness of our results to changing the significance level of the structural

break test in Equation (2) and the subsequent t-test on αp
i,t. Because confidence levels of

99% and 95% are often used in the empirical literature, we consider these confidence

levels as obvious alternative choices. Therefore, we replicate our analysis, that assumed a

confidence level of 97.5%, for these two common confidence levels.

Table A.1 shows the summary statistics of the abnormal returns following positive and

negative bubble signals for different confidence levels. As to be expected, the higher the

confidence level, the smaller the number of positive bubble signals. It seems that there is a

slightly positive relation between the returns following positive signals and the confidence

levels. For example, for the CAPM, the standardized abnormal returns increase from 0.15

if we use a confidence level of 95%, to 0.19 for a confidence level of 97.5%, and 0.20 for a
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confidence level of 99%. Given an average idiosyncratic return volatility of 4.17% for the

CAPM-based estimates, the monthly abnormal returns rise from 63 basis points to 79 basis

points and 83 basis points as we increase the confidence level. For results based on the

Fama-French and Carhart models the pattern is similar. Theoretically, it is not obvious

what one should expect. A higher confidence level could be associated with a better quality

of the bubble signal, that is, we detect more ’true’ bubbles and make less mistakes. An

alternative proposition is that we detect stronger bubbles as the confidence level increases

and miss positive signals for weaker bubbles. In that case, the returns should be higher if

the bubble continues. However, stronger bubbles might crash sooner.

Most importantly, for all different settings, we find that the standardized abnormal

returns are significantly larger when the bubble signal is positive than if it is negative.

As in our main specification in Table 4, we also find that volatility is economically and

statistically larger when the bubble signal is positive. Consistent with our main results

in Table 4, Table A.1 shows that differences in downside risk measures are not or only

marginally significant when we use the CAPM. However, downside risk is generally sig-

nificantly higher after a positive bubble signal than after a negative signal from signals

derived from the Fama-French or Carhart models.

[Table 1 about here.]

Since the distribution of abnormal returns following positive and negative bubble sig-

nals is similar for the different confidence levels, we expect to observe the same for the

asset allocation shown in Table A.2. For all confidence levels and asset pricing models,
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the increase in the optimal weight following a positive bubble signal is economically and

statistically significant. Consequently, the expected utility is also consistently larger after

a positive signal than after a negative signal, and the certainty equivalent is always signif-

icantly positive. Overall, we conclude that changing the confidence levels of our method

to obtain bubble signals does not alter our findings.

[Table 2 about here.]

A.2 Break Interval and Estimation Period

In the derivation of the bubble signal, we set the maximum possible length of the break

interval ζU to five years and choose an estimation period T of ten years. Here we examine

whether our results are sensitive to changing these parameters. First, we analyze how

changing the maximum length of the break interval affects our results. We reduce ζU to

three years and increase it to seven years. Formally, we allow ζ in Equation (2) to vary

from 12 to 36 and 12 to 84 while keeping the estimation period T at 120 months. In the

standard setting, ζ could vary from 12 to 60. Second, we halve the estimation period (i.e.,

we set T = 60) for a maximum break interval of three years.

Table A.3 shows that the mean abnormal returns after a positive bubble signal is always

significantly higher than if the signal is negative. The magnitude of the returns is similar

across the different estimation settings. For example, for the Carhart model, the mean

standardized abnormal return ranges from 0.097 after a positive signal for break intervals

up to seven years to 0.118 when the maximum interval is three years. Based on an average
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idiosyncratic return volatility of 3.81% for the Carhart model, these figures translate into

monthly abnormal returns ranging from 0.37% to 0.45%. If we restrict the estimation

period to five years (i.e., T = 60), then the standardized abnormal return equals 0.114;

that is an abnormal return of 0.43% per month. As with our previous results, the volatility

estimates are consistently higher after positive bubble signals than after negative signals.

The magnitude of the estimates is very similar across the different specifications. Similarly,

the results for downside risk measures are robust. We conclude that the abnormal returns

after bubbles signals are not sensitive to length of the break interval or the estimation

period.

[Table 3 about here.]

The same holds for the asset allocation presented in Table A.4. The increase in optimal

weight in response to a positive bubble signal is significant at the 5% level in all specifica-

tions. The p-values for the difference in utility and the certainty equivalent are well below

the 5% level. As with our previous findings, the increase in optimal weight following a pos-

itive bubble signal is somewhat extreme for the CAPM. For the Fama-French and Carhart

models the changes in weight are more realistic. For example, for break intervals with a

maximum length of seven years, the optimal weight increases from zero after a negative

signal to 1.03 after positive signals for abnormal returns based on the Fama-French model.

It rises from 0.12 to 1.00 for the Carhart model returns. The changes in utility and the

certainty equivalent return confirm our findings for the weights and previous results.

[Table 4 about here.]
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A.3 Changes in Crash Definition

The end of a bubble can be associated with one or more crashes. Therefore, the bubble

signal is negative if we observe a crash that is at least twice the standard deviation of

abnormal returns during the previous six months. Both the horizon and size of the crash

seem like reasonable choices, but, ultimately, they are arbitrary. We analyze whether our

results are robust to modifying these parameters. We start by modifying the crash window

and then analyze the effect of modifying the crash size.

In Table A.5 we replicate the risk and return trade-off following positive and negative

bubble signals for two different crash windows. In the first specification, we set the crash

window to zero. That is a strong test because we effectively remove the crash criterion.

Even if there was a crash, the bubble signal could be positive. In the second specification,

we double the length of the crash window and set it equal to 12 months. For all specifica-

tions, the mean abnormal return following a positive bubble signal is significantly higher

than if the signal is negative. If we do not take crashes into account at all, the monthly

standardized abnormal return increases from 0.003 after a negative bubble signal to 0.20

after a positive bubble signal for the CAPM-based results. Given an idiosyncratic return

volatility of 4.17% for the CAPM, monthly abnormal returns increase from 1 basis point if

the signal is negative to 83 basis points after a positive signal. For the Fama-French model,

the standardized abnormal return rises is about zero after a negative signal and 0.10 after

a positive signal. Given an average idiosyncratic return volatility of 3.86%, the difference

in returns is 39 basis points per month. For the Carhart model, the standardized abnor-
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mal return is 0.011 after a negative signal and 0.089 after a positive signal. Because the

idiosyncratic return volatility is 3.81% for the Carhart model, the difference in abnormal

returns is 30 basis points per month. The magnitude of the differences in returns is very

similar to our main results in the paper.

The volatility estimates are also significantly larger following positive bubble signals

than after negative bubble signals. The downside risk measures, value-at-risk and expected

shortfall are generally larger following a positive bubble signal than after a negative signal,

but the difference is not always statistically significant.

[Table 5 about here.]

Table A.6 shows that the weight in the risky asset is significantly higher after a positive

than after a negative signal. For abnormal returns based on the CAPM, the optimal weight

increases from 0.04 after a negative signal to 1.66 following a positive bubble signal. The

changes in optimal weight are more realistic but still sizable for the Fama-French and

Carhart models. For the Fama-French model, the optimal weight rises from zero to 0.80

and for the Carhart model, it changes from 0.13 to 0.66 when the bubble signal becomes

positive. Overall, we conclude that riding bubbles is the optimal strategy regardless of

whether the investor considers crashes or at which horizon. Our results for the expected

utility and the certainty equivalent support this conclusion.

[Table 6 about here.]

Table A.7 presents the risk-return trade-off after positive and negative bubble signals

for different crash sizes. We apply a stricter boundary of 2.25 times the standard deviation

8



of abnormal returns. We also loosen the restriction and include crashes up 1.75 times the

standard deviation of abnormal returns. The results for the two different crash definitions

confirm our original findings. The returns following positive bubble signals are consistently

larger than after negative signals. The magnitude of the difference is similar for different

crash sizes. As with our previous results, the volatility estimates are always larger after

a positive bubble than after a negative signal. For the Fama-French and Carhart models,

downside risk measures, such as VaR and ES, are higher following positive rather than

negative signals.

[Table 7 about here.]

Table A.8 confirms that it is optimal for an investor to ride bubbles, regardless of crash

size. Across all specifications, we find that the optimal weight allocated to the risky asset is

significantly larger after a positive bubble signal than after a negative signal. The investor’s

utility is higher if she receives a positive bubble signal rather than a negative one. The

certainty equivalent is positive and statistically significantly.

[Table 8 about here.]

A.4 Portfolio Returns: Tests and Value-weighted Results

A.4.1 WLS and GLS Tests

We construct tests based on weighted least squares (WLS) and generalized least squares

(GLS) to correct for heteroskedasticity, contemporaneous correlation between abnormal
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returns, and to address the large difference between the number of positive bubble signals

and negative bubble signals. To explain how we construct the tests, we use ηBt+1 to denote

the abnormal return of the bubble portfolio with industries having Bi,t = 1, and ηNB
t+1 for

the no-bubble portfolio. Testing for a difference in means can result from a simple linear

model

ηbt+1 = αb + ub,t+1, E[ub,t+1] = 0, b = B, NB. (A.1)

The variation in the number of industries and the selection of industries, as well as the

general time-variation in volatility lead to heteroskedasticity in the portfolio returns,

E[u2
b,t+1] = Var[ηbt+1] = ωb

t+1, b = B, NB. (A.2)

For a GLS-test, we allow for contemporaneous correlation between uB,t+1 and uNBt+1,

E[uB,t+1uNB,t+1] = Cov[ηBt+1, η
NB
t+1] = ωB,NB

t+1 , (A.3)

whereas a WLS-test assumes ωB,NB
t+1 = 0. In both settings, we assume that lead-lag corre-

lation between the abnormal returns is absent, that is,

E[uB,t+1uNB,s+1] = Cov[ηBt+1, η
NB
s+1] = 0, ∀s 6= t (A.4)

We model the portfolio variance as

ωb
t+1 =

(

n
∑

i=1

w2(i,Bt, b)σ
2
i,t +

n
∑

i=1

n
∑

j=i+1

2w(i,Bt, b)w(j,Bt, b)σi,j,t

)

ωb, (A.5)

where w(i,Bt, b) gives the portfolio weight for industry i at time t in portfolio b depending

on the set of bubble signals Bt at time t, and σ2
i,t and σi,j,t are the variance and covariance
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of the residuals from Equation (1). The volatility of the bubble and no-bubble portfolios

likely differs because one can expect volatility to be higher if there is a bubble. Therefore

we include a separate multiplicative effect in the form of a coefficient ωb.1 For GLS, we

model the covariance between the portfolios as:

ωB,NB
t+1 =

n
∑

i=1

n
∑

j=i

w(i,Bt,B)w(j,Bt,NB)σi,j,t. (A.6)

When WLS is applied, the linear model in (A.1) can be estimated with separate OLS-

regressions for the bubble and the no-bubble portfolio, in which the dependent and ex-

planatory variables are scaled by the inverse of the portfolio volatilities. For GLS, we first

estimate the WLS-regressions and determine the coefficients ωB and ωNB, which we use

in a second stage to determine the GLS-estimates. In both cases, we use the estimation

results to test αB = αNB.

A.4.2 Value-weighted Results

To confirm the robustness of our findings in Section 2, we construct value-weighted port-

folios. Based on the signals at the beginning of month t, we construct a bubble and a

no-bubble portfolio. We use the total market capitalization of each industry at the be-

ginning of month t to determine its weight in the portfolio. We report the results in

Table A.9. Consistent with the small-firm effect, returns, volatilities and risk measures

are slightly lower for the value-weighted portfolios than for the equally-weighted portfo-

lios in Table 3. The bubble and no-bubble portfolio are equally affected by the different

1For WLS this coefficient does not matter, since WLS requires that heteroskedasticity is modeled up

to multiplication with a constant.
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weighing scheme. As a consequence, the differences between the bubble and no-bubble

portfolios do not change much. The difference between the average abnormal returns of

the bubble and the no-bubble portfolios for the CAPM is 0.70% per month, when the

industries in the portfolios are equally weighted, and 0.67% when they are value weighted.

For the Fama-French model (Carhart model) we observe a return difference of 0.25 (0.30)

for equally-weighted portfolios and 0.18 (0.23) for value-weighted portfolios.

[Table 9 about here.]

The test results in Table 9(b) indicate that in all settings, the average abnormal return

for the bubble portfolio is significantly larger than that for the no-bubble portfolio. The

results for WLS-based tests show significant differences beyond the 1% level. However,

WLS-based tests ignore contemporaneous correlation. The GLS-test allow for correlation,

and we see a decrease in the statistics. Still, the differences between the abnormal returns

remain significant at the 5% level.

A.5 Alternative Utility Functions

To examine the robustness of our results for the power-utility function in Section 3, we

replicate our results for investors who have different utility functions. Because returns after

positive bubble signals might not be normally distributed and have a higher downside risk,

we focus on utility functions that explicitly take into account aversion to higher moments

and downside-risk. In Section A.5.1, we analyze the allocation decisions of investors who

are averse to higher moments such as skewness and kurtosis. In Section A.5.2, we focus on
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mean-semivariance investors.

A.5.1 Skewness, Kurtosis, and Mean-Variance Preferences

We investigate whether and how our findings change as investors have different preferences

for skewness and kurtosis. We start with a very general utility function based on the

different moments of the return distribution, and then substitute the parameters implied

by the power-utility function for the variance, skewness, and kurtosis. To examine the

sensitivity of our findings to these moments, we vary the skewness and kurtosis parameters.

Finally, we set the parameters equal to the ones of a mean-variance utility function.

We approximate the utility function of an investor by a Taylor expansion around his

reference point of wealth W̄t+1 (see for instance Harvey and Siddique, 2000; Jondeau and

Rockinger, 2006; Guidolin and Timmermann, 2008):

U(Wt+1) =

∞
∑

k=0

1

k!

∂kU(W̄t+1)

∂W k
t+1

(Wt+1 − W̄t+1)
k. (A.7)

where we assume that W̄t+1 = Wt as in Harvey and Siddique (2000) and consequently

Wt+1 = Wt(1 + rf,t+1 + wηt+1). We apply a Taylor expansion up to the fourth order:

U(Wt+1) =U(Wt) + U (1)(Wt)Wt(rf,t+1 + wηt+1) +
1

2
U (2)(Wt)W

2
t (rf,t+1 + wηt+1)

2+

1

6
U (3)(Wt)W

3
t (rf,t+1 + wηt+1)

3 +
1

24
U (4)(Wt)W

4
t (rf,t+1 + wηt+1)

4+

O(W 4
t+1),

(A.8)

where O(W 4
t+1) contains the higher-order terms. When we take expectations, the resulting
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equation shows how higher-order moments of the portfolio return enter the utility function:

E[U(W )] ≈κ0 + κ1 E[rf,t+1 + wηt+1] + κ2 E[(rf,t+1 + wηt+1)
2]+

κ3 E[(rf,t+1 + wηt+1)
3] + κ4 E[(rf,t+1 + wηt+1)

4],

(A.9)

with κk = U (k)(Wt)W
k
t /k!. The optimal weight allocated to the risky asset wH to maximize

this expression should satisfy:

E[ηt+1] + 2
κ2

κ1
E
[

(rf,t+1 + wHηt+1)ηt+1

]

+ 3
κ3

κ1
E
[

(rf,t+1 + wHηt+1)
2ηt+1

]

+

4
κ4

κ1
E
[

(rf,t+1 + wHηt+1)
3ηt+1

]

= 0.

(A.10)

This equation implies that κ0 does not affect w
H, so we can ignore it. Dividing by κ1 allows

us to remove this coefficient as well.

If the utility function is not known, then the values of the parameters κk are not

determined. Necessary and desirable properties of utility functions, such as risk aversion

and decreasing absolute risk aversion, restrict only the signs of the parameters: the uneven

parameters are positive and the even parameters are negative (see Scott and Horvath,

1980). Therefore, we define κ′

2 = −κ′

2/κ1, κ
′

3 = κ′

3/κ1 and κ′

4 = −κ′

4/κ1, which yields

E [U ′(W )] =E[rf,t+1 + wηt+1]− κ′

2 E
[

(rf,t+1 + wηt+1)
2
]

+

κ′

3 E
[

(rf,t+1 + wηt+1)
3
]

− κ′

4 E
[

(rf,t+1 + wηt+1)
4
]

,

(A.11)

where all coefficients should be positive.

We then substitute the parameters implied by the power-utility function with γ = 2 in

Section 3: κ1 = W 1−γ = W−1, κ′

2 = γ/2 = 1, κ′

3 = (1+γ)γ/6 = 1, κ′

4 = (2+γ)(1+γ)γ/24 =

1 and solve for the optimal weight using numerical techniques. The first rows of Table A.10,

in Panels A, B, and C show the optimal weights, the expected utilities, and the certainty
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equivalent. We find that the results are consistently similar to the comparable scenario for

the exact specification of the power-utility function in Table 6, indicating that a fourth-

order approximation is reasonably precise.

We vary the investor’s preferences for skewness and kurtosis as we move down each

panel. As κ′

3 increases, the investor becomes more averse to negative skewness and has a

stronger preference for positive skewness. Her allocation to the risky asset after a positive

signal increases, because the abnormal returns after positive bubbles signals are slightly

positively skewed. For the CAPM the increases are quite pronounced, but for the Fama-

French and Carhart models, they take on more moderate values and the effects seem more

realistic. Accordingly, there is also an increase in the investor’s utility and the certainty

equivalent. If the investor becomes more concerned about kurtosis and κ′

4 rises, then the

weight after a positive bubble signal decreases slightly. For example, if the weight on

kurtosis doubles from one to two, then the optimal weight after a positive signal decreases

from 1.67 to 1.56 for the CAPM. For the Fama-French and Carhart models, the optimal

weights after positive signals decrease from 0.92 to 0.91 and from 0.91 to 0.90, respectively.

In all cases, the decrease is only small and the optimal weight after a positive signal is

significantly larger than after a negative signal. Similarly, utility is significantly higher

after a positive signal than after a negative one and the certainty equivalent is positive.

[Table 10 about here.]

We investigate the optimal allocation of a mean-variance investor by setting κ′

3 and κ′

4

equal to zero. We set κ′

2 equal to one and two, which implies risk-aversion levels of two and
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four. For the mean-variance investor, the optimal weight declines as risk-aversion increases.

However, even with a risk aversion of four, the optimal weight allocated to the risky asset

is much larger if a positive bubble signal is received than if the signal is negative. For the

CAPM, the optimal weight is 0.79 if the signal is positive compared to 0.04 for a negative

signal. For the Fama-French and Carhart models, the optimal weight increases from about

zero to 0.45 and 0.06 to 0.44 when the signal changes from negative to positive. These

increases are not only economically large but also statistically significant. The same holds

for the increases in utility and the positive certainty equivalent.

Overall, these results confirm our findings for the power-utility investor. Investors who

care particularly about skewness and kurtosis and mean-variance investors would also ride

bubbles.

A.5.2 Mean - Semivariance Utility

Value-at-risk (VaR) and expected shortfall (ES) in Table 4 in Section 2 show that abnormal

returns after positive signals have a larger downside risk than returns after negative signals.

Therefore, we investigate whether our conclusions hold for investors who are particularly

averse to losses.

We choose an investor with a mean-semivariance utility function USV. In contrast to

utility functions featuring VaR or ES, it has the desirable property that it is concave for

losses. Following Harlow and Rao (1989), we link the utility function to the portfolio return
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rp:

USV(rp; k) =



















rp − γ(k − rp)
2 for rp ≤ k

rp for rp > k,

(A.12)

where k is the target return. Realizations of a portfolio return below k lead to a discount

of utility. We follow Bawa and Lindenberg (1977) and assume that the target return equals

the risk-free rate.

The second term of Equation (A.12) leads to the semi-variance with respect to k:

SVk[rp] =

∫ k

−∞

(k − rp)
2 dF (rp), (A.13)

where F (rp) is the cumulative distribution function of rp. The investor combines this

utility function with the expression for the portfolio return in Equation 4 and solves:

max
w

E
[

USV(rf,t+1+wηt+1; rf,t+1)|Bt

]

= max
w

{rf,t+1+wE[ηt+1|Bt]−γSV0[wηt+1|Bt]}. (A.14)

Assuming that the threshold k equals the risk-free rate implies considering the semi-

variance of the risky part of the portfolio with respect to zero, SV0[wηt+1|Bt]. Due to this

result, zero becomes the investor’s variance threshold, and we can write SV0[wηt+1|Bt] =

w2SV0[sgn(w) · ηt+1|Bt]. Solving for the optimal weight wSV leads to:

wSV =
E[ηt+1|Bt]

2γSV0[sgn(E[ηt+1|Bt]) · ηt+1|Bt]
, (A.15)

where we replace SV0[sgn(w) · ηt+1|Bt] by SV0[sgn(E[ηt+1|Bt]) · ηt+1|Bt], because the sign

of the weight is solely determined by the sign of the expected abnormal return.

Table A.11 shows the optimal weight, the expected utility, and the certainty equivalent

for an investor with a risk-aversion coefficient of two. The optimal weight allocated to the
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risky asset is substantially higher after a positive signal than after a negative signal. For the

CAPM, it rises from 0.08 after a negative bubble signal to an amazing 2.38 when the signal

is positive. Thus, the investor would leverage his wealth by a factor larger than one. The

allocations for the Fama-French and Carhart models are more reasonable. For abnormal

returns based on the Fama-French model, the weight in the risky asset increases from 0.02

after a negative signal to 1.10 when the signal is positive. For the Carhart model, the

optimal weight rises from 0.13 to 1.08 when the signal changes from negative to positive.

In all cases, the optimal weight is statistically significantly higher after positive signals

rather than negative signals. Similarly, we find that expected utility is higher following

a positive bubble signal than after a negative signal. The certainty equivalent demanded

by the investor for not updating his portfolio is always positive, sizable, and statistically

significantly different from zero. Overall, we conclude that even for an investor who is

particularly concerned with downside risk, riding bubbles is the optimal strategy.

[Table 11 about here.]

A.6 Changes in the Risk-free Rate

In the analysis of the optimal portfolio, we assume that the risk-free rate equals its long-run

average. In this section, we investigate how this assumption affects our results. Again, we

use the approximation for the optimality condition:

0 = E[(1 + rf,t+1 + w∗ηt+1)
−γηt+1|Bt] ≈ E

[

e−γ(rf,t+1+w∗ηt+1)ηt+1|Bt

]

=

e−γrf,t+1 E
[

e−γw∗ηt+1ηt+1|Bt

]

.
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If the approximation was exact, then the risk-free rate would be irrelevant. The optimality

condition would be completely determined by the second part, E
[

e−γw∗ηt+1ηt+1|Bt

]

= 0.

Because we use monthly abnormal returns the approximation is almost exact. Therefore,

the choice of the risk-free rate has only a negligible influence.

As alternative specifications, we use a risk-free rate of zero and a rate that is twice the

long-run average. For both settings, we use our base case risk-aversion level of two. The

impact of the changes of the risk-free rate on our results is limited to the third decimal of

the estimates. Because the results are virtually identical, they are available on request.
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Table A.1: Standardized Abnormal Returns After Bubble Signals With Different
Confidence Levels

(a) CAPM, 95% (b) CAPM, 99%

Signal Negative Positive p-value Negative Positive p-value

# Obs 36852 2844 38559 1137
Mean 0.006 (0.011) 0.15 (0.032) < 0.001 0.011 (0.011) 0.20 (0.048) < 0.001
Median −0.013 (0.009) 0.11 (0.034) < 0.001 −0.01 (0.009) 0.20 (0.048) < 0.001
Volatility 1.04 (0.016) 1.16 (0.028) < 0.001 1.04 (0.016) 1.19 (0.033) < 0.001
VaR(0.95) 1.61 (0.028) 1.69 (0.055) 0.067 1.61 (0.027) 1.73 (0.096) 0.063
ES(0.95) 2.25 (0.053) 2.21 (0.071) 0.70 2.25 (0.051) 2.28 (0.11) 0.34

(c) Fama-French model, 95% (d) Fama-French model, 99%

Signal Negative Positive p-value Negative Positive p-value

# Obs 37437 2259 39024 672
Mean −0.0006 (0.009) 0.11 (0.032) < 0.001 0.003 (0.008) 0.15 (0.060) < 0.001
Median −0.024 (0.007) 0.060 (0.026) < 0.001 −0.020 (0.007) 0.076 (0.066) 0.008
Volatility 1.06 (0.015) 1.20 (0.027) < 0.001 1.07 (0.015) 1.30 (0.043) < 0.001
VaR(0.95) 1.66 (0.027) 1.78 (0.062) 0.017 1.66 (0.027) 1.95 (0.11) 0.004
ES(0.95) 2.29 (0.049) 2.41 (0.090) 0.098 2.29 (0.048) 2.55 (0.16) 0.052

(e) Carhart model, 95% (f) Carhart model, 99%

Signal Negative Positive p-value Negative Positive p-value

# Obs 37242 2214 38785 671
Mean 0.01 (0.008) 0.095 (0.037) < 0.001 0.012 (0.008) 0.14 (0.062) 0.002
Median −0.016 (0.008) 0.072 (0.033) < 0.001 −0.013 (0.008) 0.095 (0.061) 0.010
Volatility 1.08 (0.015) 1.24 (0.029) < 0.001 1.08 (0.015) 1.34 (0.043) < 0.001
VaR(0.95) 1.67 (0.027) 1.87 (0.082) 0.002 1.67 (0.028) 1.97 (0.11) 0.003
ES(0.95) 2.30 (0.044) 2.54 (0.13) 0.003 2.31 (0.044) 2.67 (0.20) 0.011

This table reports summary statistics and downside risk measures for the pooled set of standardized
abnormal returns resulting from different confidence levels of 95% and 99% in the bubble signal detection.
The abnormal returns are based on rolling regressions of the CAPM (Panels A–B), the Fama-French
model (Panels C–D) and the Carhart model (Panels E–F) in Equation (1). For each regression, we
construct an abnormal return for the period after the estimation window as in Equation (3). To correct
for time-varying volatility, we standardize the abnormal return by dividing by the residual volatility of the
regression model. We split the abnormal returns according to the detection of a bubble. In the column
titled Negative (Positive) we report the results negative (positive) bubble signals. For each statistic, we
construct standard errors, reported in parentheses, and p-values based on 1,000 temporal bootstraps. The
column titled p-value reports the results of tests for equality of the statistics for negative and positive
bubble signals under the null hypothesis of no distributional difference.
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Table A.2: Optimal Portfolio Choice and Expected Utility for Different Confidence
Levels

Model Level wNB wB p-value VB/VNB p-value λ p-value

CAPM 95% 0.06 (0.12) 1.43 (0.30) < 0.001 2.48 < 0.001 5.02 < 0.001
97.5% 0.08 (0.12) 1.70 (0.35) < 0.001 3.18 < 0.001 7.38 < 0.001
99% 0.12 (0.12) 1.71 (0.43) < 0.001 3.31 < 0.001 7.48 < 0.001

Fama-French 95% 0.00 (0.10) 0.97 (0.29) 0.001 1.65 < 0.001 2.38 < 0.001
97.5% 0.00 (0.10) 0.93 (0.35) 0.003 1.66 0.001 2.43 < 0.001
99% 0.03 (0.10) 1.12 (0.47) 0.013 2.03 0.008 3.56 0.008

Carhart 95% 0.11 (0.09) 0.81 (0.32) 0.004 1.47 0.002 1.33 0.002
97.5% 0.12 (0.09) 0.91 (0.35) 0.010 1.63 0.004 1.76 0.006
99% 0.14 (0.09) 1.05 (0.46) 0.028 1.91 0.006 2.59 0.012

This table reports the optimal portfolio wNB (wB) of an investor who receives a negative (positive) bubble
signal. We assume that the investor has a power-utility function with coefficient of relative risk aversion
γ = 2. We report the optimal portfolios as fractions of wealth. We consider different confidence levels
for the bubble signal detection. The investment opportunity is the typical industry with idiosyncratic
volatilities equal to their pooled averages (CAPM, 4.17%; Fama-French model, 3.86%; and Carhart model,
3.81%). The risk-free rate equals its long-term average of 0.305% per month. Abnormal returns are based
on the CAPM and the Fama-French and Carhart models. Based on the optimal portfolios, we calculate
the ratio of expected utilities VB/VNB. We calculate the certainty equivalent return λ that an investor
requires for not changing his portfolio from wNB to wB in % per year. We use 1,000 temporal bootstraps to
calculate standard errors (reported in parentheses) and p-values. We test wNB = wB, VB = VNB and λ = 0
under the null hypothesis of no difference in distribution between the cases with positive and negative
bubble signals.
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Table A.3: Standardized Abnormal Returns After Bubble Signals for Different Break Intervals and Estimation
Windows

(a) CAPM, Bubble max. 7 Years (b) CAPM, Bubble max. 3 Years (c) CAPM, Estimation 5 Years

Signal Negative Positive p-value Negative Positive p-value Negative Positive p-value

# Obs 38124 1572 37564 2132 38709 1419
Mean 0.009 (0.011) 0.18 (0.047) < 0.001 0.008 (0.011) 0.17 (0.036) < 0.001 0.016 (0.01) 0.19 (0.047) < 0.001
Median −0.01 (0.009) 0.16 (0.053) < 0.001 −0.012 (0.009) 0.14 (0.037) < 0.001 −0.002 (0.008) 0.14 (0.050) < 0.001
Volatility 1.04 (0.015) 1.28 (0.039) < 0.001 1.04 (0.016) 1.13 (0.026) 0.002 1.08 (0.015) 1.20 (0.031) < 0.001
VaR(0.95) 1.61 (0.027) 1.82 (0.10) < 0.001 1.62 (0.028) 1.64 (0.065) 0.32 1.67 (0.028) 1.80 (0.10) 0.030
ES(0.95) 2.24 (0.052) 2.37 (0.094) 0.11 2.25 (0.052) 2.17 (0.085) 0.82 2.30 (0.047) 2.31 (0.11) 0.40

(d) Fama-French model, Bubble max. 7 Years (e) Fama-French model, Bubble max. 3 Years (f) Fama-French model, Estimation 5 Years

Signal Negative Positive p-value Negative Positive p-value Negative Positive p-value

# Obs 38405 1291 38323 1373 39001 1127
Mean 0.002 (0.008) 0.10 (0.045) < 0.001 0.001 (0.008) 0.12 (0.038) < 0.001 0.004 (0.008) 0.15 (0.044) < 0.001
Median −0.022 (0.007) 0.077 (0.043) < 0.001 −0.022 (0.007) 0.081 (0.038) < 0.001 −0.019 (0.008) 0.12 (0.038) < 0.001
Volatility 1.06 (0.015) 1.31 (0.034) < 0.001 1.07 (0.015) 1.23 (0.029) < 0.001 1.12 (0.015) 1.25 (0.033) 0.001
VaR(0.95) 1.66 (0.027) 1.95 (0.11) < 0.001 1.66 (0.027) 1.83 (0.089) 0.008 1.72 (0.026) 1.83 (0.079) 0.078
ES(0.95) 2.28 (0.048) 2.69 (0.13) 0.005 2.29 (0.048) 2.46 (0.11) 0.074 2.38 (0.042) 2.51 (0.13) 0.12

(g) Carhart model, Bubble max. 7 Years (h) Carhart model, Bubble max. 3 Years (i) Carhart model, Estimation 5 Years

Signal Negative Positive p-value Negative Positive p-value Negative Positive p-value

# Obs 38183 1273 38082 1374 38744 1138
Mean 0.012 (0.008) 0.097 (0.050) < 0.001 0.011 (0.008) 0.12 (0.043) < 0.001 0.016 (0.007) 0.11 (0.043) 0.006
Median −0.014 (0.008) 0.081 (0.048) < 0.001 −0.016 (0.008) 0.10 (0.042) < 0.001 −0.011 (0.008) 0.11 (0.041) < 0.001
Volatility 1.08 (0.014) 1.33 (0.034) < 0.001 1.08 (0.015) 1.24 (0.029) < 0.001 1.14 (0.015) 1.29 (0.033) < 0.001
VaR(0.95) 1.67 (0.027) 2.01 (0.11) < 0.001 1.67 (0.028) 1.84 (0.083) 0.009 1.76 (0.023) 1.85 (0.079) 0.12
ES(0.95) 2.30 (0.044) 2.75 (0.14) < 0.001 2.31 (0.045) 2.48 (0.13) 0.065 2.43 (0.043) 2.69 (0.16) 0.019

This table reports summary statistics and downside risk measures for the pooled set of standardized abnormal returns resulting from different
break intervals and estimation windows in the bubble detection method. We consider a maximum length of the break interval (ζU ) of seven
years (Panels A, D, G), three years (Panels B, E, H) and an estimation window of five years with a maximum break interval of three years
(Panels C, F, I). For each regression, we construct an abnormal return for the period after the estimation window as in Equation (3). To correct
for time-varying volatility, we standardize the abnormal return by dividing by the residual volatility of the regression model. We split the
abnormal returns according to the detection of a bubble. In the column titled Negative (Positive) we report the results for negative (positive)
bubble signals. For each statistic, we construct standard errors, reported in parentheses, and p-values based on 1,000 temporal bootstraps.
The column titled p-value reports the results of tests for equality of the statistics for negative and positive signals under the null hypothesis of
no distributional difference.
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Table A.4: Optimal Portfolio Choice and Expected Utility for Different Break In-
tervals and Estimation Periods

Model Setting wNB wB p-value VB/VNB p-value λ p-value

CAPM Base 0.08 (0.12) 1.70 (0.35) < 0.001 3.18 < 0.001 7.38 < 0.001
Long 0.09 (0.12) 1.59 (0.35) < 0.001 2.78 < 0.001 5.92 < 0.001
Short1 0.11 (0.12) 1.39 (0.37) < 0.001 2.70 < 0.001 5.42 < 0.001
Short2 0.17 (0.10) 1.53 (0.41) < 0.001 2.80 < 0.001 5.42 < 0.001

Fama-French Base 0.00 (0.10) 0.93 (0.35) 0.003 1.66 0.001 2.43 < 0.001
Long 0.00 (0.10) 1.03 (0.34) < 0.001 1.78 0.001 2.86 0.003
Short1 0.00 (0.10) 0.83 (0.34) 0.007 1.53 0.005 1.94 0.003
Short2 0.04 (0.08) 1.20 (0.35) < 0.001 2.07 < 0.001 3.67 < 0.001

Carhart Base 0.12 (0.09) 0.91 (0.35) 0.010 1.63 0.004 1.76 0.006
Long 0.12 (0.09) 1.00 (0.36) 0.001 1.73 < 0.001 2.12 < 0.001
Short1 0.13 (0.09) 0.72 (0.38) 0.035 1.42 0.021 1.07 0.032
Short2 0.15 (0.08) 0.83 (0.35) 0.030 1.52 0.012 1.34 0.026

This table reports the optimal portfolio wNB (wB) of a rational investor if she derives a negative (positive)
bubble signal. We assume that the investor has a power-utility function with coefficient of relative risk
aversion γ = 2. We report the optimal portfolios as fractions of wealth. We consider a maximum length
of the break interval (i.e., ζU ) of seven years (setting “Long”) and three years (setting “Short1”), and a
setting where we also decrease the estimation window to five years with a maximum break interval of three
years (setting ”Short2”). The investment opportunity is the typical industry with idiosyncratic volatilities
equal to their pooled averages (CAPM, 4.17%; Fama-French model, 3.86%; and Carhart model, 3.81%).
The risk-free rate equals its long-term average of 0.305% per month. Abnormal returns are based on
the CAPM and the Fama-French and Carhart models. Based on the optimal portfolios, we calculate the
ratio of expected utilities VB/VNB. We also calculate the certainty equivalent return λ that an investor
requires for not changing his portfolio from wNB to wB, in % per year. We use 1,000 temporal bootstraps
to calculate standard errors (reported in parentheses) and p-values. We test wNB = wB, VB = VNB and
λ = 0 under the null hypothesis of no difference in the distribution based on positive and negative bubble
signals.
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Table A.5: Standardized Abnormal Returns After Bubble Signals With Different
Crash Windows

(a) CAPM, No Window (b) CAPM, 12-Month Window

Signal Negative Positive p-value Negative Positive p-value

# Obs 37095 2601 38168 1528
Mean 0.003 (0.011) 0.20 (0.037) < 0.001 0.01 (0.011) 0.18 (0.040) < 0.001
Median −0.013 (0.008) 0.16 (0.041) < 0.001 −0.011 (0.009) 0.18 (0.044) < 0.001
Volatility 1.03 (0.015) 1.23 (0.029) < 0.001 1.04 (0.015) 1.15 (0.034) < 0.001
VaR(0.95) 1.61 (0.028) 1.71 (0.057) 0.041 1.62 (0.028) 1.69 (0.068) 0.16
ES(0.95) 2.25 (0.053) 2.24 (0.075) 0.55 2.25 (0.052) 2.16 (0.087) 0.78

(c) Fama-French model, No Window (d) Fama-French model, 12-Month Window

Signal Negative Positive p-value Negative Positive p-value

# Obs 37945 1751 38686 1010
Mean 0.0009 (0.008) 0.10 (0.040) < 0.001 0.002 (0.008) 0.14 (0.046) < 0.001
Median −0.022 (0.007) 0.049 (0.032) 0.005 −0.021 (0.007) 0.078 (0.047) 0.002
Volatility 1.06 (0.015) 1.31 (0.030) < 0.001 1.07 (0.015) 1.26 (0.035) < 0.001
VaR(0.95) 1.65 (0.027) 1.94 (0.091) < 0.001 1.66 (0.027) 1.83 (0.10) 0.020
ES(0.95) 2.28 (0.049) 2.61 (0.11) 0.005 2.29 (0.048) 2.48 (0.13) 0.085

(e) Carhart model, No Window (f) Carhart model, 12-Month Window

Signal Negative Positive p-value Negative Positive p-value

# Obs 37690 1766 38425 1031
Mean 0.011 (0.008) 0.089 (0.045) < 0.001 0.011 (0.008) 0.13 (0.047) < 0.001
Median −0.014 (0.008) 0.043 (0.040) 0.010 −0.014 (0.008) 0.12 (0.048) < 0.001
Volatility 1.07 (0.015) 1.34 (0.030) < 0.001 1.08 (0.015) 1.28 (0.034) < 0.001
VaR(0.95) 1.66 (0.028) 1.99 (0.078) < 0.001 1.67 (0.028) 1.88 (0.094) 0.011
ES(0.95) 2.29 (0.045) 2.67 (0.12) < 0.001 2.31 (0.045) 2.49 (0.12) 0.063

This table reports summary statistics and downside risk measures for the pooled set of standardized
abnormal returns resulting from different crash windows in the bubble signal extraction. The abnormal
returns are based on rolling regressions of the CAPM (Panels A and B), the Fama-French model (Panels
C and D) and the Carhart model (Panels E and F) in Equation (1). For each regression, we construct an
abnormal return for the period after the estimation window as in Equation (3). To correct for time-varying
volatility, we standardize the abnormal return by dividing by the residual volatility of the regression model.
We split the abnormal returns according to the detection of a bubble. In the column titled Negative
(Positive) we report the results for negative (positive) bubble signals. For each statistic, we construct
standard errors, reported in parentheses, and p-values based on 1,000 temporal bootstraps. The column
titled p-value reports the results of tests for equality of the statistics for negative and positive bubble signal
under the null hypothesis of no distributional difference.
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Table A.6: Optimal Portfolio Choice and Expected Utility for Different Crash Win-
dows

Model Months wNB wB p-value VB/VNB p-value λ p-value

CAPM 0 0.04 (0.12) 1.66 (0.31) < 0.001 3.23 < 0.001 7.88 < 0.001
6 0.08 (0.12) 1.70 (0.35) < 0.001 3.18 < 0.001 7.38 < 0.001
12 0.11 (0.12) 1.66 (0.38) < 0.001 2.99 < 0.001 6.49 < 0.001

Fama-French 0 0.00 (0.10) 0.80 (0.31) 0.003 1.53 0.001 1.94 0.001
6 0.00 (0.10) 0.93 (0.35) 0.003 1.66 0.001 2.43 < 0.001
12 0.00 (0.10) 1.19 (0.38) 0.003 2.08 0.002 3.99 0.003

Carhart 0 0.13 (0.09) 0.66 (0.33) 0.037 1.35 0.015 0.89 0.020
6 0.12 (0.09) 0.91 (0.35) 0.010 1.63 0.004 1.76 0.006
12 0.13 (0.09) 1.08 (0.38) 0.003 1.88 0.002 2.57 0.002

This table reports the optimal portfolio wNB (wB) of a rational investor if she derives a negative (positive)
bubble signal. We assume that the investor has a power-utility function with coefficient of relative risk
aversion γ = 2. We report the optimal portfolios as fractions of wealth. We consider different crash
windows (zero, six and twelve months, six being the base case) over which the investor looks for crashes
when constructing the bubble signal. The investment opportunity is the typical industry with idiosyncratic
volatilities equal to their pooled averages (CAPM, 4.17%; Fama-French model, 3.86%; and Carhart model,
3.81%). The risk-free rate equals its long-term average of 0.305% per month. Abnormal returns are based
on the CAPM and the Fama-French and Carhart models. Based on the optimal portfolios, we calculate
the ratio of expected utilities VB/VNB. We calculate the certainty equivalent return λ that an investor
requires for not changing his portfolio from wNB to wB in % per year. We use 1,000 temporal bootstraps to
calculate standard errors (reported in parentheses) and p-values. We test wNB = wB, VB = VNB and λ = 0
under the null hypothesis of no difference in distribution between the cases with positive and negative
bubble signals.
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Table A.7: Standardized Abnormal Returns After Bubble Signals With Different
Crash Size

(a) CAPM, Crash Below -1.75σ (b) CAPM, Crash Below -2.25σ

Signal Negative Positive p-value Negative Positive p-value

# Obs 38028 1668 37511 2185
Mean 0.009 (0.011) 0.19 (0.041) < 0.001 0.006 (0.011) 0.19 (0.037) < 0.001
Median −0.011 (0.009) 0.16 (0.043) < 0.001 −0.013 (0.008) 0.16 (0.042) < 0.001
Volatility 1.04 (0.015) 1.18 (0.036) < 0.001 1.04 (0.016) 1.19 (0.029) < 0.001
VaR(0.95) 1.62 (0.028) 1.64 (0.073) 0.37 1.61 (0.028) 1.70 (0.057) 0.058
ES(0.95) 2.25 (0.052) 2.19 (0.097) 0.70 2.25 (0.052) 2.19 (0.078) 0.73

(c) Fama-French model, Crash Below -1.75σ (d) Fama-French model, Crash Below -2.25σ

Signal Negative Positive p-value Negative Positive p-value

# Obs 38550 1146 38230 1466
Mean 0.002 (0.008) 0.11 (0.045) < 0.001 0.002 (0.009) 0.10 (0.041) < 0.001
Median −0.021 (0.007) 0.072 (0.039) 0.002 −0.022 (0.007) 0.059 (0.033) 0.004
Volatility 1.07 (0.015) 1.26 (0.034) < 0.001 1.06 (0.015) 1.26 (0.029) < 0.001
VaR(0.95) 1.66 (0.026) 1.88 (0.093) 0.004 1.66 (0.027) 1.86 (0.080) 0.003
ES(0.95) 2.29 (0.048) 2.61 (0.14) 0.011 2.29 (0.048) 2.56 (0.12) 0.009

(e) Carhart model, Crash Below -1.75σ (f) Carhart model, Crash Below -2.25σ

Signal Negative Positive p-value Negative Positive p-value

# Obs 38319 1137 37974 1482
Mean 0.011 (0.008) 0.12 (0.048) < 0.001 0.011 (0.008) 0.093 (0.045) 0.002
Median −0.014 (0.008) 0.087 (0.044) 0.001 −0.014 (0.008) 0.057 (0.040) 0.004
Volatility 1.08 (0.015) 1.28 (0.033) < 0.001 1.08 (0.015) 1.30 (0.031) < 0.001
VaR(0.95) 1.67 (0.028) 1.94 (0.091) < 0.001 1.67 (0.028) 1.96 (0.084) < 0.001
ES(0.95) 2.30 (0.045) 2.58 (0.13) 0.014 2.30 (0.044) 2.65 (0.14) 0.001

This table reports summary statistics and downside risk measures for the pooled set of standardized
abnormal returns resulting from different crash sizes in the bubble detection method. A crash is defined
as a residual below -1.75 (Panels A, C, and E) or -2.25 standard deviations (Panels B, D, and F). The
abnormal returns are based on rolling regressions of the CAPM (Panels A and B), the Fama-French model
(Panels C and D) and the Carhart model (Panels E and F) in Equation (1). For each regression, we
construct an abnormal return for the period after the estimation window as in Equation (3). To correct
for time-varying volatility, we standardize the abnormal return by dividing it by the residual volatility of
the regression model. We split the abnormal returns according to the detection of a bubble. In the column
titled Negative (Positive) we report the results for negative (positive) bubble signals. For each statistic,
we construct standard errors, reported in parentheses, and p-values based on 1,000 temporal bootstraps.
The column titled p-value reports the results of tests for equality of the statistics for positive and negative
bubble signals under the null hypothesis of no distributional difference.
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Table A.8: Optimal Portfolio Choice and Expected Utility for Different Crash Sizes

Model Size wNB wB p-value VB/VNB p-value λ p-value

CAPM Small 0.10 (0.12) 1.70 (0.38) < 0.001 3.16 < 0.001 7.15 < 0.001
Normal 0.08 (0.12) 1.70 (0.35) < 0.001 3.18 < 0.001 7.38 < 0.001
Large 0.07 (0.12) 1.67 (0.33) < 0.001 3.13 < 0.001 7.27 < 0.001

Fama-French Small 0.00 (0.10) 0.91 (0.38) 0.009 1.64 0.007 2.35 0.005
Normal 0.00 (0.10) 0.93 (0.35) 0.003 1.66 0.001 2.43 < 0.001
Large 0.00 (0.10) 0.83 (0.34) 0.007 1.53 0.005 1.94 0.003

Carhart Small 0.13 (0.09) 1.00 (0.38) 0.006 1.75 0.001 2.15 0.001
Normal 0.12 (0.09) 0.91 (0.35) 0.010 1.63 0.004 1.76 0.006
Large 0.13 (0.09) 0.72 (0.35) 0.031 1.41 0.012 1.04 0.026

This table reports the optimal portfolio wNB (wB) of a rational investor if she derives a negative (positive)
bubble signal. We assume that the investor has a power-utility function with coefficient of relative risk
aversion γ = 2. We report the optimal portfolios as fractions of wealth. We vary the size of the threshold
for crashes between -1.75, -2 (the base case) and -2.25 of the standard deviation of the residual returns. The
investment opportunity is the typical industry with idiosyncratic volatilities equal to their pooled averages
(CAPM, 4.17%; Fama-French model, 3.86%; and Carhart model, 3.81%). The risk-free rate equals its
long-term average of 0.305% per month. Abnormal returns are based on the CAPM and the Fama-French
and Carhart models. Based on the optimal portfolios, we calculate the ratio of expected utilities VB/VNB.
We calculate the certainty equivalent return λ that an investor requires for not changing his portfolio from
wNB to wB in % per year. We use 1,000 temporal bootstraps to calculate standard errors (reported in
parentheses) and p-values. We test wNB = wB, VB = VNB and λ = 0 under the null hypothesis of no
difference in distribution between the cases with positive and negative bubble signals.
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Table A.9: Value-weighted Portfolios based on Bubble Signals

(a) Portfolio characteristics

CAPM Fama-French model Carhart model
Bubble No-Bubble Bubble No-Bubble Bubble No-Bubble

Months with signals 69% 100% 64% 100% 64% 100%
Average No. of Industries 3.25 42.78 2.40 43.48 2.40 43.52
Std. Dev. of No. of Industries 2.64 3.69 1.49 3.26 1.51 3.25
Average Portfolio Turnover 1.76 0.95 1.34 0.95 1.32 0.95
Average return 1.63% 0.92% 1.37% 0.92% 1.52% 0.90%
Volatility 6.33% 4.54% 6.25% 4.53% 6.27% 4.53%
Average abnormal return 0.67% 0.00% 0.17% -0.01% 0.25% 0.02%
Abnormal return volatility 4.11% 0.43% 3.87% 0.48% 3.68% 0.44%
Information Ratio 0.163 0.000 0.043 -0.011 0.067 0.034
VaR(0.95) -4.92% -0.47% -5.97% -0.56% -5.57% -0.51%
ES(0.95) -6.94% -0.93% -8.21% -1.05% -7.94% -1.06%

(b) Tests on equality of average abnormal returns

CAPM Fama-French model Carhart model
Bubble No-Bubble Bubble No-Bubble Bubble No-Bubble

Average, OLS 0.75% 0.03% 0.19% 0.00% 0.28% 0.04%
Average, WLS 0.60% -0.01% 0.32% -0.01% 0.35% 0.02%

(0.11) (0.02) (0.12) (0.01) (0.12) (0.01)
[< 0.001] [0.005] [0.005]

Average, GLS 0.40% -0.01% 0.21% -0.01% 0.23% 0.03%
(0.10) (0.02) (0.10) (0.02) (0.10) (0.01)

Test, GLS 4.21 2.17 2.08
[< 0.001] [0.030] [0.038]

This table reports descriptive statistics on bubble portfolio (“Bubble”) and no-bubble portfolio (“No-
Bubble”) in Panel A. For every month t + 1, we form two value-weighted portfolios based on the signal
we receive at the end of month t. The no-bubble portfolio consists of the industries for which we received
a negative bubble signal. The bubble portfolio contains the industries for which we received a positive
signal. If there is no positive signal, the bubble portfolio is not invested. The table shows the average
number of industries in each portfolio per month and its standard deviation, and the percentage of months
for which each portfolio is invested. We calculate the average turnover of the portfolio as the average
absolute change in portfolio weights. For each portfolio, we report the average return and volatility, and
the average abnormal return and its standard deviation in % per month, where the abnormal returns
are corrected for the risk factor exposures of the industries as in Equation (3). The information ratio is
calculated as the ratio of average excess return and its standard deviation. We also report the realized
Value-at-Risk and Expected Shortfall for a confidence level of 95%, based on the abnormal returns. Panel
B report the results of testing for equality of the average abnormal return of the bubble and no-bubble
portfolios. We address heteroscedasticity in the portfolio returns by estimating the averages by WLS and
(feasible) GLS-regressions. We use the variance and covariance of the residuals of Equation (1) to estimate
the variance of the portfolio abnormal returns. Standard errors are in parenthesis. The rows title Test
report the t-statistic for a equality in abnormal returns with p-values below in brackets.
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Table A.10: Optimal Portfolio Choice With Utility Defined Over Higher-Order Mo-
ments

(a) Abnormal Returns Based on the CAPM

κ′

2 κ′

3 κ′

4 wH
NB wH

B p-value V H
B /V H

NB p-value λ p-value

1 1 1 0.08 (0.12) 1.67 (0.33) < 0.001 3.17 < 0.001 7.31 < 0.001
1 2 1 0.08 (0.12) 1.96 (0.49) < 0.001 3.06 < 0.001 8.24 < 0.001
1 4 1 0.08 (0.12) 5.98 (2.55) < 0.001 2.02 < 0.001 20.93 < 0.001
1 1 2 0.08 (0.12) 1.56 (0.28) < 0.001 3.42 < 0.001 7.01 < 0.001
1 1 4 0.08 (0.12) 1.42 (0.23) < 0.001 6.79 < 0.001 6.59 < 0.001
1 2 2 0.08 (0.12) 1.75 (0.35) < 0.001 3.09 < 0.001 7.73 < 0.001
1 4 4 0.08 (0.12) 1.91 (0.38) < 0.001 2.97 < 0.001 8.70 < 0.001
1 0 0 0.08 (0.12) 1.59 (0.31) < 0.001 3.28 < 0.001 6.93 < 0.001
2 0 0 0.04 (0.06) 0.79 (0.15) < 0.001 3.54 < 0.001 3.44 < 0.001

(b) Abnormal Returns Based on the Fama-French model

κ′

2 κ′

3 κ′

4 wH
NB wH

B p-value V H
B /V H

NB p-value λ p-value

1 1 1 0.00 (0.10) 0.92 (0.35) 0.003 1.66 0.002 2.43 0.003
1 2 1 0.00 (0.10) 0.96 (0.38) 0.005 1.65 0.002 2.49 0.003
1 4 1 0.00 (0.10) 1.05 (0.68) 0.010 1.32 0.003 2.65 0.003
1 1 2 0.00 (0.10) 0.91 (0.33) 0.002 1.68 0.002 2.41 0.003
1 1 4 0.00 (0.10) 0.89 (0.30) 0.002 1.72 0.002 2.37 0.003
1 2 2 0.00 (0.10) 0.94 (0.36) 0.005 1.65 0.002 2.47 0.003
1 4 4 0.00 (0.10) 0.98 (0.39) 0.006 1.64 0.003 2.57 0.003
1 0 0 0.00 (0.10) 0.91 (0.33) 0.002 1.67 0.002 2.38 0.003
2 0 0 0.00 (0.05) 0.45 (0.17) 0.002 1.70 0.002 1.19 0.003

(c) Abnormal Returns Based on the Carhart model

κ′

2 κ′

3 κ′

4 wH
NB wH

B p-value V H
B /V H

NB p-value λ p-value

1 1 1 0.12 (0.09) 0.91 (0.36) 0.008 1.63 0.001 1.76 0.001
1 2 1 0.13 (0.09) 0.94 (0.40) 0.009 1.62 0.001 1.82 0.001
1 4 1 0.13 (0.09) 1.02 (0.68) 0.012 1.31 0.001 1.95 0.001
1 1 2 0.12 (0.09) 0.90 (0.35) 0.008 1.64 0.001 1.74 0.001
1 1 4 0.12 (0.09) 0.87 (0.32) 0.007 1.68 0.001 1.71 0.003
1 2 2 0.13 (0.09) 0.93 (0.38) 0.009 1.62 0.001 1.80 0.001
1 4 4 0.13 (0.09) 0.96 (0.41) 0.010 1.61 0.001 1.87 0.001
1 0 0 0.12 (0.09) 0.89 (0.35) 0.007 1.64 0.001 1.73 0.001
2 0 0 0.06 (0.04) 0.44 (0.17) 0.007 1.66 0.001 0.86 0.003

This table reports the optimal portfolio weight after a negative (positive) bubble signal wH
NB (wH

B).
The investor’s utility function is defined over moments up to order four of the portfolio return
distribution, E [U ′(Wt+1)] = E[rf,t+1 + wηt+1] − κ′

2 E
[

(rf,t+1 + wηt+1)
2
]

+ κ′

3 E
[

(rf,t+1 + wηt+1)
3
]

−
κ′

4 E
[

(rf,t+1 + wηt+1)
4
]

. We consider different values for the moment weights κ′

2, κ
′

3 and κ′

4. The base case
of κ′

2 = κ′

3 = κ′

4 = 1 is the approximation of a power-utility function with γ = 2. We consider abnormal
returns ηt+1 constructed from the CAPM, the Fama-French and the Carhart models. The investment
opportunity is the typical industry with idiosyncratic volatilities equal to their pooled averages (CAPM,
4.17%; Fama-French model, 3.86%; and Carhart model, 3.81%). The risk-free rate equals its long-term
average of 0.305% per month. Based on the optimal portfolios, we calculate the ratio of expected utilities,
V H
B /V H

NB. We also calculate the certainty equivalent return λ that an investor requires for not changing
his portfolio from wH

NB to wH
B . We use 1,000 temporal bootstraps to calculate standard errors (reported

in parentheses). We test wH
NB = wH

B , V
H
B = V H

NB and λ = 0 under the null hypothesis of no difference in
distribution between the cases with positive and negative bubble signals.
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Table A.11: Optimal Portfolio Choice of a Mean-Semivariance Investor

wSV
NB wSV

B p-value V SV
B /V SV

NB p-value λ p-value

CAPM 0.08 (0.13) 2.38 (0.65) < 0.001 4.11 < 0.001 10.61 < 0.001
Fama-French 0.02 (0.10) 1.10 (0.49) 0.006 1.79 0.003 2.79 0.003
Carhart 0.13 (0.10) 1.08 (0.51) 0.008 1.77 0.001 2.18 0.001

This table reports the optimal weight after a negative (positive) bubble signal, that is wH
NB (wH

B ). The
investor is equipped with a mean-semivariance utility function. The optimal portfolio is given by wSV

B =
E[ηt+1|Bt]/(2γSV0[sgn(E[ηt+1|Bt]) · ηt+1|Bt]). We set the parameter γ of aversion to semivariance equal
to two. We consider abnormal returns ηt+1 constructed based on the CAPM, the Fama-French model
and Carhart model. The investment opportunity is the typical industry with idiosyncratic volatilities
equal to their pooled averages (CAPM, 4.17%; Fama-French model, 3.86%; and Carhart model, 3.81%).
The risk-free rate equals its long-term average of 0.305% per month. Based on the optimal portfolios, we
calculate the ratio of expected utilities, V SV

B /V SV
NB . We also calculate the certainty equivalent return λ that

an investor requires for not changing his portfolio from wSV
NB to wSV

B . We use 1,000 temporal bootstraps
to calculate standard errors (reported in parentheses). We test wSV

NB = wSV
B , V SV

B = V SV
NB and λ = 0 under

the null hypothesis of no difference in distribution after positive and negative bubble signals.
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B Industry Specific Information

To ensure that our findings are not driven by a few industries we replicate our main results

for each industry. Table B.1 provides descriptive statistics on the industry returns. The

average return on the industries is 12.4% per year and its standard deviation is 26.2%.

The minimum and maximum values indicate that several industries experienced extreme

returns. We investigate this issue further and find that most of these extreme values occur

during the Great Depression at the beginning of our sample period.

[Table 1 about here.]

Tables B.2 to B.4 present the abnormal return estimates for each industry. For all

three asset pricing models, we find that the returns of a few industries are significantly

larger or smaller than zero. The deviations are however generally economically small and

do not show a clear pattern. The average of the mean abnormal returns across industries

is indistinguishable from zero for the Fama-French model. For the Carhart model and the

CAPM it is significantly positive. However, it is economically small because it is only 0.02

for the CAPM and 0.01 for the Carhart model. The standardized volatility estimates of

the industries often differ significantly from one for all three asset pricing models. The

deviations are always positive, indicating that the asset pricing models commonly predict

too low residual volatilities. The results also show that the abnormal industry returns are

sometimes positively or negatively skewed, but pooled skewness is positive for all asset

pricing models. Kurtosis is always larger than three, indicating fat tails. The market beta

for the pooled set of industry returns is close to one and the coefficients of HML and MOM
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are close to zero. However, some of the industries have a positive or negative exposure to

these factors. The pooled set of abnormal returns has a slightly positive exposure to SMB,

perhaps because we equal weight the industries in our analysis.

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]

Tables B.5 to B.7 correspond to Table 7 in the paper. They present descriptive statistics

of the bubble signals and bubbles. We first report descriptive statistics on the signals.

Subsequently, we define one uninterrupted sequence of bubble signals, starting from the

earliest breakpoint, as “one bubble” and present information on these bubbles. The bubble

signals we receive are widely distributed across the 48 industries. For most industries the

fraction of observations identified as a possible bubble signal is below ten percent. The

only exception to that is the computer industry (“Comps”) for the Fama-French model

and the real estate industry (“RlEst”) for the CAPM-based results. That is not a surprise

because these two industries experienced a major bubble during our sample period. The

first intercept, αa
i,t, tends to be slightly negative for most industries, but it is economically

small. The intercept following the breakpoint, αp
i,t, is in all cases positive and in most cases

large in magnitude. Consistent with our method to detect the bubble signal, the measure

“Strength” then also shows that αp
i,t easily passes the test for being significantly positive

for most industries. While for some of the industries average number of months from the
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breakpoint to the signal is shorter or longer, we do not see here either that any of the

industries could be dominating our findings.

The last three columns of each table show the number of bubbles for each industry.

Most industries experience at least one bubble period. An exception to this is the utility

industry which does not experience any bubble for any of the three asset pricing models.

For the CAPM, we also observe that the industry “FabPr” did not experience a bubble

and for the Fama-French and Carhart models the “Guns” industry did not experience a

bubble. Part of the explanation could be that we have a shorter time-series for some of

these industries. However, there is also no evidence that any of these industries experienced

a famous bubble (see Baker and Wurgler (2006)) over the last century.

Across all industries, we find large positive abnormal returns and raw returns during

bubbles. The annual raw returns during bubbles for the different asset pricing models

range from a minimum of about 10% to a maximum of about 126%. The maximum of

126% is for the gold industry. It actually represents the 1979-1980 boom in gold prices.

The standardized abnormal returns are centered around their pooled average, ranging from

about 0.25 to one.

[Table 5 about here.]

[Table 6 about here.]

[Table 7 about here.]

Table B.8 presents the abnormal returns after positive bubble signals. For most indus-

tries the average abnormal returns after bubbles are positive. However, for none of these
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industries is the return extraordinarily large in the sense that it would disproportionately

affect our results. The positive abnormal returns of many industries contribute to the

overall positive average abnormal returns. For few a industries, we find negative abnormal

returns following bubbles. This finding indicates that the investor might also only expe-

rience the deflation or crash following a bubble. For the gold industry, for example, the

return is very negative. This finding stresses the fact that riding bubbles can be risky, as

they can deflate or crash very quickly.

[Table 8 about here.]
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Table B.1: Descriptive Statistics of Industry Returns

Industry Start Date # Obs. Mean Volatility Skewness Kurtosis Min. Max.
Agric 1926:07 1002 11.9 26.2 1.65 22.1 −36.5 91.3
Food 1926:07 1002 11.8 16.9 0.02 5.7 −27.7 32.8
Soda 1963:07 558 13.6 23.1 0.15 4.0 −26.3 38.9
Beer 1926:07 1002 14.7 25.8 1.81 22.1 −29.2 89.2
Smoke 1926:07 1002 13.7 20.4 0.06 3.4 −25.0 33.3
Toys 1926:07 1002 12.1 35.5 2.78 36.2 −43.3 140.4
Fun 1926:07 1002 14.3 32.8 0.63 9.2 −44.5 69.8
Books 1926:07 1002 11.8 27.0 0.85 7.2 −34.9 56.0
Hshld 1926:07 1002 11.1 21.0 0.35 12.6 −35.3 59.2
Clths 1926:07 1002 10.4 21.2 0.31 4.8 −30.9 41.2
Hlth 1969:07 486 12.3 30.1 −0.08 2.7 −41.1 36.4
MedEq 1926:07 1002 13.3 22.1 −0.13 1.8 −26.6 30.5
Drugs 1926:07 1002 13.2 20.5 0.26 7.4 −35.6 40.3
Chems 1926:07 1002 12.5 22.1 0.34 6.7 −33.3 47.0
Rubbr 1944:07 786 12.6 20.2 −0.13 2.7 −30.5 32.1
Txtls 1926:07 1002 11.3 28.0 1.01 9.6 −32.6 59.3
BldMt 1926:07 1002 11.4 24.2 0.37 6.3 −32.3 41.8
Cnstr 1926:07 1002 12.3 33.5 0.90 6.8 −38.0 67.8
Steel 1926:07 1002 11.6 29.6 1.34 13.6 −32.5 80.8
FabPr 1963:07 558 7.1 25.6 −0.15 2.8 −28.9 39.5
Mach 1926:07 1002 12.5 25.4 0.45 7.4 −33.4 51.9
ElcEq 1926:07 1002 14.3 26.8 0.58 8.6 −34.5 59.6
Autos 1926:07 1002 13.0 28.1 1.20 14.4 −36.4 81.9
Aero 1926:07 1002 16.9 33.0 0.91 7.7 −40.4 72.0
Ships 1926:07 1002 11.2 27.8 0.76 7.5 −34.4 63.4
Guns 1963:07 558 13.3 23.8 −0.11 1.8 −30.1 32.9
Gold 1963:07 558 13.2 36.1 0.77 5.6 −33.7 78.5
Mines 1926:07 1002 12.6 24.5 0.03 4.1 −34.5 46.1
Coal 1926:07 1002 15.5 31.8 0.87 6.8 −38.0 77.5
Oil 1926:07 1002 12.9 21.2 0.28 4.1 −29.7 39.2
Util 1926:07 1002 10.5 19.7 0.07 7.5 −33.0 43.2
Telcm 1926:07 1002 9.9 16.1 −0.01 3.2 −21.6 28.2
PerSv 1927:07 990 11.6 33.0 1.52 13.4 −39.3 84.8
BusSv 1926:07 1002 12.5 26.2 0.45 7.9 −40.4 56.7
Comps 1926:07 1002 14.8 25.7 0.07 4.5 −34.6 53.4
Chips 1926:07 1002 13.4 30.8 0.45 6.0 −42.1 64.7
LabEq 1926:07 1002 13.1 24.3 −0.27 1.9 −33.2 25.4
Paper 1936:07 882 12.9 23.4 0.29 5.0 −35.8 47.9
Boxes 1926:07 1002 12.8 21.7 0.15 5.6 −29.3 43.4
Trans 1926:07 1002 10.7 25.3 1.07 13.0 −34.5 65.4
Whlsl 1926:07 1002 9.6 26.1 0.58 11.1 −44.5 59.2
Rtail 1926:07 1002 11.8 20.9 0.01 5.0 −30.3 37.8
Meals 1926:07 1002 12.4 23.3 −0.34 2.6 −31.3 31.5
Banks 1926:07 1002 14.3 25.1 0.12 4.9 −33.7 42.3
Insur 1926:07 1002 12.3 26.6 1.03 15.6 −45.4 73.7
RlEst 1926:07 1002 9.1 34.2 0.77 6.9 −52.6 59.3
Fin 1926:07 1002 13.3 27.3 0.49 9.1 −39.2 67.2
Other 1926:07 1002 8.9 26.0 −0.01 3.5 −33.3 41.9

Pooled - 45456 12.4 26.2 0.78 11.8 −52.6 140.4

This table reports summary statistics on the 48 US industries as defined in Fama and French (1997). For
each industry we report the start date, the number of available return observations, their mean (in % per
year), volatility (in % per year), skewness, kurtosis, minimum (in %) and maximum (in %).
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Table B.2: Summary Statistics of Abnormal Returns (CAPM)

Industry β̄ Mean Volatility Skewness Kurtosis Min. Max.

Agric 0.89 0.02 1.01 0.32∗ 4.56 −3.39 5.54
Food 0.74 0.08∗ 1.09∗ 0.36∗ 5.70 −4.90 5.66
Soda† 0.86 0.00 1.22∗ 0.20 5.71 −5.17 5.91
Beer 0.90 0.06 1.02 0.36∗ 7.04 −4.22 7.12
Smoke 0.66 0.09∗ 1.09∗ −0.05 4.01 −4.97 4.08
Toys 1.21 −0.02 1.00 0.21∗ 5.91 −5.49 5.02
Fun 1.28 0.04 1.02 0.12 5.24 −5.15 5.67
Books 1.14 −0.01 1.02 0.05 5.79 −5.92 5.72
Hshld 0.89 0.03 1.04 −0.26∗ 6.55 −6.27 5.03
Clths 0.95 −0.01 1.06∗ 0.08 4.80 −4.96 4.51
Health† 1.08 −0.04 1.02 −0.49∗ 5.35 −4.76 2.89
MedEq 0.94 0.05 1.00 −0.07 4.66 −4.44 5.24
Drugs 0.88 0.08∗ 1.05∗ 0.05 6.33 −5.64 6.32
Chems 1.01 −0.02 1.05∗ 0.24∗ 5.15 −4.07 6.21
Rubbr† 1.04 0.02 1.11∗ 0.29∗ 5.70 −4.26 5.32
Txtls 1.09 −0.01 1.11∗ 0.26∗ 6.24 −3.90 6.98
BldMt 1.13 −0.04 1.08∗ 0.08 5.60 −4.69 5.67
Cnstr 1.38 −0.02 1.01 0.55∗ 5.32 −4.44 5.60
Steel 1.27 −0.04 1.06∗ 0.74∗ 6.56 −2.98 7.59
FabPr† 1.06 −0.07 1.09∗ 0.23∗ 4.67 −3.80 4.84
Mach 1.18 −0.04 1.04 0.19∗ 3.82 −3.84 3.68
ElcEq 1.21 0.03 1.01 0.12 3.66 −4.09 4.29
Autos 1.11 −0.01 1.06∗ 0.29∗ 7.63 −6.52 6.17
Aero 1.14 0.04 1.00 0.08 5.07 −4.55 3.77
Guns† 0.83 0.05 1.12∗ −0.80∗ 8.53 −7.18 4.51
Gold† 0.69 0.03 1.13∗ 1.14∗ 9.47 −3.19 8.35
Ships 1.09 −0.02 1.05∗ 0.69∗ 6.73 −3.92 6.63
Mines 0.97 0.03 1.06∗ 0.21∗ 3.82 −3.56 4.81
Coal 1.00 0.06 1.12∗ 0.93∗ 7.97 −4.05 8.15
Oil 0.87 0.06 1.04 0.27∗ 4.05 −3.60 4.21
Util 0.66 0.04 1.04 0.07 3.75 −3.30 3.69
Telcm 0.64 0.08∗ 1.08∗ 1.03∗ 9.74 −3.96 9.18
PerSv† 1.08 −0.01 1.02 −0.02 4.22 −4.29 4.13
BusSv 1.09 0.04 1.01 0.42∗ 4.49 −3.14 4.20
Comps 1.15 0.06 1.06∗ 0.44∗ 5.04 −4.14 5.65
Chips 1.37 0.00 1.02 0.11 4.50 −4.99 4.97
LabEq 1.14 0.04 1.04 0.32∗ 4.94 −4.03 5.63
Paper† 1.12 −0.02 1.04 0.48∗ 6.09 −4.36 6.62
Boxes 0.98 0.04 1.04 −0.21∗ 3.85 −4.07 3.33
Trans 1.13 −0.03 1.02 0.48∗ 4.95 −3.40 5.44
Whshl 1.08 0.00 1.03 0.17∗ 6.78 −6.27 5.56
Rtail 0.96 0.04 1.04 −0.15 4.33 −4.08 4.56
Meals 1.01 0.05 1.02 0.14 4.69 −4.73 3.89
Banks 0.96 0.02 1.02 −0.27∗ 5.39 −5.02 4.21
Insur 0.97 0.01 1.03 0.07 6.18 −5.73 5.58
RlEst 1.18 −0.06 1.11∗ 0.64∗ 11.63 −6.19 9.15
Fin 1.23 0.04 1.04 −0.17∗ 5.89 −6.61 4.05
Other 1.11 −0.04 1.07∗ −0.09 4.58 −4.36 4.28

Pooled 1.03 0.02∗ 1.05∗ 0.22∗ 5.75 −7.18 9.18

This table reports the results of the rolling regressions of the market model in Equation (1) with a 120-
month estimation window. For each regression, we construct an abnormal return for the period after the
estimation window as in Equation (3). To correct for time-varying volatility, we standardize the abnormal
return by dividing it by the residual volatility of the regression model. A dagger after an industry name
indicates that fewer observations are available. An asterisk denotes a significant difference from zero in
case of means and skewness coefficients, and a significant difference from one in case of volatility, all at
a 5% confidence level. We calculate standard errors of the skewness coefficient as

√

6/T (see Tabachnick
and Fidell, 2001).
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Table B.3: Summary Statistics of Abnormal Returns (Fama-French model)

industry β̄RM β̄SMB β̄HML Mean Vol. Skew. Kurt. Min. Max.

Agric 0.85 0.47 −0.05 0.01 1.02 0.52∗ 5.12 −3.25 6.20
Food 0.78 0.00 −0.02 0.09∗ 1.11∗ 0.40∗ 5.44 −4.83 5.56
Soda† 0.99 −0.10 0.22 0.00 1.23∗ 0.57∗ 6.62 −4.46 6.36
Beer 0.89 0.26 0.00 0.05 1.05∗ 0.25∗ 6.54 −3.94 7.08
Smoke 0.72 −0.05 0.07 0.08∗ 1.11∗ −0.12 4.18 −5.58 4.11
Toys 1.08 0.83 −0.16 −0.02 1.01 0.19∗ 5.62 −5.52 5.27
Fun 1.20 0.56 −0.04 0.03 1.03 0.00 6.33 −6.78 5.10
Books 1.06 0.49 −0.04 −0.01 1.03 −0.04 5.60 −6.40 5.23
Hshld 0.92 0.04 −0.21 0.07 1.08∗ −0.68∗ 13.16 −9.91 5.38
Clths 0.89 0.53 0.17 −0.06 1.09∗ 0.01 6.48 −5.60 5.80
Health† 1.03 0.61 −0.02 −0.04 1.09∗ −1.10∗ 9.27 −7.11 2.96
MedEq 0.85 0.19 −0.26 0.09∗ 1.04 −0.03 4.75 −4.83 5.23
Drugs 0.89 −0.14 −0.42 0.14∗ 1.09∗ 0.04 4.98 −5.16 5.02
Chems 1.12 −0.12 0.07 −0.05 1.07∗ 0.21∗ 4.90 −4.04 5.93
Rubbr† 0.96 0.66 0.16 −0.03 1.11∗ 0.29∗ 4.97 −4.18 4.88
Txtls 1.04 0.67 0.42 −0.07 1.13∗ 0.45∗ 6.12 −4.21 6.65
BldMt 1.16 0.23 0.04 −0.08∗ 1.09∗ 0.24∗ 4.65 −4.56 5.23
Cnstr 1.27 0.69 0.25 −0.06 1.02 0.27∗ 5.19 −4.44 5.70
Steel 1.23 0.24 0.49 −0.10∗ 1.10∗ 0.57∗ 5.93 −3.72 7.31
FabPr† 1.03 0.64 0.13 −0.09 1.12∗ 0.19 4.57 −3.60 4.93
Mach 1.16 0.27 0.17 −0.08∗ 1.06∗ 0.19∗ 3.76 −3.86 3.54
ElcEq 1.19 0.04 −0.19 0.05 1.04 0.12 3.39 −3.64 4.41
Autos 1.20 0.10 0.33 −0.07 1.08∗ 0.36∗ 6.37 −5.52 6.30
Aero 1.06 0.53 0.20 0.02 1.02 0.15 4.71 −4.86 4.17
Guns† 0.91 0.24 0.41 0.00 1.13∗ −0.48∗ 8.62 −7.24 5.72
Gold† 0.69 0.57 0.27 0.01 1.15∗ 1.33∗ 10.58 −3.63 8.71
Ships 1.03 0.33 0.41 −0.04 1.09∗ 0.64∗ 5.90 −4.52 6.18
Mines 0.94 0.41 0.33 0.00 1.08∗ 0.26∗ 4.15 −3.84 5.34
Coal 0.89 0.35 0.41 0.06 1.14∗ 0.87∗ 7.21 −4.15 7.51
Oil 0.96 −0.37 0.31 0.03 1.07∗ 0.11 3.96 −3.52 4.03
Util 0.77 −0.10 0.23 0.01 1.07∗ 0.05 3.90 −3.61 3.92
Telcm 0.70 −0.13 0.04 0.07 1.10∗ 1.07∗ 10.45 −3.69 9.61
PerSv† 0.96 0.69 −0.11 −0.01 1.05 −0.18∗ 5.15 −5.33 3.97
BusSv 0.89 0.49 −0.23 0.09∗ 1.02 0.34∗ 4.68 −3.65 5.06
Comps 1.07 0.08 −0.52 0.12∗ 1.05∗ 0.44∗ 4.89 −4.00 5.69
Chips 1.24 0.37 −0.34 0.03 1.04 0.01 4.07 −4.88 4.19
LabEq 1.07 0.30 −0.46 0.08∗ 1.05 0.23∗ 4.15 −3.76 4.30
Paper† 1.20 0.08 0.27 −0.07 1.04 0.39∗ 5.62 −4.32 6.25
Boxes 1.01 0.00 −0.05 0.05 1.07∗ −0.25∗ 3.95 −4.22 3.61
Trans 1.05 0.24 0.54 −0.10∗ 1.06∗ 0.20∗ 4.45 −4.01 5.58
Whshl 0.98 0.60 −0.06 −0.01 1.04 −0.10 7.15 −5.52 5.55
Rtail 0.97 0.16 −0.14 0.06 1.08∗ −0.12 4.55 −4.59 4.82
Meals 0.94 0.57 −0.04 0.05 1.05∗ 0.06 4.49 −4.96 4.11
Banks 1.08 0.09 0.09 0.00 1.03 0.20∗ 4.34 −4.03 4.14
Insur 1.07 −0.13 0.01 0.00 1.02 0.33∗ 4.45 −3.78 4.46
RlEst 1.06 1.04 0.26 −0.13∗ 1.12∗ 0.92∗ 11.33 −5.20 9.31
Fin 1.21 0.17 0.26 0.01 1.07∗ −0.11 5.80 −6.90 4.10
Other 1.06 0.41 −0.21 −0.03 1.12∗ 0.17∗ 5.17 −4.61 5.48

Pooled 1.01 0.29 0.05 0.01 1.07∗ 0.21∗ 5.77 −9.91 9.61

This table reports the results of the rolling regressions of the Fama-French model in Equation (1) with
a 120-month estimation window. For each regression, we construct an abnormal return for the period
after the estimation window as in Equation (3). To correct for time-varying volatility, we standardize the
abnormal return by dividing by the residual volatility of the regression model. A dagger after an industry
name indicates that fewer observations are available. An asterisk denotes a significant difference from zero
in case of means and skewness coefficients, and a significant difference from one in case of volatility, all at
a 5% confidence level. We calculate standard errors of the skewness coefficient as

√

6/T (see Tabachnick
and Fidell, 2001).
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Table B.4: Summary Statistics of Abnormal Returns (Carhart model)

Industry β̄RM β̄SMB β̄HML β̄MOM Mean Vol. Skew. Kurt. Min. Max.

Agric 0.85 0.48 −0.04 0.06 −0.01 1.03 0.53∗ 5.18 −3.21 6.26
Food 0.78 0.00 −0.01 0.00 0.10∗ 1.13∗ 0.48∗ 4.97 −3.54 5.50
Soda† 0.98 −0.09 0.19 −0.07 0.03 1.25∗ 0.55∗ 6.45 −4.51 6.37
Beer 0.89 0.26 0.03 0.08 0.05 1.07∗ 0.26∗ 6.47 −3.89 7.26
Smoke 0.72 −0.05 0.05 −0.06 0.10∗ 1.12∗ −0.09 4.00 −5.47 4.08
Toys 1.08 0.86 −0.13 0.06 −0.03 1.02 0.23∗ 5.16 −4.98 5.13
Fun 1.18 0.58 −0.04 0.04 0.01 1.04 −0.18∗ 6.53 −7.37 4.84
Books 1.06 0.49 −0.06 −0.03 0.01 1.07∗ 0.10 5.79 −6.38 6.12
Hshld 0.93 0.06 −0.20 0.06 0.05 1.09∗ −0.65∗ 13.95 −10.27 5.51
Clths 0.89 0.51 0.16 −0.14 −0.01 1.11∗ 0.16 5.66 −5.07 6.07
Health† 1.04 0.60 −0.01 0.06 −0.04 1.12∗ −0.85∗ 7.46 −6.11 3.13
MedEq 0.86 0.21 −0.24 0.07 0.08∗ 1.05∗ −0.02 4.86 −4.67 5.28
Drugs 0.90 −0.12 −0.43 0.05 0.12∗ 1.11∗ −0.01 5.00 −5.18 5.19
Chems 1.11 −0.12 0.05 −0.06 −0.02 1.10∗ 0.06 4.79 −4.46 5.25
Rubbr† 0.96 0.68 0.17 0.02 −0.03 1.12∗ 0.22∗ 4.90 −4.23 4.76
Txtls 1.03 0.65 0.40 −0.13 −0.04 1.13∗ 0.31∗ 5.03 −3.69 6.39
BldMt 1.16 0.23 0.04 −0.04 −0.06 1.11∗ 0.27∗ 4.72 −4.46 5.22
Cnstr 1.28 0.67 0.24 −0.04 −0.04 1.03 0.31∗ 4.98 −4.19 5.68
Steel 1.23 0.24 0.47 −0.10 −0.08∗ 1.11∗ 0.52∗ 5.56 −3.61 6.87
FabPr† 1.01 0.66 0.10 −0.10 −0.08 1.13∗ 0.28∗ 4.14 −3.71 4.32
Mach 1.15 0.27 0.15 −0.09 −0.05 1.07∗ 0.21∗ 3.65 −3.82 4.00
ElcEq 1.20 0.05 −0.18 0.00 0.05 1.05∗ 0.10 3.67 −4.54 4.68
Autos 1.19 0.07 0.30 −0.19 −0.01 1.08∗ 0.14 5.89 −5.89 6.25
Aero 1.05 0.56 0.23 0.07 0.01 1.04 0.13 4.65 −4.45 4.27
Guns† 0.90 0.24 0.40 −0.04 0.01 1.14∗ −0.38∗ 8.37 −7.20 5.87
Gold† 0.72 0.61 0.29 0.14 0.00 1.16∗ 1.24∗ 10.21 −3.91 8.66
Ships 1.03 0.33 0.40 −0.03 −0.04 1.11∗ 0.60∗ 6.40 −4.74 6.33
Mines 0.94 0.41 0.31 −0.06 0.01 1.09∗ 0.23∗ 3.95 −3.52 5.26
Coal 0.91 0.33 0.41 0.01 0.07 1.15∗ 0.84∗ 6.99 −4.22 7.47
Oil 0.96 −0.37 0.31 0.04 0.03 1.10∗ 0.03 3.77 −3.55 4.01
Util 0.76 −0.11 0.22 −0.03 0.02 1.08∗ 0.09 3.93 −3.87 3.80
Telcm 0.69 −0.12 0.02 −0.06 0.09∗ 1.12∗ 1.00∗ 9.80 −3.67 9.52
PerSv† 0.96 0.69 −0.10 −0.01 0.01 1.05∗ −0.17∗ 4.93 −5.07 3.95
BusSv 0.89 0.51 −0.22 0.04 0.07∗ 1.04 0.30∗ 5.22 −4.99 5.26
Comps 1.07 0.10 −0.52 −0.01 0.11∗ 1.06∗ 0.49∗ 4.71 −3.61 5.63
Chips 1.23 0.37 −0.35 −0.05 0.04 1.05∗ 0.02 4.12 −4.92 4.33
LabEq 1.07 0.33 −0.45 0.05 0.07 1.06∗ 0.31∗ 4.49 −3.75 4.44
Paper† 1.20 0.07 0.23 −0.10 −0.03 1.06∗ 0.29∗ 5.38 −5.46 5.53
Boxes 1.01 0.02 −0.07 −0.03 0.05 1.09∗ −0.19∗ 4.03 −4.51 4.58
Trans 1.04 0.23 0.52 −0.08 −0.08∗ 1.07∗ 0.18∗ 4.30 −4.08 5.44
Whshl 0.99 0.61 −0.04 0.08 −0.02 1.06∗ −0.01 6.72 −5.45 5.66
Rtail 0.97 0.15 −0.16 −0.10 0.09∗ 1.09∗ −0.10 4.36 −4.96 4.61
Meals 0.95 0.57 −0.04 −0.03 0.06 1.06∗ 0.12 4.23 −4.88 4.06
Banks 1.08 0.08 0.06 −0.13 0.04 1.04 0.15 4.03 −4.24 3.80
Insur 1.06 −0.13 0.01 −0.05 0.02 1.04 0.35∗ 4.37 −3.63 4.43
RlEst 1.06 1.07 0.26 0.03 −0.14∗ 1.11∗ 0.79∗ 10.14 −5.24 8.69
Fin 1.20 0.17 0.24 −0.05 0.03 1.09∗ −0.11 5.74 −6.85 4.38
Other 1.06 0.40 −0.22 −0.02 −0.02 1.14∗ 0.17∗ 4.99 −4.59 5.43

Pooled 1.01 0.29 0.05 −0.02 0.01∗ 1.09∗ 0.20∗ 5.59 −10.27 9.52

This table reports the results of the rolling regressions of the Carhart (1997) Four-Factor Model (Carhart
model) in Equation (1) with a 120-month estimation window. For each regression, we construct an ab-
normal return for the period after the estimation window as in Equation (3). To correct for time-varying
volatility, we standardize the abnormal return by dividing it by the residual volatility of the regression
model. A dagger after an industry name indicates that fewer observations are available. An asterisk
denotes a significant difference from zero in case of means and skewness coefficients, and a significant
difference from one in case of volatility, all at a 5% confidence level. We calculate standard errors of the
skewness coefficient as

√

6/T (see Tabachnick and Fidell, 2001).
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Table B.5: Statistics of Positive Bubble Signals and Bubbles per Industry (CAPM)

Industry % of sample αa
i,t αp

i,t
Strength Length # Bubbles Return StAR

Agric 1.59 −0.00057 0.042 3.40 21.0 2 40.7 0.55
Food 8.39 −0.00118 0.016 4.46 28.9 3 23.5 0.58
Soda† 4.11 −0.00505 0.028 2.93 23.0 2 37.7 0.44
Beer 1.93 −0.00541 0.025 2.87 26.1 2 41.3 0.41
Smoke 6.12 −0.00188 0.035 3.91 28.5 5 41.3 0.76
Toys 7.03 −0.00623 0.032 3.28 27.2 3 39.1 0.55
Fun 4.42 −0.00542 0.023 3.59 36.5 2 26.9 0.50
Books 8.16 −0.01479 0.028 3.08 37.7 4 34.7 0.39
Hshld 3.85 −0.00319 0.016 3.49 37.9 3 26.6 0.52
Clths 8.96 −0.00910 0.023 2.99 34.8 4 21.9 0.36
Hlth† 9.02 −0.01027 0.036 3.15 38.2 3 41.0 0.43
MedEq 5.44 −0.00516 0.023 2.96 36.4 5 35.0 0.45
Drugs 7.03 −0.00275 0.021 3.67 38.9 4 30.1 0.57
Chems 3.85 −0.00500 0.009 2.59 38.9 3 19.2 0.36
Rubber† 2.70 −0.00477 0.019 3.07 38.3 3 27.1 0.46
Txtls 6.35 −0.01235 0.019 2.53 37.0 3 25.6 0.37
BldMt 6.24 −0.00710 0.014 2.64 43.3 3 24.9 0.36
Cnstr 9.75 −0.00711 0.028 3.31 35.0 4 40.5 0.44
Steel 2.49 −0.00673 0.025 3.10 28.0 2 26.0 0.54
FabPr† 0.00 − − − − - − −

Mach 2.49 −0.00461 0.015 2.90 18.9 5 14.5 0.45
ElcEq 6.12 −0.00624 0.014 2.87 37.1 2 19.6 0.41
Autos 1.47 −0.00492 0.022 2.77 28.2 2 24.7 0.36
Aero 8.96 −0.00879 0.021 2.83 36.8 4 38.8 0.47
Guns† 4.34 −0.00085 0.048 3.45 21.8 2 33.8 0.76
Gold† 0.68 0.00419 0.076 3.56 14.7 1 95.1 0.78
Ships 1.70 −0.00211 0.041 3.73 19.7 3 39.2 0.83
Mines 7.71 −0.00449 0.024 3.16 37.2 4 31.5 0.49
Coal 4.65 −0.00370 0.049 3.48 21.9 4 51.7 0.66
Oil 1.25 −0.00180 0.020 2.98 19.8 2 37.7 0.59
Util 0.00 − − − − - − −

Telcm 2.95 0.00109 0.019 4.52 26.8 3 36.2 0.99
PerSv† 5.17 −0.01076 0.025 3.12 42.1 2 31.2 0.46
BusSv 7.60 −0.00458 0.015 2.83 35.6 5 19.2 0.48
Comps 5.67 −0.00410 0.024 3.13 27.4 3 42.5 0.54
Chips 4.20 −0.00525 0.025 3.61 27.4 2 44.7 0.64
LabEq 1.59 0.00114 0.028 3.52 26.7 3 31.0 0.56
Paper† 2.49 −0.00173 0.025 3.43 21.0 2 21.2 0.69
Boxes 7.82 −0.01158 0.021 2.62 38.9 3 19.3 0.27
Trans 6.58 −0.00569 0.015 2.68 33.6 3 12.0 0.45
Whlsl 2.61 −0.00339 0.022 3.94 27.0 3 13.3 0.61
Rtail 9.30 −0.00515 0.015 3.31 37.7 4 22.9 0.47
Meals 3.74 −0.00451 0.026 3.84 38.2 4 39.2 0.49
Banks 7.03 −0.00381 0.018 3.01 33.0 4 27.6 0.45
Insur 1.02 −0.00214 0.037 3.23 15.8 2 31.6 0.71
RlEst 10.66 −0.01067 0.025 2.90 38.5 3 28.1 0.31
Fin 8.62 −0.00420 0.014 3.72 37.1 3 27.1 0.55
Other 0.00 − − − − - − −

Pooled 4.95 −0.00609 0.023 3.21 33.9 3 30.2 0.49

This table reports for each industry the fraction of the complete sample that is classified as a positive bubble
signal in percent (column 2), the average values of several properties of bubble signals (columns 3–6), and
the number of bubbles (column 7), the average raw returns during bubbles (column 8, in % per year), and
the average standardized abnormal return during bubbles (column 9, “StAR”). To construct the signals we
regress the industry returns on a constant and the market return. If a ten-year series of industry returns
shows evidence of an upward structural break in the constant and the constant is significantly positive
after the break, an investor detects a bubble. A bubble has ended if a crash has occurred in the last six
months, where a crash is defined as a residual below -2 times its standard deviation. Critical values for the
structural break test correspond with a 97.5% confidence level, and are obtained from Andrews (1993).
We denote the constant before the structural break by αa

i,t and the one after it by αp
i,t. The t-statistic

of αp
i,t gives the “strength” of the bubble. “Length” is the number of months passed since the structural

break.
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Table B.6: Statistics of Positive Bubble Signals and Bubbles per Industry (Fama-
French model)

Industry % of sample αa
i,t αp

i,t
Strength Length # Bubbles Return StAR

Agric 1.25 −0.00268 0.051 3.93 17.4 2 35.8 0.61
Food 7.26 −0.00141 0.015 4.23 27.9 4 23.8 0.57
Soda† 3.88 −0.00479 0.030 2.97 21.4 2 37.5 0.43
Beer 1.93 −0.00777 0.023 2.74 39.4 2 40.8 0.46
Smoke 5.10 −0.00279 0.031 3.66 30.4 3 34.9 0.61
Toys 3.51 −0.00007 0.038 4.04 19.3 2 50.7 0.84
Fun 0.57 −0.00537 0.030 2.75 19.4 3 35.2 0.58
Books 5.10 −0.01434 0.027 3.01 28.0 5 39.6 0.47
Hshld 4.76 −0.00408 0.014 3.21 38.0 2 22.6 0.49
Clths 2.27 −0.00670 0.020 2.92 20.2 4 34.9 0.59
Hlth† 3.83 −0.01039 0.037 2.71 16.7 2 38.8 0.37
MedEq 5.33 −0.00575 0.023 3.00 35.9 4 34.2 0.55
Drugs 5.90 −0.00122 0.022 3.67 33.7 4 24.9 0.61
Chems 3.06 −0.00598 0.011 2.45 36.2 3 18.8 0.39
Rubber† 0.60 −0.00610 0.022 2.66 19.5 2 31.5 0.69
Txtls 6.01 −0.00419 0.015 2.95 39.6 5 29.5 0.36
BldMt 2.49 −0.00663 0.015 2.33 26.0 4 19.8 0.43
Cnstr 2.83 −0.01172 0.034 2.60 19.0 5 47.5 0.56
Steel 3.06 −0.00733 0.020 2.84 18.9 4 28.4 0.57
FabPr† 0.91 −0.01665 0.025 2.32 32.5 2 23.8 0.39
Mach 4.08 −0.00639 0.012 2.79 24.1 4 17.9 0.41
ElcEq 1.81 −0.00287 0.019 3.06 20.7 3 23.5 0.54
Autos 0.57 −0.00760 0.025 2.56 14.2 2 41.3 0.61
Aero 5.33 −0.00771 0.021 2.75 37.5 4 29.4 0.37
Guns† 0.00 − − − − - − −

Gold† 0.68 0.00231 0.079 3.52 15.0 1 107.9 0.84
Ships 0.79 −0.00369 0.031 3.10 18.1 4 39.4 0.68
Mines 8.28 −0.00500 0.024 2.91 28.9 6 32.4 0.44
Coal 2.83 −0.00348 0.057 3.70 20.2 4 60.2 0.75
Oil 0.68 0.00232 0.031 3.98 20.2 2 48.2 0.83
Util 0.00 − − − − - − −

Telcm 3.29 0.00068 0.018 4.07 25.1 3 32.4 0.79
PerSv† 2.53 −0.01122 0.023 2.40 21.0 1 25.4 0.38
BusSv 0.57 −0.00169 0.012 2.98 21.0 2 32.3 0.68
Comps 10.32 −0.00440 0.019 3.02 39.4 4 35.4 0.43
Chips 4.54 −0.00400 0.024 4.03 31.8 2 41.7 0.65
LabEq 1.59 0.00229 0.030 3.74 17.1 2 11.5 0.82
Paper† 2.36 −0.00398 0.021 2.94 19.7 2 21.2 0.53
Boxes 4.42 −0.01069 0.022 2.78 33.4 3 19.2 0.45
Trans 0.79 −0.00497 0.019 2.52 15.0 2 37.6 0.52
Whlsl 1.59 −0.00433 0.015 2.71 29.3 4 19.5 0.43
Rtail 9.86 −0.00577 0.014 3.00 37.8 5 22.9 0.43
Meals 7.26 −0.00219 0.022 3.43 35.7 3 36.8 0.40
Banks 4.65 −0.00431 0.018 2.88 26.6 3 26.3 0.40
Insur 0.45 −0.00403 0.043 3.05 13.5 1 36.6 0.62
RlEst 1.93 −0.00645 0.027 2.80 27.0 1 26.1 0.30
Fin 6.92 −0.00442 0.010 2.97 33.2 3 31.1 0.46
Other 0.11 −0.00075 0.014 3.86 15.0 1 50.3 1.04

Pooled 3.39 −0.00500 0.022 3.15 30.2 3 31.4 0.51

This table reports for each industry the fraction of the complete sample that is classified as a positive
bubble signal in percent (column 2), the average values of several properties of bubble signals (columns
3–6), the number of bubbles (column 7), the average raw returns during bubbles (column 8, in % per
year), and the average standardized abnormal return during bubbles (column 9, “StAR”). To construct
the signals we regress the industry returns on a constant and Fama and French (1993)’s three factors. If
a ten-year series of industry returns shows evidence of an upward structural break in the constant and
the constant is significantly positive after the break, an investor detects a bubble. A bubble has ended
if a crash has occurred in the last six months, where a crash is defined as a residual below -2 times its
standard deviation. Critical values for the structural break test correspond with a 97.5% confidence level,
and are obtained from Andrews (1993). We denote the constant before the structural break by αa

i,t and
the one after it by αp

i,t. The t-statistic of αp
i,t gives the “strength” of the bubble. “Length” is the number

of months passed since the structural break.
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Table B.7: Statistics of Positive Bubble Signals and Bubbles per Industry (Carhart
model)

Industry % of sample αa
i,t αp

i,t
Strength Length # Bubbles Return StAR

Agric 1.26 −0.00276 0.050 3.88 18.7 2 35.5 0.49
Food 6.39 −0.00124 0.015 4.12 26.3 4 24.3 0.62
Soda† 3.42 −0.00164 0.031 3.19 20.8 2 37.5 0.50
Beer 1.26 −0.00930 0.020 2.51 36.6 2 38.6 0.40
Smoke 5.48 −0.00259 0.032 3.50 29.5 4 33.0 0.65
Toys 3.65 −0.00165 0.034 3.73 20.9 2 46.8 0.73
Fun 1.03 −0.00634 0.023 2.56 24.7 3 33.1 0.45
Books 5.82 −0.01490 0.028 3.07 29.1 4 40.6 0.47
Hshld 4.79 −0.00460 0.014 2.86 37.2 2 23.1 0.46
Clths 3.08 −0.00623 0.020 2.80 21.3 4 34.8 0.62
Hlth† 3.83 −0.00963 0.040 2.87 16.7 2 35.6 0.38
MedEq 5.37 −0.00593 0.023 2.91 36.0 4 33.9 0.54
Drugs 5.59 −0.00232 0.021 3.44 33.5 4 24.9 0.59
Chems 4.00 −0.00393 0.013 2.79 32.0 4 22.2 0.48
Rubber† 0.75 −0.00491 0.020 2.77 17.2 2 30.2 0.71
Txtls 6.74 −0.00394 0.014 2.90 39.0 5 31.0 0.42
BldMt 2.97 −0.00625 0.014 2.35 27.2 4 20.4 0.47
Cnstr 1.71 −0.01013 0.029 2.58 21.9 5 42.9 0.49
Steel 3.08 −0.00636 0.021 2.86 18.3 4 30.1 0.61
FabPr† 2.51 −0.01106 0.015 2.43 47.2 2 22.3 0.40
Mach 4.45 −0.00567 0.011 2.69 30.0 4 16.0 0.44
ElcEq 2.51 −0.00409 0.016 2.68 24.7 3 23.9 0.53
Autos 1.03 −0.00489 0.027 2.81 14.4 2 39.8 0.62
Aero 6.16 −0.00791 0.020 2.74 40.1 4 28.0 0.34
Guns† 0.00 − − − − - − −

Gold† 0.23 −0.00345 0.069 3.06 14.0 1 126.5 0.93
Ships 0.91 −0.00277 0.032 3.17 17.9 4 38.0 0.71
Mines 8.45 −0.00590 0.024 2.82 30.9 7 31.5 0.43
Coal 2.63 −0.00424 0.057 3.67 20.2 4 60.1 0.75
Oil 0.68 0.00026 0.025 3.37 21.2 2 48.2 0.76
Util 0.00 − − − − - − −

Telcm 3.42 0.00033 0.018 3.94 24.0 3 33.7 0.81
PerSv† 2.53 −0.01139 0.023 2.39 21.5 1 25.4 0.43
BusSv 0.68 −0.00099 0.013 3.15 23.0 2 30.3 0.70
Comps 7.99 −0.00335 0.019 3.15 41.8 3 31.5 0.40
Chips 4.57 −0.00384 0.024 4.08 31.8 2 41.5 0.68
LabEq 1.26 0.00174 0.029 3.53 16.5 2 15.1 1.05
Paper† 2.62 −0.00366 0.021 2.91 19.4 2 21.2 0.55
Boxes 4.22 −0.00958 0.024 2.93 34.2 3 21.4 0.42
Trans 1.03 −0.00506 0.017 2.43 17.2 3 33.1 0.50
Whlsl 1.37 −0.00428 0.014 2.55 22.3 3 20.4 0.52
Rtail 8.45 −0.00377 0.014 3.24 39.1 5 23.2 0.50
Meals 6.16 −0.00314 0.022 3.38 33.8 2 35.6 0.42
Banks 5.02 −0.00273 0.019 3.00 26.9 3 24.8 0.36
Insur 0.57 −0.00285 0.044 3.12 13.6 1 36.6 0.62
RlEst 1.83 −0.00512 0.029 2.87 26.6 1 26.1 0.33
Fin 6.74 −0.00426 0.011 2.99 33.2 3 31.1 0.48
Other 0.23 −0.00039 0.016 3.51 17.5 2 33.2 1.05

Pooled 3.39 −0.00487 0.021 3.11 30.4 3 31.0 0.52

This table reports for each industry the fraction of the complete sample that is classified as a positive
bubble signal in percent (column 2), the average values of several properties of the positive bubble signals
(columns 3–6), the number of bubbles (column 7), the average raw returns during bubbles (column 8,
in % per year), and the average standardized abnormal return during bubbles (column 9, “StAR”). To
construct the signals we regress the industry returns on a constant and Carhart (1997)’s four factors. If
a ten-year series of industry returns shows evidence of an upward structural break in the constant and
the constant is significantly positive after the break, an investor detects a bubble. A bubble has ended
if a crash has occurred in the last six months, where a crash is defined as a residual below -2 times its
standard deviation. Critical values for the structural break test correspond with a 97.5% confidence level,
and are obtained from Andrews (1993). We denote the constant before the structural break by αa

i,t and
the one after it by αp

i,t. The t-statistic of αp
i,t gives the “strength” of the bubble. “Length” is the number

of months passed since the structural break.
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Table B.8: Standardized Abnormal Returns per Industry After Positive Bubble
Signals

CAPM Fama-French model Carhart model

Agric 0.03 0.16 0.10
Food 0.50 0.53 0.52
Soda† 0.29 −0.21 0.15
Beer 0.29 0.12 −0.19
Smoke 0.44 0.45 0.41
Toys 0.22 0.51 0.44
Fun 0.30 −0.73 −0.90
Books 0.18 0.13 0.20
Hshld −0.01 0.26 0.11
Clths 0.07 −0.19 −0.17
Health† −0.03 −0.01 −0.14
MedEq 0.19 0.20 0.15
Drugs 0.28 0.21 0.20
Chems −0.04 −0.32 −0.24
Rubbr† 0.12 −0.93 −1.29
Txtls 0.15 0.15 0.28
BldMt 0.03 −0.10 −0.14
Cnstr 0.22 −0.19 −0.72
Steel 0.23 0.15 0.27
FabPr† − −0.16 −0.19
Mach −0.27 −0.36 −0.28
ElcEq 0.19 −0.12 −0.14
Autos −0.21 −0.57 −0.20
Aero 0.22 0.07 0.14
Guns† 0.20 − −

Gold† −1.29 −1.12 −1.49
Ships 0.23 −1.74 −1.71
Mines 0.09 0.11 −0.03
Coal 0.54 0.22 0.33
Oil −0.45 0.65 0.60
Util − − −

Telcm 0.72 −0.05 0.29
PerSv† 0.12 0.02 0.04
BusSv 0.23 0.05 0.10
Comps 0.09 0.29 0.32
Chips 0.37 0.61 0.66
LabEq −0.16 −0.33 0.07
Paper† 0.38 0.06 0.19
Boxes 0.15 0.22 0.28
Trans 0.09 −0.20 −0.42
Whshl 0.27 −0.84 −1.02
Rtail 0.34 0.16 0.24
Meals −0.03 0.24 0.26
Banks 0.07 −0.05 −0.01
Insur −0.40 −0.77 −0.75
RlEst 0.15 −0.13 −0.09
Fin 0.38 0.20 0.24
Other − −4.20 −2.86

Pooled 0.19 0.11 0.11

This table report the standardized average abnormal returns per industry after a positive bubble signal.
In the derivation of the signals and the construction of the abnormal returns, we use the CAPM, the
Fama-French model or the Carhart model.
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C Simulations

We investigate how many bubble signals are likely to be just noise or a general misspeci-

fications of the asset pricing models using simulations2. A statistical interpretation of our

simulations would be that we analyze the size of a type I error, that is, how often do we

falsely reject the null hypothesis of a negative bubble signal. Because we use a sequence of

statistical tests to obtain the bubble signals, it is a priori not obvious how frequently we

obtain a positive signal by mere chance.

We design the simulation as a bootstrap as in Kosowski et al. (2006). We construct

pseudo returns r̃i,t as

r̃i,t = β̃′

i,tft + ε̃i,t, t = 1, 2, . . . , m (C.1)

where β̃i,t is the pseudo factor exposure, ft is the actual factor realization at time t, ε̃i,t is

a pseudo error term, and m gives the total number of observations. We first address how

obtain the pseudo factor exposure, and then how we create the pseudo error term term.

We resample the pseudo factor exposure β̃i,t from the set of estimates for βi,t that

result from the estimation of Equation (1). Because we estimate this equation in a moving

window framework, we have m − T different estimations from which we can draw. These

estimations are numbered from T to m. Resampling from these estimations means that

we draw a sequence jt, t = 1, 2, . . . , m of random numbers in the range T to m. We take

2We analyze the effect of more closely define misspecifications such as an omitted risk factor or an

omitted structural break in a risk factor in Section D of this appendix and Sections 5.3 and 5.4 of the main

paper.
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the estimates from estimation jt for β̃i,t, that is, β̃i,t = β̂i,jt.

To construct a pseudo-sample that resembles the original sample as close as possible,

we put restrictions on jt. The index jt for pseudo-observation t has to come from the subset

of index numbers that include the original observation t in their estimation window,

max{t, T} ≤ jt ≤ min{t+ T − 1, m}. (C.2)

This ensures that the drawing β̂i,jt has actually been estimated for a set of observations

that included the original time t observation. The min and max operators make sure that

the start and end of the sample are properly taken into account.

We create the error term ε̃i,t in two different ways. In the first approach, we draw the

error terms independently over time and they are equal to zero in expectation. By drawing

independently over time we remove any bubble effect. This approach introduces pure noise

in the sample of pseudo returns, and shows how pure noise affects our results. In the second

approach, the error terms are drawn independently over time, but do not necessarily have

expectation equal to zero. In this second approach, the asset pricing model is not correctly

specified. It shows how misspecification can affect our results.

In both cases the estimations of Equation (1) form the basis. Each estimation yields

a set of T residuals εi,t,τ . The volatility of these sets σi,t varies over time. For the first

approach, we draw from the set of standardized residuals for each estimation,

ûi,t,τ = ε̂i,t,τ/σ̂i,t =
(

ri,t−τ − α̂i,t,τ − β̂′

i,tft−τ

)

/σ̂i,t. (C.3)

If we rejected a structural break in the estimation for time t, we substitute α̂i,t; if not, we

substitute α̂a
i,t when τ lies before the structural break or α̂p

i,t when τ lies after it. In the
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second approach, we draw from the set of the standardized abnormal returns (i.e. the error

terms, ε̂i,t,τ , plus intercept α̂i,t,τ ):

v̂i,t,τ =
(

ri,t−τ − β̂′

i,tft−τ

)

/σ̂i,t =
(

ε̂i,t,τ + α̂i,t,τ

)

/σ̂i,t. (C.4)

To draw from either of these sets for pseudo return t we need two random index numbers,

the first k1,t to determine from which estimation we draw a residual, and the second k2,t to

determine which residual in an estimation we draw. The index k1,t consists of the complete

set of estimations, that is T tom. The index k2,t ranges from 1 to T within each estimation.

We multiply the drawing with the volatility that corresponds with the estimation that we

drew for β̃i,t, that is, σi,jt . To summarize, for the analysis of the effect of noise we construct

r̃i,t = β̂′

i,jtft + σ̂i,jtûi,k1,t,k2,t , (C.5)

and for the analysis of the effect of misspecification

r̃i,t = β̂′

i,jtft + σ̂i,jt v̂i,k1,t,k2,t . (C.6)

We use different index number jt and k1,t because we do not put any restrictions on k1,t.

For the selection of β, we use the more narrow window to keep a possible pattern intact.

We use a larger set to draw the error, because that leads to a better quality pseudo return.

We construct a temporal bootstrap to account for correlations among industries. It means

that we use the same numbers jt, k1,t and k2,t for each industry to construct one pseudo

sample. We repeat this procedure to create many pseudo samples.

In Table C.1, we compare the bubble signals and bubbles derived from 1,000 simulated

data sets to our original data set. Because the temporal bootstrap assumes a fixed size of
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the cross section, we construct simulated data sets for the 40 industries for which returns

from 1926 are available. Since all our results are stated per industry, this does not influence

our results. For both, the noise simulations (Equation (C.3)) and the misspecification

simulation (Equation (C.4)) we find around 15-16 bubble signals per industry. In the

“real” data, we find 43 signals per industry for the CAPM and about 29 for the Fama-

French and Carhart models. Comparing the number of bubble signals from the simulated

data to the number of signals from the real data shows that our signal derivation method

is rather noisy. Up to half of the bubble signals we obtain could be attributed to noise

or a misspecification. The signals we obtain from the simulated data look very similar to

the signals we derive from the original data set. In both cases, the intercept before the

break, αa
i,t , is slightly negative, but statistically indistinguishable from zero. The intercept

following the breakpoint, αp
i,t , is large and positive. The strength of the bubble signals

from the simulated as well as real data is close to three and the length of the signal since

the breakpoint centers around 30 months. Given the large similarity between the bubble

signals from the real data and the simulated data, it should come as no surprise that the

resulting bubbles look very similar. Again, we find a relatively large number of bubbles

in the simulated. Just like the “real” bubbles, these bubbles are characterized by large

positive raw and abnormal returns.

[Table 1 about here.]

As one should expect, Table C.2 shows no difference in mean abnormal returns follow-

ing positive and negative bubble signals for the simulated data. Similarly, there is also
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no evidence of significant differences in volatility or downside risk following positive and

negative signals in the simulated data.

Overall, we conclude that a sizable number of positive bubble signals can potentially be

attributed to noise or a misspecification of the asset pricing model. These “false” signals

however cannot contribute to explaining our findings of positive abnormal returns and a

higher risk after positive bubble signals based on the real data. It thus seems that the

“true” signals we extract have such a strong power to predict subsequent returns that our

results are economically and statistically meaningful despite the noisiness of the signals.

[Table 2 about here.]
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Table C.1: Observed versus Simulated Bubble Signals and Bubbles

CAPM Fama-French model Carhart model
obs. noise misspec. obs. noise misspec. obs. noise misspec.

(a) Bubble signals

Positive Signals (in %) 4.9 1.7 (0.31) 1.8 (0.30) 3.3 1.8 (0.30) 1.8 (0.29) 3.3 1.7 (0.28) 1.7 (0.29)
αa (×10−2) -0.61 -0.54 (0.09) -0.47 (0.08) -0.50 -0.51 (0.08) -0.44 (0.08) -0.49 -0.49 (0.08) -0.42 (0.08)
αp (×10−2) 2.28 2.26 (0.18) 2.31 (0.17) 2.17 2.06 (0.16) 2.11 (0.16) 2.13 2.04 (0.16) 2.11 (0.16)
Strength 3.21 2.94 (0.09) 3.05 (0.10) 3.15 2.93 (0.09) 3.03 (0.10) 3.11 2.92 (0.08) 3.04 (0.10)
Length 33.9 29.8 (1.92) 30.4 (1.89) 30.2 30.3 (1.75) 30.5 (1.88) 30.4 30.1 (1.89) 30.6 (1.84)

(b) Bubbles
Bubbles per Ind. 3.05 1.83 (0.20) 1.89 (0.19) 2.98 1.88 (0.19) 1.86 (0.18) 3.00 1.86 (0.18) 1.86 (0.18)
Raw Return (p.a.) 30.2 32.9 (1.91) 33.7 (1.83) 31.4 30.6 (1.68) 31.0 (1.73) 31.0 29.9 (1.63) 30.8 (1.67)
St. Abn. Ret. 0.49 0.52 (0.03) 0.54 (0.03) 0.51 0.52 (0.02) 0.55 (0.03) 0.52 0.53 (0.03) 0.55 (0.03)

This tables shows descriptive statistics of the bubble signals and bubbles as we derive them from the actually observed data and from two
simulation settings. The statistics that result from the actual data are in the columns listed “obs.” and correspond with Tables 2 and 7. The
simulations settings are based on Kosowski et al. (2006). In the first setting, called “noise”, the idiosyncratic uncertainty in the pseudo returns
comes from a zero-mean standardized error distribution (see Equation (C.3)). In the second setting, called “misspecification”, it comes from
the standardized abnormal return distribution (see Equation (C.4)). We construct 1,000 sets of pseudo-returns for the 40 industries for which
returns over the full sample period (July 1926 – December 2009) are available, and apply our bubble identification procedure to it. For each
statistic, we report its average and standard deviation over all simulated samples. The standard deviations are in parentheses.
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Table C.2: Standardized Abnormal Returns after Simulated Negative and Positive Bubble Signals

(a) CAPM, noise simulation (b) CAPM, misspecification simulation
Signal Negative Positive p-value Negative Positive p-value

mean −0.0041 (0.0093) −0.0013 (0.045) 0.459 0.019 (0.0089) 0.026 (0.045) 0.413
median −0.028 (0.0086) −0.026 (0.049) 0.478 −0.0077 (0.0083) −0.0022 (0.048) 0.422
volatility 1.03 (0.0041) 1.08 (0.049) 0.149 1.03 (0.0041) 1.08 (0.048) 0.126
VaR(0.95) 1.61 (0.017) 1.68 (0.112) 0.272 1.58 (0.018) 1.65 (0.105) 0.238
ES(0.95) 2.20 (0.025) 2.29 (0.165) 0.307 2.17 (0.027) 2.26 (0.156) 0.302

(c) Fama-French model, noise simulation (d) Fama-French model, misspecification simulation
Signal Negative Positive p-value Negative Positive p-value

Mean −0.0004 (0.0071) 0.0022 (0.047) 0.465 0.014 (0.0084) 0.026 (0.046) 0.380
Median −0.023 (0.0073) −0.024 (0.051) 0.496 −0.011 (0.0084) 0.0009 (0.048) 0.401
Volatility 1.03 (0.0033) 1.08 (0.047) 0.126 1.03 (0.0043) 1.09 (0.046) 0.111
VaR(0.95) 1.62 (0.014) 1.69 (0.110) 0.273 1.62 (0.015) 1.68 (0.103) 0.272
ES(0.95) 2.20 (0.020) 2.28 (0.157) 0.322 2.18 (0.020) 2.27 (0.149) 0.306

(e) Carhart model, noise simulation (f) Carhart model, misspecification simulation
Signal Negative Positive p-value Negative Positive p-value

Mean −0.0005 (0.0072) 0.0031 (0.046) 0.468 0.018 (0.0075) 0.033 (0.046) 0.358
Median −0.022 (0.0074) −0.020 (0.050) 0.469 −0.0067 (0.0077) 0.0077 (0.050) 0.388
Volatility 1.03 (0.0032) 1.09 (0.044) 0.103 1.04 (0.0033) 1.09 (0.047) 0.114
VaR(0.95) 1.64 (0.014) 1.71 (0.102) 0.241 1.62 (0.015) 1.69 (0.106) 0.278
ES(0.95) 2.21 (0.019) 2.29 (0.149) 0.292 2.18 (0.020) 2.27 (0.152) 0.315

This tables shows summary statistics of the standardized abnormal returns after bubble signals based on two simulation settings (cf. Table 4).
The simulations settings are based on Kosowski et al. (2006). In the first setting, called “noise”, the idiosyncratic uncertainty in the pseudo
returns comes from a zero-mean standardized error distribution (see Equation (C.3)). In the second setting, called “misspecification”, it comes
from the standardized abnormal return distribution (see Equation (C.4)). We construct 1,000 sets of pseudo-returns for the 40 industries for
which returns over the full sample period (July 1926 – December 2009) are available, and apply our bubble identification procedure to it.
For each statistic, we report its average and standard deviation over all simulated samples. The standard deviations are in parentheses. The
columns labelled p-values report the results of the test for equality of the statistics for negative vs. positive bubble signals.
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D Misspecification and bubble detection

We investigate how our method to derive bubble signals is affected by possible misspeci-

fication of the asset pricing model in Section 5.3 and 5.4 of the paper. Here, we provide

the underlying derivations.

We would like to determine the effect of a structural break in a factor exposure, the

effect of an omitted risk factor, and a combination of both. In these three cases, the true

model reads:3

rt = α + βtxt + γwt + υt, E[υt] = 0, E[υ2
t ] = σ2

υ, E[xtυt] = 0, E[wtυt] = 0. (D.1)

Our interest is in xt. In case of a structural break, βt changes at one point, but this change

is ignored. In case of an omitted risk factor the true exposure βt is constant, and unequal to

zero, but the factor is omitted in the derivation of the bubble signal. In the last case, these

two effects show up combined. In showing the effect of these misspecifications we follow

the asymptotic setup of Andrews (1993). This means that we derive asymptotic results

under the assumption that the number of observations both before and after a structural

break approach infinity, while the fractions of observations before the structural break and

after the structural break remain constant.

The setup in Equation (D.1) applies to models with more factors as well. We can write

any multi-factor model as:

rt = α + βtxt + γwt + δ′ft + υt = α+ βtxt + γ(wt + δ′ft/γ) + υt

= α + βtxt + γw̃t + υt,

3We use a slightly different notation here to simplify the derivations.
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with w̃t ≡ wt + δ′ft/γ.

D.1 Structural break in factor exposure

When a structural break is present in the factor exposure towards the risk factor xt, the

true model reads as in Equation (D.1), with the further specification:

βt =



















βa for t ≤ ξT

βp for t > ξT,

(D.2)

where ξ ∈ (0, 1) gives the fraction of observations before the structural break.4 So, the true

model exhibits a structural break in the exposure to xt and there is no structural break in

the intercept.

The first step of our method to obtain a bubble signal only allows for a structural break

in the intercept. It estimates the model:

rt = at + bxt + cwt + et, E[et] = 0

at =



















aa for t ≤ ξT

ap for t > ξT

(D.3)

with OLS. To estimate this model, a sample of size T is available, with ξT observations

before the structural breakpoint, and (1 − ξ)T observations thereafter. We use r, x and

w to denote the vector of observations and u for the vector of error terms. A superscript

a (p) denotes the subvectors before (after) the structural break. First we derive the OLS

4Based on the model in Equations (1) and (2), we have ξ = (T − ζ − 1)/T .
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estimates. We define the auxiliary matrix:

ZT =









ıξT 0 xa wa

0 ı(1−ξ)T xp wp









,

where ιm denotes a vector of length m filled with ones. Standard regression theory gives

the estimates for the coefficients:
























âa

âp

b̂

ĉ

























= (Z ′

TZT )
−1

Z ′

T









ra

rp









. (D.4)

Next, we use asymptotic theory to derive the properties of these estimates. We use mn
x

to denote the nth moment of the variable xt, and similar for the other variables; and mxw

for the comoment of x and w. We assume that the moments of the explanatory variables

are constant over time, and do not change with the structural break. We calculate:

Z ′

TZT =

























ξT 0 ı′ξTx
a ı′ξTw

a

0 (1− ξ)T ı′(1−ξ)Tx
p ı′(1−ξ)Tw

p

ı′ξTx
a ı′(1−ξ)Tx

p x′x x′w

ı′ξTw
a ı′(1−ξ)Tx

p x′w w′w

























,

and use this to define:

Σzz ≡ lim
T→∞

1

T
Z ′

TZT =

























ξ 0 ξm1
x ξm1

w

0 (1− ξ) (1− ξ)m1
x (1− ξ)m1

w

ξm1
x (1− ξ)m1

x m2
x mxw

ξm1
w (1− ξ)m1

w mxw m2
w

























. (D.5)
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In a similar fashion we calculate:

Z ′

T









ra

rp









=

























ı′ξTr
a

ı′(1−ξ)Tr
p

xa′ra + xp′rp

wa′ra +wp′rp

























=

























ξTα+ βaı′ξTx
a + γı′ξTw

a + ı′ξTu
a

(1− ξ)Tα+ βpı′(1−ξ)Tx
p + γı′(1−ξ)Tw

p + ı′(1−ξ)Tu
p

ı′Txα+ βaxa′xa + βpxp′xp + γx′w + x′u

ı′TWα+ βaxa′wa + βpxp′wp + γw′w +w′u

























,

where we have substituted the true model for rt. We use this result to define:

Σzy ≡ lim
T→∞

1

T
Z ′

TYT =

























ξ
(

α + βam1
x + γm1

w +m1
u

)

(1− ξ)
(

α+ βpm1
x + γm1

w +m1
u

)

αm1
x +

(

ξβa + (1− ξ)βp
)

m2
x + γmxw +mxu

αm2
w +

(

ξβa + (1− ξ)βp
)

mxw + γm2
w +mwu

























. (D.6)

Consequently, we find:

plimT→∞

























âa

âp

b̂

ĉ

























=

























α+ (1− ξ)(βa − βp)m1
x

α− ξ(βa − βp)m1
x

ξβa + (1− ξ)βp

γ

























. (D.7)

As expected, b̂ converges to a weighted average of βa and βp, where the weight depends

on the proportions of the sample before and after the structural break. The deviations of

aa and ap from the true intercept α reflect the size of the structural break βa − βp, the

proportion ξ and the average value of xt.

The structural break test in our method to obtain the bubble signal also uses the
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variance of the estimator. Therefore, we derive the variation of the residuals et. We have:

et =



















(1− ξ)(βa − βp)(xt −m1
x) + υt for t ≤ ξT

−ξ(βa − βp)(xt −m1
x) + υt for t > ξT

so σ2
e becomes

σ2
e = ξ(1− ξ)(βa − βp)2σ2

x + σ2
υ, (D.8)

where σ2
x is the (population) variance of xt. This expression shows that the misspecification

leads to an increase in the residual variance. Applying standard regression theory gives

the desired result:

√
T

















































âa

âp

b̂

ĉ

























−

























α + (1− ξ)(βa − βp)m1
x

α− ξ(βa − βp)m1
x

ξβa + (1− ξ)βp

γ

















































→ N
(

0,Σ−1
zz σ

2
e

)

. (D.9)

The test statistic for a structural break is based on the difference âp − âa, for which we

have:

plimT→∞
âp − âa = (βp − βa)m1

x

√
T
(

âp − âa − (βp − βa)m1
x

)

→ N

(

0,
1

ξ(1− ξ)
σ2
e

)

.

This means that the expected value of the statistic for the structural break test on the

intercept, when there actually is a structural break in the factor is given by:

χSBF =

√

Tξ(1− ξ)(βp − βa)m1
x

σ2
e

=

√
T (βp − βa)m1

x
√

(βp − βa)2σ2
x +

1
ξ(1−ξ)

σ2
υ

, (D.10)
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and we conclude that the statistic depends on the average value of the factor m1
x, its

variance σ2
x, the residual variance of the returns σ2

u, the size of the true structural break

∆ ≡ βp − βa, and the location of the structural break ξ.

We also analyze the sensitivities of the statistic for different inputs. As the size and

location of the structural break show up in both the numerator and the denominator, we

rewrite the statistic as:

χSBF = m1
x

√
T
(

σ2
x + σ2

υ

(

ξ − ξ2
)

−1
∆−2

)

−1/2

.

It is straightforward to see that the statistic is increasing in the factor averagem1
x and in the

absolute size of the structural break ∆, and decreasing in the factor and residual variances

σ2
x and σ2

υ. To find the effect of the location of the structural break, we differentiate χ with

respect to ξ:

dχSBF

dξ
=

1

2
m1

x

√
T
(

σ2
x + σ2

υ

(

ξ − ξ2
)

−1
∆−2

)

−3/2

σ2
υ

(

ξ − ξ2
)

−2
∆−2(1− 2ξ).

The statistic is convex with respect to ξ ∈ [0, 1] so it is maximized for ξ = 1/2, i.e., when

the structural break is located in the middle of the sample.

D.2 Omitted risk factor

When the risk factor x is omitted, it means that the true model reads as in (D.1), where

the factor exposure may be constant, i.e. βt = β or show a structural break as in Equa-

tion (D.2). As the presence of a structural break in β is the more general case (with no

break implying βa = βp), we make the derivations under that assumption and discuss

subsequently what a constant exposure to an omitted risk factor implies.
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The first step in identifying the bubble signal allows for a break in the intercept, but

it would in this case ignore the factor xt. Consequently, we estimate a reduced version of

the model in Equation (D.3):

rt = at + ctwt + et, E[et] = 0

at =



















aa for t ≤ ξT

ap for t > ξT,

(D.11)

with OLS. The assumptions on the sample and notation are the same as in the previous

subsection. For deriving the estimators, we also follow the same approach as in the previous

subsection. First we define an auxiliary matrix:

Z∗

T =









ıξT 0 wa

0 ı(1−ξ)T wp









,

which is simply ZT without the column (xa,xp). We use this matrix to construct the

coefficient estimates:
















âa

âp

ĉ

















=
(

Z∗

T
′
Z∗

T

)

−1
Z∗

T
′









ra

rp









. (D.12)

To derive the asymptotic properties of the estimators, we define two limiting matrices:

Σzz∗ ≡ lim
T→∞

1

T
Z∗

T
′
Z∗

T =

















ξ 0 ξm1
w

0 (1− ξ) (1− ξ)m1
w

ξm1
w (1− ξ)m1

w m2
w

















(D.13)
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and

Σzy∗ ≡ lim
T→∞

1

T
Z∗

T
′
YT =

















ξ
(

α+ βam1
x + γm1

w +m1
u

)

(1− ξ)
(

α + βpm1
x + γm1

w +m1
u

)

αm2
w +

(

ξβa + (1− ξ)βp
)

mxw + γm2
w +mwu

















. (D.14)

We use these two matrices to derive the asymptotic values of the estimators:

plimT→∞

















âa

âp

ĉ

















=



















α+ βam1
x −

σxw

σ2
w

β̄m1
w

α+ βpm1
x −

σxw

σ2
w

β̄m1
w

γ +
σxw

σ2
w

β̄



















, (D.15)

where σxw denotes the (population) covariance of xt and wt, σ
2
w denotes the (population)

variance of wt and we use the shorthand notation β̄ = ξβa + (1− ξ)βp.

The estimate for ĉ consists of two terms, the true exposure to the factor wt, γ, and a

term that is related to the omitted factor. As could be expected, part of the exposure to

the omitted factor comes in via the correlation between xt and wt. The fraction σxw/σ
2
w

would simply be the regression coefficient of xt on wt. The factor β̄ = ξβa + (1 − ξ)βp

reflects the structural break, and is the weighted average of the factor exposure before and

after the structural break. If there is no structural break in the omitted factor, this factor

would reduce to β.

The estimates for âa and âp consist of three terms. The first is the true intercept α. The

second term shows up because the average of the omitted factor multiplied by its exposure

is captured by the intercept. The third term is a correction related to the entrance of the

omitted risk factor via wt in ĉ. Therefore, it is simply the second term of ĉ multiplied with

the mean of wt.
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Before we derive the variance of the estimators, we first consider the difference between

âa and âp:

plimT→∞
âp − âa = (βp − βa)m1

x.

This expression is equal to our result in the previous section, and shows that the limiting

bias in the difference is the product of the size of the structural break and the average of

the omitted factor. This expression shows that an omitted factor only affects the bubble

signal, if the return exhibits a structural break in its exposure towards this factor. So, an

omitted exposure to a factor that does not exhibit a structural break has no influence on

whether we obtain a positive or negative bubble signal.

As a first step towards the variance of the estimators we consider the residuals:

e∗t =























βa(xt −m1
x)−

σxw

σ2
w

β̄(wt −m1
w) + υt for t ≤ ξT

βp(xt −m1
x)−

σxw

σ2
w

β̄(wt −m1
w) + υt for t > ξT

The residual variance is again constructed in the usual fashion, yielding:

σ2
e∗ =

(

ξβ2
1 + (1− ξ)β2

2

)

σ2
x − 2

(

ξβa + (1− ξ)βp
)σxw

σ2
w

β̄σxw +
σ2
xw

σ4
w

β̄2σ2
w + σ2

υ

=
(

ξβ2
1 + (1− ξ)β2

2

)

σ2
x − 2

σ2
xw

σ2
w

β̄2 +
σ2
xw

σ2
w

β̄2 + σ2
υ

=
(

ξβ2
1 + (1− ξ)β2

2

)

σ2
x − ρ2xwβ̄

2σ2
x + σ2

υ

=
(

ξβ2
1 + (1− ξ)β2

2 − ρ2xwβ̄
2
)

σ2
x + σ2

υ,

(D.16)

where ρxw is the correlation between xt and wt. Also in this case, we see that the variance

of the residuals consists of the original variance of the errors σ2
υ and an extra term related

to the misspecified model with regard to xt. The increase with respect to the error variance
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is largest when the omitted factor is unrelated to other factors in the model, i.e., ρxw = 0.

When there is some correlation, the factor wt can to some extend provide information

on the omitted factor, and consequently the variance is reduced. When the correlation is

perfectly positive or negative, the reduction is maximal, and Equation (D.16) reduces to

Equation (D.8). Of course, in this particular situation, knowing wt implies knowing xt (up

to a linear transformation) and the factor is not really omitted.

Finally we consider the test statistic. The asymptotic distribution of the estimators is

quite similar to that in Equation (D.9):

√
T



































âa

âp

ĉ

















−



















α + βam1
x −

σxw

σ2
w

β̄m1
w

α + βpm1
x −

σxw

σ2
w

β̄m1
w

γ +
σxw

σ2
w

β̄





































→ N
(

0,Σ−1
zz∗σ

2
e∗

)

. (D.17)

From this result, we derive the test statistic for the structural break test on the intercept,

when there actually is a structural break in the omitted factor:

χOFB =

√

Tξ(1− ξ)(βp − βa)m1
x

σ2
e∗

. (D.18)

As we have established that σ2
e∗ ≥ σ2

e , we find χOFB ≤ χSFB. It implies that omitting a

factor to which the exposure exhibits a structural break actually reduces the bias in the

test statistic. Consequently, investigating the effect of a structural break in the factor

exposure towards already included factors gives an upper bound to the effect that omitted

factors with a structural break can have.
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