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Vertel, Muze, vertel van de wrok van Achilles. Daar kwam voor de

Grieken grote ellende uit voort.

... antwoorde de legeraanvoerder Agamemnon, “(...) Zoals Apollo

mij Chrysëıs ontneemt, die ik op mijn eigen schip met mijn eigen

mannen wegzend, zo zal ik gaan naar uw tent, Achilles, en mij laten

halen uw prijs, het meisje Brisëıs...”

Ilias – Homeros

Voorwoord

Dit proefschrift richt zich op crises en crashes in financiële markten. Crises zijn zo
oud als de wereld, zoals het bovenstaande citaat illustreert. Bovendien – zo voel
ik me aan mijn vrouwelijke collegae verplicht op te merken – is het begrip crisis
net als zondeval te herleiden op een vrouw. Crises en crashes vormen een boeiend
onderwerp van onderzoek. Crises en crashes spreken tot de verbeelding, waardoor
het makkelijker is uit te leggen waar je nu precies onderzoek naar doet. Crises en
crashes zijn ook een relevant onderwerp. Ze kunnen immers ernstige consequenties
hebben voor beleggers. Daarnaast houden crises en crashes een uitdaging in, voor
een onderzoeker in het algemeen omdat nog lang niet alles bekend is, en voor de
econometrist omdat het bestuderen van crises en crashes een creatieve toepassing
van econometrische technieken vergt.

De onderzoeken naar crises en crashes in dit proefschrift zijn tot stand gekomen
in een periode van ruim vier jaar. In die tijd heb ik als Assistent-in-Opleiding (AiO)
veel geleerd. Ik weet inmiddels een stuk meer van financiering en op econometrisch
gebied is mijn ervaring gegroeid. Vooral heb ik echter geleerd hoe je onderzoek vorm
geeft. Het belangrijkste daarbij is het organiseren van een klankbord. Zonder een
groep mensen rondom je die kritisch zijn, je uitdagen en de juiste vragen stellen wordt
onderzoeken al snel een moeizaam gebed zonder einde. Ik prijs me dan ook gelukkig
met de vakgroep Financial Management, waar geen gebrek was aan belangstellende,
kritische collegae.

Onderzoek leren doen is geen sinecure. Het AiO-programma van de onderzoeks-
school ERIM vormt een goede start, maar het meest leer je door simpelweg onderzoek
te doen. Door terug te kijken op de tot stand koming van een artikel kun je nagaan
wat de grootste problemen waren die je ondervonden hebt en bedenken hoe deze
voortaan te voorkomen. Als econometrist kom je er dan achter dat nieuwe of ge-



viii

avanceerdere methoden weliswaar een voor de hand liggende motivatie van nieuw
onderzoek zijn, maar dat het toch beter is onderzoek vanuit een probleem te mo-
tiveren. Evaluaties van het onderzoeksproces komen in mijn optiek nog te weinig
voor.

Ik kijk met veel plezier terug op mijn AiO-tijd. Je hebt bijzonder veel vrijheid,
kunt naar eigen goeddunken je onderzoek bepalen en tijd indelen. Een keerzijde hier-
van is dat je je afvraagt voor wie je nu eigenlijk dat onderzoek doet op momenten
dat je onderzoek niet wil vlotten. Een jaar en drie maanden wachten op een reactie
van een tijdschrift helpt dan ook niet mee. Ik was dan ook erg opgetogen dat ik
het artikel Portfolio implications of systemic crises in 2005 op verschillende confe-
renties kon presenteren. Helemaal fantastisch was de acceptatie van dit artikel voor
publicatie in het Journal of Banking & Finance op de een na laatste dag van mijn
AiO-contract.

Voor hun bijdragen aan dit proefschrift wil ik een aantal mensen bedanken. Grote
dank ben ik verschuldigd aan mijn promotoren. Beste Kees, je hebt me op belangrijke
punten gemotiveerd, me uitgedaagd kort en bondig de bijdragen van een onderzoek
uit te leggen, en me geleerd dat in ieder onderzoek een moment komt waarop je
besluit dat het goed is en stopt met het invullen van details. Beste Marno, jij hebt
me het vertrouwen gegeven dat ik de onderzoeken tot een goed einde kon brengen,
je hebt me geleerd kritisch te zijn door het geduld waarmee je (tussen)resultaten en
voorlopige versies bestudeerde, en moedigde me aan nieuwe ideeën te formuleren.
Ook tijdens conferenties was je een grote inspirator... Samen vormden jullie een goed
team door de verschillende hoeken vanwaaruit jullie je bijdragen leverden.

Ook wil ik op deze plek mijn collegae bij Financial Management bedanken. Ik heb
altijd veel plezier ontleent aan de gezamenlijke lunches (in de grote mensa uiteraard),
en zie de Fun, Friendship & Finance Ski Experiences nog steeds als het hoogtepunt
van collegialiteit. Een aantal collegae wil ik met naam noemen. In de eerste plaats
gaat mijn dank uit naar Nadja. We hebben bijzonder prettig samengewerkt aan het
onderzoek dat geresulteerd heeft in Hoofdstuk 2 en ik verwacht veel van onze verdere
samenwerking op dit gebied. Daarnaast heb je herhaaldelijk stukken tekst van mijn
hand van commentaar voorzien. Ook Ben Jacobsen wil ik bedanken voor de samen-
werking rondom Hoofdstuk 2. Mathijs bedank ik voor zijn belangstelling voor en
raadgevingen aangaande mijn onderzoek. In Joop vond ik een kamergenoot met wie
ik prima alle gebeurtenissen op de universiteit en daarbuiten kon kritiseren. Guiller-
mo, you taught me how to dance Argentinian tango, a perfect way to relax. Aan de
activiteiten tijdens conferenties en buiten het werk met Gerard, Ben, Reggy, Willem,
Mathijs, Nadja, Joop en Marieke en andere collegae bewaar ik warme herinneringen.
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Natuurlijk moet ik hier een plaatsje reserveren voor mijn vrienden annex be-
lastingbetalers. “Een AiO is en blijft natuurlijk toch een soort klaploper die op
andermans kosten loopt te freewheelen op de universiteit”, zo verzekerden jullie mij
van tijd tot tijd. En meestal had ik dan weer een conferentie in het vooruitzicht die
vanuit jullie loonstrookjes gefinancierd zou worden. Een speciaal woord van dank
geldt mijn (oud-)huisgenoten Robbie, Ester, Bram en Eduard die geduldig luisterden
naar mijn verhalen over het werk. Bij de dames uit Valkenswaard kon ik lekker zeuren
over onderzoek doen, en jullie zeurden dan even hard terug. Ik ben ook erg gelukkig
met mijn vrienden die tijdens de verdediging naast me staan en meehelpen bij de
organisatie van de dag eromheen, de paramilitairen Joost B. a.k.a. the Machine en
Dennis van P. alias der Schnitzer, en ceremonieMeesters Janneke.

Het laatste dankwoord is bestemd voor mijn familie. Jullie hebben je vanaf
het begin vol belangstelling verdiept in mijn bezigheden, al was het soms moeilijk
te doorgronden wat ik nu precies deed. Lieve Marly en Koen, jullie leefden altijd
met me mee. Lieve ouders, van jullie heb ik belangrijke eigenschappen voor een
onderzoeker meegekregen, zoals doorzettingsvermogen en precisie, maar ook mijn
beruchte eigenwijsheid. Voor alle steun, bedankt!

Erik Kole
Valkenswaard, 31 December 2005
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When you know a thing, to hold that you know it; and when you do

not know a thing, to allow that you do not know it – this is

knowledge.

The Confucian Analects – Confucius

Chapter 1

Introduction

Crises and crashes in financial markets are what investors fear most. Investors as-
sociate them directly with large price decreases of financial assets and substantial
increases in the risk and the uncertainty of holding and trading these assets. This
deterioration in the trade-off between risk and return causes investors serious harm
and turns financial markets into a less attractive place. Consequently, investors still
regard past crises and crashes as the specter of markets turning mad and investments
going awry, examples of which include the historic stock market crashes of October
1929 and October 1987, and – more recently – the emerging markets crises of the
1990s and the strong, prolonged decreases in 2001 and 2002 after the internet hype.

In this dissertation we study crises and crashes from the perspective of an investor
in financial markets. The two key concerns that an investor has regarding crises and
crashes are their influence on his risk exposure and their effect on his asset allocation
decisions. We analyze these questions in several ways. In the analyses we pay specific
attention to the comovements in asset returns.

Dependent on the aggregation level, we define a crash as a large price decrease
of a single asset, a single sector or a single market. We consider a crisis as a period
with high uncertainty that affects many assets in an industry, a single market or
several markets worldwide. So while a crash refers to a specific event in one asset,
industry or market on its own, a crisis refers to a period of turmoil in several assets,
industries or markets at the same time. Consequently, crises have a more pronounced
and prolonged character than crashes. A crash can be pinpointed to one or several
specific days, while a crisis can last several months. The crash of October 1987 took
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place on October 19. The Asian crisis started with the devaluation of the Thai Baht
on July 2, 1997, spread to other Asian countries in the following months and died
down slowly in 1998 (see Kaminsky and Schmukler, 1999). Moreover, the effects of
a crash are mostly limited to the industry or market in which it takes place, while
a crisis can disrupt the functioning of a country’s economy in every aspect. Also in
this sense, we call the plunge of October 1987 a crash, and the turmoil in Asia in
1997 and 1998 a crisis. A crash can be the onset of a crisis, as in 1929 when the
collapse of the stock market marked the start of the Great Depression.

Comovements constitute the third important element of this dissertation. Asset
prices do not move independently of one another, nor do markets function on a stand-
alone basis. Moreover, investors generally hold a portfolio of assets. Should a crash
remain limited to a single asset, its effects can be mitigated by diversification over
different assets and markets. However, the crashes of 1929 and 1987 reverberated
across equity markets worldwide, and the Asian crisis spread from one economy to
another until its effects were felt by all financial markets around the globe. Conse-
quently, we should not only study a crisis or crash on its own, but also take their
interaction with other assets, industries or markets into account. Comovements are
therefore an important ingredient of an investigation of crises and crashes.

1.1 Motivation

In the classical view asset prices fluctuate because news reaches financial markets.
Small news items lead to small movements; large news items produce large price
changes. From this perspective, crashes occur when ominous news reaches the mar-
kets. News is hardly purely idiosyncratic and is likely to influence more assets.
Therefore, assets do not move independently. If the news is fundamental to the econ-
omy as a whole, all assets are affected, producing a crisis in case the news is really
shattering. Consequently, we should expect a crash to occur from time to time and
a crisis to break out occasionally though less frequently than a crash.

Unfortunately, this classical view fails to sufficiently explain the crises and crashes
observed in the past. For several reasons, crises and crashes cannot be treated as an
integral part of the normal way in which financial markets function. First, crashes
and crisis are only to a small degree related to news. Shiller (1981) and Roll (1988b)
conclude that generally only part of the changes in asset prices can be explained by
news reaching markets. Cutler et al. (1989) and Shiller (2000, Ch. 4) find that this
also holds for big price changes, including crisis and crashes.

Second, empirical evidence indicates a pronounced difference between the beha-
vior of asset returns during tranquil periods and their behavior during crisis periods.
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Central in the analysis of returns are their means and volatilities. The normal distri-
bution would then be the obvious candidate to use in a study of returns. However,
already in the 1960s Mandelbrot (1963) and Fama (1965) pointed out that a normal
distribution leads to predictions on the frequency of extreme negative (or extreme
positive) returns that are too low compared to observed frequencies. As Fama (1965,
p. 50) put it “... under the Gaussian hypothesis for any given stock an observa-
tion more than five standard deviations from the mean should be observed about
once every 7,000 years. In fact such observations seem to occur about once every
three to four years.” A normal distribution would result if asset returns follow a
diffusion process. Empirical evidence showed subsequently that jumps occur in the
evolution of asset prices from time to time (see Oldfield Jr. et al., 1977; Jarrow and
Rosenfeld, 1984; Ball and Torous, 1985), though Jorion (1988) finds limited impact
for monthly or yearly stock returns. However, more recent evidence from option
markets by Andersen et al. (2002) and Bates (2000) establishes that jumps are a
necessary complement to diffusions to explain observed option prices. Concluding,
asset returns contain a diffusion component that is dominating during tranquil times
and a (mostly negative) jump component that manifests itself during crisis periods.
As a consequence, asset returns exhibit fat tails.

Third, crises and crashes have an increasing and persistent effect on volatility.
One of the central findings in empirical finance is the tendency of large price changes
to cluster. This phenomenon has led to the development of the class of GARCH mod-
els, pioneered by Engle (1982), who was awarded a Nobel prize for it, and Bollerslev
(1986). Moreover, the phenomenon is asymmetric in the sense that large price de-
creases lead to stronger future fluctuations than large price increases (see Black, 1976;
Christie, 1982). Combining this effect with the presence of both a diffusion and a
jump component in asset returns indicates that the two components influence each
other. Bates (2000) and Eraker et al. (2003) provide evidence that jumps show up
both in returns themselves but also in the associated volatility. Consequently, if a
crash hits an asset or a market, the volatility afterwards remains on a higher level
for a prolonged period of time.

Fourth, the comovements of assets become stronger when markets are under
stress. Most of the evidence supporting a strengthening of comovements is based
on correlations that increase for extreme positive or negative returns and for bear
markets. Ang and Chen (2002) document such an increase for US stocks, whereas
Ramchand and Susmel (1998) and Campbell et al. (2002) provide international evi-
dence. In a statistically more robust approach than the correlation approach Longin
and Solnik (2001) reject the hypothesis that correlation between international stock
markets remains constant over tranquil and crisis periods. By means of a slightly
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different approach, Hartmann et al. (2004) reject this hypothesis for both equity and
bond markets. Bae et al. (2003) find that this result also holds for emerging markets.
Crisis and crashes are more contagious than can be justified by comovements during
normal periods.

While these four reasons all relate to the behavior of asset prices, the fifth reason
to study crises and crashes in relation to comovements stems from investor behavior.
It is by now widely accepted that investors do not behave as the traditionally assumed
expected utility maximizing agent. Kahneman and Tversky (1979) and Tversky and
Kahneman (1991) argue that investors are particularly averse to losses. Benartzi
and Thaler (1995) and Barberis et al. (2001) show that investors’ loss aversion helps
explaining the equity premium. Crises and crashes being anathemas to a loss averse
investor is another reason to call for a detailed investigation of crises and crashes.

These five reasons indicate that crises and crashes cannot be considered as simply
the mirror images of good times in financial markets. They do not adhere to the same
rules or laws that events in financial markets normally do. They happen too often,
and not because bad news shows up more often than it should. Moreover, crashes
tend to occur together more frequently than expected based on normal periods, and
crises spread more vehemently. Into the bargain, investors do not treat crises and
crashes in the same way as other events in financial markets, but exhibit a particular
aversion to crises and crashes. To make things even worse, crises and crashes do not
simply pass by, but their effects can be felt in markets for a prolonged period of time.
Reasons enough to put crises, crashes and comovements under further scrutiny.

1.2 Effects of crises, crashes and comovements

Conceptually, finance from an investor perspective studies the risks and the returns
that investing in financial markets entails. In this respect, crises and crashes are an
important part of the downside of financial markets. In this section we indicate in
more detail how the different characteristics of crises and crashes affect investors and
financial markets. We discuss current consensus and issues for further research.

The first and most obvious aspect to be influenced is risk management. We
concluded that asset returns behave differently during tranquil times than during
normal times. Consequently, specific techniques have been developed to study ex-
treme returns. During the last two decades Extreme Value Theory (EVT) has been
put forward as a robust and flexible way to deal with the fat tails of asset returns.1

Longin (1996) shows that the extremes of asset returns are best approximated by a
1For a rigorous treatment of Extreme Value Theory we refer to Embrechts et al. (1997) and Reiss

and Thomas (1997).
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Fréchet distribution, while a normal distribution would imply a Gumbel distribution
for extreme values. Longin (2000) applies EVT to calculate the risk of a portfolio
in aggregate. Campbell (2001) applies EVT to determine the exposure to various
sources of financial risk.

Extreme Value Theory has been shown to be very successful in a univariate set-
ting. Deheuvels (1978) discusses EVT in a general multivariate setting. While mul-
tivariate EVT seems promising in areas dealing with natural disasters (see Coles and
Tawn, 1991; Embrechts et al., 2000), applications to financial risk management suffer
from two problems. First, incorporating more than three dimensions increases the
complexity of calculations considerably. The second problem is more subtle. Mul-
tivariate EVT provides a robust framework to study joint extreme events, such as
two markets crashing at the same time, or one market crashing given that another
market crashes (see Longin and Solnik, 2001; Hartmann et al., 2004; Poon et al.,
2004). However, to asses such risks in a portfolio setting assumptions have to be
made on the comovements of assets during both tranquil and stressed periods, which
turn out to be crucial for the outcomes. Correlations are the traditional tool for
describing comovements, but Embrechts et al. (2002) point out the limitations of
correlation and recommend the more flexible class of copulas. A copula is a function
that calculates the joint cumulative probability of a set of events from the marginal
cumulative probability of each event. However, it is not a priori clear which copula
to choose for which application from the many available copulas.

In Chapter 3 we propose goodness-of-fit tests for copulas and apply them to ex-
amine copulas for stress tests of a portfolio of stocks, bonds and real estate. These
tests have the advantage over existing tests that they directly compare the depen-
dence that a specific copula implies with the dependence that is present in the data.
As a consequence, they can be widely applied to any copula of any dimension. For
daily returns on stocks, bonds and real estate we confirm the failure of the Gaussian
copula, implied by the correlation approach. The tests also reject the Gumbel cop-
ula, which is based on multivariate EVT. On the contrary, the Student’s t copula
provides a good fit in both the center and the tails of the distribution, as it is not
rejected. To clarify the importance of choosing an accurate copula, we show that
the Gaussian copula significantly underestimates the risk of joint downside returns,
while the Gumbel copula overestimates it. In accordance with the test results, the
Student’s t copula does not lead to an assessment of the risk of downside returns
that differs significantly from the observed probabilities.

Crises and crashes also influence portfolio formation. The central aim of asset
allocation is constructing a portfolio with an optimal trade-off between the risk and
the expected return. Four of the effects that we discussed play an important role
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here and are reinforcing each other. In the first place, if crashes are accurately
taken into account, each asset on its own will be regarded more risky. Second,
if the dependence between assets becomes stronger for extreme negative returns,
diversification opportunities decline. Third, persistence causes a prolonged influence
of the first two effects. Finally, because of their aversion to large losses, investors
are particularly sensitive to this kind of price behavior. Based on these arguments,
we hypothesize that investors invest more prudently, if they accurately take crises,
crashes and comovements into account. Moreover, investors should show a preference
for assets that are less prone to crises and crashes.

Various authors have considered asset allocation from this perspective. Das and
Uppal (2004) study international asset allocation in the presence of synchronous
crashes in all countries, but find that the effects are small. However, their model
design precludes persistence.2 Liu et al. (2003) show that jumps have a large impact
on asset allocation, if the synchronous and persistent rise in volatility as shown by
Bates (2000) and Eraker et al. (2003) is incorporated. Unfortunately, their univariate
setting limits the study of effects on diversification. Ang and Chen (2002) find that
it is costly to ignore the reduction of diversification opportunities due to the rise in
correlations during times of stress. Ang and Bekaert (2002) report that diversifica-
tion effects do not disappear during bear markets. Since the last two studies focus
on bear markets in general and not explicitly on crises and crashes, it is not yet
clear how systemic crises with persistent effects on volatilities and correlations affect
diversification opportunities and asset allocations.

In Chapter 4 we investigate the consequences of systemic crises on portfolio choice.
We use a regime switching model to capture persistence in the rise of volatilities and
correlations. This approach extends the methods of Ang and Bekaert (2002), since
we introduce a separate crisis regime on top of more general bear market regimes.
Moreover, we show how the predictions of regime switching models can be included
in a continuous-time formulation of an investor’s asset allocation problem. For a
representative set of developed and emerging markets, we report pronounced changes
in the optimal portfolios after inclusion of the crisis regime. The compensation that a
log-utility investor requires for incorrectly ignoring the crisis regime is substantial and
can easily exceed 3% per month. Diversification possibilities erode rapidly. Investors
that face short sales restrictions completely withdraw from financial markets. These
findings stress the importance of persistence in the effects of crises.

2Das and Uppal (2003) allow for persistence, albeit at a relatively low level. For stronger per-

sistence, the importance of these jumps increase, which indicates that higher levels persistence may

lead to different conclusions.
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A third important aspect of crises and crashes is their influence on asset pricing.
In the discussion so far, we concluded that crises and crashes are expected to lead to
less risky asset allocations and a preference for less crash-prone assets. Nevertheless,
the strengthening of comovements during times of stress indicates that crises and
crashes are difficult to evade. The persistent effect of crises and crashes turns financial
markets in aggregate into a riskier place. Since this persistence and more severe
comovements lead to an increase of systematic risk, investors should be rewarded for
bearing this risk, according to standard financial theory. Hence, the equity premium
should contain a component that reflects crash risk. If investors are particularly
averse to large losses, this component will be quite large.

A premium for crash risk has been advocated by Rietz (1988) as a solution for
the equity premium puzzle put forward by Mehra and Prescott (1985), but it is
debated whether such a premium could indeed solve the puzzle completely (see Mehra
and Prescott, 1988, 2003). Bates (1991, 1996, 2000) and Andersen et al. (2002)
provide evidence of a risk premium for large negative jumps in the market as a
whole. Moreover, they conclude that jumps are necessary to explain the return
distributions that option prices imply. Consequently, an individual asset should
contain a premium for market crash risk that corresponds with the asset’s sensitivity
to a market crash. However, Bakshi et al. (2003) show that the option-implied return
distributions for individual stocks deviate from the implied return distribution for
the market. Therefore, it is not clear whether a crash risk premium shows up as a
distinguishable component in individual asset returns.

We examine this hypothesis in Chapter 5. We extend the traditional CAPM of
Sharpe (1964) and Lintner (1965) with a crash risk factor and formulate three mea-
sures to determine a stock’s sensitivity to market crashes. By sorting stocks into
portfolios based on these measures we test whether a crash risk premium can be
identified. Stocks with a high sensitivity to market crashes pay on average a sig-
nificant extra return of 2.3% to 4.0% per year, on top of the regular return due to
traditional market risk. This extra return cannot be explained by other risk factors,
including coskewness and cokurtosis. For stocks with a low sensitivity we do not
find a significant extra average return. We find mild evidence that a crash factor
helps explaining the cross section of stock returns. For momentum portfolios the
traditional CAPM is rejected, while a crash-CAPM is not. For other portfolios dif-
ferences are smaller. Our work extends Harvey and Siddique (2000), who introduced
coskewness as a risk factor, and Dittmar (2002), who introduced cokurtosis. While
coskewness and cokurtosis can proxy for an asset’s sensitivity to market crashes, we
find a significant premium on crash risk portfolios, but not on coskewness nor on
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cokurtosis portfolios. Consequently, our approach may be better suitable to capture
crash risk.

The last aspect that we want to discuss is the influence of crises and crashes on
our understanding of financial markets. Since news can only partially explain the
occurrence of crises and crashes, other explanations have been put forward. Brun-
nermeier (2001) lists four categories. The first category consists of liquidity shortage
models, implying that crashes only have a temporary effect, which vanishes after
liquidity has been restored. As a second category he discusses models with sunspots
or multiple equilibria, in which a crash occurs when the economy switches from one
equilibrium to another or when a sunspot takes place. The third category comprises
bubble models in which a crash is a correction for a preceding run up in prices.
The fourth category contains models in which restrictions on investors or traders, or
trading costs cause information to come out in lumps.

The models of the third and fourth category are interesting from an investor
perspective. If an investor can recognize the symptoms of a bubble or information
hold-up in the market, he can improve his predictions on the likelihood of a crisis or a
crash. Shiller (2000) relates the large crashes of 1929 and 1987. Kindleberger (2000)
also argues that many crashes can be seen as a correction for price run ups. However,
their analyses do not consider prediction but take place after the fact. Temin and
Voth (2004) and Brunnermeier and Nagel (2004) show that informed investors were
able to ride the bubble and get out of the market in time during the South Sea
Bubble of 1720 and the technology bubble of the last decade, respectively.

In Chapter 2 we follow a more systematic approach. We take the perspective of an
investor who wants to use the presence of a bubble to predict the likelihood of a crash.
The investor perceives a bubble if the average monthly abnormal return over the last
one to five years exceeds a given threshold. The presence of a bubble makes investing
in financial markets more risky. Its presence leads to a significant doubling of the
likelihood of a crash during the next period. To make things worse, the likelihood of a
more severe crashes increases even more. To increase the number of available bubbles
and crashes we base these findings on US industries. We conclude that this approach
works well, as our results also apply to the market as a whole as well. Moreover, we
provide evidence in favor of the model of Abreu and Brunnermeier (2003), as we do
not reject hypotheses based on it. The strength of a bubble is positively related to
crash likelihood, while the length of a bubble is unrelated to it.

To summarize, crises and crashes have been put under scrutiny in several respects.
In particular with regard to univariate models for extreme returns, academia largely
agrees on the superiority of Extreme Value Theory. However, some issues are still
unresolved. In this dissertation we fill in some of theses gaps. Chapter 2 relates
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crashes to prediction based on bubbles in past returns. Chapter 3 links crashes
and comovements to risk management. Chapter 4 discusses the implications of a
persistent systemic crisis for asset allocation. Chapter 5 investigates the consequences
of crashes for asset pricing. In Chapter 6 we discuss our findings from a more general
perspective. We indicate how our research can improve the understanding of crises,
crashes and comovements and their consequences for finance.





But how do we know when irrational exuberance has unduly

escalated asset values, which then become subject to unexpected and

prolonged contractions as they have in Japan over the past decade?

Alan Greenspan

Chapter 2

Bubbles and Crashes in

Industries∗

2.1 Introduction

The crashes of 1929 and 1987 stand out as the archetypical stock market crashes. Be-
cause these crashes cannot be explained by dramatic news reaching financial markets,
they are commonly explained as corrections to the run up in prices of the preceding
years (see Shiller, 2000, Ch. 4). The run up in prices and the subsequent crash are
then presented as evidence of bubbles showing up in stock markets. Because of the
challenge that bubbles pose to rational models of financial markets, they have often
been studied from a theoretical perspective (see Brunnermeier, 2001; LeRoy, 2004).
Shiller (2000, Ch. 6) provides empirical evidence of bubble-crash patterns in different
equity markets throughout the world. However, a thorough analysis of these patterns
from an investor perspective is still missing. Our analysis fills this gap and provides
investors with an estimate of the possibility of a crash, based on the presence of a
bubble. As this analysis leads to an improved understanding of the risk of severe
losses, its added value for risk management and investment decisions is obvious.

∗This chapter is based on the article by Kole, Guenster, and Jacobsen (2005a).
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Although several papers analyze specific bubbles and crashes1, empirical research
on the relation between bubbles and crashes in aggregate is scarce for at least two
reasons. First, theoretical research explaining how stock market bubbles relate to
crashes is limited. By the argument of backward induction, classical finance theory
precludes divergence of asset prices from their fundamental values. Starting with
De Long et al. (1990) theoretical models have been developed showing that assets
can diverge – positively or negatively – from their fundamental values. De Long
et al. explain these deviations by feedback trading. Although their model explains
both bubbles and crashes separately, it does not show how a bubble leads to a crash.
More recently, Abreu and Brunnermeier (2003) provide an explanation for the link
between bubbles and crashes. They challenge proponents of the efficient market
hypothesis (e.g. Fama, 1965) and prove mathematically that even in the presence of
rational arbitrageurs bubbles can exist and lead to crashes. The second reason is that
stock market crashes are extreme, infrequent events, thereby limiting the number of
observations available for empirical analysis.

In this chapter we conduct an empirical investigation of the relation between
bubbles and crashes from an investor perspective. The investor wants to predict the
probability of a crash occurring next month, using currently available information.
To expand the number of observations, we focus on bubbles and crashes in industries.
The investor perceives a bubble in an industry, if the series of abnormal returns over
the last one to five years exhibits an average above a specified threshold. We use
the CAPM to find the fundamental value of an industry and to construct abnormal
returns. We define a crash as next month’s abnormal return below a specified thres-
hold. Unlike related literature (e.g. Chen et al., 2001) we refrain from using skewness
as a measure of crash likelihood since investors cannot incorporate findings based on
skewness directly into their risk assessment. Though several authors (e.g. Harvey
and Siddique, 2000; Kraus and Litzenberger, 1976) have shown that skewness can
be included in optimal portfolio selection by a Taylor series expansion of the utility
function, we regard direct knowledge of crash likelihood as more informative.

Our main finding is that investors can use the presence of a bubble to predict
crashes. In the basic setting, we choose the crash threshold such that 5% of all
observations qualify as a crash. We consider 48 US industries from 1926 to 2004.
Conditional on perceiving a bubble, the likelihood of a crash in the next month
almost doubles to 7.7%, compared to 4.2% if a bubble is not observed. The investor

1Kindleberger (2000) provides a general overview of bubbles and crashes. Temin and Voth (2004)

and Dale et al. (2005) analyze the South Sea Bubble, Rappoport and White (1994) study the crash

of 1929, Bates (1991) examines the 1987-crash, and Ofek and Richardson (2003) and Brunnermeier

and Nagel (2004) investigate the recent internet bubble.
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perspective with conditional information is crucial in our analysis to establish this
predictive effect of a bubble, and extends the unconditional analysis of Shiller (2000,
Ch. 6). Moreover, we show that bubbles and crashes occur in all industries, and not
only in new industries.

A further inspection of our results shows that the effect of a bubble on crash
likelihood strengthens, if we restrict the analysis to more severe crashes. For the 20%
severest crashes, the presence of a bubble triples the crash probability. A bubble that
grew up to the last available observation has a larger impact on crash likelihood than
a bubble that stopped growing in the last two to six months. Based on the model of
Abreu and Brunnermeier (2003), we develop empirically testable hypotheses relating
the characteristics of a bubble to crash likelihood. We find that the strength of the
bubble positively affects the probability of a crash. The length of the bubble has
no significant effect. We also show that these results are robust to changes in our
research setting.

While the results on industries are interesting for investment strategies based on
sector rotation, the big question is whether they carry over to the market as whole.
From a similar investor perspective we investigate the presence of bubbles and crashes
in the market. As expected, the analysis lacks statistical power, but in a qualitative
sense the results for the market are largely similar to those for sectors. Consequently,
we conclude that investors encounter a considerable increase of the risk of a market
crash in the next month, if a bubble occurs in the last six months.

This chapter is structured as follows. In Section 2, we review the literature from
a practical perspective and derive empirically testable hypotheses. Section 3 presents
our data and the investor perspective towards bubbles and crashes. In Section 4, we
analyze the impact of a bubble and its characteristics on crash likelihood. Section 5
compares our findings for industries to the market. Because our approach requires
some arbitrary choices, we discuss several robustness checks in Section 6. Section 7
concludes.

2.2 Literature review

Most theoretical literature on bubbles and crashes focuses on establishing conditions
under which a bubble can occur. Irrespective of whether a theoretical model can
accommodate the presence of a bubble, the empirical evidence on bubbles and crashes
so far in Kindleberger (2000) and Shiller (2000) compels further research. As the main
purpose of this chapter we empirically investigate the hypothesis that the presence of
a bubble increases the probability of a crash in the next period. We refrain from the
theoretical debate on bubbles. However, the findings of the theoretical research can
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help us steering our examination and set up the investor perspective that we take
towards bubbles and crashes.

A bubble is commonly defined as a period during which the price of an asset ex-
ceeds its fundamental value (see e.g. Brunnermeier, 2001; LeRoy, 2004). Asymmetric
information is crucial for the occurrence of a bubble. Santos and Woodford (1997)
show that a bubble can only exist under very strict conditions in a case with sym-
metric information. Abreu and Brunnermeier (2003) and Conlon (2004) show that
bubbles can exist in a setting where some investors know about the bubble while
others do not, and investors do not know who is informed and who is not.

The start of a bubble is commonly related to displacement in a Minsky model (see
Kindleberger, 2000, p. 14) or new-economy thinking (see Shiller, 2000). Improve-
ments in the fundamentals of an industry increase its outlook, and consequently
asset prices in that industry grow at a faster rate than before. However, uninformed
market participants extrapolate this faster growth rate and expect it to hold in per-
petuity.2 De Long et al. (1990) argue that the behavior of noise traders, who base
their trades on such extrapolation (called feedback trading), can lead to the continu-
ation of a bubble. Instead of trading against the bubble, the informed investors will
try to ride the bubble at the expense of the noise traders. Abreu and Brunnermeier
(2003) prove the optimality of this trading strategy for a setting where informed
traders are unaware of the proportion of informed traders. Temin and Voth (2004)
and Brunnermeier and Nagel (2004) provide empirical evidence of this behavior.

Most bubble models either explicitly state that a bubble ends with a crash (see
for instance Blanchard and Watson, 1982; Abreu and Brunnermeier, 2003), or imply
that a bubble ends with a crash, because the bubble becomes common knowledge.
Though likely, a bubble does not necessarily have to end with a crash. It can also
deflate without a crash. In theoretical models like Abreu and Brunnermeier (2003)
the noise traders are assumed to be fully unaware of a bubble taking place, contrary
to the informed traders who are fully aware of it. In reality, investors cannot be char-
acterized as fully aware or fully unaware, but will show varying degrees of awareness.
As a consequence, feedback trading may vary over time, and gradually decreasing
feedback trading can lead to a soft landing of the bubble.

In our research we investigate whether bubble characteristics like its size and
length help in determining the probability of a crash. We base two hypotheses mainly
on the model of Abreu and Brunnermeier (2003). The investor perspective they use in
their model makes it easy to relate their model to our empirical setting. In the model
of Abreu and Brunnermeier a bubble has a maximum size. All traders start being

2This behavior is examined empirically by Frankel and Froot (1988) and experimentally by

Andreassen and Kraus (1990).
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uninformed, but per unit of time a fixed proportion of traders becomes fully aware of
the bubble. Though they know its maximum, they do not know when it started, and
consequently they do not know how long it will last before it bursts. Because traders
do not know whom of the other traders are informed, a coordination problem arises.
Informed traders will ride the bubble and try to sell out before it bursts. A bubble
always ends with a crash, when it reaches its maximum size. This maximum can be
exogenously given or endogenously arise as the point where selling pressure of the
informed traders exceeds the buying capacity of the noise traders. We hypothesize
that a bubble with a stronger growth rate will burst sooner, because it reaches its
maximum size sooner.3 Our hypothesis is in line with the hypothesis of Youssefmir
et al. (1998) that larger bubbles are more susceptible to shocks, which they base on
simulations. A crucial assumption in the model of Abreu and Brunnermeier (2003)
is that the investors do not know the exact start date of the bubble, which makes it
difficult to determine its length. Therefore, we test whether the length of the bubble
that the investor infers does not help in predicting the probability of a crash.

The assumption that a crash happening after a bubble is related to it is implicit
in our approach. While crashes may occur because of news reaching the market,
crashes in the presence of a bubble are mostly too large to be explained by that news
(see Shiller, 2000, Ch. 4). Abreu and Brunnermeier (2003) argue that news can act
as a synchronizing event, leading to massive sell out by the informed investors.4 If
selling pressure exceeds the buying capacity of the noise traders, the bubble will burst
and the asset price will fall. However, if this coordinated attack fails, a temporary
strengthening of the bubble will set in, followed by new crashes. We call these crashes
aftershocks.

In the next section we investigate whether these theoretical aspects of bubbles
and crashes are present in industries. We test the hypotheses, but we do not test
whether a specific model describes bubbles and crashes accurately. However, since
the investor perspective of Abreu and Brunnermeier (2003) can be easily related to
our approach, our findings can be interpreted as support in favor or against their
model.

3In the case that the maximum size of a bubble arises endogenously as selling pressure exceeding

buying capacity, the effect of a larger growth rate in the model of Abreu and Brunnermeier (2003)

is twofold. On the one hand, traders have a stronger incentive to ride the bubble. Consequently,

the bubble will be larger when selling pressure bursts it. On the other hand, it will reach this size

sooner.
4In broader sense, this argument can apply to ‘real’ news that has a serious impact on the outlook

of a sector, but also to sunspots or lumpy information that has been held up by restricted investors

as in Hong and Stein (2003) and Cao et al. (2002).
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2.3 Data and Concepts

In this section we formulate the concepts of a bubble and a crash from the perspective
of an investor. In our setup, the investor does not receive a signal telling him with
certainty that a bubble occurs as in the model of Abreu and Brunnermeier (2003),
but he has to make inferences from the data. The investor wants to know whether a
bubble has been inflating until recently, and tries to use that information to improve
his prediction of the distribution of next period’s return. This means that he is less
interested in pinpointing exactly during which periods bubbles were taking place.
How an investor perceives a bubble is discussed in the next subsection, followed by
the definition of a crash. First, we briefly introduce the data set.

We use the industry indexes as in Fama and French (1997), which are available
on French’s website5. The data set consists of monthly value-weighted returns for 48
industries from July 1926 to December 2004. Eight industries (Soda, Health, Rubber,
Fabricated Products, Guns, Gold, Personal Services and Paper) have a shorter time-
series of returns available. Therefore, these industries are marked with a dagger in
our tables. We also use the risk-free rate and the market index in our analysis. The
risk-free rate is the one-month Treasury bill rate from Ibbotson Associates. We proxy
the market index by the CRSP all share index. The market index and the risk free
rate are obtained from French’s website. We transform all discrete returns to log
returns.

2.3.1 Bubbles

We take the viewpoint of an investor that wants to predict the probability that a
crash occurs in the next month t+1, based on information available up to the current
month t. We investigate whether knowledge about a bubble helps in this respect. We
focus on bubbles that have been inflating up to time t, or that have stopped growing
recently. In line with the theoretical research, the investor perceives a bubble in
an industry, if it has shown larger price increases than can be justified based on its
fundamentals. We assume throughout our analysis that the fundamental evolution
of an industry index is given by the CAPM. Our analysis can be easily adjusted for
other models for the fundamental evolution such as the Arbitrage Pricing Theory of
Ross (1976). As a robustness check we consider the three-factor model of Fama and
French (1993).

The investor examines past price patterns by means of a regression. To capture
the conditional nature of the investor’s examination we use a rolling regression frame-

5The data can be downloaded from http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data library.html. We have used the data set constructed with the new specifications.
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work, in which the investor uses 120 months of history. If the industry index evolves
according to its fundamental, i.e. its returns have a linear relation with the market
returns, a regression will produce residuals that do not systematically deviate from
zero. If the industry index exhibits a bubble, the residuals will be systematically
larger than zero during the bubble period. However, the investor does not a priori
know the length of the bubble, and can look for bubbles of different lengths. There-
fore, we distinguish between two windows in the regression framework: an estimation
window which is constant and equal to 120 months, and a candidate window of vari-
able length for the presence of a bubble, within the estimation window. We assume
that the investor estimates the following regression over the estimation window from
month t− 119 to month t

riτ − rfτ = αi0t(1−Diτ ) + αi1tDiτ − βit(rmτ − rfτ ) + εiτ , (2.1)

where riτ is the time τ log return on industry i, rmτ represents the return on the
market index, rfτ is the risk-free rate, Diτ is a dummy variable that equals one
during the candidate period and zero otherwise, and αi0t, αi1t, βit are coefficients.
We interpret αi1t as the growth rate of the bubble.6

The question is whether a bubble was present in the candidate window. The
investor perceives a bubble during the candidate window, if the t-ratio of the αi1t-
coefficient exceeds a specified threshold. The candidate window is not fixed, and
instead the investor estimates this regression for each admissible candidate window.
We set the minimum and maximum of the candidate window equal to 12 and 60
months respectively. Moreover, the candidate window should end at most 6 months
before the current month t. If several candidate periods qualify as a bubble, the
period that ends closest to the end of the estimation period is selected as the perceived
bubble. If two candidate periods qualifying as a bubble end equally close to the end
of the estimation period, the longest period is selected.7

For each industry, Eq. (2.1) is estimated as a rolling regression with a window
of 120 months over our complete sample period 1926-2004. Since the information
set changes if we move from month t (with a prediction for month t + 1) to month

6We do not follow the cointegration approach of Sinha and Sun (2004), since the long series

needed for cointegration tests would not fit in with the rolling regression framework.
7This setup for selecting a candidate window as a bubble looks like conducting a series of t-tests

on different αi1t estimates. We commonly use a threshold equal to 2.358, which corresponds with a

cumulative probability of 0.99 for a Student’s t distribution with 120 degrees of freedom. However,

because of the selection rules, the coefficient of αi1t is not tested for statistical significance. The

test on the αi1t-coefficient is conditional on the outcome of the prior tests, implying that the test-

statistic does not have a standard Student’s t distribution. We thank Marno Verbeek for pointing

out this issue.
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t + 1 (with a prediction for month t + 2), the perception of a bubble changes as well.
The investor updates his perception of a bubble based on the information that he
obtains during month t + 1. Because the inferred growth rate can change from time
to time, the level of feedback trading can vary as well. Consequently, a bubble can
be inferred to have stopped growing. Later, the investor can infer that the bubble
has resumed its growth, that it burst with a crash, or that it was gradually deflating.
In all cases, knowledge about a bubble can influence the investor’s predictions, which
is why we allow candidate periods ending up to 6 months before the current month.
With hindsight, we can try to make precise statements on the actual period that the
bubble was present. However, we do not follow this approach to avoid look-ahead
bias.

Our setup can incorporate the asymmetric information that is crucial for the
existence of a bubble. Investors that put different restrictions on the candidate
window, use other fundamentals or a different threshold for the t-ratio of αi1t will
come to other conclusions regarding the presence of a bubble. Moreover, investors
will generally not know how other investors conduct their analyses.

Table 2.1 presents the number of months for which we find evidence of a bubble
in industries. We count each month that shows up at least once in a candidate
window that is selected as a bubble. For each industry, we find on average 217
months during which a bubble occurs. These 217 months represent about 23.9% of
our sample. The industry experiencing the fewest bubbles is Fabricated Products.
However, for this industry we only have a limited time-series of observations. The
industry experiencing the fewest bubbles months for which we have a complete time-
series of observations is Laboratory Equipment. The Beer industry experiences most
bubble months. Table 2.1 also shows the raw returns as well as the risk-adjusted
returns during the bubble months. Generally, we find that both returns are on
average positive. The only exception is the Fabricated Product industry which has
a negative average raw return. We find the largest positive return, raw as well as
risk-adjusted, for the Gold industry and the smallest risk-adjusted return for the
Household Industry.

2.3.2 Crashes

Extraordinarily large negative returns are the distinguishing characteristic of a crash.
We investigate crashes as a correction for the run up in prices during the bubble.
Since a bubble is taken as a period of exceedance of fundamental values (i.e. according
to the CAPM), we define a crash also with respect to fundamentals. In the CAPM
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Table 2.1: Bubble months

industry # months r̄ η̄ industry # months r̄ η̄

Agric 74 30.2% 37.4% Guns† 101 21.3% 20.7%

Food 395 18.4% 9.7% Gold† 161 39.8% 38.1%

Soda† 240 32.0% 17.0% Ships 245 24.7% 17.9%

Beer 485 21.9% 11.5% Mines 182 24.1% 15.6%

Smoke 371 20.8% 15.4% Coal 187 21.3% 14.7%

Toys 200 26.2% 18.6% Oil 245 23.1% 13.4%

Fun 283 31.1% 17.2% Util 232 18.6% 9.0%

Books 279 27.5% 13.0% Telcm 308 20.7% 8.9%

Hshld 223 16.4% 7.6% PerSv† 294 26.5% 17.8%

Clths 207 25.1% 15.9% BusSv 255 25.6% 13.4%

Health† 159 36.2% 21.9% Comps 162 32.1% 16.4%

MedEq 323 21.6% 14.6% Chips 270 32.2% 14.3%

Drugs 413 20.4% 9.8% LabEq 64 33.1% 20.5%

Chems 208 17.5% 10.0% Paper† 96 3.9% 12.7%

Rubbr† 122 15.5% 12.5% Boxes 280 20.6% 11.2%

Txtls 288 27.5% 13.0% Trans 149 10.3% 10.9%

BldMt 190 13.2% 10.1% Whshl 194 20.8% 12.1%

Cnstr 215 19.5% 14.9% Rtail 265 18.1% 9.8%

Steel 134 18.7% 12.1% Meals 334 22.0% 13.6%

FabPr† 16 -27.3% 38.6% Banks 316 19.2% 10.9%

Mach 131 19.1% 9.2% Insur 127 19.6% 12.0%

ElcEq 66 26.2% 12.0% RlEst 186 18.8% 14.9%

Autos 145 27.2% 13.4% Fin 258 19.6% 9.8%

Aero 191 23.2% 15.3% Other 139 31.7% 14.5%

Pooled 10408 22.8% 13.8%

For each industry we report the number of months that show up at least once in a bubble period

in the regression in Eq. (2.1). For these months we calculate the average returns and the average

abnormal returns. The abnormal return for sector i in month t is constructed as rit− rft− β̂(rmt−
rft), where β̂ results from the regression over months t− 1 to t− 120. For each industry we report

the average return r̄ and average abnormal return η̄ on an annual basis. Finally, we report the

number of bubble months, the average return and average abnormal return for the pooled series. A

dagger after an industry name indicates that less observations are available.
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setting this means that we construct an abnormal return ηit+1 as

ηit+1 = rit+1 − rft+1 − β̂it(rmt+1 − rft+1), (2.2)

where the variables are defined as in Eq. (2.1) and β̂it is the estimate for the CAPM-β
based on the regression

riτ − rfτ = αi0t + βit(rmτ − rfτ ) + εiτ , E[εiτ ] = 0, E[ε2iτ ] = σ2
it, (2.3)

estimated over the previous 120 months of returns. This approach is a logical con-
sequence of the conditional setup with the rolling regressions we proposed in the
previous section. The investor tries to make a prediction of the next periods abnor-
mal return ηit+1 based on information up to time t. He uses the return series from
t − 119 up to t to estimate the relation with the market, and to determine whether
a bubble is present.8 Moreover, this approach prohibits including one market crash
48 times.

Based on the abnormal return ηit+1 we determine whether industry i is experi-
encing a crash during month t + 1. To accommodate time-varying volatilities and
different volatilities across industries, we define a crash with respect to the volati-
lity of abnormal returns.9 Our five threshold levels are −1.65σit, −2σit, −2.25σit,
−2.5σit and −3σit. We consider an industry as experiencing a crash, if we observe
a negative abnormal return at least 1.65σit away from zero. As we show below, this
threshold level qualifies roughly 5% of the observations as a crash, which is reason-
able. Throughout the analysis we will refer to this type as a category 0 crash. If
we find a negative return below 2σit we call it a category 1 crash, and so on. The
five different crash thresholds allow us to investigate whether crashes of different
magnitudes have different characteristics and prior return patterns. Further, they
ensure the robustness of our findings. A disadvantage of this approach might be that
crashes are defined conditionally on past returns via the volatility estimate. We do
not think this argument really bites, as a reference window of 10 years combined with
slowly adaptation to changes may quite well capture the approach that investors have
towards financial markets.

Crashes happening closely after each other are probably related. Therefore we
count two consecutive months with large negative returns as one crash. Neither

8Since we do not want the abnormal return to depend on the selection of a bubble in Eq. (2.1),

we do not include a candidate window in Eq. (2.3).
9For this reason we deviate from Longin and Solnik (2001), who use absolute thresholds in their

analysis of extreme returns in different countries. We also deviate from Bae et al. (2003), who define

extreme returns as one that lies below 5% of the return distribution, because this would determine

crash probabilities a priori, while we want to estimate them at a later stage.



2.3 Data and Concepts 21

do we consider a pattern of a large negative return, a small positive return and
again a large negative return as two separate crashes. Instead, borrowing from the
earthquake terminology, we name the second large negative return an “aftershock”.
More formally, all crashes that happen after another crash are called aftershocks,
given that the industry has not fully recovered. We consider an industry as fully
recovered when the sum of abnormal returns after the previous crash is positive.
For all following aftershocks the same principle applies. A third crash is named an
aftershock if the industry has not recovered from the first aftershock. If the industry
has recovered, specifically the sum of abnormal returns since the first aftershock is
larger than zero, we consider the third crash as a new crash. Aftershocks can happen
up to twelve months after a preceding crash.

Table 2.2 provides summary statistics of the abnormal returns and the numbers
of crashes for the 48 industries. In order to account for different volatilities across
industries, we divide the abnormal returns by their respective standard deviation.
Because of the rolling regression framework, the abnormal returns are constructed
out-of-sample. Therefore we can use them to investigate the accuracy of the CAPM
as the fundamental model. The abnormal returns center around zero. For six of the
48 sectors we find average abnormal returns that deviate significantly from zero.
The pooled average abnormal return, which is an equal-weighted average of the
industry averages, does not deviate significantly from zero. We conclude that the
CAPM does not lead to systematic mispricing. The volatilities of the standardized
abnormal returns are close to one. However, from a statistical perspective 29 out of
48 deviate significantly from one. It seems that the one-factor model in Eq. (2.3)
underestimates the true volatilities. Since the deviations are economically small, we
decide to continue the analysis with these estimates. Of the 48 industries, 22 are
negatively skewed and 26 are positively skewed. The pooled series shows hardly any
skewness. The kurtosis coefficients show that all industry return series exhibit fat
tails. However, as our crash definition does not make assumptions regarding fat tails,
this causes no problems for our analysis.

Table 2.2 also shows the number of crashes per industry for category 0. For the
interested reader, Table 2.10 in the appendix provides information on the number
of crashes per industry for the different crash categories. On average an industry
encounters 45 crashes during the 70 years we consider. The Steel industry experiences
with 58 crashes the most crashes, which can be related to its cyclical nature. The
industry experiencing the fewest crashes is the Fabricated Products industry, which
has a limited return series starting in July 1961. The industry experiencing the
smallest number of crashes for which we have a complete return series is Beer. This
finding is intuitively appealing because the beer industry is operating in a relatively
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Table 2.2: Summary statistics of abnormal returns per industry

# first # after-

industry # obs mean vol. skew kurt min max crashes shocks

Agric 822 −0.02 1.03 0.02 4.93 −5.08 4.41 22 19

Food 822 0.09∗ 1.12∗ 0.32∗ 5.14 −3.96 6.10 28 12

Soda† 702 0.03 1.10∗ 0.31∗ 4.10 −3.95 4.76 23 18

Beer 822 0.09∗ 1.06∗ −0.20∗ 6.66 −6.08 6.04 18 13

Smoke 822 0.09∗ 1.11∗ −0.28∗ 4.13 −5.32 3.41 31 11

Toys 822 −0.04 1.01 −0.54∗ 8.12 −6.80 3.84 14 19

Fun 822 −0.01 1.01 0.30∗ 5.12 −4.88 5.16 26 18

Books 822 −0.02 1.00 −0.18∗ 3.93 −4.58 3.08 29 16

Hshld 822 0.05 1.05∗ −0.36∗ 5.98 −6.40 4.72 25 15

Clths 822 −0.05 1.07∗ −0.21∗ 3.97 −4.67 3.53 20 31

Health† 402 −0.05 1.07∗ −0.60∗ 5.49 −5.45 3.13 15 13

MedEq 822 0.01 0.98 −0.05 3.84 −4.58 3.89 24 20

Drugs 822 0.07 1.06∗ −0.22∗ 5.43 −5.56 4.29 20 18

Chems 822 −0.04 1.07∗ 0.06 5.67 −4.69 6.35 27 24

Rubbr† 774 −0.01 1.04 −0.28∗ 5.11 −5.16 4.53 23 20

Txtls 822 −0.05 1.07∗ −0.24∗ 4.33 −4.50 4.78 24 33

BldMt 822 −0.06 1.07∗ −0.33∗ 4.79 −5.17 3.66 22 28

Cnstr 822 −0.06 1.01 0.02 3.99 −4.01 4.29 22 25

Steel 822 −0.08∗ 1.07∗ 0.44∗ 5.25 −3.21 6.77 25 33

FabPr† 402 −0.16∗ 1.09∗ −0.24 5.07 −4.77 4.78 11 16

Mach 822 −0.06 1.05∗ 0.15 4.16 −4.19 5.17 30 21

ElcEq 822 −0.04 1.03 −0.05 4.74 −4.77 4.98 26 19

Autos 822 −0.03 1.05∗ 0.07 6.02 −5.59 5.86 26 18

Aero 822 −0.03 1.03 −0.17∗ 5.38 −6.22 3.69 24 27

Guns† 522 −0.01 1.07∗ −0.89∗ 9.67 −8.00 4.46 15 14

Gold† 522 0.02 1.15∗ 0.32∗ 4.36 −3.55 5.92 24 12

Ships 822 −0.04 1.08∗ 0.04 6.18 −5.58 5.10 25 18

Mines 822 0.00 1.05∗ 0.38∗ 4.25 −3.71 4.62 26 15

Coal 822 0.02 1.10∗ 0.51∗ 6.90 −4.86 6.63 21 18

Oil 822 0.04 1.04∗ 0.12 3.84 −3.78 3.69 20 22

Util 822 0.03 1.06∗ 0.02 3.83 −3.81 4.03 27 30

Telcm 822 0.07 1.10∗ 0.69∗ 7.85 −3.92 8.45 24 20

PerSv† 810 −0.02 1.03 −0.85∗ 10.01 −8.74 3.92 21 20

BusSv 822 0.03 0.98 0.34∗ 5.43 −4.76 4.46 26 13

Comps 822 −0.02 1.07∗ −0.03 4.05 −4.49 4.07 27 27

Chips 822 0.00 1.03 0.07 4.04 −3.89 4.65 20 21

LabEq 822 −0.05 1.06∗ 0.20∗ 5.25 −4.27 6.12 29 14

Paper† 786 −0.04 0.99 0.24∗ 5.94 −4.71 5.98 27 13

Boxes 822 0.00 1.08∗ 0.05 6.17 −4.39 6.82 23 26

Trans 822 −0.05 1.03 0.37∗ 4.45 −3.65 4.72 24 19

Whshl 822 −0.06 1.02 0.06 7.42 −6.60 5.83 22 18

Rtail 822 0.02 1.06∗ −0.26∗ 4.03 −3.83 4.13 26 30

Meals 822 0.03 1.04 0.05 4.57 −5.07 3.95 22 16

Banks 822 0.03 1.00 −0.40∗ 5.39 −5.08 4.03 17 18

Insur 822 0.01 1.03 −0.19∗ 5.46 −6.05 4.85 27 18

RlEst 822 −0.09∗ 1.07∗ 0.11 6.39 −6.76 4.68 22 26

Fin 822 −0.01 1.04∗ −0.37∗ 7.58 −7.91 4.25 21 24

Other 822 0.01 1.02 0.24∗ 4.05 −3.13 4.83 25 14

Pooled 37800 −0.01 1.05∗ −0.01 5.38 −8.74 8.45 1116 953
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This table report summary statistics of the abnormal returns constructed with the factor model

in Eq. (2.3) with a 120-month estimation window. Each abnormal return ηit+1 is divided by the

corresponding volatility estimate σit to correct for time-varying volatility. We report the number of

observations, mean, standard deviation, skewness, kurtosis, minimum and maximum per industry

and for the pooled set of adjusted abnormal returns. We also include the number of crashes based on

a threshold of −1.65σit, split up in first crashes and aftershocks. A dagger after an industry name

indicates that less observations are available. An asterisk denotes a significant difference from zero

in case of means and skewness coefficients, and a significant difference from one in case of volatility,

all at a 5% confidence level. Standard errors of the skewness coefficient are calculated as
p

6/T (see

Tabachnick and Fidell, 2001).

stable business environment. However, in the previous section we found that the
Beer industry had most bubble months, which suggests that the presence of a bubble
diminishes the crash probability. Looking at the beer industry in more detail in
Figure 2.1, we see that the bubble months can be attributed to only four long lasting
bubble periods, which are interrupted by crashes. However, these crashes are not
large enough to end the bubbles and therefore the bubbles continue beyond the
crashes. This pattern also illustrates the temporary strengthening after a coordinated
attack, as put forward by Abreu and Brunnermeier (2003).

Figure 2.2(a) shows the distribution of crashes over the course of the years. We
find that October is the most dangerous month. For our broadest definition of
crashes, category 0, we find 145 crashes in October compared to an overall aver-
age of 93 crashes per month. For other threshold values, October remains the most
dangerous month, with the exception of the worst category. In that case September
shows 24 crashes and October 22. It is less obvious during which months investors
are safest. Overall the fewest crashes (category 0) happen in February. However,
this result seems to be driven by the few extra crashes, moving from category 2 to
categories 1 and 0. For instance, we see the smallest number of the most severe
crashes (category 4) in May.

Figure 2.2(b) shows that the number of crashes varies considerably over the years.
We count most crashes in 1980 (34) and 1950 (33). During the Second World War
few crashes occurred which may be related to the adjustments in the economy caused
by it. Also 1977 and 2003 stand out as relatively safe years. Overall, it seems that
the number of crashes per year increases slightly until 1965, after which the average
number of crashes remains stable. Until 1965, the average number of crashes is 12.7.
The average over 1966-2004 is 18.8. The variation in the number of crashes over
the years is in line with the variation in dispersion as reported by Solnik and Roulet
(2000).

We define industry crashes in a similar way as Longin and Solnik (2001) and
Bae et al. (2003). Our approach can also be understood in terms of the exchange
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Figure 2.1: Cumulative abnormal returns, bubbles and crashes in the Beer

sector over 1980 - 2000
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This figures shows the evolution of the cumulative abnormal returns in the Beer sector over the

period 1980-2000 (y-axis in %). The bubble months during this period are indicated by the horizontal

band in the graph. Crashes are indicated by the thick line segments in the cumulative abnormal

returns. Circles mark the beginning and end of first crashes. Triangles indicate the beginning and

end of aftershocks.

market pressure indexes that are used to define currency crises (see Eichengreen
et al., 1996; Kaminsky et al., 1998).10 We refrain from using skewness as a measure
for the likelihood of a crash (see e.g. Chen et al., 2001; Bates, 2000; Bakshi and
Madan, 1999). First, skewness is an imperfect measure of crash likelihood as it does
not focus exclusively on a pre-specified part of the return distribution that is of
interest for crashes. In Table 2.2 we observe that the Beer sector, which has the
fewest crashes, is left-skewed, while the Steel industry, encountering most crashes, is
actually right-skewed. In the appendix we show that the skewness coefficient is not
strongly related to the number of crashes in an industry. Second, investors cannot
use findings based on a skewness measure in their assessment of risk. For instance,
it is not clear how to interpret changes in skewness: does a change in skewness from

10The exchange market pressure indexes weigh different sources of pressure, with weights given

by the standard deviation of the variables representing the sources. As a consequence, the exchange

market pressure is unit free and comparable across currencies. We realize the same for the industries.
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Figure 2.2: Crash distribution over the course of the year

15
5 5 9

2
9 9 10

24 22

5 3

13

8 7
7

9
9 12 7

14 20

15
9

10

8 6
12

8

10
14

5

14
16

16

8

26

9 13

19

12

26
21

14

21

25

6

14

48

28

44

54

46

42

55

36

42

62

40

38

0

20

40

60

80

100

120

140

160

J
a

n
u

a
ry

F
e

b
ru

a
ry

M
a

rc
h

A
p

ri
l

M
a

y

J
u

n
e

J
u

ly

A
u

g
u

s
t

S
e

p
te

m
b

e
r

O
c
to

b
e

r

N
o

v
e

m
b

e
r

D
e

c
e

m
b

e
r

Cat. 0 - Cat. 1

Cat. 1 - Cat. 2

Cat. 2 - Cat. 3

Cat. 3 - Cat. 4

Cat. 4

(a) per month

0

5

10

15

20

25

30

35

40

1
9
3
6

1
9
4
0

1
9
4
4

1
9
4
8

1
9
5
2

1
9
5
6

1
9
6
0

1
9
6
4

1
9
6
8

1
9
7
2

1
9
7
6

1
9
8
0

1
9
8
4

1
9
8
8

1
9
9
2

1
9
9
6

2
0
0
0

2
0
0
4

(b) per year

We plot the number of first crashes per month in panel (a) and the number of first crashes of

category zero per year in panel (b). In panel (a) we split up the set of category zero crashes to

indicate the effect of the different thresholds. Starting with the most severe category, we show how

many crashes are added if the threshold is increased with one step.
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-0.10 to -0.20 imply a doubling of the crash likelihood? In contrast to previous studies
we make direct inferences of crash probabilities depending on past returns. Only in
this way, investors can use our findings in their risk management decisions.

2.4 Bubbles and Crashes

In this section we bring together our concepts of bubbles and crashes to see how they
are related. In the first subsection, we use a simple technique to show that the pres-
ence of a bubble increases the likelihood of a crash. In the second subsection, we use
a logit model to test the hypotheses based on the model of Abreu and Brunnermeier
(2003).

2.4.1 Crash probability

To analyze the relation between bubbles and crashes we first look at the percentage
of crashes that are preceded by bubbles. Second, we test the hypothesis that a bubble
increases the likelihood of a crash. Table 2.3 shows that about 25.8% of all crashes
are preceded by bubbles. The percentage of crashes preceded by a bubble increases
monotonically with the strength of the crash up to 35.6% for category 4 crashes. We
differentiate between a bubble that grew until the month before the crash (BUBBLE)
and a bubble that stopped growing two to six months before the crash (LBUBBLE).
Our evidence shows that crashes usually happen if the bubble is still growing (19.5%),
compared to only 6.3% of crashes happening in the following two to six months after
the bubble stopped growing. The last columns of Table 2.3 show that aftershocks
are less frequently preceded by bubbles. Only 2.4% of all aftershocks are preceded by
bubbles. This result is not surprising since aftershocks are preceded by definition by
crashes. However, it also indicates that, as pointed out by Abreu and Brunnermeier
(2003), not all bubbles end with a single one-time crash. If the first crash, or in the
words of Abreu and Brunnermeier “coordinated attack”, is not strong enough, the
bubble can continue and even get stronger. This pattern repeats itself until there is a
final “coordinated attack” that results in a crash strong enough to end the bubble. As
in the case of first crashes, the percentage of crashes preceded by a bubble increases
the more severe the aftershock is.

In Table 2.4, panel (a), we compare the unconditional probability of a crash in
the next period to the conditional probabilities given that either a bubble has been
perceived or not in the current period. The unconditional probability of a crash in
category 0 is estimated at 4.7%. So, independent of the occurrence of a bubble, a
crash happens on average every 21 months. Conditional on the absence of a bubble
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Table 2.3: Percentage of crashes preceded by a bubble

first crashes aftershocks

all BUBBLE LBUBBLE total all BUBBLE LBUBBLE total

cat. 0 1116 19.5% 6.3% 25.8% 953 2.4% 5.6% 8.0%

cat. 1 581 23.9% 6.7% 30.6% 561 3.4% 6.5% 10.0%

cat. 2 375 26.9% 5.9% 32.8% 416 4.0% 7.7% 11.7%

cat. 3 248 29.0% 6.0% 35.1% 305 4.4% 7.7% 12.1%

cat. 4 118 28.8% 6.8% 35.6% 188 6.8% 11.0% 17.8%

We distinguish a bubble that inflated up to the last observation (column labeled BUBBLE) and a

bubble that stopped growing two to six months earlier (column labeled LBUBBLE). We report the

percentages for the different crash categories.

over the last six months, the probability that a crash occurs decreases to 4.2%.
Given that there was a bubble during the last month, the probability of a crash rises
significantly to 7.7% (a relative increase of 80%). If the bubble stopped growing two
to six months ago, the probability of a crash increases significantly from 4.2% to
5.6%.

In line with the results presented in Table 2.3, we find that the presence of a
bubble has a stronger effect for more severe crashes. For category 4 crashes, the
unconditional probability of a crash is 0.5%. Independent of the presence of a bubble,
such a severe crash happens approximately once per 17 years. Conditional on the
absence of a bubble the probability of a category 4 crash diminishes marginally
to 0.4% (once every 21 years). However, given that there was a bubble during
the last month the probability of a category 4 crash triples to once every 7 years.
Our results demonstrate that the occurrence of a bubble has an economically large
and statistically significant impact on the likelihood of a crash. The effect is more
pronounced for bubbles that are still inflating than for bubbles that have stopped
growing.

We also analyze the relation between bubbles and aftershocks, since a first crash
does not necessarily need to end the bubble. Table 2.4 panel (b) shows that the
probability of an aftershock independent of the presence of a bubble is large (8.7%).
However, it cannot be compared directly with the unconditional probability of a first
crash. The probability of an aftershock is not a completely unconditional probability,
since aftershocks can only happen after a first crash. Our estimates demonstrate
that in line with Abreu and Brunnermeier (2003) a crash is not a one-time event,
but that several “coordinated attacks” can follow a bubble. However, independent
of the strength of the aftershocks, we find no relation between aftershocks and prior
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Table 2.4: Unconditional and conditional probabilities of a crash.

(a) first crashes

cat. 0 cat. 1 cat. 2 cat. 3 cat. 4

unconditional on a bubble

p 4.7∗∗ 2.4∗∗ 1.6∗∗ 1.0∗∗ 0.5∗∗

0.1 0.1 0.1 0.1 0.0

conditional on a bubble

pNO 4.2∗∗ 2.0∗∗ 1.3∗∗ 0.8∗∗ 0.4∗∗

0.1 0.1 0.1 0.1 0.0

∆pBUBBLE 3.5∗∗ 2.9∗∗ 2.3∗∗ 1.7∗∗ 0.8∗∗

0.5 0.4 0.4 0.3 0.2

[84%] [141%] [180%] [213%] [213%]

pBUBBLE 7.7 4.9 3.6 2.5 1.2

∆pLBUBBLE 1.4∗ 1.1∗ 0.5 0.4 0.3

0.7 0.5 0.4 0.3 0.2

[34%] [54%] [39%] [48%] [67%]

pLBUBBLE 5.6 3.1 1.8 1.2 0.6

(b) Aftershocks

cat. 0 cat. 1 cat. 2 cat. 3 cat. 4

unconditional on a bubble

p 8.6∗∗ 5.0∗∗ 3.7∗∗ 2.7∗∗ 1.7∗∗

(0.27) (0.21) (0.18) (0.15) (0.12)

conditional on a bubble

pNO 8.7∗∗ 5.1∗∗ 3.7∗∗ 2.8∗∗ 1.7∗∗

(0.28) (0.22) (0.19) (0.16) (0.13)

∆pBUBBLE -1.6 0.2 0.2 0.1 0.4

(1.34) (1.16) (1.01) (0.87) (0.74)

[-19%] [4%] [5%] [4%] [25%]

pBUBBLE 7.1 5.2 3.9 2.9 2.1

∆pLBUBBLE -0.8 -0.2 -0.0 -0.3 -0.0

(1.00) (0.80) (0.70) (0.57) (0.47)

[-9%] [-4%] [-1%] [-12%] [-1%]

pLBUBBLE 7.9 4.8 3.7 2.4 1.7

We calculate probabilities for the occurrence of a crash in the next period for first crashes (panel

a) and aftershocks (panel b). p gives the estimate, unconditional on the presence of a bubble. pNO

gives the probability of a crash conditional on the absence of a bubble. ∆pBUBBLE is the estimated

effect of the presence of bubble that has been inflating up to the last observation, and pBUBBLE gives

the resulting probability of a crash, given that a bubble is present. The same applies to ∆pLBUBBLE

for bubbles that stopped growing in the last two to six months. As a dependent variable we consider

crashes of the different categories. For each model we report the estimates (in %), the standard

errors in parentheses and the relative size of ∆pBUBBLE and ∆pLBUBBLE to pNO in brackets. A single

(double) asterisk indicates significance at the 5% (1%) level.
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bubbles. This results may be due to the fact that relatively few aftershocks are
preceded by prior bubbles as shown in Table 2.3.

2.4.2 Bubble characteristics and crash likelihood

In Section 2.2 we make several predictions regarding the characteristics of a bubble
and the likelihood of a subsequent crash, based on the theoretical model of Abreu
and Brunnermeier (2003). First, we hypothesize that a stronger growth rate of the
bubble increases the likelihood of a crash. Second, if a bubble is difficult to date, the
length of the bubble should be unrelated to the probability of a crash. In this section
we analyze these hypotheses empirically.

We use two measures for the strength of the bubble. The first measure, labeled
STRENGTH1, is simply the t-ratio of αi1t in Eq. (2.1) for the candidate window that
is selected as a bubble. It indicates the value with which the bubble exceeds the
threshold. However, since our bubble search procedure is based on maximizing the
length of the bubble period and not the strength, we also slightly modify our search
procedure to find the strongest bubble during each estimation period. Instead of
choosing the longest bubble during each estimation period, we select the bubble
with the maximum t-ratio given that it fulfills the minimum and maximum length
requirements. This procedure leads to our second measure of the strength of a bubble
called STRENGTH2. For each of the two measures of bubble strength we also compute
the corresponding length of the bubble, called LENGTH1 and LENGTH2, respectively.

The average value for STRENGTH1 is 2.57. As expected, the average t-statistic of
STRENGTH2, 3.10, is larger than STRENGTH1. LENGTH1 equals on average 39 months,
while the average of LENGTH2 is shorter with 29 months. The respective standard
deviations are 0.34, 0.69, 17 and 15. We use these at a later stage to determine the
economic significance of the variables with respect to crash likelihood.

We analyze how the different bubble characteristics affect the probability of a
crash in a standard logit model:

Pr[ηit+1 ≤ −1.65σit|xit] = F (a + b′xit)

F (y) =
ey

1 + ey
,

(2.4)

where ηit+1 is the abnormal return of sector i at time t + 1, −1.65σit reflects the
category zero threshold and xit is a vector of explanatory variables. As explanatory
variables we include a dummy for the presence of a bubble during the previous six
months (BUBBLE′), a dummy if there was a bubble during the last two to six months
(LBUBBLE), the number of months between the crash and the last bubble (LAGS) as
well as the bubble characteristics that we discussed earlier.
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The results of this analysis are presented in Table 2.5. In panel (a) we focus on
the bubble characteristics STRENGTH1 and LENGTH1. For crash category 2 to 5 our
results confirm that the strength of the bubble affects the likelihood of a crash. We
calculate that an increase in STRENGTH1 by one standard deviation (from 2.57 to
2.91) causes a relative increase in the likelihood of a crash by 28%.11 For more severe
crashes the effect of strength becomes larger. For category 5 crashes, we find that for
every increase of one standard deviation in the t-statistic the probability of a crash
increases by 63%. If the volatility remains at a similar level of say 5% per month, and
the bubble has an average length of 39 months, this means that the bubble yields an
extra return of 0.34 · √39 · 5% = 10% over its life span. In none of the regressions do
we find a significant relation between the length of the bubble and the probability of
a crash.

In Table 2.5, panel b, we investigate the relation between crash likelihood and
STRENGTH2 and LENGTH2. We find again that the strength of a bubble is signifi-
cantly related to the likelihood of a crash, whereas the length is not. For the other
explanatory variables such as BUBBLE′ and LAGS, the results are also similar to our
prior findings. In panel c, we report the estimates for the model with STRENGTH1

and STRENGTH2 included. The results confirm the findings above, and indicate that
STRENGTH2 has more explanatory power than STRENGTH1.

The logit model enables us to investigate whether the influence of a bubble be-
comes less and less if it stopped growing longer ago, or that it only matters whether a
bubble is still inflating or not. If the influence becomes gradually less, the coefficient
for the LAGS variables should be significant. If there is mainly a difference between
still inflating and stopped growing, the coefficient on LBUBBLE should be significant.
Since the coefficient on LBUBBLE is not significant in any of the settings, while the
coefficient on LAGS is in most, we interpret this as evidence supporting a gradually
decreasing influence of a bubble.

Our results in this section support the hypothesis that the strength of the bubble
increases the likelihood of a crash. We also find evidence that a bubble is difficult to
date. Finally we find that the effect of a bubble diminishes gradually after it stopped
growing. These conclusions are robust to a different construction of the variables.

11We base this calculation on the first order approximation of the logistic model in Eq. (2.4). For

STRENGTH1 and category one crashes we find an increase of 0.56%, which is a relative increase of

28% compared to the situation when a bubble is absent (which has a probability 2.0% according to

Table 2.4).
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Table 2.6: Distribution of market crashes and crashes for the average industry

market crashes industry crashes

all crashes first crashes aftershocks all crashes first crashes aftershocks

cat. 0 41 22 19 45 24 21

cat. 1 24 59% 8 36% 16 84% 25 55% 13 52% 12 59%

cat. 2 20 49% 7 32% 13 68% 17 38% 8 34% 9 44%

cat. 3 18 44% 7 32% 11 58% 12 27% 5 22% 7 32%

cat. 4 10 24% 4 18% 6 32% 7 15% 3 11% 4 20%

Market crashes are defined in similar way as for sectors. Abnormal returns are constructed by

subtracting the long run average market return from the observed returns. The average industry

crashes are constructed by dividing the pooled crashes (see Tables 2.2 and 2.10) by the total number

of observations (37,800) and multiplying it by the number of market observations (822). We consider

all crashes, first crashes and aftershocks.

2.5 Bubbles and crashes in the market

We investigate whether our results for industries are generalizable to the market
as a whole. In this case, we obviously cannot define crashes and bubbles relative
to the market. Instead, we use the long run equity premium as a benchmark, and
compute the abnormal returns as deviations from it. For simplicity, we assume that
this premium is constant over time. We estimate it as the long run average excess
return of the CRSP all share index, which equals 5.98% per annum over the period
July 1926 - December 2004.

Table 2.6 compares the number and distribution of market crashes to the average
industry crashes. The market experiences 41 crashes compared to 45 crashes per
industry. In both cases about half of the crashes are first crashes. The distribution
of crashes over the categories also shows similarities. Market crashes tend to be more
extreme, since category three and four contain more market crashes than average
industry crashes. In particular market aftershocks seem to be more severe. Overall,
the descriptive statistics for market and industry crashes look very similar.

More interesting is the question whether we also find similar results regarding
the bubble-crash patterns. Table 2.7 shows that 18% of market crashes (category 0)
are preceded by a bubble over the last six months. About half of these bubbles are
inflating until the month just before crash and the other half stops growing between
two to six month before the crash. These results differ only slightly from our findings
for industry crashes (see Table 2.3). For industry crashes, we find that almost 20%
are preceded by an inflating bubble. For 6.3% of the industry observations, we find
evidence of a bubble that stopped growing. Looking at the different crash categories,
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Table 2.7: Percentage of market crashes preceded by a bubble

first crashes aftershocks

all BUBBLE LBUBBLE total all BUBBLE LBUBBLE total

cat. 0 22 9% 9% 18% 19 0% 5% 5%

cat. 1 8 13% 13% 25% 16 0% 13% 13%

cat. 2 7 14% 14% 29% 13 0% 14% 14%

cat. 3 7 14% 14% 29% 11 0% 0% 0%

cat. 4 4 0% 25% 25% 6 0% 0% 0%

This table is similar to Table 2.3. We distinguish a bubble that inflated up to the last observation

(column labeled BUBBLE) and a bubble that stopped growing two to six months earlier (column

labeled LBUBBLE). We report the percentages for the different crash categories.

the picture is similar. It seems that industry crashes are only slightly more frequently
preceded by bubbles than market crashes.

In line with our analysis for the industries, we also investigate the relation between
market crashes and prior bubbles in a conditional probability framework. Unfortu-
nately, the statistical power of our analysis is very limited due to the small number of
market crash and bubble observations. In Table 2.8, we show that a preceding inflat-
ing bubble increases the likelihood of a crash from 3.7% to 6.9% (a relative increase of
87%). This increase makes the effect of the presence of a market bubble comparable
to the effect of an industry bubble. If the bubble stopped growing two to six month
ago, the probability increases further to 8.3%. In that sense a market bubble has an
even stronger effect than an industry bubble. In line with our results for industries,
it seems that the impact of a bubble on crash likelihood increases for more severe
crashes. However, although the changes in crash likelihood are economically large,
they are statistically insignificant due to a lack of sufficient observations. For crash
category 4, we can actually not even estimate the conditionally probability given that
there was an inflating bubble, since we have no observation at all available. Due to a
lack of observations, we are also not able to estimate the logit model in Eq. (2.4) in
order to analyze the relation between the bubble characteristics and the probability
of a market crash.

2.6 Robustness checks

In Section 2.3 we propose a flexible approach towards bubbles and crashes. Conse-
quently, we have made some arbitrary choices in the application of this approach.
We have selected the CAPM as the fundamental model for an industry. We have
fixed the length of the estimation window at 120 months, and put the maximum of
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Table 2.8: Unconditional and conditional probabilities of a market crash

Panel (a) First crashes

cat. 0 cat. 1 cat. 2 cat. 3 cat. 4

unconditional on a bubble

p 4.1∗∗ 1.5∗∗ 1.3∗∗ 1.3∗∗ 0.7∗

(0.85) (0.52) (0.49) (0.49) (0.37)

conditional on a bubble

pNO 3.7∗∗ 1.2∗ 1.0∗ 1.0∗ 0.6

(0.85) (0.50) (0.46) (0.46) (0.35)

∆pBUBBLE 3.2 2.2 2.4 2.4 NA

(4.78) (3.42) (3.42) (3.42)

[87%] [180%] [237%] [237%]

pBUBBLE 6.9 3.4 3.4 3.4

∆pLBUBBLE 4.6 2.9 3.1 3.1 3.6

(5.71) (4.11) (4.10) (4.10) (4.09)

[126%] [239%] [307%] [307%] [578%]

pLBUBBLE 8.3 4.2 4.2 4.2 4.2

(b) Aftershocks

cat. 0 cat. 1 cat. 2 cat. 3 cat. 4

unconditional on a bubble

p 8.6∗∗ 7.2∗∗ 5.9∗∗ 5.0∗∗ 2.7∗

(1.88) (1.74) (1.58) (1.46) (1.09)

conditional on a bubble

pNO 8.5∗∗ 7.1∗∗ 5.7∗∗ 5.2∗∗ 2.8∗

(1.91) (1.76) (1.59) (1.52) (1.14)

∆pBUBBLE NA NA NA NA NA

pBUBBLE

∆pLBUBBLE 1.5 2.9 4.3 NA NA

(9.68) (9.65) (9.62)

[18%] [41%] [77%]

pLBUBBLE 10.0 10.0 10.0

This table is similar to Table 2.4. We calculate probabilities for the occurrence of a crash in the

next period for first crashes (panel a) and aftershocks (panel b). p gives the estimate, unconditional

on the presence of a bubble. pNO gives the probability of a crash conditional on the absence of a

bubble. ∆pBUBBLE is the estimated effect of the presence of bubble that has been inflating up to

the last observation, and pBUBBLE gives the resulting probability of a crash, given that a bubble is

present. The same applies to ∆pLBUBBLE for bubbles that stopped growing in the last two to six

months. As a dependent variable we consider crashes of the different categories. For each model we

report the estimates (in %), the standard errors in parentheses and the relative size of ∆pBUBBLE

and ∆pLBUBBLE to pNO in brackets. A single (double) asterisk indicates significance at the 5% (1%)

level.
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the candidate window for a bubble at 60 months. To qualify as a bubble the t-ratio
of the αi1t-coefficient of a candidate window should exceed a threshold of 2.358. An
aftershock can happen up to 12 months after a previous crash. In this section we
briefly review the robustness checks that we conducted on these choices. The main
results are presented in Table 2.9. In Appendix 2.B we provide more details.

In the first robustness check we consider the three-factor model of Fama and
French (1993) as an alternative for the CAPM. This means that the expected return
of an industry becomes a linear function of the market return, the return on the
size hedge portfolio (SMB) and the value hedge portfolio (HML).12 We add these
portfolios to the regressions in Eqs. (2.1) and (2.3) and the construction of the
abnormal returns in Eq. (2.2).

Using the Fama and French (1993) model does not lead to large differences. While
it can be argued that the industry bubbles that we find under the CAPM approach
are related to size or value effects, a correction for them does not affect the number
of bubble months much. Table 2.9(a) shows that we find 9,312 bubble months us-
ing the Fama and French (1993) model, compared to 10,408 under the CAPM. In
panels (b) and (c) we see a slight increase in the number of crashes from 2069 to
2228 (category 0) and from 306 to 342 (category 4). As a consequence, the estimated
crash probabilities change only marginally. The effect of observing a bubble on crash
likelihood is still large. For category zero crashes it increases from 4.7% to 7.9% (an
inflating bubble) or 6.5% (a bubbled that stopped growing). In case of the CAPM we
found an increase from 4.2% to 7.7% or 5.6%. For category four crashes (panel c) we
also see large similarities. In Appendix 2.B.1 we show that also in case of the Fama
and French (1993)-model, the strength of a bubble positively affects the probability
of a crash. We conclude that our results are not substantially affected by using the
Fama and French (1993)-model.

As a second robustness check, we replicate the analysis with a shorter estimation
window of 60 months (instead of 120 months) and a maximum length for the can-
didate window for a bubble of 36 months (instead of 60 months).13 The minimum
length of a bubble remains 12 months. A shorter window may lead to estimates that
quicker adapt to changes in the economic environment. However, in Appendix 2.B.2
we show that shorter windows do not lead to improved estimation results.

12For information on how these factor are constructed please refer to French’s website (http://

mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data Library/f-f factors.html) and Fama

and French (1993).
13In this setting we ignore the first 60 observations in the data set, to keep it comparable with

the data set of the basic model.
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Table 2.9: Summary statistics of robustness checks

threshold aftershocks

basic FF short 1.98 no 6 months 18 months

(a) Bubbles

# bubble months 10,408 9,312 9,306 15,229 10,408 10,408 10,408

r̄ 22.8% 22.8% 26.3% 20.5% 22.8% 22.8% 22.8%

η̄ 13.8% 12.5% 12.6% 8.1% 13.8% 13.8% 13.8%

(b) Category 0 crashes

# crashes 2069 2228 2171 2069 2069 2069 2069

# first crashes 1116 1169 1199 1116 2069 1584 904

p 4.7∗∗ 5.1∗∗ 5.2∗∗ 4.7∗∗ 5.9∗∗ 5.3∗∗ 4.5∗∗

pNO 4.2∗∗ 4.7∗∗ 4.8∗∗ 4.1∗∗ 5.7∗∗ 5.0∗∗ 3.9∗∗

pBUBBLE 7.7∗∗ 7.9∗∗ 8.0∗∗ 6.7∗∗ 7.6∗∗ 7.7∗∗ 7.8∗∗

pLBUBBLE 5.6∗ 6.5∗ 6.6∗ 5.6∗∗ 6.5 5.4 5.7∗∗

# afterhocks 953 1059 972 953 0 485 1165

p 8.6∗∗ 8.9∗∗ 8.2∗∗ 8.6∗∗ - 9.3∗∗ 8.9∗∗

pNO 8.7∗∗ 8.9∗∗ 8.3∗∗ 8.8∗∗ - 9.5∗∗ 8.9∗∗

pBUBBLE 7.1 8.1 6.2 7.8 - 5.7∗ 6.8

pLBUBBLE 7.9 8.6 7.3 6.8 - 9.5 7.5

(c) Category 4 crashes

# crashes 306 342 326 306 306 306 306

# first crashes 118 139 134 118 306 204 91

p 0.5∗∗ 0.6∗∗ 0.6∗∗ 0.5∗∗ 0.9∗∗ 0.7∗∗ 0.5∗∗

pNO 0.4∗∗ 0.5∗∗ 0.5∗∗ 0.4∗∗ 0.8∗∗ 0.6∗∗ 0.3∗∗

pBUBBLE 1.2∗∗ 1.3∗∗ 1.2∗∗ 1.0∗∗ 1.3∗∗ 1.3∗∗ 1.2∗∗

pLBUBBLE 0.6 1.1 0.9 0.7 1.0 0.7 0.6

# afterhocks 188 203 192 188 0 102 215

p 1.7∗∗ 1.7∗∗ 1.6∗∗ 1.7∗∗ - 2.0∗∗ 1.4∗∗

pNO 1.7∗∗ 1.7∗∗ 1.7∗∗ 1.7∗∗ - 2.0∗∗ 1.4∗∗

pBUBBLE 2.1 0.8 0.6 1.9 - 1.4 2.0

pLBUBBLE 1.7 1.5 0.9∗ 1.5 - 1.8 1.6

This table presents summary statistics for the results of the different robustness checks. Each column

corresponds with a certain model setting. We report the basic model, the Fama and French (1993)

model for the fundamental values (FF), the CAPM model estimated over 60 months and a maximum

length of 36 months for a bubble (short), a bubble threshold of 1.98, no partition in first crashes

and aftershocks (no aftershocks), an aftershock window of 6 months and an aftershock window of

18 months. In panel (a) we report the number of bubble months, and the average return (r̄) and

average abnormal return (η̄) of these bubble months. In panel (b) we report the unconditional

crash probability (p), the crash probability conditional on the absence of a bubble pNO, the crash

probability conditional on the presence of a bubble inflating until the last observation pBUBBLE and

the crash probability conditional on the presence of a bubble that stopped growing in the last two

to six months pLBUBBLE, both for first crashes and aftershocks of category 0. In panel (c) we report

the values of the same parameters for category 4 crashes. A single (double) asterisk behind p and

pNO indicates significance at 5% (1%) level. A single (double) asterisk behind pBUBBLE and pLBUBBLE

indicates a significant difference from pNO at 5% (1%) level.
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Shorter windows for estimation and candidate windows have little influence on
the results. In column 3 of Table 2.9 we observe fewer bubble months, which could
be expected since we have used a stricter definition of a bubble. We find 102 crashes
extra in category zero and 20 extra in category four, which are mainly first crashes.
These differences lead to slightly higher parameter estimates. The probability of a
crash, if a bubble has been inflating is estimated at 8.0% (was 7.7% in the basic
model). If the bubble has stopped growing two to six months ago, the probability of
a crash in the next month has increased to 6.6%. Since we count fewer aftershocks,
aftershock probabilities decrease. For category four crashes we report a similar pat-
tern. We conclude that the estimation window and maximum bubble length are not
crucial for the conclusions drawn from the basic model.

In the third robustness check we lower the threshold for the t-ratio of the αi1t-
coefficient from 2.358 to 1.98. Consequently, it is easier for a candidate window
to qualify as a bubble. In column 4 of Table 2.9 we see that this leads to a large
increase in the number of bubble months, adding up to 15,229. As expected, the
average return and in particular the average abnormal return decrease. However, the
average abnormal return of 8.1% per annum is still considerable.

The effect of a bubble on the probability of a first crash in the next period has
diminished. Since bubbles have generally decreased in strength in this setting, this is
line with our earlier evidence on the strength of a bubble. However, the increases in
crash likelihood remain significant. For aftershocks we do not see a clear pattern in
the changes. Estimating the probability of a first crash as a function of the presence
of a bubble with the 2.358 threshold as well as the presence of a bubble with the 1.98
threshold, indicates that effect of the presence of a bubble steams mainly from the
stronger bubble. A significant effect for bubbles with t-stats on αi1t between 1.98
and 2.358 is rejected.14

In the fourth robustness check we investigate the sensitivity of our results with
regard to aftershocks. Throughout the analysis we distinguish between first crashes
and aftershocks, where aftershocks can happen up to 12 months after a preceding
crash. Given the differences that we observed between first crashes and aftershocks
and their relation with bubbles, we investigate the sensitivity to this period of 12
months. We consider three settings, in which we (1) do not distinguish between first
crashes and aftershocks, (2) impose a maximum of 6 months between the previous
crash and an aftershock and (3) a maximum of 18 months in between. We keep the
requirement that a sector should not be fully recovered.

Columns 5 to 7 in Table 2.9 indicate that the numbers of first crashes and af-
tershocks vary widely with the settings for aftershocks. The total number of 2069

14Results are available upon request.
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crashes in category zero is of course unaffected, but we see a considerable increase
in the number of aftershocks, moving from no aftershocks via a 6-month period, 12-
month period to a 18-month period in which an aftershock can happen. The effects
on the crash probabilities confirm our earlier conclusion that bubbles do not affect
the probability of aftershocks. The estimated probability of a crash after perceiving
a bubble remains stable between 7.6% and 7.8%. The probability of a crash if a
bubble has not been observed varies between 3.9% (if aftershocks can happen up
to 18 months after a previous crash) and 5.7% (no distinction between first crashes
and aftershocks). This pattern is present in the aftershock probabilities as well. The
probability of an aftershocks within 6 months is larger than an aftershock within
12 or 18 months. The patterns for category 4 crashes lead to similar results. We
conclude that the probability of a crash can be predicted both by the presence of
bubbles in the last 6 months and by crashes in the last 18 months. While both the
presence of bubbles and crashes increase the likelihood of a crash in the next period,
they do not reinforce each other. This indicates that most crashes are large enough
to burst the bubble.

From the results on these robustness checks, we conclude that our flexible ap-
proach leads to reliable outcomes. In all settings we see that observing a bubble
leads to an increase in the probability of a crash during the next period. While the
magnitude varies, the effect is always significant and large enough to be taken into
account. The effect is driven by bubbles that have a large t-ratio (exceeding 2.358)
and disappears for less strong bubbles. These checks cover the main assumptions
that we make.

2.7 Conclusion

Bubbles and crashes are among the most intriguing events in financial markets that
have puzzled both academics and practitioners for decades. Much of the research on
bubbles and crashes either aims at establishing conditions under which bubbles can
exist in theory, or focuses on a specific bubble with the subsequent, mostly dramatic
crash. In this chapter we have provided more general empirical evidence on the
presence of bubble and crash patterns in US industries. Moreover, we have shown
that the results based on industries carry over to the markets as a whole.

We have taken the viewpoint of an investor who tries to make a forecast on the
probability of a crash in next month’s return. He can use the series of prior returns
to detect a bubble, which he perceives as long period of outperformance. A crash
consists of one or more extraordinarily large negative returns. We distinguish several
crash categories, based on the size of the crash. We have found that 25% of the
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broadest crashes and up to 38% of the severest crashes are preceded by a bubble.
Knowing that a bubble inflated until the previous month significantly increases the
estimates of the likelihood of a crash. Moreover, the economic impact is pronounced,
as the probability of a crash of the broadest crash category almost doubles from
4.2% to 7.7%, conditional on the presence of a bubble. The likelihood of a more
extreme crash increases even more; for the most severe crash category the presence
of a bubble triples crash likelihood. The presence of a bubble that stopped growing
two to six months ago produces a significant increase to 5.6%. The strength of a
bubble increases the probability of a crash. We find no evidence that the length of
the bubble has an impact on crash likelihood.

We conclude from this research that investors who try to ride a bubble face
a severe risk of encountering a crash. The probability of such a crash is at least
twice as large as normally. Moreover, bubbles that are easier to detect because they
show stronger outperformance are more susceptible to crashes. We found widespread
evidence for bubbles and crashes, as we found them in many industries. More impor-
tantly, we observe a similar pattern in the market, though we lack statistical power
to formally test for significance. Given these similarities, we conclude that pooling
industry data helps studying infrequent events.

We have chosen to work with a flexible investor perspective, necessitating some
arbitrary choices, which may affects our findings. Therefore, we conduct extensive
robustness checks. Instead of using the CAPM to compute abnormal returns, we
replicate our analysis using the Fama and French (1993)-model. Further, we vary
the length of the estimation window, aftershock window and the maximum length of
the bubble. None of these changes has a substantial effect on our findings.
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2.A Crashes, booms and skewness

Other studies (e.g. Chen et al., 2001; Bates, 2000; Bakshi and Madan, 1999) have
used skewness as a measure for crash likelihood. In order to compare our approach to
the use of the skewness coefficient we introduce the concept of a boom. We consider
booms to be the exact opposite of crashes. The general idea of our comparison is that
a negative skewness coefficient should indicate that a crash is more likely than a boom
and a more negative skewness coefficient should coincide with more crashes. If the
skewness coefficient is not informative, we expect that its sign coincides in about 50%
of the cases with the difference between booms and crashes. Table 2.10 compares the
number of booms and crashes per industry to their skewness coefficients. For 25 out
of the 48 industries, that is only 52% of the cases, the skewness coefficient correctly
indicates whether crashes exceed booms or vice versa. Under the hypothesis that the
skewness coefficient is not informative, an outcome of at least 25 correct predictions
has a probability of 67%, based on a binomial distribution. We conduct a similar
analysis for the other categories. Only for the fourth category we reject the hypothesis
that skewness is uninformative (for 33 industries we find accordance in signs; under
the null hypothesis of skewness being uninformative the p-value equals 0.002).

We also analyze the relation between the number of booms versus crashes and
the skewness coefficient by the regression:

BMCi = a + b · SKEWi + ui, (2.5)

where BMCi is the difference between the number of booms and crashes for industry
i, and SKEWi is industry i’s skewness coefficient. The first 3 columns of Table 2.11
show the results. For category 0, all crashes and booms, we find that the skewness
coefficient has no explanatory power. The p-value of the skewness coefficient is 0.45
and the R2 is about 1%. Since the weight that an observation receives in the skewness
measure increases if it is more extreme, the explanatory power of skewness increases if
we consider more extreme crashes and booms. However, for the most severe category,
the R2 is still low at 38%. Moreover the most severe category considers only 15%
of the number of crashes that we think are important to investors, and we show in
Section 2.4 that such a crash happens on average once every 17 years.

We also examine whether a more negative skewness coefficient coincides with
more crashes:

CRi = a + b · SKEWi + ui, (2.6)

where CRi is the number of crashes divided by the number of observations. Ta-
ble 2.11, columns 4-6 present the results. We find that the skewness coefficient
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Table 2.10: Number of crashes and booms per category

crashes booms

category 0 1 2 3 4 0 1 2 3 4 skewness

Agric 41 27 16 12 7 40 23 20 15 8 0.02

Food 40 21 16 13 8 53 36 26 23 15 0.32∗

Soda† 41 23 14 9 6 47 30 18 16 11 0.31∗

Beer 31 18 14 10 7 56 39 24 15 6 -0.20

Smoke 42 28 21 15 7 63 33 26 17 7 -0.28

Toys 33 22 16 13 8 35 25 16 10 6 -0.54

Fun 44 20 9 5 3 46 22 14 10 7 0.30∗

Books 45 25 16 11 5 47 21 15 11 1 -0.18

Hshld 40 21 17 11 4 53 25 16 12 7 -0.36

Clths 51 31 22 16 10 46 24 15 11 5 -0.21∗

Health† 28 15 10 7 6 17 12 8 4 2 -0.60∗

MedEq 44 21 9 4 2 42 23 13 6 2 -0.05∗

Drugs 38 26 19 12 8 50 29 23 18 7 -0.22

Chems 51 31 21 16 7 41 23 16 11 6 0.06

Rubbr† 43 28 21 15 8 30 22 15 7 4 -0.28∗

Txtls 57 35 27 23 13 45 24 13 7 4 -0.24∗

BldMt 50 29 20 15 9 36 19 15 10 5 -0.33∗

Cnstr 47 27 21 15 6 38 23 12 11 6 0.02

Steel 58 29 24 16 6 41 28 18 15 7 0.44

FabPr† 27 20 15 10 8 18 8 6 3 1 -0.24∗

Mach 51 27 18 12 6 44 26 17 13 5 0.15

ElcEq 45 25 16 14 8 48 18 13 11 3 -0.05

Autos 44 24 17 12 8 41 20 16 12 6 0.07

Aero 51 21 14 7 4 47 27 19 12 5 -0.17∗

Guns† 29 13 6 4 4 26 9 7 4 2 -0.89∗

Gold† 36 18 12 7 6 35 26 13 8 5 0.32

Ships 43 21 16 13 8 42 26 17 11 7 0.04

Mines 41 19 16 9 6 53 29 17 13 8 0.38∗

Coal 39 26 19 11 6 48 25 22 20 14 0.51∗

Oil 42 23 15 7 5 49 27 20 15 7 0.12∗

Util 57 27 20 11 6 49 28 21 16 9 0.02

Telcm 44 24 15 7 4 49 30 19 16 10 0.69∗

PerSv† 41 24 18 13 7 39 18 14 10 4 -0.85∗

BusSv 39 15 8 7 3 41 25 20 15 8 0.34∗

Comps 54 28 17 12 7 48 27 18 15 7 -0.03∗

Chips 41 23 17 10 6 49 21 14 10 6 0.07∗

LabEq 43 27 17 13 8 44 17 11 6 4 0.20∗

Paper† 40 21 14 11 5 33 14 11 7 6 0.24

Boxes 49 30 22 16 9 43 28 16 13 5 0.05

Trans 43 20 10 7 4 42 24 17 15 8 0.37

Whshl 40 25 19 11 4 39 28 20 14 6 0.06

Rtail 56 28 26 21 10 50 26 16 12 3 -0.26∗

Meals 38 22 15 10 6 43 26 19 16 9 0.05∗

Banks 35 19 17 13 8 41 21 13 10 5 -0.40

Insur 45 21 14 12 9 46 21 18 13 5 -0.19

RlEst 48 29 18 10 4 43 25 17 12 9 0.11

Fin 45 22 13 10 5 44 27 21 20 5 -0.37∗

Other 39 23 14 6 2 41 22 16 13 5 0.24∗

Pooled 2069 1142 791 544 306 2061 1150 791 584 293 -0.01∗
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This table reports the number of crashes and the number of booms for the different categories for

each industry. The thresholds for the different categories are given by −1.65σit (Cat. 0), −2σit

(Cat. 1), −2.25σit (Cat. 2), −2.5σit (Cat. 3), −3σit (Cat. 4). For booms the categories are defined

by the positive equivalents of these thresholds. The last column presents the skewness coefficient as

reported in Table 2.2. An asterisk behind a skewness coefficient indicates that the number of booms

in category zero minus the number of crashes in category zero on the one hand and the skewness

coefficient on the other hand carry the same sign. We also report pooled results. A dagger after an

industry name indicates that less observations are available.

cannot really explain the number of crashes. The estimated coefficient is only signifi-
cant in the regression for the most severe crashes. Further, the R2’s are very low. We
estimate similar regressions for booms, where we use the number of booms divided by
the number of observations as dependent variable. The results, presented in columns
7-9, look very different. The skewness coefficient is statistically significantly related
to the number of booms for all boom categories, except category 0.

We conclude from the analyses that skewness is a reasonably good proxy for
the occurrence of booms but a limited proxy for crashes. Of course, it can be that
the relation between skewness and the number of booms and the number of crashes
is non-linear, implying that we should interpret the regression results with care.
However, this limitation does not apply to the sign-test result which also indicates
that skewness is not a good measure for crash likelihood.

2.B Robustness checks

In this section, we provide more information on the robustness checks discussed in
Section 2.6. We concentrate on the abnormal returns that are constructed based on

Table 2.11: Relation between the number of crashes and booms, and skewness

booms minus crashes crash proportion boom proportion

b p-val R2 b p-val R2 b p-val R2

cat. 0 2.93 0.45 0.012 -0.0003 0.93 0.000 0.0057 0.10 0.059

cat. 1 5.59 0.06 0.077 -0.0020 0.44 0.013 0.0068 0.02 0.110

cat. 2 4.50 0.07 0.072 -0.0026 0.29 0.024 0.0036 0.07 0.071

cat. 3 5.46 0.01 0.145 -0.0022 0.26 0.028 0.0059 0.00 0.169

cat. 4 7.09 0.00 0.381 -0.0037 0.01 0.138 0.0061 0.00 0.350

This table reports the estimated coefficient on skewness (b) in a standard OLS regression, together

with the p-value of the hypothesis b = 0 and the R2 of the regression. As dependent variable we

consider the number of booms minus the number of crashes (columns 1-3), the proportion of crashes

(columns 4-6) and the proportion of booms (columns 7-9). The dependent variables are constructed

from the numbers reported in Tables 2.2 and 2.10.
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the fundament model, and the logit regressions. Because the robustness check on
aftershocks does not entail a different fundamental model, we do not provide more
details on the aftershocks.

2.B.1 The Fama and French (1993)-model

The abnormal returns that result from the Fama and French (1993)-model are shown
in Table 2.12. For 17 sectors we report significant average abnormal returns, eleven
more than in the CAPM case. Also, the pooled returns series exhibits a significantly
positive average abnormal return. Moreover, the volatility estimates are also worse,
as we find that 39 sectors have a higher volatility than predicted by the Fama and
French (1993)-model (for the CAPM this applied to 29 industries). The skewness
and kurtosis estimates are for both models rather similar. Based on the Fama and
French-model we find in total 1169 first crashes, compared to only 1116 when our
estimation is based on the one-factor market model. We find also slightly more
aftershocks for the Fama and French-model than for the market model. Overall, our
statistics on the abnormal returns and crashes show no evidence at all that the Fama
and French-model is superior, and neither did the number of bubble months (see
Table 2.9).

We also replicate our analysis on bubble characteristics and crash likelihood.
Table 2.13 presents the results. As before, we find that the strength of a bubble
is significantly positively related to the probability that a crash of category 2 to 5
occurs. If we include both measures simultaneously, it turns out that STRENGTH2

accounts for most of the effect. In line with our previous results, there is no evidence
that the length of a bubble affects the likelihood of a crash. We see that the effect
of a bubble does not diminish if it stops growing.

This table report summary statistics of the abnormal returns constructed with the Fama and French

(1993)-model with a 120-month estimation window. It is similar to Table 2.2. Each abnormal return

ηit+1 is divided by the corresponding volatility estimate σit to correct for time-varying volatility.

We report the number of observations, mean, standard deviation, skewness, kurtosis, minimum and

maximum per industry and for the pooled set of adjusted abnormal returns. We also include the

number of crashes based on a threshold of −1.65σit, split up in first crashes and aftershocks. A

dagger after an industry name indicates that less observations are available. An asterisk denotes a

significant difference from zero in case of means and skewness coefficients, and a significant difference

from one in case of volatility, all at a 5% confidence level. Standard errors of the skewness coefficient

are calculated as
p

6/T (see Tabachnick and Fidell, 2001).
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Table 2.12: Summary statistics of abnormal returns per industry based on the

Fama and French (1993)-model

number of

industry # obs mean vol skew kurt min max crashes shocks

Agric 822 −0.03 1.04∗ 0.09 5.11 −4.98 4.90 24 17

Food 822 0.09∗ 1.13∗ 0.40∗ 4.97 −3.53 6.02 29 12

Soda† 702 0.02 1.12∗ 0.22∗ 4.11 −3.73 5.02 30 25

Beer 822 0.11∗ 1.10∗ −0.10 6.07 −5.43 6.00 21 12

Smoke 822 0.09∗ 1.14∗ −0.36∗ 4.22 −5.35 3.46 32 20

Toys 822 −0.06 1.03 −0.71∗ 11.41 −8.89 4.21 18 18

Fun 822 −0.02 1.03 0.27∗ 5.79 −5.94 5.53 19 31

Books 822 −0.02 1.02 −0.21∗ 4.10 −5.09 3.29 31 15

Hshld 822 0.09∗ 1.10∗ −1.16∗ 15.06 −10.69 4.54 23 15

Clths 822 −0.10∗ 1.12∗ −0.28∗ 5.45 −5.80 4.52 32 25

Health† 402 −0.04 1.14∗ −0.96∗ 8.44 −6.77 3.95 13 14

MedEq 822 0.04 1.02 −0.07 4.11 −4.69 3.97 20 20

Drugs 822 0.13∗ 1.10∗ −0.15 4.73 −5.23 4.20 24 20

Chems 822 −0.07 1.08∗ 0.07 5.12 −4.35 6.00 24 29

Rubbr† 774 −0.03 1.04∗ −0.28∗ 4.70 −5.26 4.44 22 28

Txtls 822 −0.10∗ 1.08∗ −0.05 4.48 −3.92 5.92 31 29

BldMt 822 −0.09∗ 1.09∗ −0.15 4.00 −5.02 3.71 24 35

Cnstr 822 −0.07∗ 1.04∗ 0.01 3.75 −3.51 4.22 26 30

Steel 822 −0.14∗ 1.10∗ 0.32∗ 4.94 −4.10 6.49 29 37

FabPr† 402 −0.27∗ 1.12∗ 0.04 4.52 −3.94 4.91 9 31

Mach 822 −0.08∗ 1.06∗ 0.15 3.87 −3.66 4.72 27 29

ElcEq 822 −0.06 1.04∗ −0.05 4.50 −4.81 4.79 25 29

Autos 822 −0.08∗ 1.07∗ 0.12 5.67 −4.54 6.06 27 24

Aero 822 −0.05 1.04∗ −0.29∗ 5.44 −6.73 3.48 24 29

Guns† 522 −0.05 1.09∗ −0.65∗ 8.96 −7.83 4.90 15 15

Gold† 522 0.00 1.15∗ 0.35∗ 4.71 −3.75 6.24 20 17

Ships 822 −0.06 1.11∗ 0.07 6.52 −6.74 5.43 24 21

Mines 822 −0.03 1.06∗ 0.40∗ 4.60 −3.72 5.19 28 20

Coal 822 0.01 1.12∗ 0.44∗ 6.67 −4.74 6.49 25 18

Oil 822 0.01 1.06∗ −0.02 3.81 −3.76 3.78 25 22

Util 822 −0.01 1.07∗ 0.02 4.08 −4.02 3.84 27 32

Telcm 822 0.06 1.12∗ 0.72∗ 7.92 −3.86 8.59 24 17

PerSv† 810 −0.01 1.04∗ −0.95∗ 11.62 −9.40 3.79 27 11

BusSv 822 0.09∗ 0.98 0.26∗ 5.28 −4.71 4.68 27 8

Comps 822 0.03 1.08∗ 0.14 3.73 −4.12 3.63 24 20

Chips 822 0.03 1.04∗ 0.03 3.46 −3.60 3.28 19 22

LabEq 822 −0.03 1.07∗ 0.04 4.63 −4.74 4.95 26 18

Paper† 786 −0.06 0.99 0.16 5.43 −4.36 5.66 27 14

Boxes 822 −0.03 1.10∗ 0.17∗ 7.11 −4.71 7.55 24 25

Trans 822 −0.12∗ 1.06∗ 0.17 4.38 −3.97 5.24 26 29

Whshl 822 −0.10∗ 1.05∗ 0.05 7.12 −5.87 6.01 21 22

Rtail 822 0.04 1.09∗ −0.22∗ 4.21 −4.26 4.38 25 29

Meals 822 0.04 1.06∗ −0.02 4.59 −5.31 4.26 29 12

Banks 822 0.02 1.00 0.07 4.06 −4.04 3.93 22 19

Insur 822 0.01 1.02 0.04 3.75 −3.51 3.23 26 20

RlEst 822 −0.15∗ 1.10∗ −0.05 7.82 −7.87 5.31 22 33

Fin 822 −0.03 1.07∗ −0.28∗ 6.63 −7.79 3.76 26 22

Other 822 0.03 1.03 0.28∗ 4.33 −3.41 5.01 26 19

Pooled 37800 −0.02∗ 1.07∗ −0.03∗ 5.64 −10.69 8.59 1169 1059
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2.B.2 Shorter windows

To investigate the sensitivity of our results to the horizons of the estimation window
and the candidate window, we replicate our analysis with an estimation window of
60 months and a candidate window of 36 months. Table 2.14 shows that a shorter
estimation window does not lead to improved estimation of the model parameters.
For 15 series we find a significant average abnormal return, and for only one series
do we not reject the hypothesis that the volatility is correctly predicted. It can be
that the presence of bubbles combined with the shorter estimation window, leads to
estimates that extrapolate bubble behavior when present. If this is the case, this
approach would characterize a noise trader, and the significant average abnormal
returns combined with the underestimation of the true volatility are evidence of the
mistakes he can make.

Shortening the maximum length of the bubble perception leads to a different re-
lation between bubble characteristics and crash likelihood. From Tables 2.5 and 2.13
we concluded that the strength of a bubble was positively related to the probability
of a crash, while length did not have predictive power. In Table 2.15, panel a, we
see that instead of STRENGTH1, LENGTH1 is now significant, though STRENGTH2 still
shows up significantly in panel b. In panel c, it is not clear which effect dominates. In
case that the maximum length is too short to capture a bubble accurately, censoring
may influence the calculation of the values for the characteristics.

This table report summary statistics of the abnormal returns constructed with the factor model in

Eq. (2.3) with a 60-month estimation window. It is similar to Table 2.2. Each abnormal return

ηit+1 is divided by the corresponding volatility estimate σit to correct for time-varying volatility.

We report the number of observations, mean, standard deviation, skewness, kurtosis, minimum and

maximum per industry and for the pooled set of adjusted abnormal returns. We also include the

number of crashes based on a threshold of −1.65σit, split up in first crashes and aftershocks. A

dagger after an industry name indicates that less observations are available. An asterisk denotes a

significant difference from zero in case of means and skewness coefficients, and a significant difference

from one in case of volatility, all at a 5% confidence level. Standard errors of the skewness coefficient

are calculated as
p

6/T (see Tabachnick and Fidell, 2001).
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Table 2.14: Summary statistics of abnormal returns per industry based on the

CAPM with a 60 month estimation window

number of

first after-

industry # obs mean vol skew kurt min max crashes shocks

Agric 822 −0.02 1.08∗ 0.18∗ 4.91 −4.98 5.46 23 20

Food 822 0.10∗ 1.14∗ 0.22∗ 4.47 −4.36 5.12 25 16

Soda† 702 0.02 1.11∗ 0.21∗ 4.05 −3.67 4.88 20 15

Beer 822 0.12∗ 1.13∗ −0.01 5.41 −5.20 6.17 19 16

Smoke 822 0.08∗ 1.14∗ −0.37∗ 4.32 −5.19 3.71 33 13

Toys 822 −0.04 1.14∗ −0.35∗ 8.34 −8.14 4.47 21 23

Fun 822 −0.02 1.11∗ −0.47∗ 10.67 −9.76 4.86 24 21

Books 822 −0.03 1.09∗ −0.18∗ 3.86 −4.79 3.47 28 30

Hshld 822 0.09∗ 1.17∗ −1.17∗ 14.68 −11.17 5.73 28 16

Clths 822 −0.08∗ 1.13∗ −0.14 4.21 −4.82 3.63 23 32

Health† 402 0.00 1.13∗ −0.60∗ 6.51 −6.05 4.10 16 14

MedEq 822 0.03 1.05∗ 0.04 3.76 −3.79 3.93 28 19

Drugs 822 0.13∗ 1.11∗ −0.03 4.66 −4.80 4.62 26 17

Chems 822 −0.06 1.11∗ 0.13 4.98 −4.99 4.99 29 25

Rubbr† 774 −0.02 1.10∗ −0.18∗ 4.88 −5.42 5.19 24 24

Txtls 822 −0.09∗ 1.12∗ −0.11 4.05 −4.63 5.08 26 27

BldMt 822 −0.09∗ 1.09∗ −0.12 3.63 −4.35 4.05 24 28

Cnstr 822 −0.05 1.07∗ 0.05 3.86 −4.21 3.75 25 22

Steel 822 −0.15∗ 1.11∗ 0.34∗ 4.94 −4.04 6.54 26 38

FabPr† 402 −0.26∗ 1.14∗ 0.14 4.24 −3.62 4.85 13 19

Mach 822 −0.08∗ 1.09∗ 0.19∗ 3.82 −3.88 3.96 28 20

ElcEq 822 −0.05 1.08∗ −0.02 4.30 −4.89 4.21 25 20

Autos 822 −0.09∗ 1.12∗ 0.11 5.54 −4.99 5.95 23 21

Aero 822 −0.06 1.09∗ −0.12 4.49 −5.47 3.99 26 30

Guns† 522 −0.06 1.13∗ −0.80∗ 8.72 −7.73 5.20 16 13

Gold† 522 0.00 1.11∗ 0.39∗ 4.96 −4.04 6.13 21 11

Ships 822 −0.06 1.14∗ 0.23∗ 6.70 −6.37 6.89 20 24

Mines 822 −0.04 1.10∗ 0.54∗ 4.95 −3.46 6.24 22 19

Coal 822 0.01 1.13∗ 0.52∗ 7.67 −5.32 7.81 25 16

Oil 822 0.01 1.09∗ 0.07 3.92 −3.68 4.20 27 18

Util 822 0.02 1.08∗ 0.05 4.29 −4.19 5.03 31 17

Telcm 822 0.05 1.13∗ 0.43∗ 7.03 −4.50 8.20 27 22

PerSv† 810 0.01 1.09∗ −0.59∗ 8.26 −8.62 3.67 25 12

BusSv 822 0.07 1.04 0.11 4.76 −4.43 5.05 28 11

Comps 822 0.00 1.13∗ 0.17 3.61 −3.63 3.56 30 22

Chips 822 0.03 1.09∗ 0.14 3.35 −3.13 4.22 23 21

LabEq 822 −0.03 1.07∗ 0.06 4.08 −4.18 4.46 30 17

Paper† 786 −0.05 1.04 0.09 4.35 −3.84 5.10 30 14

Boxes 822 −0.04 1.13∗ 0.22∗ 6.33 −4.16 7.40 25 25

Trans 822 −0.13∗ 1.12∗ 0.01 4.27 −5.04 4.58 27 30

Whshl 822 −0.09∗ 1.12∗ −0.02 5.81 −5.06 5.21 25 22

Rtail 822 0.06 1.10∗ −0.22∗ 3.82 −3.98 4.37 27 27

Meals 822 0.04 1.12∗ −0.18∗ 5.79 −6.76 4.41 24 15

Banks 822 0.01 1.09∗ −0.07 4.76 −4.84 4.36 19 21

Insur 822 0.02 1.07∗ 0.14 3.58 −3.39 3.48 32 20

RlEst 822 −0.14∗ 1.12∗ 0.07 6.08 −6.55 5.06 28 18

Fin 822 −0.03 1.10∗ −0.20∗ 6.93 −8.21 4.42 26 18

Other 822 0.03 1.09∗ 0.21∗ 4.18 −4.27 5.19 28 13

Pooled 37800 −0.02∗ 1.11∗ −0.02 5.42 −11.17 8.20 1199 972
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Alas, in the partners’ [of Long Term Capital Management] lingo,

“the correlations [among the trades] had gone to one.” Every bet

was losing simultaneously.

When Genius Failed – Roger Lowenstein

Chapter 3

Testing copulas to model

financial dependence∗

3.1 Introduction

Modelling dependence is of key importance to all economic fields in which uncer-
tainty plays a large role. It is a crucial element of decision making under uncertainty
and risk analysis. Consequently, an inappropriate model for dependence can lead to
suboptimal decisions and inaccurate assessments of risk exposures. Traditionally, cor-
relation is used to describe dependence between random variables, but recent studies
have ascertained the superiority of copulas to model dependence, as they offer much
more flexibility than the correlation approach. Clemen and Reilly (1999) discuss the
application of copulas in decision making. Frees and Valdez (1998) show the use of
copulas in actuarial risk analyses. Embrechts et al. (2002) advocate using copulas in
finance. An important reason to consider other copulas than the correlation-implied
Gaussian copula is the failure of the correlation approach to capture dependence
between extreme events, as shown by Longin and Solnik (2001), Bae et al. (2003)
and Hartmann et al. (2004). However, up to now no consensus has been reached
on which copula to use in specific applications or on how to test the accuracy of a
specific copula.

In this chapter we propose a new approach to evaluate copulas. Generally, the-
ory offers little guidance in choosing a copula, making the selection an empirical

∗This chapter is based on the article by Kole, Koedijk, and Verbeek (2005b).
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issue. Since a copula is equivalent to a distribution function, we consider traditional
tests designed for the fit of a distribution on a sample. We show how modifica-
tions of the Kolmogorov-Smirnov test and the Anderson-Darling test can be applied.
These goodness-of-fit tests are based on a direct comparison of the dependence im-
plied by the copula with the dependence observed in the data. If dependence over
the complete distribution is important, as in the case of investment decisions, the
Kolmogorov-Smirnov tests can be chosen because of their focus on the fit in the dis-
tribution’s center. If dependence of extreme values is of interest, as in the case of
risk management, the Anderson-Darling tests are preferable, because they pay more
attention to the tails. Using these direct tests of the fit of a copula has several ad-
vantages over alternative approaches proposed in the literature. First of all, they are
applicable to any copula, not only to the Student’s t and Gaussian copula. Second,
it can be used for copulas of any dimension, not only for bivariate copulas. Third,
they indicate whether a copula captures the observed dependence accurately, and not
only whether it can be rejected against another specific copula. Finally, if the tests
that we propose for selecting a copula are used, the decision is based on the complete
dependence pattern, contrary to selection procedures that consider only part of the
dependence pattern (i.e. dependence of extreme observations).

We apply the goodness-of-fit tests to select a copula for the risk management
of an asset portfolio consisting of stocks, bonds and real estate, which are among
the main investment opportunities available to investors. As investors are generally
averse to downside risk, it is important to capture the risk of joint downside move-
ments of asset prices, without failing to exploit the diversification possibilities that
assets offer. Therefore, we consider the Gaussian, the Student’s t and the Gumbel
copula to model the dependence. We approximate the returns on the different in-
vestment categories by indexes: the Standard & Poor’s 500 Composite stock index,
the JP Morgan US Government bond index and the NAREIT All index (real estate).
The Gaussian copula is the traditional candidate for modelling dependence. The
Student’s t copula is a natural second candidate, because it can capture dependence
in the tails without giving up flexibility to model dependence in the center. We in-
clude the Gumbel copula, because it is directly related to multivariate extensions of
extreme value theory, which has gained popularity in risk management over the last
decade (see e.g. Longin, 1996). Our tests provide clear evidence against the Gaussian
and Gumbel copulas, but do not reject the Student’s t copula. As a comparison, we
apply the approach of Poon et al. (2004), which is based on bivariate dependence in
the tails and show that it does not facilitate a decision. A detailed comparison of
the tail behavior present in the data with the tail behavior of the copulas shows the
importance of choosing the right copula for risk management. While the Gaussian
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copula leads to a serious underestimation of the risk of joint downside movements
and the Gumbel copula overestimates it, the Student’s t copula captures this risk
accurately. Moreover, these differences are significant.

Our study adds to the ongoing debate on modelling dependence in finance, par-
ticularly regarding asset returns. This debate concentrates not only on which copula
to use, but also on the methods used in selection. Different authors have proposed
different methods, based on either dependence in the tails1, likelihood ratio tests2,
correlations conditional on the size of returns3 or regime switching models4. How-
ever, contrary to our approach, none of these methods directly tests the fit of a
dependence model. Moreover, the recent methods based on dependence in the tails
can only handle bivariate dependence and take only part of the dependence pattern
into account. Likelihood ratio tests can only handle nested copulas, while the meth-
ods based on size-conditional correlations are sensitive to (corrections for) biases (see
Forbes and Rigobon, 2002; Corsetti et al., 2005). Finally, the evidence supplied by
the different methods on relatively similar data sets is mixed. We try to overcome
the drawbacks of these existing methods by proposing tests that relate directly to the
fit of a dependence model. We extend the work of Malevergne and Sornette (2003),
who only consider the Gaussian copula.

The remainder of this chapter is structured as follows. Section 2 discusses the
tests and their application to the Gaussian, the Student’s t and the Gumbel copulas.
In Section 3 we show how to use the tests to select a copula to model dependence in
a risk management application. We demonstrate the advantages of our approach by
comparing it with the test procedure in Poon et al. (2004). A detailed analysis of tail
behavior shows the importance of choosing the right copula. Section 4 concludes.

3.2 Goodness-of-fit tests for copulas

In this section we explain how the Kolmogorov-Smirnov and Anderson-Darling tests
can be implemented for copulas. We start with a short introduction on copulas.5

In the second subsection we present the tests. The third subsection discusses the
implementation.

1See Hartmann et al. (2004), Poon et al. (2004) and Longin and Solnik (2001).
2See Mashal et al. (2003) and Mashal and Zeevi (2002).
3See Ang and Chen (2002), Campbell et al. (2003), Campbell et al. (2002), Forbes and Rigobon

(2002) and Loretan and English (2000).
4See Ang and Bekaert (2002), Edwards and Susmel (2001) and Ramchand and Susmel (1998).
5A more rigorous treatment of copulas can be found in Joe (1997) and Nelsen (1999). For a

discussion applied to finance we refer to Cherubini et al. (2004) and Bouyé et al. (2000).
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3.2.1 Copulas

Dependence between random variables can be modelled by copulas. A copula returns
the joint probability of events as a function of the marginal probabilities of each
event. This makes copulas attractive, as the univariate marginal behavior of random
variables can be modelled separately from their dependence. For a random vector
X of size n with marginal cumulative density functions (cdf) Fi, the copula with cdf
C(·) gives the cumulative probability for the event x:

P (X ≤ x) = C(F1(x1), . . . , Fn(xn)). (3.1)

The applicability of copulas is wide, as Sklar (1959) proves that each multivariate
distribution with continuous marginals has a unique copula representation. Moreover,
any function C : [0, 1]n → [0, 1] satisfying some regularity restrictions implies a
copula.6

Tail dependence is an important property of copulas. It describes the behavior of
copulas when the value of the marginal cdf Fi reaches its bounds of zero (lower tail
dependence) or one (upper tail dependence) and is defined as the limiting probability
that a subset of the variables in X has extreme values, given that the complement
has extreme values.7 If the limiting probability equals zero, a copula exhibits tail
independence; if the probability exceeds zero, it exhibits tail dependence.

The traditional use of correlation to model dependence implies using the Gaussian
copula8 which has cdf:

CΦ
n (u; ΩΦ) = Φn(Φ−1(u1), . . . , Φ−1(un); ΩΦ), (3.2)

where u is a vector of marginal probabilities, Φn denotes the cdf for the n-variate
standard normal distribution with correlation matrix ΩΦ, and Φ−1 is the inverse of
the cdf for the univariate standard normal distribution. For imperfectly correlated
variables, the Gaussian copula implies tail independence (see Embrechts et al., 2002).

Closely related to the Gaussian copula is the Student’s t copula, with cdf:

CΨ
n (u; ΩΨ, νΨ) = Ψn(Ψ−1(u1; νΨ), . . . , Ψ−1(un; νΨ); ΩΨ, νΨ), (3.3)

where Ψn denotes the cdf of an n-variate Student’s t distribution with correlation
matrix ΩΨ and degrees of freedom parameter νΨ > 2, and Ψ−1 is the inverse of the

6See Definition 1 in Embrechts et al. (2002).
7Joe (1997) Sec. 2.1.10 gives a definition for the bivariate case, which is generalized by Schmidt

and Stadmüller (2003) to n > 2 dimensions.
8Correlation can always be used as a dependence measure. However, if correlation is used as a

model, i.e. a complete characterization, of dependence it implies the Gaussian copula
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cdf for the univariate Student’s t distribution with mean zero, dispersion parameter
equal to one and degrees of freedom νΨ. The Gaussian and Student’s t copula belong
to the class of elliptic copulas. A higher value for ν decreases the probability of tail
events. As the Student’s t copula converges to the Gaussian copula for ν → ∞, the
Student’s t copula assigns more probability to tail events than the Gaussian copula.
Moreover, the Student’s t copula exhibits tail dependence (even if correlation coef-
ficients equal zero). For large νΨ, differences between the Student’s t and Gaussian
copula are negligible.

The third copula we consider in this chapter is the Gumbel copula, which belongs
to the class of Archimedean copulas. The Gumbel copula is an extreme value copula.9

Its standard cdf is given by

CG
n (u; a) = exp


−

(
n∑

i=1

(− log ui)a

)1/a

, (3.4)

with a ≥ 1, where a = 1 implies independence. Because the standard Gumbel
copula implies the same dependence between all combinations of marginal variables
ui, we use the extension proposed by Bouyé (2002). He uses a recursive definition, in
which the dependence of the marginal probability ui+1 with the preceding marginal
probabilities u1, . . . , ui is characterized by a specific parameter ai:

CB
n (u1, . . . , un; a1, . . . , an−1) =




CG
2 (u1, u2; a1) if n = 2

CG
2 (CB

n−1(u1, . . . , un−1; a1, . . . , an−2), un; an−1) if n > 2,
(3.5)

with a1 ≥ a2 ≥ . . . ≥ an−1 ≥ 1. CG
2 () denotes the standard bivariate Gumbel copula

as defined in Eq. (3.4). The restrictions on the a’s impose a descending dependence
order: the dependence between u1 and u2, governed by a1 is at least as strong as the
dependence between u1 and u2 on the one hand and u3 on the other, governed by a2.
The ordering of the variables is therefore important. The Gumbel copula exhibits
upper tail dependence but lower tail independence, which can be reversed by using
the survival copula.10

9Joe (1997) provides a detailed, general discussion of extreme value theory in relation to copulas,

while Bouyé (2002) discusses it from a risk management perspective.
10The cumulative joint probability of events u is calculated by the survival copula: P (U ≤ u) =

C̄(ın−u), where C̄ denotes the joint survival function. For a random vector X with (multivariate)

density function F (x) (not necessarily a copula) the joint survival function is defined as F̄ (x) =

P (X ≥ x). Joe (1997) (p. 10, item 39) gives the general formula that relates F̄ to F (e.g. for the

two dimensional case F̄ (x1, x2) = 1 − F1(x1) − F2(x2) + F (x1, x2), where Fi denotes a marginal

distribution).
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3.2.2 Test statistics for the fit of copulas

The tests we propose belong to the large class of goodness-of-fit tests for distributions.
Suppose that we want to test whether a specific distribution for a random variable
accurately fits the corresponding observations. Under the hypothesis that this is the
case, the empirical cumulative distribution of the observations FE will converge to the
hypothesized cumulative distribution FH almost surely, as stated by the Glivenko-
Cantelli theorem (see Mittelhammer, 1996, p. 313). Therefore, we can use the
deviations of the empirical distribution from the hypothesized distribution to test the
fit. Let xt be a realization of the random variable X out of sample of T realizations.
We propose the following four statistics:

DKS = max
t
|FE(xt)− FH(xt)|; (3.6)

DKS =
∫

x

|FE(x)− FH(x)|dFH(x); (3.7)

DAD = max
t

|FE(xt)− FH(xt)|√
FH(xt)(1− FH(xt))

; (3.8)

DAD =
∫

x

|FE(x)− FH(x)|√
FH(x)(1− FH(x))

dFH(x). (3.9)

The first distance measure is commonly referred to as the Kolmogorov-Smirnov
distance, of which the second is an average. The third distance measure is known
as the Anderson-Darling distance after Anderson and Darling (1952), and the fourth
is again an average of it. The Kolmogorov-Smirnov distances are more sensitive to
deviations in the center of the distribution, whereas the Anderson-Darling distances
give more weight to deviations in the tails. Originally, the measures focus on the
largest deviation in a sample but to get more complete information on the goodness-
of-fit the average can be used as well. To reduce the influence of outliers in the
Anderson-Darling distances, we follow Malevergne and Sornette (2003) by replacing
the original (FE(xt) − FH(xt))2 term by |FE(xt) − FH(xt)|. The distributions of
the statistics under the null hypothesis are non-standard. Moreover, the parameters
for the hypothesized distribution are often estimated on the same data. Therefore,
simulations are necessary to evaluate the test statistics.

One way to test the fit of a specific copula is to derive the test statistics directly,
by transforming each observation to the corresponding marginal probabilities, based
on which the distance measures are then calculated. The hypothesized and empirical
copulas take the place of FH and FE, respectively. The empirical copula CE based
on a sample X gives the joint probability for a vector of marginal probabilities u as
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follows:

CE(u;X ) =
1
T

T∑
t

I(x1,t ≤ x
bu1·Tc
1 ) · . . . · I(xn,t ≤ xbun·Tc

n ), (3.10)

where I(·) is the indicator function, which equals 1 if the statement in parentheses
is true and zero otherwise, and x

buj ·Tc
j is the kth (ascending) order statistic, k being

the largest integer not exceeding uj · T .
Inspired by Malevergne and Sornette (2003) we propose a slightly different ap-

proach for elliptic copulas. As the cumulative distribution functions of elliptic dis-
tributions are generally not available in closed form, calculation of the hypothesized
probabilities will be computationally demanding if the number of dimensions in-
creases. We use a faster procedure and evaluate the fit of elliptic copulas in terms
of the fit of a univariate random variable. This approach i based on the property
that the density functions of elliptic distributions are constant on ellipsoids. Each
elliptically distributed random variable implies a univariate random variable with
a specific distribution that corresponds with the radii of the ellipsoids of constant
density (see Fang et al., 1990, for a formal treatment). Instead of considering the
observation itself we consider the squared radius of the ellipsoid of constant density
that it implies. We compare the empirical distribution of the squared radii with their
theoretical distribution, which are standard distributions in case of the Gaussian and
Student’s t copula.

For a random vector U = (U1, . . . , Un)′ with marginal uniform distributions on
[0, 1] and dependence given by the Gaussian copula with correlation matrix ΩΦ, we
construct the squared radius as:

ZΦ = Ũ ′(ΩΦ)−1Ũ , (3.11)

where Ũ = (Φ−1(U1), . . . , Φ−1(Un))′ and Φ−1(·) is the inverse of the standard normal
cdf. The random variable ZΦ has a χ2

n-distribution. This follows easily upon realizing
that Ũ has a normal distribution with correlation matrix ΩΦ, which makes ZΦ

the sum of n squared random variables that are independently, standard normally
distributed. So, starting with a sample having uniform marginal distributions, we
transform each observation u to z = ũ′Ω−1ũ and calculate its associated cumulative
probability by the cdf of the χ2

n-distribution.
For the Student’s t copula we use a similar transformation. Suppose that V =

(V1, . . . , Vn)′ is a random vector with each Vi being uniformly distributed on [0, 1]
and whose dependence is given by the Student’s t copula with correlation matrix ΩΨ

and degrees of freedom νΨ. Now we construct the squared radius as

ZΨ = Ṽ ′(ΩΨ)−1Ṽ /n, (3.12)
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where Ṽ = (Ψ−1(V1; νΨ), . . . , Ψ−1(Vn; νΨ))′ and Ψ−1(Vj ; νΨ) is the inverse function
of the standard Student’s t distribution with degrees of freedom parameter νΨ. The
variable ZΨ is distributed according to an F -distribution with degrees of freedom
parameters n and νΨ. Note that the variable Ṽ has a Student’s t distribution and
can therefore be written as W /

√
S/n, with W being an n-dimensional normally

distributed random variable with correlation matrix ΩΨ and S being a univariate
random variable with a χ2

νΨ -distribution. Consequently, we can write

ZΨ =
W ′(ΩΨ)−1W /n

S/νΨ
,

which makes ZΨ the ratio of two χ2-distributed variables divided by their respective
degrees of freedom. Therefore, it has a Snedecor’s Fn,νΨ distribution. So when we
test the Student’s t copula, we start with a sample having uniform marginal distri-
butions, transform each observation v to ṽ′(ΩΨ)−1ṽ/n and calculate the cumulative
probability with the cdf of the Fn,νΨ distribution.

3.2.3 The procedure

Suppose that we want to use a specific copula with cdf C and parameter vector θ to
model the dependence of a random variable X for which we have a sample available
of size T . The procedure that we propose to evaluate the fit of this copula consist of
four steps:

Estimation step We estimate the parameters θ. In general two approaches can
be used for estimating copula parameters. For our test procedure we advocate
the inference functions for margins method (IFM) (see Joe, 1997, Ch. 10). In
this two-step approach the parameters for the marginal models are estimated
first. In the second step, the copula parameters are estimated with the marginal
distribution parameters treated as given.11 It is also possible to apply maximum
likelihood to jointly estimate the parameters for the marginal models and the
copula. The IFM is less efficient than one-step maximum likelihood, but it is
computationally more attractive and allows larger flexibility in the estimation
techniques for the marginal models.

Evaluation step We evaluate the fit of the copula with the estimated parameters by
calculating the four distance measures of the previous subsection. If the copulas
belong to the elliptical family, we base the calculation on a transformation of

11The resulting estimators θ̂ belong to the general class of sequential estimators (see Newey,

1984).
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the uniform marginals. We use d̂KS, d̂KS, d̂AD and d̂AD to refer to the distance
measures for the original sample.

Simulation step To test whether the distance measures provide evidence against
the fit of the copula, we need to construct the distribution of the distance mea-
sures under the null hypothesis of accurate fit. Given the form of the distance
measures and the fact that the parameters of the copula are not known but esti-
mated, simulations have to be used. For each simulation, we generate a random
sample of size T from the copula with parameters θ̂.12 We apply the estimation
and evaluation step on this simulated sample (and find a new estimate for θ).
Each simulation yields new values for the distance measures. Combined, the
simulations result in a distribution of random variables corresponding to d̂KS,
d̂KS, d̂AD and d̂AD.

Test step Finally, we use the distribution that results from the simulation step to
judge the values d̂KS, d̂KS, d̂AD and d̂AD, by determining their p-value. p-values
below the commonly used thresholds of 10%, 5% or 1% lead to rejection of the
fit of the copula on that sample.

This procedure can be implemented straightforwardly. Note that the estimation
step within the simulation step should be applied to the marginal parameters as
well. If, for example, the empirical distributions are used to model the marginal
distributions of the original sample, they should be used for the simulated sample,
too.

3.3 A risk management application

In this section we consider three copulas to model the dependence between asset
returns. The asset returns we consider are the returns on a stock, a bond and a
real estate index. When investors determine their asset allocations, stocks, bonds
and real estate are among the main investment opportunities available to them. The
investor’s objective is to construct a portfolio that has an optimal risk-return trade-
off. The risk that a specific portfolio entails is directly related to the dependence
between the portfolio’s constituents. Consequently, the model used for dependence
is of key importance for the construction of an optimal asset allocation.

12Simulation techniques for copulas can be found in Bouyé et al. (2000). General simulation

techniques are discussed in Devroye (1986). Aas (2004) discusses a specific simulation technique for

Gumbel copulas.
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Overwhelming evidence has been established that investors are sensitive to down-
side risk, implying that investors pay specific attention to extreme negative returns.13

This makes it important to capture the risk entailed by the joint tail behavior of re-
turns, without failing to exploit the diversification possibilities represented by the
center of the return distribution. Therefore, we consider the Gaussian, the Stu-
dent’s t and the Gumbel copula to model dependence. The Gaussian copula, the
traditional method to model dependence, mostly reflects dependence in the center of
the distribution and implies tail independence. The Gumbel copula mostly reflects
tail dependence. Being an extreme value copula, it extends the successful univariate
extreme value theory techniques in risk management, as shown by Longin (1996) and
Jansen et al. (2000). In their study of dependence of extreme returns Longin and
Solnik (2001) and Poon et al. (2004) also use the Gumbel copula. The Student’s t

copula can capture both dependence in the center and the tails of the distribution,
and has been proposed as an alternative to the Gaussian copula by several authors in-
cluding Glasserman et al. (2002), Campbell et al. (2003), Mashal et al. (2003), Valdez
and Chernih (2003) and Meneguzzo and Vecchiato (2004). Though the evidence for
tail dependence is actually mixed, as Longin and Solnik (2001) and Hartmann et al.
(2004) find positive evidence for it in international asset returns while Poon et al.
(2004) reject it by applying a different test, its importance for downside risk averse
investors is large enough not to exclude it a priori.

Our tests can be used to determine which copula to apply. If the Gaussian copula
fits the data well, the center is the dominating factor and the correlation matrix
suffices to describe dependence. If the Student’s t copula fits the data well and the
Gaussian copula does not, the first captures dependence in the tails accurately while
the latter fails to do so. The Student’s t copula converges to the Gaussian copula, if
the degrees of freedom parameter increases. Consequently, a good fit of the Gaussian
copula will necessarily imply a good fit of the Student’s t copula for a sufficiently
high value for the degrees of freedom parameter. In that case the Gaussian copula
should be preferred, as it is more parsimonious. Finally, if the Gumbel copula fits
the data well, dependence in the tails is the dominating factor.

In the next subsection we introduce the data. We briefly discuss how the marginal
distributions for each return can be modelled. In the second subsection we test the fit
of the Gaussian, the Student’s t and the Gumbel copulas. We compare the outcome
of the selection with the outcome of the method proposed by Poon et al. (2004). In

13See Kahneman and Tversky (1979) and Tversky and Kahneman (1991) for a general discussion.

Benartzi and Thaler (1995) and Berkelaar et al. (2004) discuss the implications of downside risk

aversion from a finance perspective.
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Table 3.1: Summary statistics and tail indices.

(a) Summary statistics

stocks bonds real estate

mean 0.012 0.022 0.065

volatility 1.26 0.34 0.81

skewness 0.18 −0.34 −0.33

kurtosis 4.60 3.83 7.34

minimum −5.83 −1.38 −5.19

maximum 5.73 1.08 4.68

(b) Tail indices

αl 5.31 4.62 2.60

αr 4.44 4.96 4.23

αl = αr 4.51 5.89 3.27

Panel (a) reports summary statistics for the three index return series (in %) in our sample: S&P

500 Composite Index (stocks), JP Morgan Government Bond Index (bonds) and NAREIT All Index

(real estate). The series consist of 1499 returns from January 1, 1999 to December 17, 2004. Panel

(b) reports estimates for the left and the right tail indices (αl and αr respectively) and the estimates

for the tail indices under the restriction that the left and right tail indices are equal (αl = αr). The

tail indices are estimated by Huisman et al. (2001)’s modified Hill-estimator, with the maximum

number of observations used (κ) equal to 149.

the last subsection we analyze the dependence in the tails in more detail and discuss
its implications for risk management.

3.3.1 Data and marginal models

We use indexes to proxy for the returns on stocks, bonds and real estate: Standard
& Poor’s 500 Composite Index (stocks), JP Morgan’s US Government Bond Index
(bonds) and the NAREIT All Index (real estate). Because it is important to pay
attention to dependence in the tails of the distribution, a reasonable number of
tail observations should be included. Therefore, we calculate daily total returns for
all indexes. We collect data from DataStream over the period January 1, 1999 to
December 17, 2004. Excluding non-trading days the sample consist of 1499 returns.
Panel (a) in Table 3.1 presents summary statistics on the returns in the sample.
Our data exhibit the well-known stylized facts: asymmetry as indicated by non-zero
skewness and fat tails as indicated by excess kurtosis.

To model the marginal distributions, we use the semi-parametric method of
Dańıelsson and de Vries (2000). This method uses the empirical distribution for
the center of the distribution and rely on univariate extreme value theory to model
the tails. It enables us to combine the good approximation to the center of the ac-
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tual distribution offered by the empirical distribution, and the statistical rigor from
extreme value theory to model the tails of the distribution. Central in univariate
extreme value theory is the tail index α, which characterizes the limiting behavior of
a density. A distribution is fat tailed if the hypothesis 1/α = 0 is rejected in favor
of the alternative 1/α > 0. In that case, the tail of the distribution can be modelled
by the Pareto distribution. Tail index estimation is commonly based on the Hill-
estimator (Hill, 1975). We use the modified Hill-estimator developed by Huisman
et al. (2001) because of its unbiasedness.14

Table 3.1(b) reports estimates for the left tail index (αl) and for the right tail
index (αr), and estimates for the tail indices under the assumption that the left and
right tail indexes are equal. The hypothesis 1/α = 0 is rejected in all cases. The
hypothesis of equal left and right tails cannot be rejected for stocks and bonds. For
real estate, this hypothesis is marginally rejected with a p-value of 0.088. We model
the tails separately, the left (right) tail applying to cumulative probabilities below
0.01 (above 0.99).

3.3.2 Selecting a copula

We use the procedure outlined in Section 3.2.3 to select from the Gaussian, Student’s t

and Gumbel copulas. The copula parameters are estimated by IFM method of Joe
(1997), with the marginal distributions based on the semi-parametric method of
Dańıelsson and de Vries (2000) and maximum likelihood estimation in the second
step. We calculate the distance measures and evaluate them by constructing their
distributions under the null hypothesis of an accurate fit by simulating 10,000 samples
based on the parameters that resulted from the estimation step.

The outcomes of this analysis are reported in Table 3.2. The parameter estimates
in panel (a) for the Gaussian copula reveal that the correlations are negative though
close to zero for stocks and bonds, and bonds and real estate, and moderate and
positive for stocks and real estate. For an investor these estimates offer an attractive
perspective, as they indicate large diversification possibilities. However, this conclu-
sion is premature, since the test statistics in panel (d) indicate that the Gaussian
copula does not capture the actual dependence well. For 3 out of 4 statistics, p-values
are below 5%, rejecting the hypothesis of an accurate fit.

The Student’s t copula performs better as the p-values for the distance measures
reported in Table 3.2(d) exceed the 5% critical values by far. Its estimates for the

14Other methods for tail index estimation can be found in Dańıelsson et al. (2001) and Drees

and Kaufmann (1998). Brooks et al. (2005) conclude that the modified Hill-estimator by Huisman

et al. (2001) outperforms other methods for tail index estimation when applied in Value-at-Risk

calculations.
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Table 3.2: Estimation and test results

(a) Gaussian copula (b) Student’s t copula (c) Gumbel copula

ρs,b −0.200 (0.024) ρs,b −0.195 (0.026) as,r 1.42 (0.028)

ρs,r 0.471 (0.018) ρs,r 0.471 (0.020) a(s,r),b 1.000 (0.038)∗

ρb,r −0.073 (0.026) ρb,r −0.074 (0.027)

ν 12.1 (2.76)

log L 218.44 log L 230.47 log L 183.55

(d) Test results

Gaussian Student’s t Gumbel

d̂KS 0.026 [0.013] 0.0095 [0.98] 0.035 [< 0.5·10−4]

d̂KS 0.012 [0.0006] 0.0024 [0.9980] 0.0082 [0.0003]

d̂AD 0.058 [0.34] 0.044 [0.69] 0.28 [0.33]

d̂AD 0.030 [0.00073] 0.0065 [0.9993] 0.026 [0.0016]

Estimation and test results for the Gaussian, Student’s t and Gumbel copula. Panels (a) to (c)

report the parameter estimates and log likelihood values. The copulas are estimated on daily

returns from the S&P 500 Composite Index, the JP Morgan Government Index and NAREIT All

Index from January 1, 1999 to December 17, 2004 using the IFM method (Joe, 1997). The marginal

distributions are constructed by the semi-parametric method of Dańıelsson and de Vries (2000), with

cut-off probabilities 0.01 and 0.99 for the left and right tail respectively, and tail indices estimated

by the modified Hill-estimator of Huisman et al. (2001) (see Table 3.1). For both the Gaussian and

the Student’s t copula we report the correlation coefficients for stocks and bonds (ρs,b), stocks and

real estate (ρs,r), and bonds and real estate (ρb,r). For the Student’s t copula we include the degrees

of freedom parameter ν. The parameters for the Gumbel copula refer to Bouyé (2002)’s extension of

the standard Gumbel copula, applied to the survival copula. as,r refers to the dependence between

stocks and real estate; a(s,r),b to the dependence between stocks and real estate on the one hand, and

bonds on the other. Standard errors are reported in parentheses. In the estimation a(s,r),b = 1+x2 is

used; the standard error marked with an asterisk corresponds with x. Panel(d) reports the distance

measures resulting from the tests. The values for the distance measures result from the evaluation

step, applying the transformation in Eq. (3.11) for the Gaussian copula and in Eq. (3.12) for the

Student’s t copula. The p-values, based on 10,000 simulations as described in the simulation step,

are reported in brackets.
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correlation coefficients in panel (b) are largely equal to the estimated correlation
coefficients for the Gaussian copula, but the degrees of freedom parameter is relatively
low. This indicates that extreme events have a stronger tendency to occur jointly
than captured by the Gaussian copula. Consequently, stocks, bonds and real estate
still offer ample diversification opportunities, but dependence in the tails hampers
the diversification of downside risk. This effect will be stronger for investors with a
strong aversion to downside risk.

The results for the Gumbel copula show that basing a dependence model on tail
dependence does not lead to good results. We use Bouyé (2002)’s extension of the
standard Gumbel copula, which makes the ordering of the variables important. By
definition, the dependence between the first two random variables is stronger than
the dependence between the first two and the third random variables, i.e. a1,2 ≤
a(1,2),3 ≤ 1.

To determine that order, we estimate a bivariate copula for the three possible
combinations. We put the two variables with the highest a estimate first (being
stocks and real estate) and the other variable last (bonds).15 Since we focus on
downside risk, we use the survival copula to allow for lower tail dependence (see
footnote 10 on page 55). The estimate for as,r shows dependence and lower tail
dependence between stocks and real estate, but the a(s,r),b estimate being equal to
one indicates independence of bond returns from the returns on stocks and real
estate. Three out of four tests (including the average Kolomogorov-Smirnov and
average Anderson-Darling statistic) provide evidence against the Gumbel copula.

We conclude that the followed procedure provides a clear positive advise for se-
lecting the Student’s t copula. None of the four distance measures indicates rejection,
while both for the Gaussian and the Gumbel copula three out of four distance mea-
sures lead to a negative advice. Both the parameter estimates and the test results
indicate that dependence in the tails is not accurately captured by the Gaussian cop-
ula. However, the Gumbel copula fails to capture the dependence in the center. The
likelihood ratio test proposed by Mashal et al. (2003) and Mashal and Zeevi (2002)
confirms the preference for the Student’s t copula over the Gaussian copula, but the
outcome of their test alone does not indicate that the Student’s t copula fits the data

15To stress the ordering, we deviate from the notation in section 2, and attach it as a subscript to

a. So, a(s,r),b is the coefficient for the dependence between stocks and real estate on the one hand

and bonds on the other hand.
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well.16 A selection based on AIC or BIC also leads to a preference of the Student’s t

copula, but again, this does not imply by itself a good fit.17

3.3.3 Using tail dependence to select a copula

In the literature, alternative procedures have been proposed to select copulas. Be-
cause of the problems with the correction for biases in the size-conditional correlation
approach pointed out by Corsetti et al. (2005), selection based on tail dependence
seems the most promising. If tail dependence is found, all copulas exhibiting tail
independence can be eliminated, and vice versa. In a two-dimensional setting this
approach is appealing, but for realistic problems with more than tweo dimensions,
basing a selection on tail dependence becomes problematic, since different forms of
tail dependence can be defined (see Schmidt and Stadmüller, 2003). One approach
would be to base the decision on pairwise comparisons. Another drawback is that
only choices between a copula with and a copula without tail dependence can be
made.

To compare the outcome of a selection based on tail dependence with our results,
we apply the method proposed by Poon et al. (2004). In a bivariate setting, measures
for tail dependence are derived from the limiting behavior of one random variable,
conditional on the other being more and more extreme. Coles et al. (1999) construct
two tail dependence parameters, one describing the behavior of two asymptotically
dependent random variables, and the other for two asymptotically independent ran-
dom variables. Both dependence parameters can be directly estimated and used to
test for dependence or independence, but Ledford and Tawn (1996) show that tests
based on the parameter estimate that describes the behavior of asymptotically de-
pendent random variables are biased towards rejecting independence, which is why
Poon et al. (2004) use the second measure.

16Because the Student’s t copula converges to the normal copula for ν → ∞, a likelihood ratio

test for the restriction that the degrees of freedom are high (say ν = 10, 000) can be used to test the

Gaussian copula versus the Student’s t copula. We estimate a log likelihood value of 218.47 for a

Student’s t copula with ν = 10, 000 degrees of freedom, which results in an adjusted likelihood ratio

statistic of −2 · (218.47− 230.47)/2 = 12. The original statistic is halved to take the estimation of

the parameters of the marginal models into account when comparing with the usual critical value.

The p-value of 0.00053 leads to rejection of the restriction and hence the Gaussian copula.
17Using the value for the log likelihood function in Table 3.2, we find for the AIC values of 430.88

(Gaussian), 452.94 (Student’s t) and 363.10 (Gumbel); and for BIC of 196.50 (Gaussian), 201.22

(Student’s t) and 168.92 (Gumbel).
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Poon et al. (2004) define the tail dependence measure χ̄, describing the behavior
of asymptotically independent random variables X1 and X2 as:

χ̄ = lim
s→∞

2 log Pr(S2 > s)
log Pr(S1 > s, S2 > s)

− 1, (3.13)

with Si = −1/ log Fi(Xi), Fi being the marginal cdf for Xi. By construction, −1 ≤
χ̄ ≤ 1, while χ̄ = 1 indicates that the two variables are asymptotically dependent.
Rejection of the hypothesis χ̄ = 1 leads to copulas exhibiting tail independence, and
failure to reject it leads to copulas exhibiting tail dependence. Poon et al. construct
their estimate for χ̄ based on the estimated (right) tail index α for the variable
Smin = min(S1, S2) by χ̄ = 2/α− 1.18

One way to extend their approach to a setting with more than two dimensions,
is to apply it to each possible bivariate combination of the random variables. This
results in three analyses. For consistency we construct the marginal distributions
in the same way as for the estimation of the copula parameters. We measure tail
dependence both for the left tails and for the right tails of the distribution. The
results in Table 3.3 are mixed, however: for three combinations of stock, bond and
real estate returns, tail dependence is clearly rejected, for two combinations, the tests
clearly fail to reject, and for one combination (right tail-independence for bond and
real estate returns) the hypothesis is rejected at the 5% level but not at the 2.5%
level. Based on these results, we cannot decide which copula to use.

The tests that we propose directly consider the fit of the copulas on the observed
data, instead of being based on pairwise analyses. Moreover, they yielded a clear
preference for the Student’s t copula. As a trivariate Student’s t copula implies
bivariate Student’s t copulas for each combination of two out of the three variables,
the results of Poon et al.’s approach seem inconsistent with ours. However, as their
approach considers variables two by two, it is less efficient, which can influence the
outcomes, in particular for dependence models. Furthermore, Coles et al. (1999)
remark that the estimation of χ̄ can also be subject to biases. To get more insight in
the actual tail behavior we investigate the tails in more detail in the next subsection.

3.3.4 Tail behavior

Figure 3.1 presents the tail behavior of the return series themselves and the tail
behavior that the Gaussian, Student’s t and Gumbel copulas imply given the pa-
rameter estimates. As a starting point we take returns with a marginal cumulative
probability of 0.10 and calculate the joint probability of returns below these values.

18This approach is based on Ledford and Tawn (1996, 1998).
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Table 3.3: Estimates for the asymptotic independence parameter χ̄

stocks and stocks and bonds and

bonds real estate real estate

χ̄l 0.0049 (0.19) 0.69 (0.32) 0.36 (0.26)

[< 10−3] [0.17] [0.007]

χ̄r 0.019 (0.20) 0.619 (0.31) 0.48 (0.29)

[< 10−3] [0.11] [0.035]

We report the estimated asymptotic independence parameters for both the left tails and the right

tails of the different combinations of the returns on stock, bond and real estate indexes. The

estimates are based on the tail index estimate for the right tail resulting from Huisman et al.

(2001)’s modified Hill-estimator, which is applied to the series that results from taking the minimum

of each couple of transformed observations. The observations are the returns on the S&P 500

Composite Index, the JP Morgan Government Index and NAREIT All Index from January 1,

1999 to December 17, 2004. All observations xi are transformed to −1/ log Fi(xi) for the left tail-

independence parameter and −1/ log (1− Fi(xi)) for the right tail-independence parameter. The

marginal distributions are constructed by the semi-parametric method by Dańıelsson and de Vries

(2000) (see Table 3.1). Standard errors are reported in parentheses. In brackets the p-values for the

hypothesis χ̄ = 1 are reported.
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This figure presents the expected waiting time (in years) for the joint occurrence of returns below

thresholds. The expected waiting time is calculated as the inverse of the joint probability. The basic

thresholds are selected as those returns with a marginal cumulative probability of 0.10, which gives

-1.54% for stocks, -0.40% for bonds and -0.81% for real estate. For each of the three categories, the

corresponding subfigure shows the expected waiting time if the corresponding threshold is reduced,

while the others remain at their basic level. We plot waiting times for the Gaussian (dotted),

Student’s t (solid), Gumbel (long dashed) and empirical (dashed, piecewise linear) copulas. The

thick lines show the point estimates, the thin lines show the 95% confidence intervals. The parameter

estimates are reported in Tables 3.1 and 3.2. The confidence intervals are based on 200 parameters

drawings based on the estimated Hessian matrix.

By calculating the joint probability after reducing one of the returns we show the
influence of the copula on the probability of more and more extreme events. We
also graph 95%-confidence intervals for the calculated probabilities, based on the
estimated variance of the parameter estimates, to show whether the copulas entail
significantly different probabilities.

The choice between the copulas has a large impact on the joint probabilities.
Under the assumption of independence, the joint probability of three returns below
the threshold returns that have a marginal cumulative probability of 0.10 simply

Figure 3.1: Expected waiting time of extreme events
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equals 0.103 = 0.001 or one day per 48 months. Using the Gaussian copula, this
probability becomes 0.0015 (one day per 30 months), for the Student’s t copula it
increases to 0.0024 (one day per 20 months), while it equals 0.0042 (one day per 11
months) for the Gumbel copula. If the events get more extreme (i.e. the returns are
reduced), the probabilities implied by the Gaussian copula decrease much faster than
those implied by the Student’s t or Gumbel copula, and consequently, the average
waiting periods implied by the Gaussian copula increase much faster.

A second conclusion from these graphs, is that the differences between the dif-
ferent probabilities are significant, as indicated by the non-overlapping confidence
intervals. Because the probabilities implied by the empirical copula fall largely in
the confidence interval for the Student’s t probabilities, this shows once again that
the Gaussian and Gumbel copulas differ significantly from the empirical dependence
patterns, while the Student’s t copula does not, exactly what our tests indicated.
The Student’s t copula provides an accurate estimate of the risk of joint downside
movements. On the contrary, the Gaussian copula significantly underestimates this
risk, while the Gumbel copula overestimates it.

This analysis can be linked directly to stress tests for risk management. In a
stress test, a risk manager analyzes a portfolio of assets for an extreme event taking
place (see Longin, 2000; Kupiec, 1998). Berkowitz (2000) argues that the probability
for stress tests should be included in such an analysis to retain consistency with other
elements of the risk management system. A stress test for a portfolio for which the
prices of stocks, bonds and real estate are the risk factors would hence consist of
specifying extreme events, i.e. returns below a threshold, calculating the probability
of the event and analyzing the impact on the portfolio. Our analysis shows that the
weight given to a stress test is largely influenced by the chosen copula, as the stress
test has a considerably different probability of occurrence depending on which copula
is used.

3.4 Conclusions

In this chapter we have considered copula selection. Because accurately modelling
dependence is crucial to many fields in finance, a dependence model should be selected
prudently. Both recent theoretical and empirical evidence have cast doubt on the
accuracy of the Gaussian copula that is implied by using correlations. We discuss
how traditional tests for distributional assumptions, being the Kolmogorov-Smirnov
and Anderson-Darling tests, can be implemented to determine the accuracy of the
Gaussian and alternative copulas, such as the Student’s t and Gumbel copula. These
tests are preferable to existing tests in the literature, as they directly compare the
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fit of the copula on observed dependence, while the existing tests only use indirect
comparisons. Moreover, they can be applied more generally, while several existing
tests can only be used in bivariate cases or for elliptical copulas. Finally, while the
choice of test leaves some flexibility – the Kolmogorov-Smirnov-based tests are more
sensitive to fit in the center and the Anderson-Darling-based tests more to fit in the
tails – the complete dependence pattern is taken into account, contrary to approaches
that focus exclusively on dependence of extreme returns.

We apply the tests to choose between the Gaussian, Student’s t and Gumbel
copula to model the dependence between three broad indexes for stocks, bonds and
real estate. Since investors are typically averse to downside risk, the dependence
model that they use should not only capture dependence in the center, but also the
dependence in the tails, to accurately incorporate the risk of joint downside move-
ments. The Gaussian copula, which focuses on dependence in the center and exhibits
tail independence, and the Gumbel copula, which focuses mostly on dependence in
the tails, are clearly rejected, while the Student’s t copula, which can capture both
central and tail dependence, is not. In contrast, we show that the selection proce-
dure proposed by Poon et al. (2004) does not lead to unambiguous results. As this
procedure is based on bivariate tail dependence, this comparison demonstrates the
disadvantages of using a procedure based on an analysis of pairwise dependence. In
a detailed inspection of the tails we find that the Student’s t copula captures the
empirical tail behavior accurately, while the Gaussian copula underestimates the risk
of joint downward movements and the Gumbel copula overestimates it. While this
result has a direct impact on stress tests in a risk management system, it can also
influence investor’s optimal allocation, in particular when downside risk aversion is
taken into account.

In this chapter we have taken an unconditional approach. While it can be argued
that conditional aspects should be taken into account (e.g. ARCH-effects), it is
debated whether models for extreme returns benefit from a conditional approach
(see also the discussion in Dańıelsson and de Vries, 2000). In particular for stress
tests, a conditional approach may be undesirable.







At the heart of the concept [systemic risk] is the notion of

“contagion”, a particular strong propagation of failures from one

institution, market or system to another.

Systemic Risk: a Survey – Olivier de Bandt &

Philipp Hartmann

Chapter 4

Portfolio implication of

systemic crises∗

4.1 Introduction

In this chapter we focus on the consequences of crises and crashes on asset alloca-
tion. De Bandt and Hartmann (2000) and Dow (2000) provide excellent surveys
on the characteristics and causes of systemic crises for the different financial mar-
kets, including banking, currency, credit and equity markets. We concentrate on the
consequences of systemic crises for investors in international equity markets. Inter-
national investors suffer from the deterioration of the risk and return characteristics,
as a systemic crisis exhibits a sharp drop in returns, an upswing in volatilities and
a rise of the correlations between financial markets on a global scale. Evidence of
this behavior has been based on the October 1987 stock market crash, and the crises
that originated from the emerging markets in the 1990s (e.g. the Mexican crisis of
1994, the Asian crisis of 1997 and the Russian crisis of 1998).1 Due to their irregular

∗This chapter is forthcoming as Kole, Koedijk, and Verbeek (2006) in the Journal of Banking &

Finance.
1For research directly aimed at the October 1987 crash we refer to Roll (1988a, 1989), Bertero and

Mayer (1990) and King and Wadhwani (1990). Calvo and Reinhart (1996) discusses the Mexican

crisis, Kaminsky and Schmukler (1999) and Baig and Goldfajn (1999) investigate the Asian crisis,

while Kaminsky and Reinhart (2002) cover the Asian and Russian crises. A more general overview

is given in De Bandt and Hartmann (2000).
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and rare occurrence, standard models that investors use to support their asset allo-
cation decisions typically fail to account for systemic crises, resulting in suboptimal
international asset allocations.

The implications of systemic crises for equity portfolios have been studied by Das
and Uppal (2004), who conclude that they are limited. However, their approach
assumes that a systemic crises is a short-lived event that is hardly persistent. On the
contrary, recent crises and their aftermaths have lasted several months, indicating
persistence. If the risk-return trade-off deteriorates for a longer period, the impact
of systemic crises for investors will be more severe. In order to include possible
persistence, we propose to investigate this issue by means of a regime switching model
in the style of Ang and Bekaert (2002), which we combine with optimal portfolio
construction as set out by Merton (1969, 1971). This approach allows us to model
the behavior of asset returns on a regime by regime basis, making it both simple and
flexible. Formulating and solving the asset allocation problem in continuous time
ensures analytical tractability.

We distinguish between two strategies that a utility-maximizing investor can
adopt to solve his asset allocation problem: a crisis conscious and a crisis igno-
rant strategy. The crisis conscious strategy includes a systemic crisis as a distinct
regime in which all markets encounter a shock, while the crisis ignorant strategy
does not. For both strategies, we construct optimal portfolios. By comparing the
portfolios we assess the implications and importance of a systemic crisis. For a US-
based global investor, who can invest in stock markets in the US, Europe, Japan,
Hong Kong, Thailand, Korea and Brazil, and a riskless asset, we find that the cri-
sis conscious strategy leads to a reduction of the investments in risky assets and a
shift to countries less prone to a crisis. A small probability of a crisis (of say 5%)
already causes these adjustments, and they quickly become more pronounced if the
probability increases. Ignoring a crisis is costly, as the investor requires a certainty
equivalent return of 1.13% per year as a compensation if he has no information on
the ex-ante probability of a crisis. If the investor knows with almost certainty that a
crisis occurs, this compensation can easily exceed 3% per month.

We make several contributions to the literature investigating the influence of
extreme returns and regime switches on asset allocation. We extend the analysis of
Das and Uppal (2004) in three important aspects. First, our model is better able to
capture the persistence of a crisis, because we include a systemic crisis as a distinct
regime in a regime-switching model, while they incorporate it by adding a perfectly
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correlated jump to a geometric Brownian motion.2 Second, we analyze the impact
of systemic crises in a dynamic setting, which can adapt to changes in the behavior
of asset prices. Third, our model without a crisis is more realistic, as the model
proposed by Das and Uppal implies a normal distribution with a constant mean
and variance. We also extend the work of Liu et al. (2003) by showing the effects
of systemic crises on diversification, while their model is limited to a univariate
setting with one risky asset only. Our finding that persistence is an important aspect
of systemic crisis is consistent with their results. Our approach is complementary
to Ang and Bekaert (2002, 2004), who consider international asset allocations in a
regime-switching framework, as we use a similar framework to concentrate on the
effects of systemic crises. Because of the severity of the crisis regime, we find larger
effects of regime switches on diversification. As another extension to their work we
show how the resulting allocation problem can be solved in continuous time.

In a broader sense our study can be seen as an investigation of the hypothesis
that diversification advantages fail to be realized due to increasing correlations during
market downturns, such as systemic crises. This claim has been put forward by
various authors3, but it is not clear how strong this effect is. Ang and Chen (2002)
conclude that the costs of ignoring increasing correlations during bear markets are
substantial, but Ang and Bekaert (2002) find that diversification advantages remain
present. In our approach, an increase in correlations is inherent in a crisis4. If
the probability with which a crisis hits increases, diversification possibilities erode
rapidly and cause large divestments. If the investor faces short sales constraints, he
completely withdraws from equity markets.

The outline of the chapter is as follows. In Section 2 we discuss how the crisis
conscious and crisis ignorant strategies produce optimal portfolios and how the port-
folios can be compared. Section 3 presents the actual design of the study, including
the data. We discuss the estimation results in section 4, and derive and and compare
the allocations produced by the different strategies in section 5. Section 6 concludes.

2In a related paper, Das and Uppal (2003) also consider a regime switching model to allow for

stronger persistence and conclude that it does not change their main conclusions. However, the

degree of persistence they consider is fairly low compared to our analysis. For higher levels of

persistence systemic crises are likely to have more severe consequences, which is also indicated by

the result in Das and Uppal (2003) that the effects of systemic crises are increasing and convex for

increasing levels of persistence.
3See, for instance, Boyer et al. (1999); Loretan and English (2000); Longin and Solnik (2001);

Campbell et al. (2002); Ang and Chen (2002); Ang and Bekaert (2002); Campbell et al. (2003).
4It is widely discussed whether the tendency of markets to move downward together is a form of

contagion or can be explained by joint shocks (see Forbes and Rigobon, 2002; Corsetti et al., 2005).
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4.2 A crisis conscious and a crisis ignorant strategy

The investor can adopt two strategies to construct an optimal portfolio: a crisis con-
scious and a crisis ignorant strategy. Both strategies contain a model for the return
process and a formulation of the asset allocation problem as their main ingredients.
In both cases, a Markov regime switching model describes the return process because
of its flexibility to capture heteroskedasticity (see Hamilton and Susmel, 1994) and
fat tails (see Timmermann, 2000). The difference between the strategies is the pres-
ence of distinct crisis regimes in the model employed by the crisis conscious strategy.
The model in the crisis ignorant strategy can be interpreted as a restricted version
of that in the crisis conscious strategy.

We assume that the investor formulates and solves his asset allocation problem
in an expected utility, continuous time framework. Because of the continuous time
approach, the problem has a closed-form solution, contrary to the numerical approach
of Ang and Bekaert (2002). The different models for the return process will lead to
different allocations for the two strategies. Because the investor constructs his asset
allocation under expected utility, we can determine the economic importance of those
differences by calculating the certainty equivalent return needed to compensate the
investor for incorrectly using the crisis ignorant strategy.

In the first subsection, we discuss the models for the return process. In the next
one, we formulate and solve the investor’s asset allocation problem. Subsection 3
shows how the continuous time return process in the model of the asset allocation
problem should be constructed to make it consistent with the predictions resulting
from the Markov regime switching models. In subsection 4 we derive the compensa-
tion (as certainty equivalent return) that the investor requires if he incorrectly adopts
the crisis ignorant strategy. We conclude by showing how the differences between
the allocations of the crisis conscious and crisis ignorant strategies can be explained.

4.2.1 Regime switching models for the return process

We start with the more general model that is used in the crisis conscious strategy,
and consider the restricted version in the crisis ignorant strategy subsequently. The
general model for the return process consist of several regimes. The behavior of the
return process in a regime corresponding to a normal period is made up of basic
components only, while its behavior in a regime corresponding with a systemic crisis
contains both basic and crisis components. By choosing this setup, a systemic crisis
can be clearly interpreted as a simultaneous shock to all assets, which comes on top
of the normal behavior of the asset. We assume that the investor can invest in n

assets.
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First, consider the set of states that apply to the return process. We assume
that each asset i’s basic return component can be in a regime Qi from a set of K

regimes. For the crisis component two regimes Qc are available: presence (Qc = 1)
and absence (Qc = 0), and since the crisis is systemic the crisis regime applies to
all assets. Consequently, the state that applies to the joint returns, Q̃, is completely
defined by the combination of each asset’s basic regime and the crisis regime5:

Q̃ ≡ (Q1, Q2, . . . , Qn, Qc). (4.1)

We use Q to denote the combination of basic regimes, Q ≡ (Q1, Q2, . . . , Qn). The
sets Q and Q̃ collect all possible state vectors Q and Q̃, respectively. The actually
prevailing state will never be known with certainty. Instead, each state prevails with
a certain probability, inferred from the data.

The return vector can be split into a basic component and a crisis component. We
assume that for each state Q ∈ Q the basic component x is a normally distributed
random vector, with a state-specific mean µQ and variance matrix ΩQ. The marginal
distribution of asset i’s basic component depends only on the regime Qi that applies.
The crisis component consists of a shock, represented by a univariate random variable
xc, to which each asset has a specific sensitivity δi. Following Das and Uppal (2004)
and Liu et al. (2003) we assume that the shock has a normal distribution, with mean
µc and variance ωc. Combining the two components gives the return vector:

r = x + Qcxcδ, Qc ∈ {0, 1}, (4.2)

where δ is the vector of sensitivities. Conditional on the state Q̃ ∈ Q̃, the return
is normally distributed, being the sum of two (conditionally) normally distributed
variables. Under the assumption that the shock and the basic component are inde-
pendent, the mean vector µQ̃ and variance matrix ΩQ̃ of the return can be written
as:

µQ̃ = µQ + Qcµcδ, (4.3)

ΩQ̃ = ΩQ + Qcωcδδ′ (4.4)

Because we want the shock to have the same direction for each asset, we require
δi ≥ 0 for each i. Consequently, each variance and covariance term will increase if
Qc = 1.6

5We use the expression state to refer to a combination of the basic regimes and the crisis regimes.
6The correlation will rise if the relative increase in covariance exceeds the product of relative

increase in volatilities. This condition will generally be satisfied for correlations not too close to 1.

In our model this change in correlation is completely due to the occurrence of a crisis. Consequently,

using the terminology of Forbes and Rigobon (2002), our model implies interdependence of assets

but not contagion.
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The transaction probabilities are constant over time, and we impose a specific
structure to capture volatility spill-over effects, being the tendency of high volatility
in one asset’s return to spread to other assets. These effects are widespread and
important.7 Let πab denote the conditional probability of a switch to state Q̃a, given
that the current state is Q̃b. First, we impose a structure based on the crisis regime.

• If a crisis occurs neither in the current state (Qb
c = 0) nor in the destination state

(Qa
c = 0), we model πab as the product of the marginal conditional probabilities

πi(Qa
i |Q̃b) and the conditional probability that a crisis does not occur, given

the current state Q̃b. Here, πab
i gives the probability that asset i switches to

regime Qa
i , given that the current state is Q̃b. The dependence on the state Q̃b

instead of the asset-specific regime Qb
i introduces dependence across assets and

enables the incorporation of volatility spill-over effects. We use a multinomial
logistic model to model this dependence, which we discuss in Appendix 4.A.1.8

The alternative of free parameters would lead to an exploding number of free
parameters equal to 2Kn · (2Kn − 1).

• If the assets enter a crisis regime (so Qa
c = 1 and Qb

c = 0, the regime processes
switch to the regime with the highest volatility. This restriction imposes that
global stress triggers local stress.

• For the case that a crisis remains, the same restriction as in the previous case
applies. It prohibits illogical switches from high volatility regimes to lower
volatility regimes, while a crisis remains present.

• If the assets leave the crisis regime (Qa
c = 0 and Qb

c = 1), the basic regime
processes remain in the highest volatility regimes in the next period. After
that, they can switch to other regimes. This restriction captures a gradual
cooling down of assets after a crisis.

The crisis transition probabilities are independent of the basic regimes. This leads
to two parameters for the crisis transition probabilities: π10

c , the probability that a
crisis occurs, and π11

c , the probability that a crisis remains. If we assume without
loss of generality that the regimes are ordered in ascending order of volatility, we can
represent our model as follows:

7Several authors have established volatility spill-over effects for different markets: Hamao et al.

(1990) for the US, UK and Japan; Bekaert and Harvey (1997) and Ng (2000) for the US, Japan, and

other Pacific-Basin markets; Edwards and Susmel (2001) for emerging markets in Asia and Latin

America; Lee et al. (2004) for the US and Asian markets; and Baele (2005) for European countries.
8Bae et al. (2003) use a related model to investigate contagion.
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πab =





πab
1 · πab

2 · · ·πab
n · (1− π10

c ) if Qa
c = 0, Qb

c = 0

π10
c if Qa

c = 1, Qb
c = 0, ∀i Qa

i = K

π11
c if Qa

c = 1, Qb
c = 1, ∀i Qa

i = K

1− π11
c if Qa

c = 0, Qb
c = 1, ∀i Qa

i = K

0 otherwise

(4.5)

The crisis ignorant strategy imposes the restriction that transitions to Qa
c = 1

have zero probability, i.e. π10
c = 0. Consequently, the crisis ignorant strategy leads

to different inferences and forecasts about the prevailing regime. Also, if the investor
incorrectly follows an ignorant strategy and estimates the parameters of the process,
the parameter estimates are likely to be biased.

4.2.2 The asset allocation problem

The investor is risk averse and maximizes his utility over terminal wealth WT . We
assume he has a power utility function:

U(WT ) =
W 1−γ

T

1− γ
, γ > 0, γ 6= 1, (4.6)

where γ is the investor’s coefficient of relative risk aversion9. To focus on the effect
of a systemic crisis on asset allocation, we do not allow intermediate consumption.
As such, our analysis is comparable to other studies such as Ang and Bekaert (2002),
Liu et al. (2003) and Das and Uppal (2004). The investor can trade in continuous
time. At each point in time t he will choose to invest proportions of his wealth in
the n risky assets, collected in the vector φt and the remaining part 1− φ′tın in the
riskless asset (ın being a vector of size n with ones) in order to maximize expected
utility.

We assume that the investor has an initial endowment W0. This assumption
and a process for the asset prices enables us to derive the investor’s self-financing
constraint, which describes the dynamics of the wealth process. The returns follow
an Itô process

dr = µ(r, t) dt + Λ(r, t) dZ, (4.7)

where µ(r, t) is the vector of instantaneous drift rates, which can depend on the
return up to time t and time itself, Λ(r, t) is a lower triangular n × n matrix that
can also be a function of r and t, and dZ is a vector of n independent Wiener

9For γ = 1 the utility function is defined as log utility U(WT ) = ln WT .
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processes. Consequently, the instantaneous variance rate Ω(r, t) is given by Ω(r, t) =
Λ(r, t)Λ(r, t)′. Below we describe a specific function for the drift and variance rate
that makes them consistent with the predictions of the regime switching models of the
previous section. For notational convenience we drop the time and return dependence
of µ, Λ and Ω. After applying Itô’s lemma to find the price processes we end up
with the self-financing condition

dW

W
= rf dt + φ′α dt + φ′ΛdZ, (4.8)

where α ≡ µ + 1
2diag(Ω) − rfın

10, rf is the risk-free rate, and diag(Ω) denotes a
vector containing the diagonal elements of Ω.

The asset allocation problem consists of maximizing the investors expected utility
subject to the self financing condition in Eq. 4.8. It can be solved using standard
stochastic control techniques.11 We show in Appendix 4.A.2 that the optimal port-
folio is given by

φ∗ = γ−1Ω−1α = γ−1Ω−1
(
µ + 1

2diag(Ω)− rfın

)
. (4.9)

Though this expression has the same structure as the solution to a standard mean-
variance optimization problem, both µ and Ω will be shown to depend on time and
the observed returns, making the weights depending on them as well. This expression
also applies to the log-utility investor.

4.2.3 The Itô process for returns

Brigo (2002) describes a way to derive continuous time processes whose correspond-
ing density at a certain point in time is a mixture of densities from the same family.12

This approach has two advantages. First, it facilitates the use of the powerful tech-
niques developed for continuous time finance. Second, the continuous time processes
that result from his approach include the different regimes directly in their parame-
ters without introducing extra state variables for the different regimes. Consequently,
the regimes are implicitly present in the portfolio optimization (i.e. in the parameters
of the Itô process), and do not lead to regime-specific Itô processes.

Since the distribution of rτ+1 conditional on its filtration is a mixture of normal
distributions (see Hamilton, 1994, Ch. 22), we can apply a multivariate extension
of Theorem 2 in Brigo (2002). Consequently, the Itô process in Eq. (4.7) starting at

10The expression can be interpreted as an excess, arithmetic mean return.
11See for example Léonard and Van Long (1992).
12Applications of this technique can be found in Alexander and Narayanan (2001), Alexander and

Scourse (2004) and Brigo and Mercurio (2002).
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t0 = τ with rt0 = 0 has a mixture density at time τ + 1 which corresponds with the
mixture model implied by the regime switching model, if the instantaneous drift rate
µ(r, t) and instantaneous variance rate Ω(r, t) are given by:

µ(r, t) =
∑

Q̃∈Q̃
π(Q̃, r, t)µQ̃ (4.10)

Ω(r, t) =
∑

Q̃∈Q̃
π(Q̃, r, t)ΩQ̃ (4.11)

with

π(Q̃, r, t) =
ξτ+1|τ (Q̃) · f

(
rt; µQ̃(t− τ), ΩQ̃(t− τ)

)

∑
Q̂∈Q̃ ξτ+1|τ (Q̂) · f

(
rt;µQ̂(t− τ), ΩQ̂(t− τ)

) , (4.12)

where τ < t ≤ τ+1, and ξτ+1|τ (Q̃) = Pr(Q̃τ+1|Fτ ) gives the forecast probability that
state Q̃ is prevailing at time τ+1.13 Λ(r, t) can then be found by applying a Cholesky
decomposition to Ω(r, t). For t = τ , Eq. (4.12) reduces to π(Q̃, 0, τ) = ξτ+1|τ (Q̃).

The drift and variance rates constructed by Eqs. (4.10) to (4.12) have an appealing
interpretation, as they are probability weighted averages of the mean and variance
parameters for the different states. These probabilities have a clear interpretation
as inference probabilities, which are commonly used in regime switching models (see
Hamilton, 1994, Eq. 22.4.5). Furthermore, Eq. (4.12) follows a Bayesian update
rule, with ξτ+1|τ (Q̃) = Pr(Qτ+1|Fτ ) as prior probability for the prevailing regime
and π(Q̃, r, t) = Pr(Qτ+1|rt,Fτ ) as its posterior probability.

4.2.4 Comparing portfolios

Though the expression for the optimal portfolio Eq. (4.9) is the same for both the
crisis conscious and the crisis ignorant strategy, the resulting portfolios (φc and φi

respectively) will differ because of differences in µQ̃, ΩQ̃ and π(Q̃, r, t). To assess the
economic impact of the differences in portfolios we calculate the certainty equivalent
return needed to compensate the investor for using the crisis ignorant strategy, when
he should have used the crisis conscious one. Since the first does not take a crisis
into account, the resulting portfolio will be suboptimal and yield lower utility. The
certainty equivalent return shows by how much the initial wealth of the investor
should be raised to compensate him for this utility loss and hence the cost of ignoring
a crisis. We derive in Appendix 4.A.2 that the certainty equivalent return r̄ needed
for compensation equals

r̄ = [h(φc)− h(φi)](T − t), (4.13)
13We follow the notation in Hamilton (1994).
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where φc denotes the crisis conscious portfolio, φi denotes the crisis ignorant portfolio
and h(φ) = φ′α− 1

2γφ′Ωφ. This expression depends only on the coefficient of risk
aversion γ via the function h and the portfolio φ. It is easy to show that h(γ−1φ) =
γ−1h(φ). Consequently, the certainty equivalent return needed to compensate a
power utility investor can be derived from the certainty equivalent return for the log
utility investor. Moreover, the certainty equivalent return is a linear function of the
investor’s horizon T .

The portfolio differences can stem from differences in the estimates for the basic
regimes, the estimation effect, and the absence of crisis regimes, the crisis effect. An
analysis of these differences provides insights into the importance of both sources.
Suppose that the differences in parameter estimates explain just a small part of the
changes in the optimal allocations. In that case, the crisis regime is the main driver
of the portfolio adjustments. Alternatively, if the differences in parameter estimates
explain most of the changes in optimal portfolios, the influence of the crisis itself is
limited. The observations that belong most likely to the crisis regime cause outlier
problems in the crisis ignorant case.

In order to disentangle the differences between the optimal allocations produced
by the crisis conscious and ignorant strategies we introduce a myopic strategy. This
strategy uses the same estimates as the crisis conscious strategy, but excludes a crisis
regime in the forecasts it makes. Instead of forecasts for state vectors in the complete
state space ξτ+1|τ (Q̃), only forecasts for the basic states are constructed ξm

τ+1|τ (Q):

ξm
τ+1|τ (Q) = ξτ+1|τ (Q, Qc = 0) + ξτ+1|τ (Q, Qc = 1), Q ∈ Q. (4.14)

The myopic strategy produces an allocation φm. We interpret the differences between
the myopic and the crisis ignorant strategy φe ≡ φm − φi as the estimation effect,
and the differences between the crisis conscious and myopic strategy as the crisis
effect, φs ≡ φc−φm. We also calculate h(φm), and derive the economic importance
of the estimation effect as r̄e = [h(φm) − h(φi)](T − t) and the importance of the
crisis effect as r̄s = [h(φc)− h(φm)](T − t).

4.3 Design of the analysis

Central in our analysis of the impact of systemic crises is a US investor who wants
to diversify his portfolio internationally. He can invest worldwide and does not only
consider the developed markets US, Europe, Japan and Hong Kong, but also the
emerging markets Thailand, Korea and Brazil, which can extend diversification op-
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portunities.14 We represent each market by an index. For each index we construct
a return series, on which the models for the crisis conscious and the crisis ignorant
strategies are estimated. We assume that for each country two regimes can be dis-
tinguished. The estimation results are used to construct allocations. Based on the
differences between the allocations resulting from the crisis conscious strategy and
the crisis ignorant strategy we determine the impact of systemic crises.

We base the analysis on monthly returns, mainly because monthly data are avail-
able with the longest history. A systemic crises is a rare event, necessitating a rela-
tively long history to get an accurate estimate of the probability of a systemic crisis.
A longer horizon also improves the estimate for the mean returns in the different
regimes. Each developed market is approximated by its corresponding gross return
index from Morgan Stanley Capital International (MSCI). For the emerging markets
we use the gross return indexes provided by Standard & Poors / International Fi-
nance Corporation (IFC), both provided by DataStream. We use the start of the
IFC indexes, December 31, 1975 as a starting point for our analysis and collect the
index values in dollars till December 31, 2004, resulting in 348 returns. We construct
excess returns by subtracting the 1-month T-bill return from Ibbotson Associates,
Inc.15

The summary statistics in Table 4.1 show the familiar picture of small, posi-
tive means, non-zero skewness and fat tails. Generally, the minimum exceeds the
maximum in absolute value. The correlation matrix shows low levels of correlation,
particularly for the emerging markets, implying the presence of diversification oppor-
tunities. However, Hong Kong, Thailand, Korea and Brazil may be less attractive
due to their relatively high levels of volatility.

The regime switching models we propose in Section 4.2 belong to the standard
regime switching models as discussed in Hamilton (1994). We use the expectation
maximization algorithm (see Dempster et al., 1977; Hamilton, 1990) to estimate
the parameters in the models. Central in this algorithm is a filtering technique to
determine the state probabilities at each point in time. If the improvement in the
likelihood function falls below a specified limit, the algorithm stops. To ensure that
the estimate covariance matrix is positive definite, we assume that the correlation
matrix is independent of the basic state vectors.

14Early studies (see e.g. Harvey, 1995) find significant diversification opportunities, but more

recent studies show these may be less when transaction costs and investment constraints are taken

into account (see Bekaert and Harvey, 2003, for a discussion).
15We use the series available on the website of Kenneth French,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 4.1: Descriptive statistics

(a) univariate statistics

US Europe Japan Hong Kong Thailand Korea Brazil

mean 0.50 0.53 0.31 0.69 0.31 0.41 0.32

volatility 4.38 4.75 6.48 9.31 10.22 10.54 15.42

skewness −0.76 −0.72 0.07 −1.08 −0.44 0.36 −0.49

kurtosis 5.98 4.78 3.48 8.43 6.01 5.81 6.01

minimum −24.45 −21.65 −22.18 −57.58 −41.88 −41.37 −84.79

maximum 12.05 12.69 21.04 28.37 38.14 53.17 44.84

(b) correlation matrix

US Europe Japan Hong Kong Thailand Korea Brazil

US 1 0.64 0.30 0.42 0.32 0.28 0.21

Europe 0.64 1 0.48 0.50 0.31 0.25 0.25

Japan 0.30 0.48 1 0.30 0.25 0.37 0.15

Hong Kong 0.42 0.50 0.30 1 0.39 0.21 0.21

Thailand 0.32 0.31 0.25 0.39 1 0.39 0.13

Korea 0.28 0.25 0.37 0.21 0.39 1 0.12

Brazil 0.21 0.25 0.15 0.21 0.13 0.12 1

The data set consists of the monthly excess gross returns (in %) for the MSCI US, MSCI Europe,

MSCI Japan, MSCI Hong Kong, IFC Thailand, IFC Korea and IFC Brazil indexes, running from

January 1976 to December 2004. Panel (a) presents univariate statistics, panel (b) shows the

correlation matrix.

The expression for the optimal portfolio in Eq. (4.9) defines an asset allocation
strategy in continuous time. This means that we can derive the evolution of portfolios
over time for a given price path. We construct paths of portfolios based on daily prices
of the mentioned gross return indexes in dollar terms, also gathered from DataStream.
To keep the daily and monthly data sets consistent, we use the 1-month T-bill rate
that was prevailing at the beginning of the month to compute the daily excess returns.

The portfolio at a given day of the month reflects two sources of information:
a prior probability based on the information at the beginning of the month, and
the information present in the returns observed until that day. The second source
of information is used to update the prior probability to a posterior probability as
in Eq. (4.12). We interpret the prior probability as the outcome of an investor’s
thorough analysis of the likelihood of a state. Because of its thoroughness such an
analysis is conducted at a limited frequency, i.e. once per month. We represent the
outcomes of the analysis by a Markov chain. The prior probability can be regarded as
an informative prior, because it is based on all available information at the moment
it is determined. We will also consider the allocation that results if the investor does
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not use the observed stock price path to determine the prior probabilities. Instead,
the investor uses unconditional probabilities for each regime, which are only based
on the transition matrices. The results from this analysis can serve as a benchmark
and can be compared to the results in Das and Uppal (2004).

4.4 Estimation results

In this section we present and discuss the results from estimating the models for
the returns in the two strategies. We split the discussion in two: first we consider
the estimates for the distributions under the different regimes; next we turn to the
parameter estimates for the transition probabilities of the Markov chains.

Table 4.2 presents the estimates for the parameters of the marginal normal distri-
butions. The main difference between the crisis ignorant and crisis conscious strategy
is the presence of the crisis regime in the latter one. The crisis regime contains a
shock with an estimated mean of -0.63% and a volatility of 1.54%. The shock has
been normalized such that the US has a sensitivity of 1. The other countries (except
Europe) are more sensitive to the shock. In particular the emerging countries Korea
and Thailand are more than 10 times as sensitive as the US. The considerable dif-
ference in log likelihood values16 of 19.0, provides evidence in favor of the addition
of a crisis regime. However standard statistical tests cannot be used, because many
parameters are not identified under the null hypothesis.17 In both models the two
basic regimes for each asset can be distinguished by their volatility levels, as reported
by Ramchand and Susmel (1998), Ang and Bekaert (2002) and Graflund and Nilsson
(2003). In the remainder we will therefore use the terms low volatility regime and
high volatility regime to distinguish between the regimes.

Combining the estimates for the basic high volatility regimes with the estimates
for the crisis shock yields the crisis regime, which exhibits a sharp drop in expected
returns and an increase in volatilities. Because of their large sensitivity to a crisis,
these effects are most pronounced for emerging markets, which may also offer an
explanation for the fat tails reported by Susmel (2001). Table 4.3 shows that the
correlations in the crisis regime are also higher, as has been reported before by
Ang and Chen (2002) and Forbes and Rigobon (2002). It is obvious that the risk-

16The log likelihood values for the models without and with a crisis equal -8029.5 and -8010.5,

respectively.
17Hansen (1992) proposes a method to formally test whether the addition of a regime is a signifi-

cant improvement. In this method, the likelihood function is maximized over different combinations

of fixed values for the restricted and nuisance parameters. The number of combinations grows

exponentially in the number of parameters, which makes the method less attractive to test the

significance of the crisis regime.
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Table 4.2: Univariate parameter estimates

crisis ignorant crisis conscious

low high low high crisis

US µ 0.90 0.35 0.95 0.47 −0.16√
ω 2.47 4.99 2.21 4.73 4.97

1.00

EU µ 1.10 0.23 1.17 0.26 −0.30√
ω 3.09 5.46 3.07 5.35 5.52

0.88

Japan µ 0.44 0.03 0.20 0.74 −1.46√
ω 5.14 8.29 4.92 8.26 9.83

3.47

Hong Kong µ 0.93 0.57 0.92 0.74 −2.15√
ω 6.00 13.34 5.77 12.98 14.75

4.55

Thailand µ 0.80 −0.53 −0.22 1.51 −7.03√
ω 6.29 15.28 5.24 11.44 23.62

13.46

Korea µ 0.34 1.28 0.19 1.94 −6.55√
ω 7.26 15.69 6.56 12.44 24.04

13.40

Brazil µ 0.96 −0.73 0.86 −0.01 −2.43√
ω 9.83 20.91 8.49 19.49 20.35

3.81

µc −0.63√
ωc 1.54

This tables reports the estimates for the mean parameters (µ) and volatility parameters (
√

ω) of the

marginal distributions of the excess monthly equity return (in %) for the US, Europe Japan, Hong

Kong, Thailand Korea and Brazil under the low and high volatility regimes. The first two columns

present the estimates for the crisis ignorant strategy; the second two for the crisis conscious strategy.

The parameters for the crisis conscious strategy also contain estimates for the shock: a mean (µc)

and variance (
√

ωc). The last column contains the estimates for the sensitivity to a systemic crisis

(δ) and the resulting mean and volatility. The sensitivity of the US market has been normalized to

1.
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return trade-off for each asset deteriorates, while the correlation matrix shows that
diversification possibilities also become less. Consequently, risky assets become less
attractive on a global scale. However, the correlations between the emerging markets
on the one hand and the US and Europe on the other hand remain low. The exact
consequences become clear in the next section.

The addition of a crisis regime has important effects on the other estimates as well.
Decreasing volatility estimates indicate that the risk within each regime is actually
less, particularly those in the high volatility regime. Moreover, the means in the high
volatility regimes increase considerably, indicating that the few crisis observations
differ substantially from normal high volatility periods.

Table 4.4 presents the estimates for the parameters of the logistic functions that
we use to construct the regime transition probabilities (see Appendix 4.A.1 for more
details). In total, we have 2 · 72 = 98 parameters from which we construct the
128 × 128 (= 27) basic transition matrix. The diagonal elements give the estimates
that correspond with no regime switch for a country, given that the other countries are
currently in their low volatility regimes. The off-diagonal elements give the volatility
spill-over estimates, which are restricted to be negative (positive) for switches from
the low (high) volatility regimes. Because of these restrictions, volatility spill-over
effects increase the probability that countries are in their high volatility regimes. As
an example, consider the Hong Kong market. The probability that the Hong Kong
market remains in its low volatility regime, given that the other markets are also in
their low volatility regimes equals e3.75/(1+e3.75) = 0.98. However, we find volatility
spill-over from the US to Hong Kong: if the US is in its high volatility remain, the
probability that Hong Kong switches from low to high volatility is e3.75−0.48/(1 +
e3.75−0.48) = 0.96.

We draw several conclusions from the estimates in Table 4.4. First of all, each
regimes on itself is strongly persistent, as indicated by high values for the positive
diagonal elements (exceptions are the high volatility regimes for Japan and Korea).
Second, volatility spill-over effects mainly affect the probability of a switch from the
low volatility to the high volatility regimes; the probability that a country remains in
its high volatility regime, given that other countries are also in their high volatility
regimes, is less affected. Third, volatility spill-over effects are mainly present among
the developed markets, and from emerging markets to developed markets. Other
studies finds volatility spill-over effects from the US and Japan to other Asian mar-
kets, such as Hong Kong, Thailand and Korea (see Bekaert and Harvey, 1997; Ng,
2000; Lee et al., 2004), but this may be due to differences in the applied methods
(GARCH-models versus regime switching models; daily vs. monthly data).
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Table 4.3: Correlation parameter estimates

(a) crisis ignorant

US EU JP HK TH KO BR

US 1 0.65 0.29 0.46 0.28 0.27 0.23

EU 0.65 1 0.48 0.53 0.30 0.27 0.27

JP 0.29 0.48 1 0.32 0.18 0.38 0.15

HK 0.46 0.53 0.32 1 0.35 0.22 0.25

TH 0.28 0.30 0.18 0.35 1 0.24 0.11

KO 0.27 0.27 0.38 0.22 0.24 1 0.13

BR 0.23 0.27 0.15 0.25 0.11 0.13 1

(b) crisis conscious

US EU JP HK TH KO BR

US 1 0.64 0.30 0.47 0.33 0.26 0.24

EU 0.64 1 0.49 0.54 0.32 0.26 0.27

JP 0.30 0.49 1 0.32 0.15 0.35 0.16

HK 0.47 0.54 0.32 1 0.37 0.21 0.26

TH 0.33 0.32 0.15 0.37 1 0.21 0.10

KO 0.26 0.26 0.35 0.21 0.21 1 0.14

BR 0.24 0.27 0.16 0.26 0.10 0.14 1

(c) crisis regime

US EU JP HK TH KO BR

US 1 0.67 0.41 0.54 0.42 0.39 0.31

EU 0.67 1 0.53 0.57 0.37 0.34 0.32

JP 0.41 0.53 1 0.49 0.53 0.62 0.28

HK 0.54 0.57 0.49 1 0.57 0.50 0.36

TH 0.42 0.37 0.53 0.57 1 0.80 0.30

KO 0.39 0.34 0.62 0.50 0.80 1 0.32

BR 0.31 0.32 0.28 0.36 0.30 0.32 1

Estimates for the correlations between the different countries for the crisis ignorant (panel a) and

crisis conscious strategy (panel b) and the resulting correlations for the crisis regime (panel c). The

correlations are assumed to be independent of the basic regimes.
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Finally, we consider the probability estimates for a systemic crisis. A crisis has
a probability of 0.0031 to occur, given that currently no crisis occurs. However, if a
crisis occurs, it is highly persistent, as indicated by the probability of 0.93 of remain-
ing in the crisis regime. Unconditionally, if no prior information on the prevailing
regimes is available, the crisis regime occurs with a probability of 0.045. Das and
Uppal (2004) estimate a probability on a systemic jump of 0.0501 for the developed
markets and of 0.0138 for the US with emerging markets, which is comparable to the
unconditional probability that we find. However, in their model, a systemic jump at
a certain instant does not affect the probability of a jump in the next instant, which
remains relatively low as a consequence. This illustrates the main difference between
their model and our model.

4.5 Portfolio construction

Based on the estimates of the previous section we construct optimal portfolios for
the crisis conscious and crisis ignorant strategies. The portfolios vary over time and
depend on the filtration of the return processes, limiting the relevance of an analysis
of static portfolios. Instead, we concentrate on two situations. First, we consider the
influence of a crisis when the investor uses uninformative forecast probabilities for
the likelihood of the different regimes, or in other words has no prior knowledge on
the state of the economy. In the second situation we analyze the effects of a crisis
when the investor uses informative forecasts in a period in which the probability
that a crisis was actually prevailing was high, being the second half of 1997, when
the Asian crisis took place. We concentrate on October 1997, the month in which
the Hong Kong market crashed. The second situation is more interesting, since we
can observe how both strategies perform in a real-life situation. The first situation
will be useful as a benchmark and enables a comparison with the results of Das and
Uppal (2004) and Liu et al. (2003).

For both cases we conduct an analysis consisting of the same steps. We present
and motivate the steps here, together with their main outcomes. We start by deriv-
ing and comparing the optimal allocations for the log utility investor. Though the
assumption of log utility is unrealistic due to its low degree of risk aversion, the log
utility portfolio is popular in asset allocation studies. The optimal portfolio for a
power utility investor is the log utility portfolio scaled by the inverse of his coefficient
of relative risk aversion and an investment in the riskless asset to meet the budget
constraint. The considerable differences between the crisis conscious and crisis ig-
norant strategies that we find indicate that the crisis conscious strategy invests less
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in risky assets. An inspection of only the risky part shows that the crisis conscious
strategy shifts investment to countries less prone to a crisis.

Next, we determine the economic importance of the differences between the two
strategies. We calculate the certainty equivalent return that the investor requires as
a compensation for adopting the crisis ignorant strategy, when the crisis conscious
strategy is appropriate. For the uninformative case, the costs of ignoring the possi-
bility of a systemic crisis are limited, but large enough not to neglect it, particularly
for longer horizons. In the second situation, when a crisis takes place with almost
certainty, the certainty equivalent return rises substantially, also for more risk averse
investors.

We conclude the analysis by investigating what can explain the differences be-
tween the crisis conscious and crisis ignorant portfolios: the differences in the param-
eters estimates for the basic component, or the hedging demand due to the possibility
of a crisis. To accomplish this we use the myopic strategy introduced in Section 4.2.4.
This strategy uses the same estimates for the basic part as the crisis conscious model,
but excludes the crisis regime from the forecasts it makes. Consequently, the differ-
ences between the portfolios produced by the crisis ignorant and the myopic strategies
are due to different parameter estimates for the basic component. On the other hand,
the differences between the myopic strategy and the crisis conscious strategy stem
solely from the crisis regime. These latter differences have the clear interpretation of
a hedging demand. We find that the investor hedges against a crisis by taking a long
position in the US, Europe, and the riskless asset and a short position in the stock
markets of the other countries.

In the next two subsections we report the actual analysis in more detail. In the
last subsection we discuss some robustness checks.

4.5.1 Static analysis

In Table 4.5 we present the portfolios that a log utility investor will construct, if
he has no information on the price path of the assets so far. Most importantly, the
crisis conscious strategy results in a less aggressive allocation than the crisis ignorant
strategy. Overall, the position is less leveraged: the investor lends 3.79 times his
initial wealth opposed to 4.71 under the crisis ignorant strategy. Das and Uppal
(2004) report similar, though less pronounced results. Leverage is large because we
report the log utility portfolio. An investor with coefficient of relative risk aversion
equal to 5 would invest 4% in the risk free asset, adopting the crisis conscious strategy,
or lend 14% of his wealth, if he adopts the crisis ignorant strategy. The risky asset
portfolio itself does not change much.
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Table 4.5: Static optimal portfolio weights

log utility portfolio risky assets portfolio

crisis crisis crisis crisis

ign. cons. φe φs ign. cons. φe φs

US 1.61 1.15 −0.68 0.22 0.28 0.24 −0.11 0.06

Europe 3.59 2.98 −1.06 0.44 0.63 0.62 −0.15 0.14

Japan −0.70 −0.39 0.45 −0.13 −0.12 −0.08 0.07 −0.03

Hong Kong 0.26 0.27 0.08 −0.07 0.05 0.06 0.02 −0.01

Thailand 0.02 0.07 0.55 −0.50 0.00 0.01 0.10 −0.09

Korea 0.60 0.44 0.30 −0.46 0.11 0.09 0.06 −0.08

Brazil 0.33 0.27 −0.03 −0.03 0.06 0.06 0.00 0.00

risk free −4.71 −3.79 0.40 0.52 0 0 0 0

Optimal portfolios for the crisis ignorant and crisis conscious strategies for different situations: log

utility and an investment in risky assets only. The portfolios are the initial portfolios (t = 0) based

on the unconditional inference probabilities. The portfolio weights for the different countries and

the risk-free asset are reported in the first two columns. The differences between the allocations are

decomposed in an estimation effect φe and a crisis effect φs.

It is costly to ignore the possibility of a crisis. A log-utility investor who incor-
rectly adopts the crisis ignorant strategy requires a certainty equivalent return of
0.09% per month (or 1.13% per year) as compensation. For more risk averse in-
vestors, the required compensation becomes less, as the certainty equivalent return
should be divided by their coefficient of relative risk aversion. A comparison of this
result with findings of Das and Uppal (2004) highlights the importance of persis-
tence. Das and Uppal (2004) report that an investor with coefficient of relative risk
aversion of 3 and a horizon of 1 year requires a return of 0.1% as compensation for
incorrectly ignoring the systemic jumps in their model. A similar investor in our
approach would require a return of 0.38% for incorrectly following the crisis ignorant
strategy. Since both systemic events have a comparable probability of occurrence, we
conclude that persistence increases the importance of systemic crises. Das and Uppal
also show that the certainty equivalent return is an increasing and convex function of
the probability of a systemic crisis (see Das and Uppal, 2003, Section 5.2.5, Appendix
A.2 and Figure 4), but the degree of persistence they consider is fairly low.

Overall, the decomposition of the differences shows that the estimation effect
causes a more prudent allocation: leverage is decreased by 0.40. However, within
the risky asset part of the portfolio, investments shift from the US and Europe to
Asia. A comparison of the estimates for the high volatility regimes in the crisis
conscious model with those in the crisis ignorant model, shows that particularly the
high volatility regimes for the Asian markets become more attractive. Of course, this
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implies that the crisis regimes entails substantial risk for investments in Asian equity.
The crisis effect causes large divestments in Asia, which are partly directed towards
the US and European markets and partly to the riskless asset. In the uninformative
case, the estimation effect and crisis effect cancel out more or less for the Asian
markets, but for the developed market the estimation effect dominates. Also in an
economic sense the crisis effect is the more important. A log-utility investor requires
a compensation of 0.31% per month for ignoring the crisis effect. If he also ignores
the estimation effect, the required compensation reduces to 0.1% per month.

We conclude that the implications of the possibility of systemic crises are already
visible in an uninformative, static setting. Including a crisis regime in the model for
asset returns leads to improved estimates for the basic regime, and boosts investments
in emerging markets, but the probability of large negative returns curbs it. Though
the estimation effect dominates, the combined effects shift investments to the riskless
asset, indicating that incorporating a crisis leads to prudence. Ignoring this prudence
can cost up to 1.13% per year.

4.5.2 October 1997: the Asian crisis

To study an informative setting, we investigate the implications of the strategies for
asset allocation in October 1997, the month during which the Hong Kong market
crashed. We take the estimates presented in the previous sections as given. The
inference probabilities that the investor uses are constructed by applying the filter-
ing technique described in Hamilton (1994) on the returns up to September 1997.
This setup enables us to observe how the dive of the Hong Kong market influenced
the inference probabilities and consequently the asset allocation. The calculation
of certainty equivalent returns and decompositions can help us to understand the
changes in optimal asset allocations over time, caused by the continuous updating of
the inference probabilities.

The Asian crisis hit financial markets during the second half of 1997.18 In August
1997 the Thai market crashed. Only after the crash of the Hong Kong market, the
shocks in Asia were considered as a global crisis. An inspection of the inference
probabilities of our model produces a similar picture. By the end of August and
September the inferred probability for the crisis regime did not exceed 0.05, but by
the end of October it had risen to almost 1. The smoothed inference probabilities
resulting from our model confirm the view that the sharp drop in the Thai market
could be seen as an overture to the Asian crisis. After August and September, the

18See Kamin (1999) for a broad discussion of the symptoms of the Asian crisis. Kaminsky and

Schmukler (1999) investigate the causes of daily market fluctuations during the Asian crisis.
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smoothed inference probability of the crisis regime was above 0.80, and from October
onwards it remained close to 1.

Figure 4.1(a) plots the cumulative excess returns for the different countries. The
cumulative returns in the Asian markets are already negative during the beginning of
the month, but the US, Europe and Brazil realize small, positive returns. However,
after October 17, 1997 (the 13th trading day of that month) the Hong Kong market
starts to dive: from -9.5% to -50% in 7 days. The Thai and Korean market move
in lock step, but the other markets also suffer large price drops, in particular the
Brazilian market. At the end of October 20, a Monday, the inference probability for
the crisis regime in the crisis conscious model climbs to 0.71 and remains high for
the rest of the month. So the conscious strategy deems the crisis regime most likely
one the second half of the month.

To see what the investor would have inferred had he not taken a crisis into account,
we plot the inferences for the crisis ignorant model in Figure 4.1(c). In the first half of
the month, it is inferred that the US and the Thai market, probably accompanied by
the Hong Kong market, are in their high volatility regimes. After the sharp decline
in the Hong Kong market it is inferred that in all markets the high volatility regimes
are prevailing, though some doubt exists regarding Japan and Brazil.

The allocations to which the crisis conscious and crisis ignorant strategies lead
during the month are plotted in Figure 4.2. Adopting the crisis conscious strategy
leads to less risky allocations. First of all, when applying the crisis conscious strategy,
an investor uses less leverage as can be concluded from Figure 4.2(h). Both strategies
start with approximately the same degree of leverage, but as October goes by and
the probability of a crisis increases, leverage decreases faster in the crisis conscious
strategy. By the end of the month the crisis conscious strategy has a long position in
the risk free asset, while the crisis ignorant portfolio is still leveraged. It is particularly
interesting to see that following the crisis conscious strategy leads to a sharp decrease
in leverage already before the dive of the Hong Kong market.

In the crisis conscious strategy, foreign markets quickly become less attractive
as the probability of a crisis rises. For four of them (Japan, Hong-Kong, Thailand
and Korea), the conscious strategy even advises short positions. When applying the
crisis ignorant strategy, the investor decreases his exposure to some of these markets
(Japan, Hong Kong), but he increases his exposure to Hong Kong and Korea by
the end of the month and maintains long positions in these markets throughout
most of the month. Again it is reassuring to see that the investor adopting the
crisis conscious strategy withdraws quickly from the Hong Kong market, when the
probability of a crisis rises. When adopting the crisis ignorant strategy, the Hong
Kong market remains much longer attractive.
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The cumulative return path (excess returns, in %) of the indexes for the US, Europe (EU), Japan

(JP), Hong Kong (HK), Thailand (TH), Korea (KO) and Brazil (BR) (panel a) and the resulting

inferences for the crisis conscious strategy (panel b) and the crisis ignorant strategy (panel c) for each

trading day in October 1997 (numbered consecutively). The inference probabilities are constructed

by updating the forecast probabilities based on the returns to September 1997 in a Bayesian fashion

as given in Eq. (4.12). We only plot the inferences for a state vector, if the inferences have exceeded

0.4 at least once: for the crisis conscious strategy that is US and Thailand high volatility, others

low (dashed line), US, Hong Kong and Thailand high volatility, others low (long dashed line), and

the crisis state (solid line); for the crisis ignorant strategy that is US and Thailand high volatility,

others low (dashed line), US, Hong Kong and Thailand high volatility, others low (long dashed line),

US, Europe, Hong Kong, Thailand and Korea high volatility, others low (solid line) and the state

in which all countries have high volatility (dotted line).

Figure 4.1: Returns and inference probabilities during October 1997
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Figure 4.2: Optimal portfolio weights during October 1997
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The proportion of wealth invested in the different countries for the crisis conscious and crisis ignorant

strategy and a decomposition of the differences for each trading day in October 1997 (numbered

consecutively). We assume the investor has a log utility function. The portfolios are based on the

estimates in Tables 4.2 and 4.3 and the inference probabilities that are constructed by updating

the forecast probabilities based on the returns to September 1997 in a Bayesian fashion as given in

Eq. (4.12). The portfolio differences between the two portfolios are decomposed in an estimation

and a crisis effect.

The differences between the allocations in Figure 4.2 are not only pronounced
but also economically important. Both before and after the dive of the Hong Kong
market, the certainty equivalent in Figure 4.3 is higher than 0.3% per month, clearly
exceeding the 0.09% per month of the uninformative case. Moreover, it rises dramat-
ically (to at most 4.0%) after the crash of the Hong Kong market. Of course, these
returns are lower for more risk averse investors, but we stress that they correspond
with a 1-month horizon.

The results also indicate that diversification opportunities deteriorate rapidly if
the inference probability of a crisis increases. Already before the crisis hits, leverage
decreases, investments are reduced and in some countries short position are taken.
These findings can be seen as an addition to the results in Ang and Bekaert (2002),
who conclude that diversification opportunities do not disappear when the bearish
regime in their model is prevailing. Since the crisis regime in our model consists of
the bear regime of each country and a shock (with a negative mean) on top of that,
conditions are much worse in the crisis regime, and consequently we do observe such
a deterioration.

We conclude the analysis by considering the estimation and crisis effects over Oc-
tober 1997, which are also plotted in Figure 4.2. The crisis effect indicates that the
US and European market and the riskless asset can be used to hedge against a crisis.
We observe a positive demand for the US and European asset, and a strong and in-
creasing positive demand for the riskless asset. Positions in other markets are more



98 Portfolio implication of systemic crises

Figure 4.3: Certainty equivalent returns
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This figure plots the certainty equivalent return (in %) needed to compensate the investor for

adopting the suboptimal ignorant strategy and a decomposition in an estimation and crisis effect

for each trading day in October 1997 (numbered consecutively). We assume that the investor

has a log utility function and a horizon of 1 month. The portfolios during October 1997 and the

corresponding decompositions are given in Figure 4.2.

and more reduced, particularly in crisis prone Korea and Thailand. The estimation
effect presents a less clear picture. In the uninformative case, the estimation effect
causes investments to shift from the riskless asset to the risky assets. Now we observe
a preference for Japan, Korea and Thailand. Within the risky asset part we observe
a tendency to more aggressive allocations, but leverage is not increased much. The
certainty equivalent returns associated with missing the crisis effect are also consid-
erable, being always positive and rising rapidly. Of course, missing the crisis effect
becomes extremely expensive after a crisis has occurred (with a maximum certainty
equivalent return at 10%). The estimation effect does not always harm the investor’s
utility. Finally, the estimation effect influences utility less (in absolute sense) than
the crisis effect.

The portfolio differences and the corresponding certainty equivalent returns lead
to several important conclusions. First, the differences and their importance become
rapidly larger when the inference probability of a crisis increases. Second, an inference
probability of a crisis of around 0.10 already leads to portfolio differences that are
much larger than in the uninformative case (in that case the probability of a crisis
equals 0.05) and much more costly to ignore. Third, an investor that adopts the crisis
conscious strategy takes precautions well before the inference probability reaches
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high levels (exceeding 0.5). Finally, the occurrence of a crisis rapidly diminishes
diversification opportunities.

4.5.3 Robustness checks

In order to gauge the strength of our results, we subject them to several robustness
checks. We start by repeating our analysis of the allocations during October 1997
for four different months during the Asian crisis: August, September, November and
December. We continue by investigating the effects of short selling constraints on
the different allocations. Next, we determine the portfolio turnover for the different
strategies and use it to discuss the possible impact of transaction costs. In the
following subsections we briefly discuss each robustness check.19

Other months during the Asian crisis

The Asian crisis was perceived as a global crisis after the collapse of the Hong Kong
market and the subsequent fall of other markets in October 1997. The crisis actually
built up during August and September, but it was not perceived as a systemic crisis
then. After October, the crisis was perceived to take place with almost certainty. This
makes August, September, November and December interesting months to study as
well.

In August the Thai market crashed, but other markets did not follow it as much as
the Hong Kong crash in October. In September the Thai market showed sharp fluctu-
ations and the Korean market decreased considerably (at most -14%). In November
all Asian markets declined steadily. December showed again large declines for the
emerging markets (in particular Korea and Thailand), though the other markets
seemed to stabilize. Inference probabilities for a systemic crisis are low in August
and September and high in November and December.

We perform the analysis discussed in section 4.5.2 for these months and find
large similarities, which supports our conclusions based on October. In all months
the crisis conscious strategy advises a smaller exposure to emerging markets. In
August and September, it advises a higher exposure to the developed markets while
in November and December, leverage is decreased. Because the inference probability
for a crisis is large throughout November and December, the certainty equivalent
return to compensate for the crisis ignorant strategy is also large in those months
(well above 5.0% for a log-utility investor with a 1 month horizon). In August and
September, the inference probability for a crisis is low, but we still observe certainty
equivalent returns that exceed the 0.09% that resulted from the uninformative case.

19The complete results are available from the authors.
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Short sales constraints

Large short positions as in Figure 4.2 may not be feasible. Therefore, we construct
optimal allocations for both strategies for an investor facing short sales constraints.
In Appendix 4.A.3 we derive the optimal portfolio under the restriction that the port-
folio weights for the risky assets are nonnegative.20 We use that result to determine
the optimal allocation for both the uninformative case and the informative case of
October 1997.

In the uninformative case, the consequences of short sales constraints are limited.
Both strategies do not invest in Japan. The investments in the other countries are
slightly reduced, but we mainly observe an increase in leverage of both portfolios.
Because the portfolio adjustments are similar for both strategies, the decomposition
in the estimation and the crisis effect, and the certainty equivalent return needed to
compensate for the crisis ignorant strategy remain largely unaffected.

The analysis of October 1997 yields more interesting insights. First of all, the
investor who uses the crisis conscious strategy leaves all markets, if a crisis occurs.
In Appendix 4.A.3, we show that the investor does not invest in assets for which
αi ≡ µi + 1

2ωi− rf is negative and the covariance with other assets is positive. Based
on the parameters reported in Tables 4.2 and 4.3 we conclude that these conditions
are satisfied. During October 1997, a crisis does not occur with certainty, but its
inferred probability is large enough.

Figure 4.4 shows the allocations for the trading days in October 1997. Imposing
short sales constraints results in less volatile and less aggressive allocations for both
strategies. The conscious strategy stays out of the Japanese, Hong Kong and Korean
market during the complete month; the allocations to the Thai and Brazilian market
are quickly reduced. During the last days of the month, the crisis conscious strat-
egy advises to leave all markets, while the crisis ignorant strategy advises to leave
only Japan and Thailand. Despite their high volatility, the other markets remain at-
tractive. Because the differences between the allocations become smaller in absolute
sense, the certainty equivalent return decreases slightly. The other months (August
till December) confirm these findings. In August and September, the crisis conscious
strategy advises to invest neither in the Korean market.

We conclude that the impact of short sales constraints on allocations can be large,
particularly for high probabilities of a systemic crises. However, even if short sales
constraints are imposed it remains economically important to take the possibility of
a crisis into account.

20For a more general treatment of optimal portfolio selection for investors with CRRA utility

facing short sales constraints, see Teplá (2000).
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Figure 4.4: Optimal portfolio weights during October 1997 under short sales

constraints

0 5 10 15 20 25

−0.2

−0.1

0.0

0.1

0.2

0.3

Conscious 

Estimation effect 

Ignorant 

Crisis effect 

(a) US

0 5 10 15 20 25

−2.5

0.0

2.5

5.0

7.5

10.0

(b) EU

0 5 10 15 20 25

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

(c) Japan

0 5 10 15 20 25

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

(d) Hong Kong

0 5 10 15 20 25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

1.25

(e) Thailand

0 5 10 15 20 25

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

(f) Korea



102 Portfolio implication of systemic crises

0 5 10 15 20 25

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

(g) Brazil

0 5 10 15 20 25

−10.0

−7.5

−5.0

−2.5

0.0

2.5

(h) risk free asset

The proportion of wealth invested in the different countries for the crisis conscious and crisis ignorant

strategy and a decomposition of the differences for each trading day (numbered consecutively) in

October 1997 assuming that short sales are not allowed. We assume the investor has a log utility

function. The portfolios are based on the estimates in Tables 4.2 and 4.3 and the inferences presented

in Figure 4.1. The portfolio differences between the two portfolios are decomposed in an estimation

and a crisis effect.

Portfolio turnover

In this subsection we shortly discuss the portfolio turnover that results from the
different strategies. We use this information to gauge the possible impact of trans-
action costs on our results. Though transaction costs are present in the real world
and can seriously impact dynamic trading strategies (see e.g. Liu and Loewenstein,
2002; Balduzzi and Lynch, 1999), including transaction costs in the asset allocation
problem would impede our analysis and is not our chief interest. Instead, we turn
attention to the portfolio turnover of the different strategies as a measure of their
variability. Higher variability typically leads to higher transaction costs. If the crisis
conscious strategy leads to a higher portfolio turnover than the crisis ignorant strat-
egy, introducing transaction costs will affect the crisis conscious allocations most.

We calculate the portfolio turnover by summing the absolute changes in the port-
folio weights for the risky assets. Transactions costs will be a fraction of this measure,
if transaction costs are proportional to the value of assets bought or sold. For the log
utility investor, we find that the turnover in October 1997 equals 123.5 for the crisis
conscious strategy versus 97.6 for the crisis ignorant strategy, 1.25 times as much,
indicating that the crisis ignorant strategy is more stable. The turnover is large, but
this is partly due to the assumption of log utility. In order to move to power utility,
the log utility turnover should be divided by the coefficient of relative risk aversion.
For the other months we calculate lower numbers, as the large drops during October
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lead to large adjustments of the portfolio weights. We interpret the relatively small
differences in turnover as evidence that our results are robust to transaction costs.

4.6 Conclusions

A systemic crisis in international equity markets can put investors in dire straits,
because of the simultaneous decrease in expected returns and increase in volatilities
and correlations. However, standard models supporting asset allocation decisions
typically fail to fully capture systemic crises due to their irregular and relatively rare
occurrences. In this chapter, we have proposed a framework to determine the impact
of systemic crises on asset allocations, which combines regime switching models with
optimal portfolio construction in continuous time. In this framework, an investor can
adopt a crisis conscious strategy that includes systemic crises, and, as an alternative,
a crisis ignorant strategy which excludes it. We have studied the allocations of a
US-based, global investor, who maximizes his expected utility by investing in equity
markets in the US, Europe, Japan, Hong Kong, Thailand, Korea and Brazil, and a
riskless asset. We have considered the case in which he has no information on the
likelihood of the different states in the regime switching model, and the case in which
he has information up to October 1997, which belongs to the Asian crisis. If the
investor adopts the crisis conscious strategy, he decreases leverage and shifts invest-
ments to countries that are less prone to a crisis. The certainty equivalent returns
indicate that these differences are economically important. The investor requires a
substantial compensation for incorrectly adopting the crisis ignorant strategy in the
uninformative case, and this compensation rises quickly during October 1997.

The pronounced portfolio differences and their economic impact indicate that
persistence is an important characteristic of systemic crises. We have estimated
that the probability of remaining in the crisis regime for another month equals 0.93.
Because of this persistence, we find stronger evidence advocating the incorporation of
systemic crises in asset allocation decisions than reported by Das and Uppal (2004,
2003), while the corresponding unconditional probabilities on a crisis are similar
(0.045 versus 0.0501). Crisis persistence also explains the large differences between
the crisis conscious and ignorant strategies and the large required compensation if a
crisis occurs with almost certainty. This would also explain the well-known fact that
investors stay away from financial markets after a systemic crises for a relatively long
period of time.

Systemic crises seriously diminish diversification possibilities. If a crisis has a
small probability of occurrence, this effect is present but limited. As the probability
increases, the impact becomes larger and leads to short positions in several mar-
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kets. When the investors faces short sales constraints, he withdraws from equity
markets completely. These findings are complementary to Ang and Bekaert (2002)
who conclude that the presence of a bear regime in a regime switching model does
not extinguish diversification possibilities. However, because of its severity the crisis
regime in our model causes a much stronger deterioration in the risk-return trade-off
than the bear regime in their model.

This chapter can motivate further research in several ways. Some parts of our
model are kept at a basic level for clarity. It would be interesting, however, to
see the influence of a crisis when other economic variables are used to predict the
likelihood of a crisis or the corresponding means and variances. A more normative
model for a crisis can also be interesting. Our finding that crisis conscious strategies
shift allocations from countries that are relatively prone to a crisis to countries that
are less prone to it can add to the research on the home bias puzzle (see Lewis,
1999, for an overview), particularly in relation to emerging markets. At a more
fundamental level, an equilibrium analysis of systemic crises can shed more light on
their consequences for asset pricing.
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4.A Model details

4.A.1 A multinomial model for regime transition probabilities

In this appendix we discuss the specification of the multinomial logistic model that
we propose for the regime transition probabilities in Section 4.2.1 in more detail.
πab

i gives the marginal probability that asset i will switch to regime Qa
i , given that

the current regime is Qb, and that a crisis is absent in both the current and the
destination regime. Its functional form reads

πab
i =

exp f(Qa
i , Qb)

1 +
∑K−1

k=1 exp f(Qa
i = k, Qb)

(4.15)

The summation in the denominator excludes the Kth basic regime to ensure that the
probabilities add up to 1. We specify the function f(Qa

i , Qb) as follows:

f(Qa
i = k, Qb) = ψi,k,Qb

i
+

n∑

j=1, j 6=i

K∑

k′=2

ψi,j,k,k′I(Qb
j = k′), (4.16)

where ψi,k,Qb
i

and ψi,j,k,k′ are constant, and I() denotes the indicator function. If
all assets other than asset i are in their low volatility regimes (Qb

j = 1), the function
returns the constant ψi,k,Qb

j
. For the assets that are in a higher volatility level k′,

constants ψi,j,k′ are added to it. We require ψi,j,k,k′ < 0 for k < k′, ψi,j,k,k′ > 0
for k ≥ k′, and ψi,j,k,k′ < ψi,j,k,k′′ for k′ < k′′ to ensure that the volatility spill-over
effects increase the probability of higher volatility regimes.

4.A.2 Solving the asset allocation problem

In this appendix we derive the optimal portfolio and the certainty equivalent return
to compensate for suboptimal portfolios. The optimal portfolio solves

max
φs,t≤s≤T

Et [U(WT )]

subject to
dW

W
= rf dt + φ′α dt + φ′ΛdZ.

(4.17)

Via the indirect utility function

V (W, t) ≡ max
φs,t≤s≤T

Et [U(WT )], (4.18)

we derive the Hamilton-Jacobi-Bellman equation:

max
φ

(
∂V

∂t
+ (rf + αφ′)W

∂V

∂W
+

1
2
φ′ΩφW 2 ∂2V

∂W 2

)
= 0. (4.19)
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We conjecture (and verify) that the indirect utility function is of the form

V (W, t) = C(t)
W 1−γ

(1− γ)
, (4.20)

derive expressions for the derivatives in Eq. (4.19) and substitute them.21 Differen-
tiating Eq. (4.19) with respect to φ, and solving the first-order condition yieldd the
optimal portfolio in Eq. (4.9).

The certainty equivalent return r̄ to compensate the investor for selecting the
inappropriate crisis ignorant portfolio φi instead of the optimal crisis conscious port-
folio φc solves:

V
(
er̄Wt, t;φi

)
= V (Wt, t; φc) . (4.21)

Using the functional form of the value function in Eq. (4.20), we find after some
rearrangements that

r̄ = (ln C(t; φc)− ln C(t; φi))/(1− γ),

which is independent of wealth. To identify C(t), consider the Hamiltonian Eq. (4.19)
at the presumed optimal solution φ∗. This equation implies an ordinary differential
equation for C(t):

dC = −(1− γ)
[
rf + φ∗′α− 1

2γφ∗′Ωφ∗
]
C(t),

that can be solved straightforwardly, yielding:

C(t;φ∗) = exp[(1− γ)(rf + h(φ∗))(T − t)]. (4.22)

with h(φ∗) = φ∗′α − 1
2γφ∗′Ωφ∗. We use the boundary condition V (W,T ;φ∗) =

U(WT ), to solve for the integration constant. Substituting this into the expression
for r̄ yields the expression in Eq. (4.13).

4.A.3 Short sales constraints

Short sales constraints can be included in the asset allocation problem straightfor-
wardly. The basic optimization problem, constituted by Eq. (4.17) is now extended
with short sales constraints φi,t ≥ 0, ∀t, i = 1, . . . , n. The new first order conditions
for optimality include Kuhn-Tucker conditions for the new restrictions. To derive
these we start with the Hamilton-Jacobi-Bellman equation (13), combined with the
guess for the indirect utility function (14):

max
φ

(
∂C(t)

∂t

W 1−γ

1− γ
+ (rf + φ′α)W 1−γ − 1

2γφ′ΩφW 1−γ

)
= 0. (4.23)

21For γ = 1 we use V = ln[C(t)W ].
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We introduce Lagrange multipliers λi,t ≥ 0 ∀t for the short sales constraint on asset i

and construct a Lagrangian function by adding the term φ′λ to the maximand in
the HJB-equation. Differentiation yields the following first order conditions:

α− γΩφ = −λW−(1−γ) (4.24)

φiλi = 0 (4.25)

φi, λi ≥ 0, (4.26)

where the last two restrictions are the complementary slackness conditions.
This system of (in)equalities resembles the system of (in)equalities resulting from

a mean-variance portfolio optimization problem with short sales constraints (see
Teplá, 2000; de Roon et al., 2001). Consequently, the optimal portfolio can also
be characterized similarly. Let Ip be the set of indices for which the short selling
constraints are not binding, and use the superscript p to denote the subvectors and
submatrices with respect to that set. The optimal positive weights are given by:

φp = γ−1(Ωp)−1αp. (4.27)

The Lagrange multipliers for the assets in the complement I◦ of Ip can be found as:

λ◦ = (−α◦ + γΩ◦pφp)W 1−γ = (−α◦ + Ω◦p(Ωp)−1αp)W 1−γ ≥ 0 (4.28)

where Ω◦p denotes the n◦ × np covariance matrix of the returns of the assets in I◦

with those in Ip. Using positivity of wealth, a partition of the assets into subsets Ip

and I◦ is valid if and only if −α◦ + Ω◦p(Ωp)−1αp ≥ 0. In general, the validity of a
partition will have to be checked using this condition. However, it easy is to verify
that assets i for which αi ≤ 0 and Ωij ≥ 0 ∀j will always be in I◦.





Der Streik, die Krise nähern euch dem Ziele, durch den großen

Kladderadatsch werdet ihr ins Paradies eingeführt.

Karl Marx

Chapter 5

Crash risk in the cross

section of stock returns∗

5.1 Introduction

Crashes have dramatic consequences for investors. Because comovements of assets
become stronger when crashes occur, these consequences are hard to diversify and
difficult to evade. For these reasons, financial theory predicts that investors receive
a premium for the crash risk that they bear. If asset returns exhibit different char-
acteristics during a crash than during quiet periods, or if investors are particularly
averse to crashes, the crash risk premium should be distinguishable from the risk
premium for quiet times. Knowledge about this premium and its structure can then
increase our understanding of investor preferences and the expected returns of assets
both over time and in the cross section.

In this chapter, we examine whether we can identify a risk premium for crash risk
in the cross section of stock returns. Up to now, evidence of a premium for crash
risk is largely based on options on stock market indexes (see Andersen et al., 2002;
Bates, 1991, 2000). However, Bakshi et al. (2003) show that the distributions of
stock returns implied by individual stock options differ from the implied distribution
for market index returns, as they are less skewed. Chen et al. (2001) report wide
variation in the skewness of stock return distributions. This evidence can indicate
that individual stocks vary in their sensitivity to market crashes, and differ from the

∗This chapter is based on the article by Kole and Verbeek (2005).
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market in aggregate. As a consequence, the expected returns of stocks can differ
according to their exposure to market crash risk.

To investigate systematic crash risk in asset prices, we derive an extension of
the Capital Asset Pricing Model (CAPM) that includes a premium for crash risk.
Based on Bates (2001), we model a crash as a Poisson-jump in the dividend process
underlying the stock price. To capture investors’ aversion to large losses we include
a specific crash aversion part in the utility function. Individual stocks can vary in
their tendency to crash given that the market crashes. The expected return for a
stock contains a reward for crash risk proportional to its sensitivity for it. We derive
that a stock’s sensitivity to crash risk consists of two parts: the probability that it
crashes, given that the market crashes, and a ratio of the crash magnitude of the
asset to that of the market. The premium for crash risk is a function of general risk
aversion and crash aversion.

We use this model to set up an empirical analysis of crash risk in the cross section
of stock returns. We derive three measures for the conditional crash likelihood that
shows up in an asset’s sensitivity to crash risk. The intuition behind these three
measures is that crash risk can explain the difference between the actual dependence
of an asset and the market, and the correlation-implied dependence (see Hartmann
et al., 2004; Longin and Solnik, 2001). So, large deviations reflect a large exposure to
crash risk. For each stock we construct estimates for the values of the three measures
and use them to sort the stocks into value-weighted portfolios.

Based on the CRSP-database from June 1964 to November 2003, we provide
evidence that crash risk shows up as a separate premium in the cross section of stock
returns. After correcting for market risk as in the traditional CAPM, portfolios
with stocks that score in the top 33% of crash risk exposure yield on average an
extra significant return of 2.3% to 4% per annum, depending on which of the three
measures is used for sorting the stocks. These extra returns cannot be explained by
established factors, such as size, value or momentum. We do find that these portfolios
are related to the coskewness effect of Harvey and Siddique (2000), and the cokurtosis
effect of Dittmar (2002), but the extra returns remain significant after correcting for
these effects. The portfolios with stocks that exhibit little or no exposure to crash
risk do not pay an extra significant average return.

We find mild evidence supporting the inclusion of a crash risk factor in asset
pricing tests. For portfolios constructed on momentum a crash factor clearly helps
explaining cross-sectional variation in returns. The traditional CAPM produces pric-
ing errors that are jointly significant, but this significance vanishes after including a
crash risk factor. For portfolios sorted on industry, size or value versus growth we
find small improvements, but the traditional CAPM suffices to explain these cross
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sections of portfolio returns. An analysis of the entire cross section of stock returns
also indicates that pricing errors and their standard errors are lower after addition
of a crash portfolio. The risk premium estimated at 8.4% per year indicates that the
premium for crash risk has the same magnitude as the premium on market diffusion
risk.

This chapter adds to the ongoing debate on asset pricing. We investigate the
presence of a factor that can be related directly to risk, which distinguishes our
research from the more data based approaches underlying the size and value factors
of Fama and French (1993, 1995) and the momentum factor of Jegadeesh and Titman
(1993) and Carhart (1997). Our research is in line with the literature that extends
the traditional CAPM with higher order moments, such as coskewness in Harvey and
Siddique (2000) and Barone Adesi et al. (2004), or cokurtosis in Dittmar (2002) and
Christie-David and Chaudhry (2001). Coskewness and cokurtosis can be interpreted
as proxies for conditional crash likelihood. Indeed, we find a relation between the
crash risk portfolios and the coskewness and cokurtosis portfolios. However, for the
period we consider, the returns on the coskewness and cokurtosis hedge portfolios are
insignificant. This can indicate that coskewness and cokurtosis are imperfect proxies
for crash risk.

This chapter is structured as follows. In Section 2 we derive the CAPM extended
with crash risk. In Section 3 we derive the measure for conditional crash likelihood.
Section 4 discusses the portfolio formation based on these measure and reports their
relation with other risk factors. Section 5 considers the cross section of stock returns
in relation to crash risk, while section 6 concludes.

5.2 Extending the CAPM with crash risk

The traditional Capital Asset Pricing Model (CAPM) as put forward by Sharpe
(1964) and Lintner (1965) posits that the following equilibrium relation between the
excess return Re

i,t+1 on asset i and the excess return on the wealth portfolio Re
w,t+1

holds at time t:
Et

[
Re

i,t+1

]
= βi,t Et

[
Re

w,t+1

]
, (5.1)

where Et [·] denotes the conditional expectation given information available at time
t. In this expression, βi,t measures the sensitivity of the asset’s excess return with
respect to the return on the wealth portfolio. In empirical work, the wealth portfolio
is commonly approximated by the market portfolio.

The CAPM can be derived straightforwardly by assuming an endowment economy
in which the representative agent has power utility and the systematic uncertainty
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stems from diffusion processes.1 While such an approach provides a nice starting
point for studying asset pricing, it is too restrictive to study the influence of crash risk
on asset prices. Following Bates (2001), we propose modifications of the standard
approach to address important drawbacks. We use the insights of the extended
CAPM to steer the empirical research in the remainder of this chapter.

We derive the extended CAPM from the standard CAPM setting in which we
assume an endowment economy with a finite-lived representative agent who consumes
at the final date T . In this economy n + 1 assets are available. The first asset is a
contract that provides a certain pay-off at the end date. The other n assets entitle
the owner to an uncertain final pay-off, denoted by XiT , i = 1, . . . , n. We assume
that the riskless asset is in zero net supply, while each of the risky assets have a net
supply of unity. The market then consists of the sum of the uncertain pay-offs, which
we call the market claim and denote as Xmt. The CAPM enables us to derive the
price dynamics of these assets over time, based on the dynamics of the underlying
processes. We use Sit to denote the time t price of the asset i, and Smt for the price
of the market claim.

As a first extension we add jumps as a source of systematic risk to the diffusions
present in the standard CAPM. We assume that the growth rate of the final market
pay-off follows

d log Xm = µm dt + σm dZm + κm dNm, (5.2)

where µm dt is the drift rate, Zm is a Wiener process, Nm is a Poisson process with
arrival rate λm, κm is the jump size, which we assume to be negative, and σ2

m dt

is the variance rate of the process, conditional on no jumps occurring over dt. We
assume that the Wiener process and the Poisson process evolve independently.

Poisson processes are essential to capture the sudden price decreases during
crashes. Empirical evidence indicates that stock prices are not only driven by dif-
fusion processes but exhibit negative jumps as well (see Das and Uppal, 2004, and
references therein). Moreover, evidence from option markets in Andersen et al. (2002)
and Bates (2000, 1996, 1991) indicates that investors expect downward jumps to oc-
cur and require a premium for this risk. Stock price processes that are constructed
with diffusions only (including stochastic volatility) cannot generate the distribu-
tions that are implied by option prices. This implies that jumps have a systematic
component, which should show up in the pricing kernel.

1See Cochrane (2001, Ch. 9.1) for other sets of assumptions that lead to the CAPM.
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Second, we add a crash discount to the power utility function of the representative
agent, formulated indirectly in terms of wealth:

U(Wt, Nmt) = Et

[
eδNmT W 1−γ

T − 1
1− γ

]
, γ > 1, δ ≥ 0, (5.3)

where Wt denotes the investor’s wealth at time t, Nmt denotes the number of market
crashes up to time t, γ is the investor’s coefficient of relative risk aversion and δ

reflects his crash aversion.
Standard utility functions are ill-suited to capture investors’ aversion to downside

risk.2 In our setup an extra crash multiplies the value of the utility function with a
factor eδ > 0, reducing the value of the utility function (for γ > 1 we have W 1−γ

t /(1−
γ) < 0). This setting implies loss aversion in a limited sense, since it only applies to
crash losses and not to losses in general. However, this is not a substantial limitation,
as we are specifically interested in the effect of crash risk. Furthermore, in the absence
of market crashes Nm = 0, our model design leads to the traditional CAPM, providing
clear insights what the changes imply.

The third extension of the traditional CAPM posits a structure for the stochastic
processes that underlie the specific pay-off XiT that is similar to the structure for
the process for the market pay-off in Eq. (5.2):

d log Xi = µi dt + σi dZi + κi dNi, (5.4)

where Zi is a Wiener process, and Ni is a Poisson process with arrival rate λi,
independent from Zi. The Wiener processes Zm and Zi are related via E[dZi dZm] =
ρim dt. The Poisson process Ni is different from Nm, but not independent from it.

We assume that the joint process N =
(
Nm Ni

)′
evolves evolves according to:

dN =





(1 1)′ with probability λim dt

(1 0)′ with probability (λm− λim) dt

(0 1)′ with probability (λi − λim) dt

(0 0)′ with probability (1− λi − λm + λim) dt.

(5.5)

To guarantee that each arrival rate falls in the [0, 1] interval, we impose the re-
striction λim ≤ min {λi, λm}. The processes Nm and Ni can be interpreted as the
marginal processes of the process N (with marginal arrival rates equal to λm and λi,
respectively). Nm and Ni are independent iff λim = λiλm.3

2For a general discussion of loss aversion we refer to Kahneman and Tversky (1979) and Tversky

and Kahneman (1991). Benartzi and Thaler (1995), Barberis et al. (2001) and Berkelaar et al.

(2004) discuss loss aversion in a finance context.
3Independence is equivalent with Pr[dNi = 1|dNm = 1] = λim/λm dt = λi dt = Pr[dNi = 1].



114 Crash risk in the cross section of stock returns

The structure of this bivariate Poisson process captures our basic idea that in-
dividual assets need not all behave in the same way when the market encounters a
crash. A value of λim/λm close to one implies that an individual asset has a high
likelihood to crash if the market crashes, whereas a value for λim/λm close to zero
implies that this probability is negligible. As we show later, this conditional prob-
ability is crucial for the crash risk premium present in an individual asset. This
structure distinguishes our design from Ho et al. (1996), where one jump process is
present in all processes underlying the assets, and from Merton (1971), who studies
asset pricing in the presence of idiosyncratic jumps.

Based on these assumptions we derive the pricing kernel and the price processes
of the assets in the economy. We provide the derivation in Appendix 5.A and discuss
the resulting equilibrium equations for the expected returns here. The instantaneous
expected excess return on the market asset equals

Et [Rm] ≡ Et

[
dSm

Sm

]
= γσ2

m dt + λm

(
eδ−γκm − 1

)
(1− eκm) dt. (5.6)

The first term is the risk premium that the agent requires in the traditional CAPM
setting. In our setting it is the risk premium associated with diffusion risk. The
price of a unit of diffusion risk σ2

m is γ. The second term reflects crash risk. Its
expression is more complicated than the expression for diffusion risk, but it has a
similar structure. The effect of a crash consists of its probability λm times its impact
on wealth, being a decrease with a factor 1 − eκm (the exponent arises because the
crash takes place in the growth rate of XmT ). To find the premium associated with
crash risk, this expression is multiplied by eδ−γκm − 1, which can be interpreted as
the price of one unit of crash risk. It is a function of general risk aversion γ and an
extra term δ capturing crash aversion.

The expected excess return on asset i as underlying equals

Et [Ri] ≡ Et

[
dSi

Si

]
=

σi

σm
ρimζd dt +

1− eκi

1− eκm

λim

λm
ζc dt, (5.7)

where we use ζd ≡ γσ2
m and ζc ≡ λm

(
eδ−γκm − 1

)
(1− eκm). The first term is again

a reward for the diffusion risk that the contract on XiT entails. It has the same struc-
ture as in the traditional CAPM. The expression σi/σm · ρim gives the asset’s β with
respect to the market as in Eq. (5.1). Note that this β gives a sensitivity, conditional
on no crashes occurring, which is why we call it a diffusion-β. The second term covers
the premium for crash risk. Similar as the diffusion risk premium, it consists of the
risk premium for market crashes multiplied with a sensitivity factor. This sensitiv-
ity factor can be easily compared to the diffusion-β. The ratio (1 − eκi)/(1 − eκm)
reflects the relative magnitude of a crash in XiT in the same way as the ratio σi/σm
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give the relative magnitude of the diffusion in XiT . The conditional probability
λim/λm reflects the dependence between crashes in XiT and market crashes and can
be compared to the parameter ρim, which corresponds with the dependence of the
two diffusion processes. Consequently, we interpret the product of the magnitude
ratio and the conditional probability as the asset’s crash-β.

Equations (5.6) and (5.7) offer the main insights of the crash-CAPM. Under the
crash-CAPM, the expected return on a stock can be split in a part related to its sen-
sitivity to the market during normal periods and a part related to its sensitivity to
the market in times of a market crash. The premium on crash risk reflects the “nor-
mal” aversion to the risk that crashes entail and the extra aversion that agents have
to crash losses. As a consequence, the crash risk premium can be quite pronounced.

5.3 Conditional crash likelihood

The insights of the crash-CAPM are useful in guiding the empirical research in this
chapter. We want to shed more light on two issues. First, we investigate whether
we can identify a crash risk premium in the cross section of stock returns. Second,
we examine whether crash risk helps explaining the cross-sectional variation of stock
returns. To answer the first question we use the common technique of sorting stocks
into portfolios, in this case based on their sensitivity to market crashes (Harvey and
Siddique, 2000, follow the same approach for coskewness). To answer the second
question we use those portfolios again. We do not base the answers on direct estima-
tion of the Crash-CAPM, but use the portfolio approach instead, because it needs
less assumptions.

In this section we propose three measures to determine a stock’s market crash
sensitivity. According to Eq. (5.7) the sensitivity consists of two components: a ratio
of crash magnitude and a conditional probability of a crash, given that the market
crashes. Our measures concentrate on that conditional probability, and are based
on the difference between the actual dependence and the dependence implied by the
diffusion processes.4 The conditional crash probability affects the dependence be-
tween an asset and the market. If it equals zero, this dependence originates solely
from the dependence in the diffusion processes, which is measured by the correla-
tion coefficient ρi,m. If the conditional probability is larger than zero, the actual
dependence between an asset and the market reflects both the general dependence
from the diffusion processes and the dependence due to crashes. Indeed, empirical
evidence finds that the dependence between stocks and markets increases for more

4We expect that the cross-sectional variation in stocks’ crash β stems mainly from this compo-

nent, in particular if we take into account that crash magnitudes will actually be stochastic.
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extreme observations.5 In other words, if the proportion of observations in a sample
that qualify as crashes increases, the observed dependence becomes stronger.

The three measures are derived from copulas, because they constitute a flexible
and powerful tool to model dependence.6 A copula is a function that models the
dependence between random variables. It returns the joint cumulative probability of
a set of events as a function of the cumulative marginal probabilities of each event.7

Since we are interested in dependence between an asset and the market, we will use
bivariate copulas in this paper. This means that we model the joint distribution of
the return on asset i and the market return with a copula function C() as

Pr(Ri ≤ ri, Rm ≤ rm) = C(Pr(Ri ≤ ri),Pr(Rm ≤ rm)). (5.8)

The dependence due to the diffusion processes implies a Gaussian copula, which
is related to the normal distribution. If the conditional crash probability is high, the
actual dependence will deviate from the diffusion-implied Gaussian copula, and this
deviation will be larger for a larger conditional crash probability. We exploit this idea
in the three measures that we construct. The first measure is based on the difference
between the empirical copula and the Gaussian copula. The second and third measure
use the Student’s t copula. We discuss the construction of the measures in more detail
in the next subsection. Since copulas only model the dependence between random
variables, we first discuss how the marginal return distribution can be modelled.

5.3.1 Marginal models

The marginal distributions that Eqs. (5.22) and (5.25) in Appendix 5.A imply for
the market return and the individual asset return, respectively, would be normal
distributions in the absence of crash risk. Its presence will lead to distributions
that deviate from normal distributions and have negative skewness and fat tails.
As a consequence, we model the marginal distributions by a skewed Student’s t

distribution. It can be constructed from the regular Student’s t distribution by the
method proposed by Fernández and Steel (1998) as shown by Lambert and Laurent
(2001) and de Jong and Huisman (2000). Its density function is given by:

ψsk(x;µ, σ, ν, ξ) =





c · ψ
(

ξ
x− µ

σ
; ν

)
if x− µ ≤ 0

c · ψ
(

1
ξ

x− µ

σ
; ν

)
if x− µ > 0,

(5.9)

5See among others Hartmann et al. (2004), Bae et al. (2003), Ang and Chen (2002) and Longin

and Solnik (2001).
6See also Chapter 3 and the references therein.
7Copula theory is discussed in general terms in Joe (1997) and Nelsen (1999), and in a financial

setting by Cherubini et al. (2004) and Bouyé et al. (2000).
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where ψ(z; ν) is the standard Student’s t distribution with degrees of freedom param-
eter ν > 2, µ, σ > 0 and ξ > 0 are the location, dispersion and skewness parameters,
respectively, and c = 2ξ/(σ(ξ2 +1)) is a constant. Because of the transformation, the
parameters cannot be interpreted directly as moments. For ξ < 1, the distribution
is left-skewed, for ξ = 1 it is symmetric, and for ξ > 1 it is right-skewed.

The main reason for choosing the skewed Student’s t distribution lies in its flex-
ibility. Direct estimation of the parameters in Eqs. (5.23) and (5.25) would be
an attractive alternative under the assumption that the model part for crashes is
correctly specified.8 Using the skewed Student’s t distribution does not require an
assumption on the specific structure of the crash model.

5.3.2 Measures for conditional crash likelihood

The first dependence measure we use is based on the Gaussian copula and the empir-
ical copula. The Gaussian copula is related to the normal distribution and describes
the dependence implied by Wiener processes. Its bivariate functional form is given
by

CΦ
2 (u, v; ρΦ) = Φ2

(
Φ−1(u),Φ−1(v), ρΦ

)
, u, v ∈ [0, 1], (5.10)

where Φ2() denotes the standard normal cumulative distribution function with corre-
lation coefficient ρΦ, and Φ−1 denotes the inverse of the univariate standard normal
cumulative distribution function.

The empirical copula is the copula version of the empirical distribution function.
For a given set of T observations ri and rm, its functional form can be written as

CE(u, v; rm, ri) =
1
T

T∑
t

I
(
rit ≤ r

buTc
i

)
· I

(
rmt ≤ rbvTc

m

)
, u, v ∈ [0, 1], (5.11)

where rbuTc is the kth (ascending) order statistic, k being the largest integer not
exceeding uT , and I() is the indicator function.

The first measure for conditional crash likelihood, which we call the empirical
measure, is constructed as

λemp
i|m =

CE(u, v; ri, rm)
v

− CΦ
2 (u, v, ρΦ

im)
v

. (5.12)

The first term gives the empirical probability that the individual asset return falls
below the quantile associated with probability u, given that the market return lies
below the v-quantile. The second term gives the same conditional probability using
the Gaussian copula. If the dependence between the individual asset return and the

8Das and Uppal (2004) follow this approach by using GMM.
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market return are driven largely by diffusions, the empirical copula and the Gaussian
copula will yield approximately the same result. However, if crash dependence is
present, the empirical copula will give a higher joint probability than the Gaussian
copula. Consequently, we interpret a high value for λemp

i|m as a conditional crash
probability. Cappiello et al. (2005) use a similar measure to investigate comovements
to identify contagion. Throughout the chapter we will use u = v.

The other two measures are based on the Student’s t copula. The functional form
of the bivariate Student’s t copula reads

CΨ
2 (u, v; νΨ, ρΨ) = Ψ2

(
Ψ−1(u, νΨ),Ψ−1(v, νΨ); νΨ, ρΨ

)
,

u, v ∈ [0, 1], νΨ > 2,
(5.13)

where Ψ2() denotes the cumulative distribution function of the bivariate Student’s t

distribution with correlation coefficient ρΨ and degrees of freedom parameter νΨ,
and Ψ−1() denotes the inverse of the univariate standard Student’s t cumulative
distribution with degrees of freedom parameter νΨ.

The main difference between the Student’s t copula and the Gaussian copula is
the tail dependence that the Student’s t copula entails. Tail dependence χ is the
limit of the conditional probability of an extreme realization of a random variable U ,
given that the realization of a random variable V is extreme

χ ≡ lim
u↓0

Pr(U ≤ u|V ≤ u) = lim
u↓0

Pr(U ≤ u, V ≤ u)
Pr(V ≤ u)

= lim
u↓0

C2(u, u)
u

, (5.14)

where U and V are assumed to have a marginal uniform distribution (See Joe, 1997,
Ch. 2.1.10). If χ = 0 the two variables do not exhibit tail dependence, and if χ > 0
they do. Embrechts et al. (2002) shows that a Gaussian copula with ρΦ 6= 1 implies
tail independence. On the other hand, the Student’s t copula implies tail dependence,
even for ρΨ = 0. The Student’s t copula and the Gaussian copula belong to the class
of elliptic copulas. The Student’s t copula converges to the Gaussian copula for
νΨ →∞.

Because tail dependence can be interpreted as the limit of the conditional crash
probability in Eq. (5.7) for crashes getting more and more severe, we use it as an
asymptotic measure for conditional crash probability. We base it on the Student’s t

copula, because the Student’s t copula can also capture the elliptic dependence im-
plied by the diffusion processes. Embrechts et al. (2002) derive a closed form expres-
sion for the tail dependence implied by the bivariate Student’s t copula as

λa
i|m = 2 ·Ψ

(
−

√
(νΨ

im + 1)
1− ρΨ

im

1 + ρΨ
im

; νΨ
im + 1

)
. (5.15)
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We call it the asymptotic measure for conditional crash likelihood.9

The third measure we use for conditional crash likelihood is based on the degrees of
freedom parameter νΨ of the Student’s t copula. If the conditional crash probability
is low, it will not influence the actual dependence much, which will then come close
to a Gaussian copula. That means that the degrees of freedom parameter estimate
should be high. On the other hand, if the degrees of freedom parameter is low, the
actual dependence deviates strongly from the Gaussian copula, indicating that the
conditional crash likelihood is high. To give this measure the same domain as the
other two measures, we define the degrees of freedom measure as

λν
i|m = 1/(νΨ − 1), (5.16)

which ensures λν
i|m ∈ (0, 1]. Of course, it does not have the interpretation of a

probability.
We use these measures for conditional crash likelihood because they complement

each other. The first measure is mainly based on crash observations. However, as
the number of crashes in a sample is typically low, this measure may not be very
precise (i.e. have a large standard error). The other two measures are parametric,
which gives the advantage that they can be estimated more precisely. However, they
are based on all observations, and as a consequence they reflect other parts of the
distribution as well. Since the tail dependence implied by the Student’s t copula
is a function of νΨ, the second and third measure are likely to be strongly related.
However, the tail dependence is a function of ρ as well, which can lead to differences.
In the empirical part we investigate the relation of the three measures in more detail.

5.4 Crash portfolios

5.4.1 Data and Methods

In this section we examine portfolios constructed with the three different measures
for crash likelihood. In the portfolio construction we use all regular stocks (share
code 10 and 11) in the stock database of the Center for Research in Security Prices
(CRSP) at the University of Chicago during the period June 1964 - November 2003.
The market return series also comes from the CRSP database. The risk-free rate is
the one-month Treasury bill rate from Ibbotson Associates. Both series are available
on the web site of French10.

9In fact, we can write λa
i|m = limu↓0 {CΨ

2 (u, u; ν, ρΨ)/u− CΦ
2 (u, u; ρΦ)/u}, since the limit of the

second term equals zero. This shows that we can interpret λa
i|m as an asymptotic version of λemp

i|m ,

where the Student’s t copula replaces the empirical copula.
10http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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The main step in the empirical analysis of this chapter is the construction of crash
portfolios. To construct portfolios that have a low, intermediate or high probability
of crashing if the market crashes, we use the following approach. In each month
and for each stock we calculate the values of the three crash likelihood measures
presented in Section 5.3.2. We base these calculations on the estimates for the copula
parameters over a history of 120 months (implying that stocks with a shorter history
are omitted). We use the inference functions for margins method (IFM) proposed by
Joe (1997) for estimation. This two step procedure first estimates the parameters for
the marginal distributions, i.e. the skewed Student’s t distributions. The second step
yields the estimates for the copulas, treating the marginal distribution parameters as
given. In both steps we use maximum likelihood estimators. It is possible to apply
maximum likelihood estimation to jointly estimate the parameters for the marginal
distributions and the copulas. While IFM is less efficient than one-step maximum
likelihood estimation, it is computationally more attractive. Moreover, it guarantees
that the estimates for the marginal distribution of the market return do not vary
depending on which individual asset’s returns are included in the estimation.

Based on crash likelihood we sort the stocks into portfolios: portfolio L if the
stock belongs to the bottom third, portfolio M if the stock falls in the middle third
and portfolio H in the top third. The portfolios are value-weighted, with each stock
weighted by its market value at the beginning of the month. Each portfolio contains
the same number of stocks. At the end of the month the portfolio return is calculated.
We also construct hedge portfolios, entailing a long position in the portfolio with the
high conditional crash probability-stocks and a short position in the low conditional
crash probability-stocks. We use the portfolio returns to investigate the presence of
a crash risk premium. After correcting for diffusion risk, the portfolios from stocks
with high conditional crash probabilities should offer a significantly positive abnormal
return. On the contrary, portfolios of stocks with low conditional crash probabilities
should offer insignificant abnormal returns. The average return on the hedge portfolio
should be significantly positive.

Finally, we examine whether the returns on the crash portfolios can be explained
by other hedge portfolio returns. We consider the size and value hedge portfolios
from Fama and French (1993), a momentum portfolio as in Jegadeesh and Titman
(1993), and portfolios based on coskewness as in Harvey and Siddique (2000) and
cokurtosis as in Dittmar (2002). The returns on the hedge portfolios for the size,
value and momentum effects are available from the web site of French (as SMB,
HML and UMD, respectively). We construct hedge portfolios for coskewness and
cokurtosis ourselves (see Appendix 5.B for details).
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5.4.2 Constructing crash portfolios

The crash portfolios are constructed based on the three measures for conditional
crash likelihood. Figure 5.1 shows the evolution of the different measures over time.
It reports the one third quantiles (solid lines) and the two thirds quantiles (dashed
lines) that are used in the portfolio construction. Figure 5.1(a) plots the quantiles
for the empirical measure. It is based on the difference between the empirical copula
and the Gaussian copula. For both copulas we calculate the probability that a stock
crashes given that the market crashes. A crash is defined here as a return below the u-
quantile, where we have set u equal to 5%. If the empirical and the Gaussian copulas
do not differ significantly from each other, the empirical measure will be close to zero.
We observe that the one third quantile is close to zero. Sometimes, it lies below zero,
indicating that for some stocks the Gaussian copula implies a higher conditional
probability of returns below the 5% quantile than empirically observed. For many
stocks the empirical conditional probability of returns below the 5% quantile exceeds
the Gaussian implied probability. For one third of the stocks this difference is easily
0.15 or larger. We will see later whether these stocks offer on average higher returns.

The asymptotic measure in Figure 5.1(b) and the degrees of freedom measure
in Figure 5.1(c) are based on the Student’s t copula. Because both measures are
functions of the degrees of freedom parameter, the patterns of the quantiles show
a clear resemblance. For the one third and the two thirds quantiles the correlation
coefficients equal 0.69 and 0.82, respectively. We clearly see the effect of the crash of
October 1987 as both measures show an immediate increase after it. However, the
figures indicate that the crash of October 1987 ends a short period of low conditional
crash probabilities, as it seems that the evolution of the measures over 1988-1997
is a continuation of 1975-1985. An inspection of the data shows that July, August
and September of 1974 were notorious crash months with market returns as low as
-7.79%, -9.37% and -11.78% (and a rebounce of 16.05% in October 1974). Because
these months drop from the estimation horizon from July 1984 onwards, we see a
decrease towards the beginning of 1985. At the end of 1997 we see a similar decrease
in the conditional crash probability measures. By the end of the 1990s the measures
revert partially. The time trend that seems to be present in the two thirds quantile
of the asymptotic measure does not show up in the two thirds quantile of the degrees
of freedom measure.

All measures exhibit considerable time variation, justifying our preference for the
portfolio approach combined with a rolling estimation window. In each subfigure, the
solid and dashed lines follow a similar pattern, indicating that changes in conditional
crash likelihood are similar across stocks (the correlations between the one third
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Figure 5.1: Evolution of crash likelihood measures over time
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This figure shows the one third and two thirds quantiles of the distribution of the three measures for

the probability that a stock crashes given that the market crashes. The empirical measure (panel

a) is calculated as the conditional probability of a stock return below the 5%-quantile, given that

the market return falls below the 5%-quantile based on the empirical copula minus that conditional

probability according to the Gaussian copula as in Eq. (5.12). The asymptotic measure (panel

b) is calculated as the tail dependence coefficient that is implied by the Student’s t copula, using

Eq. (5.15). The degrees of freedom measure (panel c) is the transformation in Eq. (5.16) of the

degrees of freedom parameters of the Student’s t copula. We calculate the measure for each stock in

each month, if the return history is long enough. The empirical copula and the parameter estimates

for the Gaussian and Student’s t copulas are based on the previous 120 monthly excess stock returns

and excess market returns, using the IFM method of Joe (1997). Based on the cross section of stocks

in each month, we calculate the values of the measures below which one third and two thirds of

the stocks in that month lie. The solid (dashed) line corresponds with the one third (two thirds)

quantile.
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Table 5.1: Portfolio statistics for different sorts

sorted on λemp
i|m sorted on λa

i|m sorted on λν
i|m

L M H L M H L M H

λL −1 0.026 0.16 0 0.017 0.12 0 0.050 0.17

λU 0.026 0.16 1 0.017 0.12 1 0.050 0.17 1

µ 5.92 7.98 8.66 5.80 8.17 7.30 5.80 8.13 7.43

σ 13.23 13.46 14.11 15.83 13.33 13.26 15.84 13.27 13.07

µ/σ 0.45 0.59 0.61 0.37 0.61 0.55 0.37 0.61 0.57

This table presents summary statistics of the different portfolios into which the stocks are sorted

based on a measure for its conditional crash probability, given that the market crashes. We use

the three different measures for this probability and calculate the value of these measures for each

stock in each month as described in the caption of Figure 5.1. For each month we construct three

value-weighted portfolios with an equal number of stocks, based on the values of the measures for

the conditional crash probability, using the market values at the beginning of the month as weights.

We label the portfolio L, M and H reflecting low, intermediate and high values of the conditional

crash likelihood measure. For each portfolio and each measure we report the average lower and

upper bound used to construct the portfolio (λL, and λU), the average excess return µ (in % per

annum), the volatility σ (in % per annum) and the annual Sharpe ratio µ/σ.

quantiles and two thirds quantiles are 0.96 for the empirical measure, 0.85 for the
asymptotic measure and 0.94 for the degrees of freedom measure). The empirical
measure and the other two measures do not seem to be much related. Considering
the one third quantiles we find correlation coefficients of 0.29 between the empirical
measure and the asymptotic measure, and 0.44 between the empirical measure and
the degrees of freedom measure. For the two thirds quantiles correlation coefficients
are 0.24 and 0.37 respectively.

A first glance on the different portfolios that we construct based on the conditional
crash likelihood measures is provided in Table 5.1. For each measure, we show the
characteristics of the three portfolios, portfolio L with the stocks that have the lowest
values for that measure (below the one third quantile), portfolio M with stock that fall
in intermediate range (between the one third and two thirds quantile), and portfolio
H with stocks in the top third quantile. The average values for the one third quantile
are all close to zero (0.026 for the empirical measure, 0.017 for the asymptotic measure
and 0.050 for the degrees of freedom measure). The two thirds quantiles equal on
average 0.162, 0.124 and 0.165, respectively, and Figure 5.1 shows that they are larger
than zero for each month. We interpret the relatively low values for the two third
quantiles as an indication that idiosyncratic shocks account for a large proportion
of the crashes in individual stocks. However, given the investor’s general aversion to
market-wide losses, the premium can still have a considerable impact on expected
returns.
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The average excess returns that we find for the different portfolios point in the
direction of a reward for crash risk. The average excess returns on the L portfolios
are considerably lower than the returns on the M and H portfolios. The difference
varies from 1.63% to 2.74% on an annual basis. Moreover, in case of the asymptotic
measure and the degrees of freedom measure, the volatility of the L portfolios exceeds
the volatility of the M and H portfolios. Consequently, the Sharpe ratios for the L
portfolios are considerably less attractive than for the M and H portfolios. Gathering
all stocks into one value-weighted portfolio produces a Sharpe ratio of 0.54 over the
period June 1974 - November 2003.11 Of course, we have not taken differences in
standard market risk exposure into account. In the next subsection, we check whether
the M and H portfolios outperform the L portfolios after a correction for market risk.
We also check whether the return series are related to other risk factors.

5.4.3 Crash portfolio analysis

In this subsection we put the different portfolios constructed in the previous sub-
section under further scrutiny. The first results in Table 5.1 indicate that the M
and H portfolios perform better than the L portfolios. However, this difference may
be caused by different exposures to market (diffusion) risk. In this subsection we
correct for this exposure, and examine whether the pattern of Table 5.1 remains. By
constructing a hedge portfolio we test whether a long position in stocks with high
conditional crash probabilities and a short position in stocks with low conditional
crash probabilities yields a positive average pay-off.

It is also possible that the better performance of the M and H portfolios can
be explained by other trading strategies that yield significant outperformance. We
consider the familiar strategies based on size and value versus growth, as proposed
by Fama and French (1993, 1995) and momentum as put forward by Jegadeesh and
Titman (1993). Harvey and Siddique (2000) show that a Taylor expansion of the
pricing kernel leads to the inclusion of coskewness and Dittmar (2002) extends this
approach to cokurtosis. Under regular assumptions on utility functions, investors
have a preference for increasing coskewness and decreasing cokurtosis. We construct
coskewness and cokurtosis hedge portfolios and examine whether the crash portfolios
are related to these portfolios. In appendix 5.B we examine the trading strategies in
more detail and discuss the construction of the coskewness and cokurtosis portfolios.
We include two sets of coskewness and cokurtosis portfolios in our analysis. The first

11The Sharpe ratio for the complete market over this period equals 0.43, which is considerably

lower. However, the portfolios we construct contains only stocks with a history of more than 10

years, which means that all stocks that have not been listed for 10 years are excluded.
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set is constructed similarly as the crash portfolios, using a 120-months estimation
window. This set can indicate whether our crash measures capture to a large degree
the same information as coskewness and cokurtosis measures would. The second set
uses an estimation window of 60 months, and more resembles the approach of Harvey
and Siddique (2000).

Table 5.2 shows the regression results for the portfolios constructed with the
empirical measure for conditional crash likelihood. Panels (a) to (c) consider the
portfolios L, M and H and panel (d) reports the results on the hedge portfolio.
We conduct simple OLS regression and calculate Newey-West standard errors. The
coefficients on rm indicate that the L, M and H portfolios all exhibit significant
exposures to traditional market risk. After correcting for this exposure, the M and
H portfolios still show significant α’s of 0.26% (portfolio M) and 0.33% (portfolio
H) per month. The α for the L portfolio is insignificant. We interpret this result
as evidence that a portfolio with a higher crash exposure offers an extra return that
cannot be explained by exposure to the market. The actual return due to exposure
to market crashes may be even higher, because the estimated coefficient on rm will
capture crash exposure for a small part.

The portfolios have only limited exposure to other trading strategies. The co-
efficients on the size, value or momentum portfolios are significant in a few cases
only, and the coefficients are generally small. The small negative coefficients on SMB
may indicate that our selection procedure is slightly biased towards big firms. The
relation with coskewness is stronger. The portfolios M and H, which have a rela-
tively large exposure to crash risk, have significant coefficients on the coskewness
hedge portfolios. The coefficient on the 120-months coskewness portfolio is larger
than the coefficient on the 60-month coskewness portfolio. However, since the 120-
month coskewness portfolio does not yield a significant positive return (see Table 5.8
in Appendix 5.B), the α’s of the crash portfolios are not much affected. If we use
the 60-month coskewness portfolio, which yields a significant return, the α’s of the
M and H portfolios decrease but remain significant at the 5% level.12 The L and H
portfolios show significantly negative exposures to the cokurtosis portfolios. Because
the return on the kurtosis portfolio is insignificant, the α’s of the crash portfolios do
no change much. Depending on the risk corrections in the regressions, the portfolio
with stocks with the largest exposure to crash risk yield an extra return of 2.5% to
4% on an annual basis.

12Including both the 120 months and the 60 months coskewness portfolios in one regression,

shows that the explanatory effect of the 60 month portfolio is completely captured by the 120

month portfolio.
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Table 5.2: Analysis of portfolios constructed based on the empirical conditional

crash likelihood measure.

(a) portfolio Lemp (bottom third)

α 0.49b (0.22) 0.12 (0.10) -0.01 (0.14) 0.11 (0.10) 0.11 (0.11)

rm 0.64a (0.05) 0.68a (0.05) 0.62a (0.05) 0.64a (0.05)

SMB -0.04 (0.05)

HML 0.10 (0.06)

UMD 0.07 (0.07)

NMP 0.04 (0.07)

LMP -0.23a (0.07)

NMP60 -0.01 (0.07)

LMP60 -0.18a (0.06)

(b) portfolio Memp (middle third)

α 0.66a (0.22) 0.26a (0.08) 0.13 (0.10) 0.24a (0.08) 0.21b (0.09)

rm 0.69a (0.05) 0.75a (0.04) 0.67a (0.05) 0.69a (0.05)

SMB -0.08b (0.04)

HML 0.12c (0.07)

UMD 0.07 (0.05)

NMP 0.21a (0.06)

LMP -0.15b (0.08)

NMP60 0.15b (0.07)

LMP60 -0.07 (0.06)

(c) portfolio Hemp (top third)

α 0.72a (0.23) 0.33a (0.11) 0.22c (0.12) 0.31a (0.11) 0.26b (0.12)

rm 0.67a (0.05) 0.72a (0.05) 0.62a (0.04) 0.66a (0.04)

SMB -0.07c (0.04)

HML 0.11 (0.08)

UMD 0.06 (0.05)

NMP 0.38a (0.07)

LMP -0.28a (0.08)

NMP60 0.20b (0.08)

LMP60 -0.25a (0.07)

(d) hedge portfolio (portfolio Hemp - portfolio Lemp)

α 0.23b (0.10) 0.21b (0.10) 0.23b (0.11) 0.20b (0.09) 0.15c (0.09)

rm 0.03 (0.03) 0.04 (0.04) 0.00 (0.02) 0.02 (0.03)

SMB -0.04 (0.04)

HML 0.01 (0.05)

UMD -0.01 (0.03)

NMP 0.34a (0.06)

LMP -0.05 (0.05)

NMP60 0.21a (0.05)

LMP60 -0.07c (0.04)

This table present the regression results for different regressions of the monthly returns of the L,

M and H portfolios on a constant, the excess market return and other factor portfolios. The L,

M and H portfolios are value weighted portfolios with equal numbers of stocks, constructed based

on the empirical measure for conditional crash likelihood (see Eq. 5.12) for the different stocks,

estimated over the preceding 120 months. As regressors we consider the excess market return (rm),

the size factor (SMB), value factor (HML) and momentum factor (UMD) available on the website of

French, and a coskewness factor (NMP) and cokurtosis factor (LMP) (both constructed as described

in Appendix 5.B, based on an estimation window of 120 months and of 60 months (labeled NMP60

and LMP60)). Newey-West standard errors are in parentheses. Superscripts a, b or c indicates

significance at the 1%, 5% or 10% level, respectively.
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In panel (d), we report the results on the hedge portfolio, constructed by a long
position in portfolio H and a short position in portfolio L. The average return on
this portfolio equals 0.23% per month and is significant at the 5% level. This hedge
portfolio does not have a significant exposure to the market return, nor to the size,
value or momentum portfolios. Since portfolio H has an exposure to the coskewness
factor, whereas portfolio L does not, the hedge portfolio shows a similar exposure
to the coskewness factor as portfolio H. A correction for this exposure based on
120-month coskewness portfolio does not affect α much as it remains significant at
0.20% per month. This entails a yearly outperformance of 2.5%. If the 60-month
coskewness portfolio is used, the α decreases but remains marginally significant.

In Table 5.3 we consider the portfolio constructed with the asymptotic measure.
The L portfolio contains stocks with hardly any tail dependence with the market
(the average upper bound for this portfolio is reported in Table 5.1 as 0.017). Zero
tail dependence is consistent with dependence completely driven by the diffusion
processes. If we correct for the correlation with the market return, the abnormal
return of the L portfolio is positive but not significantly different from zero.13 The
M and H portfolios show dependence that cannot stem from diffusion processes, as
discussed in the theoretical section. Panels b and c of Table 5.3 show that the α’s
of the M and H portfolios remain significantly positive after correcting for market
risk. Strangely, the α of the M portfolio exceeds the α of the H portfolio, though not
significantly.

Including the hedge portfolios SMB, HML and UMD in the regressions yields
similar estimates as in Table 5.2. The coefficients are small and mostly insignificant.
Each portfolio has a significant sensitivity to the coskewness factor of about the same
size, which is a bit puzzling. Apparently, selecting stocks on their tail dependence
with the market is different from selecting stocks on coskewness. Sensitivities to
cokurtosis are different across portfolios. The L portfolio has a significant negative
exposure to the cokurtosis hedge portfolio, indicating that it is more platykurtic. We
find that H portfolio is more leptokurtic. Since tail dependence is an asymptotic
concept, it should reflect the joint behavior in the extreme parts of the distribution.
Consistent with this statement, the sensitivities of the portfolios in Table 5.3 com-
pared with those in Table 5.2 show that cokurtosis gains importance while coskewness
loses.

The results on the hedge portfolio in panel (d) of Table 5.3 indicate that shorting
assets with hardly any tail dependence and investing in assets with relatively high

13In case of the empirical measure, both positive and negative deviations from the Gaussian copula

are possible. This means that the L portfolio of the empirical measure cannot be related directly to

no deviations from the Gaussian copula, contrary to the case of the asymptotic measure.
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Table 5.3: Analysis of portfolios constructed based on the asymptotic condi-

tional crash likelihood measure

(a) portfolio La (bottom third)

α 0.48c (0.27) 0.11 (0.15) -0.05 (0.20) 0.09 (0.14) 0.08 (0.15)

rm 0.63a (0.06) 0.66a (0.08) 0.57a (0.06) 0.62a (0.07)

SMB 0.04 (0.08)

HML 0.09 (0.10)

UMD 0.11 (0.10)

NMP 0.22b (0.10)

LMP -0.63a (0.13)

NMP60 0.00 (0.13)

LMP60 -0.50a (0.11)

(b) portfolio Ma (middle third)

α 0.68a (0.21) 0.30a (0.09) 0.12 (0.11) 0.28a (0.09) 0.25a (0.09)

rm 0.65a (0.05) 0.71a (0.04) 0.62a (0.05) 0.64a (0.05)

SMB -0.06 (0.05)

HML 0.14c (0.07)

UMD 0.12b (0.06)

NMP 0.22a (0.07)

LMP -0.23a (0.09)

NMP60 0.13 (0.08)

LMP60 -0.17b (0.08)

(c) portfolio Ha (top third)

α 0.61a (0.22) 0.19b (0.10) 0.11 (0.10) 0.19c (0.10) 0.16 (0.10)

rm 0.70a (0.04) 0.76a (0.04) 0.69a (0.04) 0.70a (0.04)

SMB -0.12a (0.03)

HML 0.09 (0.06)

UMD 0.05 (0.04)

NMP 0.14a (0.05)

LMP -0.03 (0.05)

NMP60 0.12b (0.06)

LMP60 -0.01 (0.05)

(d) hedge portfolio (portfolio Ha - portfolio La)

α 0.12 (0.14) 0.08 (0.15) 0.17 (0.17) 0.10 (0.13) 0.08 (0.12)

rm 0.07b (0.03) 0.10b (0.04) 0.12a (0.03) 0.08b (0.03)

SMB -0.16b (0.06)

HML 0.00 (0.07)

UMD -0.06 (0.07)

NMP -0.08 (0.07)

LMP 0.60a (0.12)

NMP60 0.12 (0.10)

LMP60 0.49a (0.10)

This table present the regression results for different regressions of the monthly returns of the L,

M and H portfolios on a constant, the excess market return and other factor portfolios. The L,

M and H portfolios are value weighted portfolios with equal numbers of stocks, constructed based

on the empirical measure for conditional crash likelihood (see Eq. 5.15) for the different stocks,

estimated over the preceding 120 months. As regressors we consider the excess market return (rm),

the size factor (SMB), value factor (HML) and momentum factor (UMD) available on the website of

French, and a coskewness factor (NMP) and cokurtosis factor (LMP) (both constructed as described

in Appendix 5.B, based on an estimation window of 120 months and of 60 months (labeled NMP60

and LMP60)). Newey-West standard errors are in parentheses. Superscripts a, b or c indicates

significance at the 1%, 5% or 10% level, respectively.
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tail dependence does not yield a significant abnormal return, though it is on aver-
age positive. The hedge portfolio inherits the sensitivity to cokurtosis from the L
portfolio.

Constructing portfolios with the degrees of freedom measure for conditional crash
likelihood is almost the same as using the asymptotic measure. The results in Ta-
ble 5.4 are virtually the same as in Table 5.3. The returns to the hedge portfolio are
somewhat larger, but remain insignificant. The correlation coefficient of the portfo-
lios constructed with the degrees of freedom measure with their respective companion
portfolios from the asymptotic measure are all larger than 0.99. The hedge portfolios
are also highly correlated.

Based on the empirical analysis in this section we conclude that a crash risk
premium can be found in the cross section of stock returns. Buying stocks that score
highly on the measures that we have constructed yields an extra return of 2% to 4%
after correction for other risk exposures. However, only the empirical measure leads
to a profitable hedge portfolio with a statistically significant extra return of 2.5%.
This hedge portfolio is almost completely uncorrelated with the hedge portfolios of
the asymptotic and the degrees of freedom measures, indicating that these measures
are complements and not substitutes.

5.5 Explaining the cross section of stock returns

The question that remains to be answered is whether crash risk can contribute to
explaining the cross section of stock returns. In the previous section we established
that portfolios with a relatively high exposure to crash risk earn on average an extra
pay-off after correcting for exposure to market risk and possible other risk factors.
This indicates that a premium for crash risk is present. In this section we examine
whether a combination of exposure to market diffusion risk and exposure to market
crash risk leads to insignificant pricing errors. We start with an investigation of the
explanatory power of the crash risk portfolio on a set of well-known portfolios. Then
we consider the cross section of individual stock returns.

5.5.1 Portfolios tests

In its search for explanations for the cross section of stock returns, empirical research
has established several groups of portfolios whose return differences could not be
explained sufficiently by the traditional CAPM. From these portfolios the hedge
portfolios are constructed that are used many times as a risk factor, i.e. the size,
value and momentum factors. While these portfolios are specifically constructed for
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Table 5.4: Analysis of portfolios constructed based on the degrees of freedom

measure for conditional crash likelihood

(a) portfolio Lν (bottom third)

α 0.48c (0.27) 0.10 (0.14) -0.05 (0.20) 0.08 (0.14) 0.07 (0.15)

rm 0.64a (0.06) 0.67a (0.08) 0.59a (0.06) 0.64a (0.07)

SMB 0.03 (0.08)

HML 0.09 (0.10)

UMD 0.10 (0.10)

NMP 0.21b (0.10)

LMP -0.61a (0.13)

NMP60 0.00 (0.12)

LMP60 -0.48a (0.11)

(b) portfolio Mν (middle third)

α 0.68a (0.22) 0.26a (0.08) 0.15 (0.10) 0.25a (0.08) 0.22a (0.08)

rm 0.70a (0.04) 0.74a (0.04) 0.67a (0.04) 0.69a (0.04)

SMB -0.06c (0.04)

HML 0.08 (0.05)

UMD 0.08b (0.04)

NMP 0.20a (0.05)

LMP -0.22a (0.06)

NMP60 0.13b (0.06)

LMP60 -0.15a (0.06)

(c) portfolio Hν (top third)

α 0.62a (0.21) 0.22b (0.10) 0.12 (0.09) 0.22b (0.10) 0.18c (0.10)

rm 0.67a (0.05) 0.74a (0.04) 0.66a (0.05) 0.67a (0.05)

SMB -0.14a (0.03)

HML 0.12c (0.07)

UMD 0.06 (0.04)

NMP 0.14b (0.06)

LMP 0.01 (0.06)

NMP60 0.15b (0.06)

LMP60 0.02 (0.05)

(d) hedge portfolio (portfolio Hν - portfolio Lν)

α 0.14 (0.14) 0.12 (0.15) 0.17 (0.16) 0.13 (0.13) 0.11 (0.12)

rm 0.03 (0.04) 0.06 (0.04) 0.08a (0.03) 0.03 (0.03)

SMB -0.17a (0.06)

HML 0.03 (0.08)

UMD -0.04 (0.07)

NMP -0.07 (0.07)

LMP 0.61a (0.11)

NMP60 0.14 (0.10)

LMP60 0.50a (0.09)

This table present the regression results for different regressions of the monthly returns of the L,

M and H portfolios on a constant, the excess market return and other factor portfolios. The L,

M and H portfolios are value weighted portfolios with equal numbers of stocks, constructed based

on the empirical measure for conditional crash likelihood (see Eq. 5.16) for the different stocks,

estimated over the preceding 120 months. As regressors we consider the excess market return (rm),

the size factor (SMB), value factor (HML) and momentum factor (UMD) available on the website of

French, and a coskewness factor (NMP) and cokurtosis factor (LMP) (both constructed as described

in Appendix 5.B, based on an estimation window of 120 months and of 60 months (labeled NMP60

and LMP60)). Newey-West standard errors are in parentheses. Superscripts a, b or c indicates

significance at the 1%, 5% or 10% level, respectively.
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asset pricing tests, industry portfolios are also often used as they suffer less from
data snooping.

In this subsection we consider portfolio sets based on industries, size, value and
momentum. For each set we conduct a cross sectional test as described in Cochrane
(2001, Ch. 12). We estimate the exposure to risk factors for each portfolio i in a
time series regression

Re
it = ai + β′ift + eit, (5.17)

where Re
it is the excess return on portfolio i, ft is a vector with the factor values,

i.e. excess returns, at time t, and β is a vector with sensitivities and eit denotes the
error term. We use these sensitivities to estimate the risk premia ζ for the factors:

E[Re
it] = αi + ζ′βi. (5.18)

The term αi has the interpretation of a pricing error. If the risk factors f accurately
explain the cross section of stocks returns, the pricing errors should be zero. This

hypothesis can be tested formally by constructing the statistic α̂′ĉov[α]
−1

α̂, where
α̂ is a vector of empirical pricing errors. We estimate the model in Eqs. (5.17) and
(5.18) in a GMM framework. In this way we automatically include the Shanken
(1992) correction in the covariance matrix of the pricing errors for the fact that the
sensitivities are estimated. Moreover, by using the weighting scheme from Newey
and West (1987) for the spectral density matrix, we can incorporate autocorrelation
and heteroskedasticity. Since Eq. (5.18) implies a number of moments equal to the
number of portfolios and only one parameter (the risk premium) per risk factor, we
weigh the moments by β to construct the GMM objective, as discussed in Cochrane
(2001). In this setup we can use the TJT statistic to test for significant pricing errors.
Under the null hypothesis of zero pricing errors, this statistic follows a χ2-distribution
with degrees of freedom equal to the number of portfolios minus the number of risk
premia.

The data for the industry, size and value portfolios are based on the CRSP
database and come from the website of French. The industry set consists of 10
portfolios based on SIC codes: Consumer Non-Durables (1), Consumer Durables (2),
Manufacturing (3), Energy (4), High Tech (5), Telecom (6), Shops (7), Health (8),
Utilities (9) and Others (10). The size portfolios are 10 portfolios with stocks sorted
on market equity from small (1) to large (10). The value portfolios are 10 portfolios
with stocks sorted on the book-to-market ratio, from low (growth, 1) to high (value,
10).14 The set of momentum portfolios is based on the CRSP database and can be

14See the web site of Kenneth French, http://mba.tuck.dartmouth.edu/pages/faculty/ken.

french/data library.html, for detailed information on portfolio construction.
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downloaded from the website of Van Vliet.15 This set consists of 10 portfolios with
stocks sorted on their performance over the one to twelve months prior to portfolio
formation (See Post and van Vliet, 2004). The industry, size and value portfolios are
available over the entire period for which we have constructed crash risk portfolios
(June 1974 - November 2003). The momentum portfolios end at December 2002,
implying a slightly shorter horizon for the test based on the momentum portfolios.

For each set of portfolios, we conduct three cross-sectional tests. First, we test
the traditional CAPM. In the second test we include the hedge portfolio based on the
empirical measure for conditional crash likelihood. In the third test we include the
excess returns on the H portfolio based on the asymptotic measure for conditional
crash likelihood. We do not include the hedge portfolio based on the asymptotic
measure for two reasons. First, the exposure to crash risk should be concentrated
completely in the H portfolio, when using the asymptotic measure. For the empirical
measure this does not apply by definition. Second, the hedge portfolio did not yield a
significant expected positive pay-off, whereas the H portfolio did. We do not consider
the portfolios based on the degrees of freedom measure, because they are to a large
extent identical to the portfolios based on the asymptotic measure.

An alternative approach would be to use the fact that all factors we consider
are themselves returns and conduct a time series test (i.e. test whether the ai’s in
Eq. (5.17) are insignificant). The factor risk premium is then taken equal to the
average factor value. However, we have a specific reason not to use this approach.
We want to establish two risk factors: a market diffusion factor and a market crash
factor. However, as they are both present in the market return, we cannot estimate
the market diffusion premium as the time series average of the market return. In a
cross-sectional approach we do not have to make such an assumption.

Table 5.5 shows the results from the cross-sectional tests on the different portfo-
lios. It reports the estimated risk premia and the pricing errors, together with their
standard errors, and the TJT -statistic with a p-value. We draw several conclusions
based on this table. First, the addition of the Ha portfolio improves the explanatory
power of the model. Generally, we see a decrease of the TJT statistic and an increase
of the p-value. This improvement is most notable for the momentum portfolios (see
panel d). The traditional CAPM is rejected for momentum portfolios, but after the
addition of the Ha portfolio, the pricing errors are not jointly significant anymore. In
the appendix we show that the momentum effect is by far larger than the size and
the value effect. In case of the traditional CAPM, six out of ten portfolios exhibit
significant pricing errors. Not all pricing errors vanish, but they become smaller and
less significant.

15See http://www.few.eur.nl/few/people/wvanvliet/datacenter/index.htm.
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Table 5.5: Cross sectional tests with and without crash risk on single sorted

portfolios

(a) Industry portfolios

ζd 0.67a (0.25) 0.66a (0.25) 0.63b (0.25)

ζemp
c 0.57 (0.55)

ζa
c 0.76a (0.26)

1 0.27c (0.16) 0.27 (0.18) 0.15 (0.12)

2 −0.08 (0.18) −0.15 (0.19) −0.03 (0.19)

3 −0.13 (0.11) −0.08 (0.13) −0.19c (0.11)

4 0.18 (0.23) 0.23 (0.22) 0.07 (0.21)

5 −0.30 (0.25) −0.20 (0.20) −0.08 (0.16)

6 0.05 (0.20) 0.03 (0.20) 0.20 (0.18)

7 0.00 (0.13) −0.06 (0.12) −0.01 (0.13)

8 0.10 (0.18) 0.15 (0.20) −0.09 (0.17)

9 0.23 (0.18) 0.06 (0.13) 0.09 (0.15)

10 0.03 (0.10) −0.02 (0.09) 0.03 (0.10)

TJT 9.31 [0.41] 6.79 [0.56] 8.51 [0.39]

(b) Size portfolios

ζd 0.77a (0.26) 0.71a (0.25) 0.69a (0.24)

ζemp
c −1.10 (1.23)

ζa
c −0.04 (0.44)

1 0.16 (0.16) 0.03 (0.08) 0.01 (0.06)

2 0.09 (0.09) −0.02 (0.04) −0.04 (0.05)

3 0.03 (0.06) 0.01 (0.06) 0.00 (0.05)

4 0.00 (0.05) −0.07 (0.07) −0.02 (0.05)

5 0.05 (0.04) 0.04 (0.06) 0.05 (0.04)

6 −0.05 (0.05) 0.01 (0.08) −0.01 (0.05)

7 0.03 (0.05) 0.07 (0.05) 0.08c (0.05)

8 −0.06 (0.07) 0.02 (0.05) −0.03 (0.05)

9 −0.06 (0.09) 0.03 (0.05) 0.03 (0.04)

10 −0.21 (0.16) −0.14 (0.14) −0.07 (0.08)

TJT 9.03 [0.43] 6.22 [0.62] 7.37 [0.50]

(c) Value portfolios

ζd 0.80a (0.25) 0.78a (0.24) 0.65b (0.25)

ζemp
c 0.84 (0.80)

ζa
c 1.70b (0.70)

1 −0.51b (0.20) −0.50b (0.20) −0.41b (0.19)

2 −0.14 (0.09) −0.14 (0.10) −0.11 (0.09)
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3 −0.10 (0.07) −0.09 (0.09) −0.04 (0.09)

4 0.00 (0.09) 0.04 (0.09) −0.09 (0.09)

5 0.04 (0.09) −0.04 (0.05) −0.03 (0.11)

6 0.07 (0.07) 0.07 (0.09) 0.11 (0.10)

7 0.20b (0.10) 0.19b (0.09) 0.09 (0.09)

8 0.15 (0.10) 0.12 (0.09) 0.00 (0.09)

9 0.21b (0.10) 0.21c (0.12) 0.24c (0.13)

10 0.29c (0.17) 0.33c (0.18) 0.39b (0.19)

TJT 8.39 [0.50] 7.53 [0.48] 5.91 [0.66]

(d) Momentum portfolios

ζd 0.45c (0.25) 0.46c (0.26) 0.44c (0.25)

ζemp
c −1.72 (1.63)

ζa
c 1.02a (0.32)

1 −1.01a (0.25) −1.05b (0.45) −0.50b (0.21)

2 −0.35c (0.21) −0.16 (0.23) −0.31 (0.24)

3 −0.13 (0.13) −0.23 (0.27) −0.22 (0.17)

4 0.09 (0.12) 0.12 (0.15) −0.09 (0.11)

5 −0.07 (0.10) −0.03 (0.14) −0.23b (0.10)

6 0.04 (0.09) 0.09 (0.14) −0.19b (0.08)

7 0.25b (0.12) 0.26 (0.25) 0.00 (0.08)

8 0.38a (0.13) 0.53c (0.32) 0.19 (0.12)

9 0.43b (0.18) 0.34 (0.23) 0.44b (0.22)

10 0.69a (0.26) 0.51b (0.23) 0.90b (0.40)

TJT 21.28b [0.01] 11.38 [0.18] 9.86 [0.27]

This table reports the results of cross-sectional tests of three asset pricing models on four sets of

portfolios: portfolios based on industry (panel a), on size (panel b), on book-to-market ratios (panel

c) and on momentum (panel d). We consider the CAPM, the CAPM extended with the hedge

portfolio based on the empirical measure for conditional crash likelihood and the CAPM extended

with the H portfolios based on the asymptotic measure for conditional crash likelihood. We estimate

the sensitivities and risk premia in a GMM framework. For the industry, size and value portfolios we

use observations from June 1974 - November 2003. For the momentum portfolios we use observations

from June 1974 - December 2002. We report premia on market diffusion risk (ζd), on the empirically

based hedge portfolio (ζemp
c ), and on the asymptotically based H portfolio (ζa

c ). After the numbers

1 to 10 we report the pricing errors for the different portfolios. The industry portfolios are ordered

as Consumer Non-Durables (1), Consumer Durables (2), Manufacturing (3), Energy (4), High Tech

(5), Telecom (6), Shops (7), Health (8), Utilities (9) and Others (10). The size portfolios are

ordered from small (1) to big (10). The value portfolios are ordered from low (1) to high (10). The

momentum portfolios are ordered from loser (1) to winner (10). After each estimate the Newey

and West (1987) consistent standard error is reported in parentheses. TJT reports the value of

the TJT statistic, with the p-value for an insignificant TJT statistic based on a χ2 distribution

in brackets. Superscripts a, b or c indicates significance at the 1%, 5% or 10% level, respectively.
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Second, the hedge portfolio based on the empirical measure for conditional crash
likelihood performs worse than the Htexta portfolios. While we generally see a de-
crease of the TJT statistic and an increase of the p-value, we also observe large
standard errors for the estimates of the pricing errors. Addition the Ha portfolio
leads to more precise estimates of the pricing errors than the addition of the hedge
portfolio based on the empirical measure.

Third, we observe that the estimates for the risk premium associated with the Ha

portfolio are positive and significant, with exception of the case of the size portfolios.
Moreover, in the other three cases the premium is considerable and exceeds the
premium for market risk. The premium on the hedge portfolio based on the empirical
measure is not significant. The size of this premium stresses the importance of crash
risk.

Evidence in Post and van Vliet (2004) indicates that many anomalies are related
to trading characteristics of small firms (e.g. transaction costs and liquidity). There-
fore, we investigate a set of 25 portfolios, double sorted on size and value, which can
also be downloaded from the website of French.16 Table 5.6 shows cross-sectional tests
for both the CAPM and the CAPM with the crash factors for this set of portfolios.
The CAPM cannot explain the cross-sectional variation of these portfolio returns.
Significant pricing errors seems to be concentrated in small firms and growth firms.
However, addition of crash risk portfolios does not produce an improvement. While
the TJT -statistic provides some evidence in favor of the empirically based hedge
portfolio, its premium is not significant. The risk premium for the H portfolio based
on the asymptotic measure is significant, but the TJT -statistic increases in this case.
The average absolute pricing error is lowest for the last model, but this is driven
by size portfolios 2, 3 and 4, and not by the portfolios of the small firms, nor by
the portfolios of big firms. It can be that the way in which we calculate the crash
likelihood measures and form the portfolios, creates a bias against the inclusion of
small firms, as they tend to have a shorter history.

The evidence in Table 5.5 indicates that crash risk may contribute to the expla-
nation of the cross section of stock returns, but the evidence is not overwhelming.
However, for the industry, value and momentum portfolios, the asymptotically based
H portfolio points at a priced risk factor. The premium for this factor is large and
exceeds the premium for diffusion risk. Moreover, this risk factor can account for
part of the momentum effect, which is the largest compared to the size and value
effects (see Table 5.8). Also, we see for several portfolios that both the pricing errors
and the corresponding standard errors decrease, which it also a clear improvement,
though it does not necessarily lead to less significant pricing errors. The results on

16We refer to this website for details on construction.
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Table 5.6: Cross-sectional tests with and without crash risk for double sorted

portfolios on size and value.

ζd 0.83a (0.27) 0.85a (0.26) 0.89a (0.27)

ζemp
c 0.62 (0.81)

ζa
c 1.11a (0.36)

Small Growth -0.81a (0.26) -0.75a (0.19) -0.47a (0.10)

2 0.10 (0.14) 0.18c (0.10) 0.33a (0.09)

3 0.31b (0.12) 0.39a (0.11) 0.41a (0.11)

4 0.55a (0.14) 0.62a (0.15) 0.63a (0.14)

Value 0.54a (0.16) 0.58a (0.18) 0.62a (0.17)

2 Growth -0.58a (0.17) -0.54a (0.14) -0.43a (0.11)

2 -0.07 (0.08) -0.03 (0.08) -0.05 (0.08)

3 0.24b (0.09) 0.24a (0.09) 0.18c (0.09)

4 0.40a (0.12) 0.40a (0.11) 0.36a (0.11)

Value 0.32b (0.14) 0.36b (0.16) 0.31b (0.14)

3 Growth -0.48b (0.19) -0.42b (0.17) -0.37a (0.13)

2 0.03 (0.08) -0.04 (0.12) -0.01 (0.08)

3 0.12 (0.10) 0.08 (0.08) 0.02 (0.07)

4 0.26b (0.12) 0.19b (0.09) 0.13 (0.09)

Value 0.45a (0.17) 0.42a (0.15) 0.37a (0.14)

4 Growth -0.31c (0.18) -0.31c (0.19) -0.21 (0.17)

2 -0.09 (0.10) -0.09 (0.11) -0.20a (0.08)

3 0.10 (0.10) 0.05 (0.08) -0.03 (0.07)

4 0.21c (0.12) 0.17b (0.08) 0.10 (0.08)

Value 0.22 (0.15) 0.09 (0.12) 0.08 (0.10)

Big Growth -0.37c (0.21) -0.41b (0.20) -0.49b (0.22)

2 -0.10 (0.14) -0.11 (0.14) -0.24c (0.13)

3 -0.04 (0.14) -0.12 (0.10) -0.16 (0.13)

4 0.04 (0.15) -0.01 (0.11) -0.15c (0.08)

Value 0.04 (0.18) 0.04 (0.21) -0.07 (0.15)

41.42b [0.01] 37.64b [0.03] 41.94a [0.01]

This table reports the results of cross-sectional tests of three asset pricing models on a sets of

25 portfolios constructed based on size and value. We estimate the CAPM, the CAPM extended

with the hedge portfolio based on the empirical measure for conditional crash likelihood and the

CAPM extended with the H portfolios based on the asymptotic measure for conditional crash

likelihood. Estimation of the sensitivities and risk premia takes place in a GMM framework. We

use observations from June 1974 - November 2003. We report the premium on market diffusion

risk (ζd), the premium on the empirically based hedge portfolio (ζemp
c ), and the premium on the

asymptotically based H portfolio (ζa
c ). The pricing errors for the portfolios are reported by (size,

value)-quintile combination. After each estimate the Newey and West (1987) consistent standard

error is reported in parentheses. TJT reports the value of the TJT statistic. In brackets we report

the p-value for an insignificant TJT statistic, based on a χ2 distribution. Superscripts a, b or c

indicates significance at the 1%, 5% or 10% level, respectively.
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the double sorted size/value portfolios indicate that the measures for crash likelihood
do not work well for explaining the return on small firms.

5.5.2 Individual stocks

In this subsection we examine the added value of a crash risk factor on the entire cross
section of stock returns instead of several portfolios as in the previous subsection.
Crucial for a correct estimation of a risk premium (and hence the pricing errors) is
enough variation in the sensitivities for the risk factors. Considering the entire cross
section yields the largest possible variation. On the other hand, a direct test of the
hypothesis that the pricing errors are jointly zero on each stock cannot be conducted,
since too few observations are available to estimate the covariance matrix of the
pricing errors. Therefore, we present the results in this subsection as complementary
to the results in the previous subsection.

We conduct this analysis in a Fama and MacBeth (1973)-framework to allow
changes in the sensitivities over time. We estimate the time series regression in
Eq. (5.17) over 60 months. For month 61 we estimate the cross-sectional regression

Re
i = αi + ζ′βi, (5.19)

where Re
i is the excess return for stock i for month 61, βi is the vector with sensitiv-

ities estimated over the prior 60 months, αi is the pricing error and ζ is the vector of
risk premia. Based on the outcomes we calculate the cross-sectional average pricing
error. To be included in this regression for a certain month, a stock needs to have a
complete return series over 61 months. We start with the month 1 to 60 for the time
series regression and 61 for the cross-sectional regression, then we consider month
2 to 61 for the time series regression and 62 for the cross-sectional regression, and
so on. After this procedure is ended, we have a time series for each risk premium
and for the average pricing error. Based on these series we calculate the time series
average of the risk premia and the time series average of the (average) pricing error,
and the corresponding standard error.

Table 5.7 presents the results of this analysis. We report two estimates for stan-
dard errors: an estimate that is only based on the time series of premia and pricing
errors, and another estimate that includes corrections due to Shanken (1992) for
the fact that the sensitivities βi are estimated as discussed in Cochrane (2001, Ch.
12). We find that the CAPM is rejected, as it leads to significant pricing errors of
0.51% per month. Adding the empirically based hedge portfolio is an improvement,
since the average pricing error decreases. However, the premium for this factor is
not significant. Adding the asymptotically based hedge portfolio leads to a further
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Table 5.7: Cross-sectional test with an without crash risk for the entire cross

section of stocks

est se se+ est se se+ est se se+

ζd 0.85 0.26 0.37 0.78 0.24 0.36 0.70 0.24 0.35

ζemp
c 0.11 0.12 0.16

ζa
c 0.71 0.22 0.32

ᾱ 0.51 0.13 0.14 0.43 0.11 0.11 0.26 0.07 0.08

This table reports the results for a cross-sectional test of three asset pricing models on the entire

cross section of stocks. The test is conducted in a Fama and MacBeth (1973)-framework, with

an estimation window of 60 months. The returns of month 61 are then used to estimate the risk

premia and to construct pricing errors. We consider all stocks in the CRSP database from June

1974 to November 2003. To be included in the analysis a stock should have at least a complete

series 61 observations. We report the time series averages of the risk premia. For each month,

we calculate the cross-sectional average pricing error, and we report the time series average of this

series (ᾱ). We report the premium on market diffusion risk (ζd), the premium on the empirically

based hedge portfolio (ζemp
c ), and the premium on the asymptotically based H portfolio (ζa

c ). We

also report estimates of the standard errors that are only based on the time series of the premia

and pricing errors (column se) and standard error estimates that include a correction for the fact

that the risk sensitivities are estimated based on Shanken (1992) (column se+). We calculate the

additive correction as the variance of the risk factors divided by the number of observations, and

the multiplicative correction as ζ′Σ−1
f ζ, where ζ denotes the vector of estimated risk premia, and

Σf is the factor variance matrix (see Cochrane, 2001, Ch. 12, for a discussion). All standard errors

are based on a Newey and West (1987) correction for autocorrelation and heteroskedasticity.

reduction of the average pricing error to 0.26% per month. The estimated standard
errors decrease as well, and consequently the average pricing error is still signifi-
cant. The premium for this crash risk factor is 0.71% per months and is significant
at the 1% level for the time series standard error and at the 5% level if Shanken
(1992)-corrections are included.

Combining the results of this analysis with those of the previous subsection, we
conclude that crash risk contributes to explaining the cross section of stock returns.
For both the empirical measure and the asymptotic measure we find lower pricing
errors and lower corresponding standard errors. Moreover, the H portfolio based
on the asymptotic measure leads to a significant premium. The estimates for this
premium vary based on the techniques and samples, but confidence intervals of the
premium estimate all include the 0.71% that is estimated based on the broadest cross
section. This would put crash risk on equal importance as market diffusion risk.
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5.6 Conclusion

We have investigated whether crash risk is present in the cross section of stock returns.
Based on Bates (2001) we show how the traditional CAPM can be extended to capture
crash risk. We assume that the dividend process that underlies an asset price process
contains a Brownian motion and a Poisson process. The market price of crash risk
reflects both general risk aversion and specific aversion to crashes. Each asset pays a
premium for crash risk that is the product of the market crash risk premium and the
sensitivity that the asset exhibits with regard to market crashes. This sensitivity is
the product of an asset’s conditional crash likelihood and the ratio of the asset’s crash
magnitude with that of the market. If crash aversion is high or the crash magnitude
is large, crash risk exposure can have a considerable impact on the cross section of
stock returns.

We use the crash-CAPM to guide our further empirical research. We derive three
measures to determine an asset’s likelihood to crash, if the market crashes. These
measures are based on the difference between the actual dependence of extreme
negative returns and the dependence that is implied by the correlation from the
Brownian motions. The empirical measure is calculated as the difference between
the empirical copula and the Gaussian copula. The asymptotic measure is calculated
as the tail dependence that is implied by a Student’s t copula estimated for the
dependence between the market return and an asset return. The last measure is a
transformation of the degrees of freedom parameter of the Student’s t copula.

For each stock in the CRSP database we calculate the values for these measures.
To capture time-varying coefficients, we use a rolling regression framework of 120
months. We sort these stocks into three equally sized, value weighted portfolios,
and use the next month’s returns to calculate the portfolio return. For all three
measures we find that the portfolio with stocks exhibiting the highest exposure to
crash risk yield a significant, positive expected pay-off after correction for market
risk. This pay-off varies from 2.3% per year for the asymptotic measure to 4% for
the empirical measure. The portfolios with low exposure stocks do not produce a
significant expected pay-off. The portfolios are only weakly related to size, value and
momentum effects. We report a stronger relation with coskewness and cokurtosis
portfolios, but we show that these portfolios do not lead to a significant positive
expected pay-off. The hedge portfolio that we construct based on the empirical
measure pays a significant expected return of 2.8% per year that cannot be explained
by other risk factors.

We investigate whether these portfolios help in explaining the cross section of
stock returns. We find that the CAPM suffices to explain the cross sectional variation
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in industry, size and value portfolios. Inclusion of the portfolio with stocks with a
high exposure to market crashes based on the asymptotic measure, leads to small
improvements. In the case of momentum portfolios, the CAPM leads to significant
pricing errors. The inclusion of crash portfolios improves the fit of the model. The
CAPM is also rejected based on 25 portfolios, double sorted on size and value. In
this case, adding crash portfolios does not produce improvements. If we conduct a
test on the entire cross section of stocks returns, we find that adding a crash portfolio
lowers pricing errors considerably. We estimate a crash risk premium equal to 8.4%
per year.

The evidence that we present in this chapter indicates that crashes possibly play
an important role in the cross section of stock returns. In particular, the fact that
crash risk portfolios can explain part of the momentum effect seems promising. The
results based on the broad cross-section of stock returns indicate that crash risk may
be equally important as market diffusion risk. Of course, the measures that we use
are not perfect estimates of conditional crash likelihood. However, given that they
all point in the same direction, we conclude that our findings are robust.
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5.A Derivation of the crash-CAPM

In this appendix we derive the extended version of the CAPM that takes crash
risk into account, based on Bates (2001). We show how the CAPM arises in an
endowment economy with a representative agent who consumes at a final date, T .
The assumption underlying this model are stated in Section 5.2. Before we start we
state an extended version of the lemma in Bates (2001, p. 12) that we use in the
derivation.

Lemma Let Y1t and Y2t be two random variables that follow stochastic processes

dYit = µi dt + σi dZi, i = 1, 2,

where dZ1 and dZ2 are correlated Wiener processes with E [dZ1 dZ2] = ρ. Let Nt =
(N1t N2t)

′ be a bivariate Poisson process that evolves according to

dN =





(1 1)′ with probability λ11 dt

(1 0)′ with probability λ10 dt

(0 1)′ with probability λ01 dt

(0 0)′ with probability λ00 dt,

where the arrival rates are larger than or equal to zero and sum to one. The Wiener
processes and Poisson processes are independent.
The expectation of a function

F (Y1t, Y2t, N1t, N2t) = exp (c1Y1t + c2Y2t + d1N1t + d2N2t),

with c1, c2, d1 and d2 deterministic constants, can then be found as

Et [F (Y1T , Y2T , N1T , N2T )] =

F (Y1t, Y2t, N1t, N2t) · exp
{(

c1µ1 + c2µ2 + 1
2c2

1σ
2
1 + c1σ1ρc2σ2 + 1

2c2
2σ

2
2+

λ11(ed1+d2 − 1) + λ10(ed1 − 1) + λ01(ed2 − 1)
)
(T − t)

}
.

Proof Use Itô’s lemma to derive

Et [dF ] =Ft

(
c1µ1 + c2µ2 + 1

2c2
1σ

2
1 + c1σ1ρc2σ2 + 1

2c2
2σ

2
2+

λ11(ed1+d2 − 1) + λ10(ed1 − 1) + λ01(ed2 − 1)
)
dt,

and use the standard solution for the partial differential equation. ¥
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First we derive the pricing kernel. In equilibrium the market clears and the
representative agent holds the market claim. His marginal utility as time T can be
found by differentiation Eq. (5.3)

ηT ≡ ∂W U(WT , NT , T )|WT =XmT
= eδNmT X−γ

mT . (5.20)

Consequently, a pricing kernel that is valid at time t would be ηT /ηt.
We can use this pricing kernel to price assets. Since we are interested in excess

returns, we use the riskless asset as numeraire. As a consequence, ηt = Et [ηT ]. Using
the lemma we find

Et [ηT ] = eδNmtX−γ
mt exp

{(−γµm + 1
2γ2σ2

m + λm

(
eδ−γκm − 1

))
(T − t)

}
. (5.21)

The price Smt of the market claim satisfies ηtSmt = Et [ηT XmT ] and based on the
lemma we derive

Smt = Xmt exp
{(

µm + 1
2σ2

m − γσ2
m + λmeδ−γκm (eκm − 1)

)
(T − t)

}
(5.22)

Applying Itô’s lemma yields the process followed by the market asset

dSm

Sm
=

(
γσ2

m − λmeδ−γκm(eκm − 1)
)
dt + σ dZm + (eκm − 1) dNm (5.23)

Taking expectation produces the expected return on the market asset in (5.6).
The price of the each individual asset i satisfies the fundamental relation ηtSit =

Et [ηT XiT ] as well. Apply the lemma to find

Sit =Xit exp
{(

µi + 1
2σ2

i − γσiρimσm + (λm − λim)
(
eδ−γκm − 1

)
+

λim

(
eδ−γκm+κi − 1

)
+ (λi − λim) (eκi − 1)−

λm(eδ−γκm − 1)
)
(T − t)

}

=Xit exp
{(

µi + 1
2σ2

i − γσiρimσm+
(
λi + λim

(
eδ−γκm − 1

))
(eκi − 1)

)
(T − t)

}
.

(5.24)

The process for the asset can then be derived by applying Itô’s lemma

dSi

Si
=

{
γσiρimσm −

(
λi + λim

(
eδ−γκm − 1

))
(eκi − 1)

}
dt+

σi dZi + (eκi − 1) dNi,

(5.25)

and taking expectations produces the expected return in Eq. (5.7).
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5.B Trading strategies

In this appendix we discuss the hedge portfolios used in Section 5.4.3. Financial
researchers have established several investment strategies that yield a positive sig-
nificant abnormal return that cannot be explained by exposure to other risk factors.
These strategies generally consist of constructing hedge portfolios: buy assets that
score highly on a certain measure and sell assets that score lowly on it.

The two best-known strategies are due to Fama and French (1993, 1995). Their
first strategy exploits the small firm effect by buying stocks of small firms and selling
stocks of big firms. The resulting portfolio is commonly referred to as SMB (Small
Minus Big). The second entails buying value stocks (firms having a high value for the
ratio of book equity to market equity) and selling those of growth stocks (firms with
a low book-to-market ratio). It is often denoted as HML (High Minus Low). French’s
web site provides returns on both hedge portfolio based on the CRSP database from
1926 onwards. Over the sample period that we consider in this chapter, the returns on
the SMB and the HML portfolios add up to 3.36% and 5.13% per year, respectively.

Jegadeesh and Titman (1993) show that buying stocks that did relatively well in
the recent past (based on a history of three up to twelve months) and selling stocks
that performed relatively poorly in the recent past yields a profit. The UMD (Up
Minus Down) portfolio, available on French’s web site, is based on this strategy. Over
the period June 1974 - November 2003, the average return on this portfolio equals
10.67% per year.

The other strategies we consider are based on higher order extensions of the
CAPM. One of the possible explanations for the outperformance of the size, value
and momentum portfolios argues that these portfolios capture non-linearities in the
pricing kernel. Under the assumption that the market portfolio is an accurate proxy
of the wealth portfolio, this means that the expected return on a specific stock is
a non-linear function of the market return. Harvey and Siddique (2000) derive an
extension of the CAPM in which the pricing kernel is a function of the market
return and the squared market return. They show that their model implies that
coskewness is priced. Coskewness measures to which degree an asset return increases
when the squared market return increases. Because standard utility theory prescribes
decreasing absolute risk aversion for increasing wealth (see Arditti, 1967), stocks with
negative coskewness should pay a premium. Dittmar (2002) carries the extension of
Harvey and Siddique (2000) one step further by adding the cubic market return to
the pricing kernel equation. This introduces cokurtosis as a factor determining the
expected return of an asset. Positive cokurtosis indicates that an asset moves in
the same direction as the cubic market return. Under the assumption of decreasing
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absolute prudence (see Kimball, 1993), investors require a premium for stocks with
positive cokurtosis.

As standard accepted portfolios are not available for coskewness and cokurtosis,
we construct hedge portfolios capturing their effects. We follow a the same approach
as we did for the crash portfolios (see Section 5.4.1), meaning that we start by esti-
mating coskewness and cokurtosis over 120 months. We follow Harvey and Siddique
(2000) and construct a coskewness measure βSKD

i,t as

βSKD
i,t =

Et

[
εi,t+1ε

2
m,t+1

]
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Et [εi,t+1] Et
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where εi,t+1 is the abnormal return on stock i at time t that results from the standard
CAPM, and εm,t+1 is the abnormal return on the market. We estimate this measure
based on the residuals of the CAPM regression for asset i over the previous 120
months and the market returns minus their 120 months average. Because Dittmar
(2002) does not define a measure for cokurtosis, we define a cokurtosis measure βKTD

i,t

similar to the measure for coskewness
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Based on these measures we construct three equally sized, value weighted port-
folios, and use next month’s stock returns to calculate portfolio returns. Finally,
we construct a hedge portfolio for coskewness by a long position in the portfolio
with stocks that have low values for the coskewness measure and a short position in
portfolio with stocks that score highly. The average return on this NMP (Negative
Minus Positive) portfolio equals 1.05% per annum. For cokurtosis we construct a
hedge portfolio by a long position in the portfolio of assets with high cokurtosis and
a short position in the low cokurtosis portfolio. For this LMP (Leptokurtic Minus
Platykurtic) portfolio we find an average return of -0.72%.

The returns we find on the coskewness portfolio is low compared to the returns
on the other hedge portfolios. Harvey and Siddique (2000) report a return on their
coskewness hedge portfolio of 3.60% per annum. However, they estimate the coskew-
ness measure in Eq. (5.26) over 60 months and calculate the average return over the
period July 1963 - December 1993. If we select the same stocks as in the 120-month
setup but use an estimation window of 60 months, we end up with an average re-
turn of 3.60% per annum.17 The correlation between the 60-months and 120-months
portfolio equals 0.66. Therefore, we will consider this hedge portfolio as well.

17If we include all stocks for which a 60 month history is available, we find an average return of

3.71%. This indicates that the estimation window is crucial to forming hedge portfolios based on

coskewness.
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The return on the cokurtosis hedge portfolio is also small and has the wrong
sign. In this case, the consequences of changing the estimation window are small, as
the average return based on a 60 month estimation window equals -0.93%. Dittmar
(2002) remarks that the inclusion of human capital into the wealth portfolio is crucial
for determining the risk premium on kurtosis. The absence of human capital in our
wealth portfolio may explain the low value and wrong sign of the result on the kurtosis
portfolio. Including human capital is beyond the scope of this research. Another
explanation can be that the measure for cokurtosis in Eq. (5.27) is not accurate.
However, if we use the regression coefficient of the stock return on the cubic market
return (similarly, Harvey and Siddique, 2000, use the regression coefficient of the
stock return on the squared market return as alternative measure for coskewness)
or the measures proposed by Christie-David and Chaudhry (2001)18, we find similar
results.

In Table 5.8 we report the average market return and the average abnormal return
(α) of the different hedge portfolios, after correcting for exposure to market risk and
other hedge portfolios. We find that the average return on the market is 0.59% per
month or 7.06% per annum. Of the two Fama and French-factors, only HML yields
a significantly positive α over the period June 1974 - November 2003 of 7.45% per
year. The momentum factor is not much affected by exposure to market risk or the
size and the value effect, and remains high at a yearly abnormal return of 12.50%. Of
the coskewness and cokurtosis hedge portfolios only the coskewness portfolio based
on a 60 month estimation window shows a (marginally) significant α, which equals
3.28% on a yearly basis.

18They propose to measure cokurtosis as Et [Rit+1εm,t+1]/ Et

h
ε4m,t+1

i
, where εm,t+1 is the ab-

normal return on the market.
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Table 5.8: Analysis of the market portfolio and hedge portfolios

rm SMB HML UMD NMP NMP60 LMP LMP60

constant 0.59b 0.19 0.62a 1.04a 0.04 0.27c −0.03 −0.14

(0.24) (0.16) (0.18) (0.23) (0.14) (0.15) (0.12) (0.13)

rm 0.16a −0.33a −0.13 0.07 0.05 −0.08b −0.03

(0.04) (0.05) (0.09) (0.06) (0.05) (0.03) (0.04)

SMB 0.09

(0.16)

HML −0.24

(0.19)

NMP 0.20

(0.13)

NMP60 0.27c

(0.15)

This table presents the average market return and the regression results for the monthly return

series (in %) of the excess market index and the different hedge portfolio over the period June 1974

- November 2003. We consider the market return rm, and the hedge portfolios based on the size

effect (SMB), the value effect (HML), the momentum effect (UMD), coskewness (NMP, NMP60) and

cokurtosis (LMP and LMP60). The SMB, HML and UMD return series are available on French’s

web site. To construct hedge portfolios for coskewness and cokurtosis we first construct market

value weighted L, M and H portfolios for the two measures. The measure for coskewness is given

in Eq. (5.26), and is estimated over 120 months (NMP) or 60 months (NMP60). The measure for

cokurtosis, given in Eq. (5.27), is also estimated over 120 months (PML) or 60 months (PML60).

The coskewness hedge portfolios are constructed as a long position in L portfolio and a short position

in the H portfolio. The cokurtosis hedge portfolios are constructed with a long position in the H

portfolio and a short position in the L portfolio. We regress the hedge portfolios on a constant, the

excess market return and other hedge portfolios. Each columns presents the results for a different

hedge portfolio. Newey and West (1987) standard errors are in parentheses. Superscripts a, b or c

indicates significance at the 1%, 5% or 10% level, respectively.







The heart of the discerning acquires

knowledge; the ears of the wise seek it out

The Bible

Chapter 6

Summary and conclusion

In this dissertation we have studied crises, crashes and comovements in financial
markets. We have identified five reasons to put crises and crashes under scrutiny.
First, the frequency of crises and crashes is too high to be explained by news. Second,
returns on financial assets behave like a diffusion process during tranquil times but
show more jump-like behavior during periods of turmoil. Third, crises and crashes
have a persistent strengthening effect on the fluctuation of assets returns. Fourth,
both individual assets and markets as a whole exhibit stronger comovements in times
of stress. Finally, investors are particularly averse to the large losses that crashes
and crises entail. These reasons reinforce each other and turn financial markets into
a considerably less attractive place. Crises and crashes happen relatively often and
directly harm investors by large losses, but the subsequent increase in volatility that
they cause makes investing riskier as well. Moreover, crises and crashes are difficult
to evade, as they tend to spread more vehemently than comovements during tranquil
periods indicate.

We have discussed four aspects of investor behavior on financial markets that are
affected by the different behavior of asset returns during periods of turmoil compared
to more quiet periods. First, when managing the risk of an investment in financial
markets, an investor should pay specific attention to crises, crashes and their con-
sequences. Second, an investor should also take such risks into account when he
constructs his portfolio. Third, investors can expect to receive a premium for their
exposure to the risks of crises and crashes, to the extent that they cannot diversify
these risks. Fourth, if crises or crashes do not occur because of news, but because
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of bubbles or congestion of information, a timely recognition of such situations can
help investors in predicting the likelihood of a crisis or crash. We have studied these
issues one by one in the four main chapters of this dissertation.

In Chapter 2 we have investigated whether the presence of a bubble in the current
period leads to a higher crash likelihood for the next period. Patterns of bubbles and
crashes have been the subject of many theoretical studies (see Brunnermeier, 2001,
for an overview). Empirical research on bubbles concentrates mostly on a specific
bubble with its subsequent crash, though Shiller (2000) and Kindleberger (2000)
present a more general approach. We analyze the pattern of bubbles and crashes in
industries from an investor perspective. This means that we do not identify bubbles
with hindsight. Instead, the investor perceives a bubble if the average abnormal
return over the last one to five years exceeds a specified threshold. The abnormal
returns are constructed based on the CAPM. A crash takes place if the abnormal
return of the next period falls below a threshold. We find that the presence of a
bubble multiplies the probability of a crash by a factor two for the broadest category
of crashes. If we restrict our analysis to more severe crashes the multiplication factor
increases to three. If a bubble is stronger than average, we see a further increase
in crash likelihood. Our evidence is based on US industries, because this allows
us to investigate a large sample. An investigation of bubbles and crashes in the
market shows that the number of observations is too low to make statistically sound
inferences, but in a qualitative sense the results for the market are similar to those
for industries. These results are robust to changes in the research design. Overall,
the results imply that riding the bubble entails a serious risk of encountering a crash.

In Chapter 3 we have shown how standard econometric tests can be used to test
the fit of a copula. As pointed out by Embrechts et al. (2002) copulas provide a
flexible tool to model dependence. Correlations and the associated Gaussian copula
only capture dependence completely, if it is linear. Other copulas can handle non-
linear dependence. Evidence by Longin and Solnik (2001), Ang and Chen (2002), Bae
et al. (2003) and Hartmann et al. (2004) clearly demonstrates the shortcomings of the
Gaussian copula to capture stronger comovements of individual assets and of markets
in aggregate during crisis periods. While other copulas can handle such behavior, it is
not a priori clear which copula to use. We have proposed modifications of the familiar
Kolmogorov-Smirnoff and Anderson-Darling tests, which are based on a comparison
of the hypothesized distribution (i.e. copula) with the empirical distribution. These
tests can be applied more widely than tests proposed by Mashal et al. (2003) and Poon
et al. (2004). We have applied the modified tests to select a copula for stress tests in
the risk management of a portfolio of stocks, bonds and real estate. The tests reject
the Gaussian copula and the Gumbel copula, but support the Student’s t copula. An
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inspection of the tails reveals that the Gaussian copula significantly underestimates
the risk of joint extreme returns, while the Gumbel copula overestimates this risk.

In Chapter 4 the focus shifts to the relation between crises and investment deci-
sions. We have investigated the portfolio implications of systemic crises, i.e. joint,
synchronous shocks to all equity markets. We show how a regime switching model
in the style of Ang and Bekaert (2002) can be used to capture the main characteris-
tics of a systemic crisis, being decreases of expected returns, increases of volatilities
and correlations, and persistence of these effects. For given predictions of the regime
switching models we derive the solution of the asset allocation problem of an expected
utility maximizing investor in continuous time. We use these theoretical results to
empirically examine the consequences of systemic crises for a global investor based
on the period 1975-2004. We conclude that it is costly to ignore the risk of such
an event. These costs add up to a certainty equivalent return of 1.13% when the
investor does not have any prior information on the likelihood of crisis, but rises
sharply for relatively small increases in this likelihood. A crisis conscious strategy
that incorporates the probability of a crisis advises less leverage and less exposure
to crisis-prone assets than a strategy that ignores the risk of systemic crises. The
difference between our findings and those of Das and Uppal (2004) indicates that
persistence is an important element of systemic crises. Moreover, diversification op-
portunities erode rapidly. If the investor faces short sales constraints he completely
withdraws from equity markets.

The results of the previous chapters show that crises and crashes are difficult to
evade. Into the bargain, investor are particularly averse to their consequences. In
Chapter 5 we have examined whether investors are rewarded for the crash risk they
bear. While evidence exists of a crash risk premium in aggregate market returns (see
Bates, 1991, 2000; Andersen et al., 2002), such a premium has not been established
for individual stock returns. In Chapter 5 we show how the traditional CAPM can
be extended to capture crashes, modelled as negative jumps. The model implies
that an asset pays in expectation a premium for crash risk that is proportional
to its sensitivity to market crashes. An important factor of this sensitivity is the
probability that an asset crashes conditional on a market crash. Based on copulas we
have derived three measures to calculate this conditional crash likelihood. Sorting
assets on these measures shows that assets belonging to the top third in terms of
conditional crash likelihood pay an extra significant yearly return of 2.4% to 4.0%
after correction for market risk. Assets that score low on conditional crash likelihood
do not pay significantly extra. The crash risk portfolios are related to the coskewness
portfolios of Harvey and Siddique (2000) and the cokurtosis portfolios of Dittmar
(2002), but these portfolios do not pay a significantly positive average return over
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our sample period. Finally, we have established evidence that a crash risk factor helps
in explaining the cross section of stock returns. For portfolios sorted on momentum
the traditional CAPM is rejected, while the CAPM with a crash factor is not. The
size of the crash risk premia indicates that crash risk can be equally important as
diffusion risk.

As we have discussed in the introduction, we have treated the aspects of the
relation of an investor with financial markets separately in this thesis. This approach
enabled us to concentrate specifically on each aspect and to use different techniques
that fitted best for a specific aspect. The advantages of this approach come with the
disadvantage that it is more complicated to draw general conclusions. We cannot offer
one big model that can be used to capture all characteristics of crises and crashes
and to investigate its consequences in all aspects. Nevertheless, our research also
increases current insights in crises and crashes and their consequences for investors
in more general terms. Its contributions lie mainly in three directions.

First we show that stronger comovements and strong persistence are two crucial
characteristics of crises and crashes. The probability of a joint crash of two assets
is larger than correlation-based models predict, even if the univariate probability of
a crash is correctly predicted. Consequently, the probability that one asset crashes
given that the other asset crashes is also larger than regular models predict. This
effect becomes stronger if more assets encounter a crash. Concluding, crashes spread
more fiercely and can end in a crisis. Persistence exacerbates the effects of crises
and crashes. The occurrence of a crash increases the probability of another crash to
follow. Moreover, volatilities go up. Crashes and crises do not only spread to other
assets and markets but also over time, as a crash of an asset during this month makes
the asset riskier for the month thereafter.

Concluding, crises and crashes make financial markets a riskier place than an ana-
lysis based on a single asset, industry or market indicates. Because of the strength-
ening of comovements, crises and crashes are difficult to evade. Diversification effects
disappear when they are needed most. Because of their persistent effects, it is more
difficult to sit out crises and crashes. It takes more time for crises and crashes to
die down. The fall of Long-Term Capital Management illustrates the dramatic con-
sequences of failing to take these two aspects into account. All the hedge funds’
investments went awry and lost money for many days in a row during August and
September 1998.1 Crises and crashes may lurk in the background of financial mar-
kets, but if they occur they are a center stage problem for investors.

1For a description of the collapse of Long-Term Capital Management see Edwards (1999), Jorion

(2000) or the more popular book by Lowenstein (2000).
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Second, we have also found some good news. Investors do not have to sit and wait
for the next crash to strike, but can use the presence of bubbles to make inferences
on the likelihood of a crash. Moreover, investors can expect a reward for that part
of the risk of crises and crashes that cannot be evaded. The size of the crash risk
premium indicates that the representative investor is aware of the risk that crises
and crashes entail.

A third direction into which we extend empirical financial research is by high-
lighting how econometric techniques can be used in relation to crises and crashes. In
Chapter 2 we have proposed a novel methodology to analyze bubbles and crashes.
We have shown that skewness is probably not the best way to investigate crash like-
lihood. In Chapters 3 and 5 we have demonstrated how copulas can be helpful in
research on crashes. In Chapter 4 we have made full use of the flexibility of regime
switching models, and we have shown how discrete-time regime switching models can
be combined with continuous-time optimization. While our outcomes are sensitive
to the techniques we use and the data we choose, we have conducted robustness
checks to establish that our main conclusions are unaffected. All these techniques
extend the toolbox with which risk managers and financial researchers can analyze
the consequence of crises, crashes and comovements.

The main challenge for future research that results from this dissertation lies in
the combined effect that the strengthening of comovements and the persistence of
crises and crashes have on their consequences for investors. Our results indicate
that both effects exacerbate the consequences of crises and crashes. The model for
a systemic crises that we use in Chapter 4 captures persistence and implies a rise in
correlations, but conditional on the regimes, dependence is still linear. Combining
the models that we have proposed throughout this dissertation can further extend
knowledge on crises, crashes and comovements.





Nederlandse samenvatting

(Summary in Dutch)

Inleiding

Crises en crashes in financiële markten vormen voor beleggers een reden tot grote
vrees. De sterke koersdalingen tijdens een crisis of crash en de toename van risico
erna berokkenen beleggers veel schade. Hierdoor gelden beruchte crises en crashes
zoals die van 1929, 1987 en de crises in opkomende financiële markten van de jaren
negentig nog steeds als schrikbeeld.

In dit proefschrift doen we onderzoek naar crises en crashes, waarbij we specifiek
aandacht besteden aan de wederzijdse afhankelijkheid in het koersverloop van effec-
ten. Onder een crash verstaan we een sterke daling van één aandeel, één sector of
één markt. Een crisis is een periode van grote onzekerheid die meerdere effecten, sec-
toren of markten bëınvloedt. Een crash is vaak te herleiden op een of enkele dagen,
terwijl een crisis meestal langer aanhoudt. Ook zijn de consequenties van een crisis
verstrekkender dan die van een crash. De crash van 1987 vond plaats op 19 oktober.
De Azië-crisis daarentegen, begon in juli 1997 en doofde pas uit in de eerste helft van
1998. Soms vormt een crash het begin van een crisis, zoals in 1929 toen de crash op
de aandelenmarkten de crisis van de jaren ’30 inluidde.

De samenhang tussen effecten neemt een belangrijke plaats in in dit proefschrift.
De koersen van effecten bewegen niet onafhankelijk van elkaar, en voor markten
geldt hetzelfde. Daarnaast houden beleggers in het algemeen meerdere effecten aan
op verschillende markten. Als een crash zich zou beperken tot één effect of één markt,
kunnen zijn gevolgen beperkt worden door beleggingen te spreiden. Helaas, crashes
en crises zijn besmettelijk en verspreiden zich snel naar andere effecten en markten.
Daarom is het belangrijk deze afhankelijkheid te betrekken in de analyse.

De klassieke financieringstheorie verklaart crises en crashes door nieuwe informa-
tie die financiële markten bereikt. We zien dan een crash in het geval van slecht
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nieuws. Omdat nieuws vaak relevant is voor meerdere effecten of markten, zien we
zijn effect meermalen weerspiegeld. Als het nieuws erg slecht is, en genoeg effecten
en markten bëınvloedt treedt een crisis op.

Helaas schiet deze klassieke benadering tekort. We onderscheiden vijf redenen,
waarom we crashes en crises niet kunnen beschouwen als een integraal deel van het
normale functioneren van financiële markten. In de eerste plaats zijn koersfluctuaties,
inclusief crises en crashes, maar gedeeltelijk te herleiden op nieuws (zie Roll, 1988b;
Cutler et al., 1989; Shiller, 1981, 2000).

In de tweede plaats wijken de statistische kenmerken van de rendementen op effec-
ten tijdens crisisperioden fundamenteel af van die tijdens rustige perioden. In rustige
perioden kan de normale verdeling gebruikt worden om rendementen te beschrijven,
maar deze verdeling voorspelt een veel lagere frequentie voor extreme rendementen
dan we waarnemen (zie o.a. Fama, 1965). Een normale verdeling voor rendementen
komt voort uit een diffusieproces. Echter, empirisch bewijs toont aan dat koersen
niet alleen geleidelijke veranderingen vertonen, zoals behorend bij een diffusieproces,
maar ook grotere sprongen laten zien. Volgens Bates (2000) en Andersen et al. (2002)
zijn deze sprongen zelfs noodzakelijk om de marktprijzen van opties te verklaren. We
concluderen hieruit dat rendementen een diffusiecomponent bevatten die domineert
tijdens rustige perioden en een sprongcomponent die zich manifesteert tijdens crisis-
perioden.

In de derde plaats hebben crises en crashes een langdurig versterkend effect op
koersfluctuaties. Grote prijsveranderingen treden op in clusters. Bovendien is het ef-
fect van grote koersdalingen op deze clustervorming groter dan grote koersstijgingen.
Hieruit volgt dat de sprong die zich voordoet ten tijde van een crisis of crash ervoor
zorgt dat de fluctuaties naderhand toenemen en langdurig op dat niveau blijven.

In de vierde plaats neemt de afhankelijkheid tussen effecten en tussen markten
toe ten tijde van onrust. Ang en Chen (2002) laten zien dat correlaties toenemen
voor negatieve rendementen van individuele aandelen. Met een statistisch robuus-
tere aanpak laten Longin en Solnik (2001) zien dat dit ook voor ontwikkelde aan-
delenmarkten als geheel geldt. Hartmann et al. (2004) tonen hetzelfde effect tussen
aandelen- en obligatiemarkten aan. Bae et al. (2003) doen dit voor opkomende mark-
ten. De verspreiding van crises en crashes is dus groter dan normale afhankelijkheid
kan verklaren.

De vijfde reden ligt in de aversie die beleggers vertonen jegens grote verliezen.
Onderzoek van Kahneman en Tversky (1979) en Tversky en Kahneman (1991) ver-
werpt het traditionele model van een consument die zijn verwacht nut maximaliseert.
Benartzi en Thaler (1995) en Barberis et al. (2001) laten zien dat de aversie jegens
grote verliezen een bijdrage kan leveren aan de verklaring van de grootte van de risico-
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premie op aandelen. Dat crises en crashes bij uitstek de grootste verliezen omvatten
vormt een belangrijke reden voor dit onderzoek.

We onderscheiden vier terreinen waarop deze eigenschappen die crises en crashes
onderscheiden van rustige perioden beleggers en financiële markten bëınvloeden. Het
eerste terrein is risico management. Voor het bestuderen van een crash op zichzelf
biedt extreme waarde-theorie uitkomst. Longin (1996) toont aan dat de extreme ren-
dementen van effecten benaderd kunnen worden met een Fréchet verdeling. Hierin
wijken rendementen af van een normale verdeling, die een Gumbel verdeling impli-
ceert voor de extremen. Longin (2000) laat zien hoe extreme waarde-theorie gebruikt
kan worden voor een enkel aandeel of portefeuille. Het is echter niet duidelijk hoe
multivariate extreme waarde-theorie toegepast kan worden in financieel risico mana-
gement. Deze theorie is reeds gebruikt voor het bestuderen van gelijktijdige crashes
in twee markten (zie Longin en Solnik, 2001; Poon et al., 2004; Hartmann et al.,
2004), maar de terugkoppeling naar gevolgen op het niveau van portefeuilles is sterk
afhankelijk van de onderliggende aannames aangaande afhankelijkheid. Embrechts
et al. (2002) betogen dat correlaties, het traditionele model voor afhankelijkheid, te
restrictief zijn en vervangen moeten worden door copulas. In Hoofdstuk 3 gaan we
na hoe de geschiktheid van een copula bepaald kan worden.

Portefeuillekeuze is het tweede terrein waarop crises en crashes effect hebben. Een
belegger probeert een portefeuille zodanig te construeren dat deze een optimale afwe-
ging tussen verwacht rendement en risico heeft. De genoemde kenmerken van crises
en crashes versterken elkaar en veranderen deze afweging. In de eerste plaats wordt
ieder effect op zichzelf riskanter, als de juiste kans op een crash wordt meegenomen.
Daarnaast worden effecten gezamenlijk ook riskanter door hun sterkere afhankelijk-
heid in tijden van onrust. In de derde plaats houdt de invloed van een crisis of crash
langer aan. Tenslotte zijn beleggers nu net bijzonder gevoelig voor deze invloeden.
Hieruit volgt dan ook de hypothese dat beleggers voorzichtiger zullen beleggen, als ze
deze kenmerken correct in ogenschouw nemen. Ook zullen ze een voorkeur vertonen
voor effecten die minder gevoelig zijn voor een crisis of crash. In Hoofdstuk 4 gaan
we na hoe sterk deze gevolgen zijn.

Als derde terrein noemen we de prijsvorming van effecten. Als crises en crashes
moeilijk te ontlopen zijn in verband met een versterking van de afhankelijkheid tussen
effecten, en als ze langere tijd aanhouden, behoren beleggers hiervoor een premie te
ontvangen. Financiële theorie schrijft immers voor dat beleggers beloond worden
voor het systematische risico dat zij lopen, en dat neemt door crises en crashes toe.
Aan de hand van optieprijzen laten Bates (1991, 2000) en Andersen et al. (2002)
zien dat rendementen op aandelen inderdaad een risicopremie voor marktcrashes
bevatten. Deze bewijzen zijn echter gebaseerd op marktindices. Voor individuele
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aandelen is nog geen empirisch onderzoek gedaan. We leveren hieraan een bijdrage
in Hoofdstuk 5.

Het laatste terrein betreft ons begrip van financiële markten. Omdat nieuws
slechts ten dele het optreden van crises en crashes kan verklaren zijn andere verkla-
ring naar voren gebracht (zie Brunnermeier, 2001, H. 6). Een van deze verklaringen
is dat crashes een correctie zijn voor zeepbellen, sterke koersstijgingen van effecten.
Mogelijk kan een belegger de aanwezigheid van een zeepbel gebruiken voor het bepa-
len van de kans op een crash. Hoewel Kindleberger (2000) en Shiller (2000) al enig
bewijs leveren voor de relatie tussen zeepbellen en crashes, is nog niet duidelijk of
een zeepbel ook een effect heeft op het voorspellen van crashes. We onderzoeken dit
in Hoofdstuk 2.

Zeepbellen en crashes in sectoren (H. 2)

In Hoofdstuk 2 onderwerpen we de relatie tussen zeepbellen en crashes in het koers-
verloop van effecten aan een onderzoek. Een zeepbel is een periode van bovenmatige
koersstijgingen die niet uit fundamentele verbeteringen van vooruitzichten kan wor-
den verklaard. Zeepbellen zijn reeds lang het onderwerp van theoretisch onderzoek.
Dit richt zich dan op de omstandigheden waaronder een zeepbel kan voorkomen
(Brunnermeier, 2001, H. 2, geeft hiervan een overzicht). Asymmetrische informatie
blijkt hiervoor een cruciale factor te zijn. Daarnaast is er empirisch onderzoek gedaan
naar zeepbellen en crashes. Vaak beperkt zo’n onderzoek zich tot één zeepbel en de
daaropvolgende crash, zoals Brunnermeier en Nagel (2004) en Ofek en Richardson
(2003) naar de recente technologie zeepbel of Temin en Voth (2004) naar de “South
Sea Bubble” van 1720. Shiller (2000) en Kindleberger (2000) presenteren een meer
systematische analyse van zeepbellen en crashes, maar hun benadering vindt plaats
in retrospectief.

Wij benaderen zeepbellen en crashes vanuit een beleggersperspectief. Een beleg-
ger neemt een zeepbel waar als het gemiddelde abnormale rendement over een periode
tussen de laatste een tot vijf jaar boven een bepaalde grens ligt. In dit hoofdstuk
kiezen we ervoor deze abnormale rendementen te baseren op het “Capital Asset Pri-
cing Model” (CAPM). Een crash treedt op wanneer een abnormaal rendement onder
een bepaalde grens valt. De belegger wil weten of de recente aanwezigheid van een
zeepbel de kans op een crash gedurende de volgende maand verhoogt. Om een gro-
tere steekproef te kunnen onderzoeken, richten we ons hierbij op de 48 verschillende
sectoren van de economie van de VS in plaats van de markt als geheel.2 Voor de

2Deze indeling wordt ook gebruikt in Fama en French (1997) en is beschikbaar op de website van

French.
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grootste groep crashes rapporteren we een verdubbeling van de kans op een crash, als
zich een zeepbel voordoet. Als we ons beperken tot ernstigere crashes vinden we een
verdriedubbeling. Op basis van het theoretische model voor zeepbellen en crashes
van Abreu en Brunnermeier (2003) formuleren we twee hypothesen die de kenmerken
van een zeepbel relateren aan de kans op een crash. Uit testen blijkt dat een zeepbel
die sterker is dan gemiddeld de kans op een crash verder vergroot. De lengte van
de zeepbel zoals de belegger die waarneemt, levert geen bijdrage aan het voorspellen
van een crash.

Deze resultaten zijn belangrijk voor beleggers, omdat ze aantonen dat het pro-
fiteren van een zeepbel gepaard gaat met een aanzienlijke stijging van crash-risico.
Ook tonen we aan dat historische koerspatronen van waarde zijn bij het voorspellen
van een crash. De waarnemingen van zeepbellen en crashes in een markt als geheel
zijn te beperkt om statistisch onderbouwde conclusies te trekken, maar de resultaten
voor de VS markt komen in kwalitatief opzicht overeen met onze resultaten voor de
48 sectoren. We concluderen hieruit dat ook een zeepbel in een markt tot verhoogd
crash-risico leidt.

Het testen van copulas voor het modelleren van financiële af-

hankelijkheid (H. 3)

Het correct modelleren van afhankelijkheid is belangrijk voor het nemen van beslis-
singen bij onzekerheid, als deze onzekerheid voortkomt uit verschillende bronnen.
Correlaties vormen de traditionele maat voor het beschrijven van afhankelijkheid,
maar recent is bezwaar gerezen tegen correlaties als model voor afhankelijkheid. In
theoretische zin laten Embrechts et al. (2002) zien dat correlaties hun beperkin-
gen hebben, omdat ze slechts lineaire afhankelijkheid modelleren. Copulas vormen
een klasse van modellen voor afhankelijkheid, die meer mogelijkheden biedt dan de
correlatiebenadering. Een copula geeft de gezamenlijke cumulatieve kans op een ver-
zameling gebeurtenissen als functie van de marginale cumulatieve kansen van die
gebeurtenissen. Hierdoor is het mogelijk de marginale verdelingen los van de geza-
menlijke verdeling te modelleren. Is de afhankelijkheid tussen kansvariabelen lineair,
dan en slechts dan is de Gaussische copula de juiste. Deze copula wordt geheel en
al geparametriseerd door een correlatiematrix. Uit empirisch onderzoek volgt echter
dat rendementen op effecten niet-lineair samenhangen. Ang en Chen (2002) rappor-
teren dat de correlaties tussen de rendementen van individuele aandelen stijgen bij
neergaande markten. Longin en Solnik (2001), Bae et al. (2003) en Hartmann et al.
(2004) laten zien dat de samenhang tussen extreme rendementen van markten als
geheel sterker is dan correlaties impliceren. We concluderen hieruit dat correlaties
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te beperkt zijn voor het modelleren van de afhankelijkheid tussen rendementen. Een
andere copula dan de Gaussische kan mogelijk uitkomst bieden.

In Hoofdstuk 3 stellen we testen voor die we kunnen gebruiken om te bepalen of
een copula geschikt is voor het modelleren van de afhankelijkheid tussen stochasten.
Zoals gezegd voldoet de Gaussische copula niet voor de rendementen op effecten. Fi-
nanciële theorie schrijft echter niet bij voorbaat een alternatief voor, zodat het vinden
van een goede copula een empirische aangelegenheid wordt. Een copula kan worden
opgevat als een multivariate verdelingsfunctie. Daarom stellen we voor aangepaste
versies van de standaard toetsen voor de juistheid van een univariate verdelings-
aanname te gebruiken, zoals de Kolmogorov-Smirnoff toets en de Anderson-Darling
toets. Deze aangepaste toetsen vergelijken de afhankelijkheid zoals deze volgt uit de
gehypothetiseerde copula direct met de waargenomen afhankelijkheid. Daardoor zijn
deze toetsen breed toepasbaar op alle copulas en op alle dimensies, en daarmee aan-
trekkelijker dan bestaande toetsen zoals die van Mashal et al. (2003) en Poon et al.
(2004). De Kolmogorov-Smirnoff toets geeft vooral de juistheid voor het centrum
van de verdeling weer, terwijl de Anderson-Darling toets meer de nadruk legt op de
staarten van de verdeling. We beschrijven hoe de precieze test kan worden uitgevoerd
door middel van een simulatieprocedure .

We passen deze testen vervolgens toe om een copula te selecteren voor het uitvoe-
ren van een “stress test” in het risico management van een portefeuille die bestaat uit
aandelen, obligaties en onroerend goed, alle in de VS. We beschouwen de traditionele
Gaussische copula, de Student’s t copula en de Gumbel copula. De Student’s t copula
behoort tot de elliptische familie, evenals de Gaussische copula, maar de Student’s t

copula impliceert een sterkere afhankelijkheid in de staarten dan de Gaussische co-
pula. De Gumbel copula behoort tot de familie van archimedische copulas en is een
extreme waarde-copula (zie Bouyé, 2002). We gaan aan de hand van dagdata van
1 januari 1999 tot 17 december 2004 na, of een van deze drie copulas voldoet voor
het modelleren van de samenhang. De toetsen verwerpen de Gaussische copula en de
Gumbel copula, maar de Student’s t copula niet. Een nadere inspectie van de staar-
ten van de verdeling laat zien dat de Student’s t copula tot een juiste inschatting van
het risiso op gezamenlijke negatieve rendementen leidt. Daarentegen onderschat de
Gaussische copula dit risico significant, terwijl de Gumbel copula het overschat. De
toets van Poon et al. (2004) biedt geen duidelijke selectie. Dit illustreert het belang
van testen die direct gericht zijn op afhankelijkheid.
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De implicaties van systeemcrises voor

beleggingsportefeuilles (H. 4)

Hoofdstuk 4 richt zich op de gevolgen van een systeemcrisis op het samenstellen van
een beleggingsportefeuille. Een systeemcrisis is een schok die voelbaar is in het gehele
(mondiale) systeem van financiële markten (zie De Bandt en Hartmann, 2000). In
dit hoofdstuk beperken we ons tot een schok die gelijktijdig alle aandelenmarkten we-
reldwijd treft. Zo’n schok verslechtert beleggingsmogelijkheden door de wereldwijde
negatieve rendementen en daaropvolgende stijging van volatiliteiten en correlaties.
Das en Uppal (2004) hebben de gevolgen voor beleggers van een dergelijke crisis on-
derzocht, en concluderen dat deze beperkt zijn. Hun aanpak, die gebaseerd is op
de combinatie van een diffusie proces met een Poisson-proces, houdt echter geen re-
kening met persistentie in de effecten van een systeemcrisis. Liu et al. (2003) laten
zien dat sprongen die ook doorwerken in de volatiliteit een geprononceerd effect heb-
ben op de selectie van portefeuilles. Omdat hun benadering univariaat is, blijft het
onduidelijk hoe een crisis diversificatiemogelijkheden bëınvloedt.

Wij stellen een nieuwe benadering van dit probleem voor. We introduceren een
belegger die zijn verwacht nut maximaliseert en wiens nutsfunctie behoort tot de
functies met constante relatieve risicoaversie. De belegger kan twee strategieën vol-
gen, namelijk een strategie waarin hij bewust rekening houdt met een systeemcrisis,
of een strategie waarin hij onwetend is wat de mogelijkheid van een systeemcrisis be-
treft. Beide strategieën zijn gebaseerd op een regime-switching model als in Ang en
Bekaert (2002). Zo’n model biedt rijke en flexibele mogelijkheden om persistentie in
volatiliteit en persistentie in een crisis te modelleren. Ieder land kan zich in een hoog
of een laag volatiliteitsregime bevinden. In de crisisbewuste strategie is er bovendien
een specifiek regime aanwezig voor het geval er een crisis optreedt. Aan de hand van
de regime-switching modellen doen we een voorspelling voor de rendementen van de
volgende periode. We gebruiken een techniek uit Brigo (2002) om een Itô-proces
te construeren dat consistent is met deze voorspellingen, en lossen vervolgens het
optimaliseringprobleem van de belegger op als in Merton (1969).

We analyseren de portefeuillekeuzes van een belegger in de VS die zijn beleg-
gingen wil spreiden over de VS, Europa, Japan, Hong Kong, Thailand, Korea en
Brazilië. Hij betrekt nadrukkelijk opkomende markten in zijn beleggingsbeslissing
wegens de diversificatiemogelijkheden en aantrekkelijke rendementen die zij bieden.
Onze analyse richt zich op twee situaties. In de eerste situatie heeft de belegger geen
verdere informatie over de stand van de economie. In dat geval leidt de crisisbe-
wuste strategie tot een minder riskante portefeuille, en een reductie van posities in
opkomende markten in vergelijking met de onwetende strategie. Als de belegger deze



162 Nederlandse samenvatting

laatste strategie gebruikt, hoewel de crisisbewuste strategie de juiste is, verlangt hij
een zekere compensatie van 1.13% op jaarbasis. In de tweede situatie gebruikt de
belegger informatie die voorhanden was in oktober 1997, een van de maanden van
de Azië-crisis. Halverwege oktober maakte de markt van Hong Kong een duikvlucht,
die gevolgd werd door alle andere markten. We zien dat het in deze situatie veel
belangrijker is rekening te houden met een systeemcrisis. De belegger verlangt een
compensatie van meer dan 3% per jaar in de eerste helft van de maand, dus voor-
dat de markt van Hong Kong crashte. Na de crash loopt deze compensatie snel op
richting de 3% per maand. De crisisbewuste strategie is opnieuw minder riskant dan
de strategie die crises negeert. Daarenboven zien we dat de crisisbewuste strategie
posities sneller afbouwt.

De resultaten die we rapporteren zijn sterker dan die van Das en Uppal (2004).
We concluderen hieruit dat persistentie een belangrijk element is van een systeemcri-
sis. We borduren voort de uitkomst van Ang en Bekaert (2002) dat het belangrijk is
rekening te houden met omschakelingen tussen regimes met een hoge en lage volati-
liteit door te laten zien dat ook de omschakeling naar een crisis regime belangrijk is.
Evenals Ang en Chen (2002) vinden we een sterke afname van de diversificatiemo-
gelijkheden. Als short gaan niet is toegestaan verlaat de belegger zelfs alle markten
wanneer een crisis toeslaat.

Crashrisico in de doorsnede van aandeelrendementen (H. 5)

In Hoofdstuk 5 gaan we na of we een premie voor crashrisico kunnen identificeren
in de doorsnede van aandeelrendementen. Uit voorgaande hoofdstukken volgt dat
crises en crashes grote, langdurige gevolgen kunnen hebben voor beleggers, en dat
het tegelijkertijd moeilijk is deze gevolgen te ontlopen. Volgens de financiële theorie
behoren beleggers dan een premie te ontvangen voor het systematische crash-risico
dat zij lopen. Uit onderzoek naar marktprijzen voor opties op marktindices in Bates
(1991, 2001) en Andersen et al. (2002) volgt dat neerwaartse sprongen in markten
noodzakelijk zijn om deze prijzen te verklaren, en dat beleggers een premie eisen
voor het risico op deze sprongen. Bakshi et al. (2003) laten echter zien dat de
rendementsverdeling die opties op individuele aandelen impliceren afwijkt van de door
marktindexopties gëımpliceerde verdeling. Het is daardoor niet op voorhand duidelijk
of en in welke mate een premie voor crashrisico aanwezig is in de rendementen op
individuele aandelen.

Om deze vraag te beantwoorden leiden we eerst een uitgebreidere versie van het
CAPM af, waarin we expliciet rekening houden met crash-risico. We modelleren een
crash als een grote, neerwaartse sprong. We veronderstellen de aanwezigheid van een
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representatieve belegger wiens nutsfunctie een aparte component voor crashes bevat
om de aversie jegens verliezen van een crash te modelleren. In deze versie van het
CAPM bevat het verwachte rendement op een aandeel een premie die proportioneel
is met de gevoeligheid voor een markt-crash. Deze gevoeligheid bestaat uit de con-
ditionele kans dat een aandeel crasht gegeven dat de markt crasht, en de grootte van
de crash van het aandeel in verhouding tot de marktcrash.

Op basis van deze theoretische resultaten geven we ons empirisch onderzoek vorm.
We construeren drie maatstaven voor de kans dat een aandeel crasht, gegeven dat de
markt crasht. Voor ieder aandeel in de CRSP databank in de periode van juni 1964
tot november 2003 berekenen we voor elke maand de waarde van deze maatstaven.
Vervolgens gebruiken we deze drie maatstaven om drie portefeuilles te bouwen met
respectievelijk een hoge, middelmatige en lage conditionele crash-kans. Uit de analyse
van de rendementen op deze portefeuilles volgt dat de portefeuilles met een hoge con-
ditionele crashkans een significant positief rendement bieden van 2.4% tot 4.0% per
jaar, na correctie voor normaal marktrisico. Dit extra rendement kan niet verklaard
worden aan de hand van anomalieën zoals het grootte-effect en waarde-effect van Fa-
ma en French (1993, 1997) of het momentumeffect van Jegadeesh en Titman (1993)
of aan de hand van risicofactoren zoals coskewness in Harvey en Siddique (2000) en
cokurtosis in Dittmar (2002). Als we een factor voor crash-risico toevoegen aan het
CAPM treden verbeteringen op. Het traditionele CAPM wordt verworpen op basis
van de rendementen op momentumportefeuilles, maar na toevoeging van een factor
voor crash-risico is dat niet langer het geval. Voor andere portefeuilles zien we min-
der duidelijk veranderingen, maar de premie voor crash-risico ligt in dezelfde orde
van grootte als de premie voor diffusierisico. We leiden hieruit af dat crash-risico een
belangrijke risicofactor is.

Onze onderzoeksresultaten leveren een bijdrage aan de voortgaande discussie over
de doorsnede van aandelenrendementen. Onze onderzoeksopzet ligt in het verlengde
van Harvey en Siddique (2000) en Dittmar (2002) die het CAPM uitbreiden met
statistische momenten van een hogere orde dan covariantie. De gevoeligheid van
een statistisch moment voor extreme waarden neemt toe met de orde van het mo-
ment. Onze maatstaven concentreren zich direct op de extreme waarden, namelijk
crashes. Over onze steekproefperiode vinden we een positief significant extra gemid-
deld rendement voor portefeuilles met aandelen met een hoge conditionele crashkans,
maar aandelen met een grote negatieve coskewness of aandelen met een hoge posi-
tieve cokurtosis leveren gemiddeld geen positief extra rendement op. We vinden wel
een relatie tussen de crashportefeuilles en de coskewness- en cokurtosisportefeuilles.
We concluderen hieruit dat extreme waarden, dus crashes, belangrijk zijn voor de
prijsvorming van effecten.
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Conclusies

In zijn geheel beschouwd kunnen we een drietal conclusies trekken uit de resultaten
van dit proefschrift. In de eerste plaats vormen zowel persistentie als versterking
van afhankelijkheid in koersverloop een cruciaal kenmerk van crises en crashes. De
kans op een crash in de koers van een bepaald effect wordt groter naarmate meer
andere effecten een crash doormaken. Deze toename is groter dan reguliere model-
len impliceren. Ook neemt de kans op een crisis hierdoor toe. Daarnaast verergert
persistentie de consequenties van een crash. Tezamen zorgen deze twee kenmerken
ervoor dat financiële markten riskanter zijn dan ze op het eerste gezicht lijken. Waar-
toe een onderschatting van deze kenmerken kan leiden wordt duidelijk gëıllustreerd
door de ineenstorting van Long Term Capital Management in 1998. Long Term Ca-
pital Management was een Amerikaans hedge fund (≈ minder gereguleerd, besloten
beleggingsfonds) dat wereldwijd grote speculatieve posities opbouwde. De toege-
nomen onrust in augustus en september van 1998 na de Roebelcrisis zorgde voor
grote langdurige verliezen op alle posities, waarna het fonds gered moest worden van
faillisement.

In de tweede plaats bevat dit proefschrift goed nieuws. We laten zien dat beleggers
de kans op een crash kunnen voorspellen door naar zeepbellen te kijken. We vinden
ook dat beleggers ter compensatie van het grotere risico dat crashes en crises inhouden
een premie kunnen verwachten. De grootte van deze premie geeft aan dat crash risico
een belangrijke component vormt van aandelenrendementen.

In de derde plaats demonstreren we hoe econometrische technieken gebruikt kun-
nen worden voor het bestuderen van crises en crashes. In Hoofdstuk 2 gebruiken
we een nieuwe methode voor het analyseren van zeepbellen en crashes, die moge-
lijk beter is dan onderzoek gebaseerd op scheefheidscoëfficiënten. In Hoofdstukken 3
en 5 illustreren we het nut van copulas. In Hoofdstuk 4 maken we gebruik van de
ruime mogelijkheden van regime-switching modellen. Deze methoden vergroten de
technische mogelijkheden van onderzoekers op het gebied van empirische financiering.

De belangrijkste uitdaging voor nieuw onderzoek die volgt uit dit proefschrift ligt
in het gecombineerde effect van persistentie en de versterking van afhankelijkheid in
koersverloop op de consequenties van crises en crashes voor beleggers. Onze resul-
taten geven aan dat beide kenmerken op zichzelf de consequenties versterken, maar
hoe ze elkaar versterken is nog onduidelijk. Een combinatie van de modellen en tech-
nieken de we gebruiken in dit proefschrift kan onze kennis van crises, crashes en de
afhankelijkheid in koersverloop verder uitbreiden.
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On Crisis, Crashes and Comovements
Crises and crashes in financial markets are investors’ worst fear. The

combination of large losses, a persistent increase of price fluctu-

ations, and a strengthening of comovements in prices causes investors

great harm. While the severe consequences of crises and crashes are

intuitively clear, many essential questions regarding the magnitude

of the effects on specific fields in finance and the precise impact

of the different factors have yet to be resolved. This dissertation

provides answers to these questions from an investor’s perspective.

Its main conclusion reads that the tendency of crises and crashes to

spread to other assets and markets as well as over time is of crucial

importance for determining their impact. Traditional models for

comovements underestimate the risk of joint downward movements.

Persistence exacerbates the effects of a crisis and increases the

costs of ignoring its possibility beforehand. Moreover, this thesis

concludes that investors can expect a compensation for the grave

consequences of a crash that they are unable to evade. The size of

this compensation indicates that crash risk may be equally important

as the traditional risk in the normal fluctuations of asset prices.

Furthermore, predictions on the likelihood of a crash can be improved

by studying past returns. Besides these empirical contributions, this

dissertation shows how various econometric techniques, including

copulas and regime-switching models, can be used innovatively for

the examination of crises, crashes and comovements.
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