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Abstract

Dynamic product pricing is a vital, yet non-trivial task in
complex supply chains – especially in case of limited visi-
bility of the market environment. We propose to differentiate
product pricing strategies using economic regimes. In our
approach, we use economic regimes (characterizing market
conditions) and error terms (accounting for customer feed-
back) to dynamically model the relation between available
data and parameters of double-bounded log-logistic distribu-
tions assumed to be underlying daily offer prices. Given the
parametric estimations of these price distributions, we then
estimate offer acceptance probabilities using a closed-form
mathematical expression, which is used to determine the price
yielding a desired quota. The approach is implemented in the
MinneTAC trading agent and tested against a price-following
product pricing method in the TAC SCM game. Performance
significantly improves. More customer orders are obtained
against higher prices and profits more than double.

Introduction
Supply chains are ubiquitous in today’s global economy.
Raw materials are converted into products and distributed
to final users through these complex logistics systems (Ghi-
ani, Laporte, and Musmanno 2004). Every entity adds value
to the final product and fulfills a function within the sup-
ply chain. Effective Supply Chain Management (SCM), fo-
cussing on more flexible and dynamic relationships between
entities in the supply chain, is vital to the competitiveness
of manufacturers within this chain. SCM can yield this ef-
fect, as it enables these manufacturers to respond to chang-
ing market demands in a timely and cost effective man-
ner (Collins et al. 2005). Hence, effective SCM can im-
prove the agility of entities within a supply chain. One of the
challenges in this context is dynamic product pricing. When
flexible and dynamic relationships between supply chain en-
tities stimulate manufacturers to compete for customer or-
ders, optimal product prices are to be determined while ac-
counting for numerous aspects, such as competitors’ strate-
gies or market conditions (Dasgupta and Hashimoto 2004;
Li, Giampapa, and Sycara 2004; Saha, Biswas, and Sen
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2005; Sohn, Moon, and Seok 2009). This requires a so-
phisticated dynamic product pricing approach, which may
be facilitated by automated decision support systems.

In real-time applications, the problem is that aspects rel-
evant to the product pricing process may not be (fully) ob-
servable. This is also the case in the Trading Agent Compe-
tition for Supply Chain Management (TAC SCM) (Collins
et al. 2005), which has been organized since 2002 in order
to promote and encourage high quality research into trading
agents in supply chains. The game stimulates research with
respect to more flexible and dynamic supply chain practices.
In TAC SCM, several manufacturers compete in a compo-
nent procurement market and in a sales market where as-
sembled PCs are sold through reverse auctions where they
can bid on requests for quotes (RFQs). The TAC SCM mar-
ket environment is only partially observable. As dynamic
product pricing is a vital, yet non-trivial task in case of lim-
ited visibility of the market environment, we investigate how
dynamically differentiating product pricing decisions using
estimations of economic regimes (Ketter et al. 2006; 2007;
2009) can contribute to profit maximization. We validate our
novel approach in TAC SCM.

Related Work
When pricing products, several aspects need to be accounted
for. First of all, an approximation of the probability of ac-
ceptance of offers can be used, as done in (Dasgupta and
Hashimoto 2004) and (Walsh et al. 2008). Analyzing of-
fer prices and their associated estimated probabilities of ac-
ceptance is rather intuitive in a product pricing process, be-
cause this can help a seller assess how sales targets can be
met. In (Dasgupta and Hashimoto 2004), products are priced
using a dynamic pricing algorithm which considers an esti-
mated distribution of the buyer reservation price for products
of a seller. Reversing the cumulative form of this distribution
yields a function expressing the proportion of buyers willing
to pay the seller a specified price, which can also be inter-
preted as the probability that a customer accepts an offered
price. This function can subsequently be used to determine
the price expected to yield a specified sales quota. In (Walsh
et al. 2008), estimated distributions of buyer’s private values
are used in a similar way.



Another way of modeling acceptance probabilities is by
using linear regression on data points representing recent
prices offered, along with the resulting acceptance rate (Par-
doe and Stone 2006b). Acceptance probability distributions
could also be trained off-line (Benisch et al. 2006). Another
option is to try to model the decision function of the ac-
cepting entities, based on their decision histories, e.g., using
Chebychev polynomials (Saha, Biswas, and Sen 2005).

Related work suggests some other aspects besides accep-
tance probability estimations to be relevant for product pric-
ing. Current and future offers of competitors (outside op-
tions) could be considered (Li, Giampapa, and Sycara 2004).
In (Sohn, Moon, and Seok 2009), outside options are con-
sidered as well. Here, a dynamic product pricing model is
proposed in which the price change of the product itself as
well as the relative price of competing products is quantified
in a price elasticity. Using scenario analysis for distinguish-
ing between various situations of price elasticity (i.e., market
conditions), the optimal pricing policy is selected.

Market conditions can also be accounted for by using
economic regimes (Ketter et al. 2006; 2007; 2009). A
regime is a set of conditions, characterizing the state of a
system or process. Regimes provide an intuitive way of
conditioning behavior in different scenarios. In literature,
several approaches to regime identification and prediction
have been proposed in different contexts (Becker, Hurn, and
Pavlov 2007; Hamilton 1989; Hathaway and Bezdek 1993;
Mount, Ning, and Cai 2006). Regimes are useful in an eco-
nomic context, because the ability of decision makers to cor-
rectly identify the current regime and predict the onset of a
new regime is crucial in order to prevent over- or underre-
action to market conditions (Massey and Wu 2005). Eco-
nomic regimes can guide tactical (e.g., product pricing) and
strategic sales decisions (e.g., product mix and production
planning) (Ketter et al. 2006; 2007; 2009).

Finally, in case of known demand and uncertain supply,
a responsive pricing policy, in which the retail price is de-
termined after observing the realized supply, results in a
higher expected profit than a pricing policy in which the re-
alized supply is not taken into account (Tang and Yin 2007).
Consequently, modeling expected or observed supply-side
behavior in the product pricing process could contribute to
profit maximization.

In the context of the TAC SCM game, several approaches
to product pricing have been proposed. TacTex (Pardoe
and Stone 2006b) predicts demand (using a Bayesian ap-
proach introduced by the DeepMaize team (Kiekintveld et
al. 2004)) and offer acceptance (using linear regression) and
adapts these offer acceptance estimations to its opponents’
behavior. Another approach is to directly model the behav-
ior of the competing agents and thus predict their offers (Ko-
valchuk and Fasli 2008). The SouthamptonSCM (He et al.
2005) agent uses fuzzy reasoning for daily price adapta-
tion. For predicting whether a particular price for a partic-
ular product will be accepted by a customer, the CMieux
agent (Benisch et al. 2006) uses probability distributions
trained off-line. The Botticelli agent (Benisch et al. 2004)
and PhantAgent (Stan, Stan, and Florea 2006) use simple
heuristics for determining what to sell for what price.

A Product Pricing Model based on Offer Price
Distributions

We propose to approximate acceptance probabilities in a
scenario as simulated in the TAC SCM game by taking
into account all offered prices, hereby implicitly modeling
the decision making processes of all traders. Incorporat-
ing offer price distributions rather than individual offers into
the framework can compensate for a drawback encountered
in (Kovalchuk and Fasli 2008), where offer prices of individ-
ual competitors are predicted even though these competitors
may not actually bid. When reasoning in terms of offer price
distributions rather than individual offers, the offer price dis-
tributions are formed by all offers actually done rather than
offers all competitors would make, should they actually bid.

Dynamic Pricing When customers only consider bids at
or below their reservation price and always select the the
cheapest offer, the distribution of realized order prices can
be derived from the distribution of valid offer prices. Mod-
eling order price distributions using offer price distributions
is intuitive, as this captures the market dynamics and facil-
itates representation of relevant information on supply-side
behavior. Now, let for product g on game day d a mean
number of ndg randomly sampled valid offer prices pdg for
each out of mdg RFQs be identically and independently dis-
tributed in accordance with a distribution f (pdg; θ) and a
cumulative distribution F (pdg; θ), with 0 < pdg < u (i.e.,
prices are non-negative and have an upperbound u) and θ a
vector of unknown parameters. For such a distribution, the
cumulative distribution of the minimum valid offer prices
(and thus the order prices) p

dg
over all mdg RFQs can be

derived as (Kapadia, Chan, and Moyé 2005)

Fp

(
p
dg

; θ
)

=
(

1−
(

1− F
(
p
dg

; θ
))ndg)mdg

,

0 < p
dg
< u, ndg,mdg > 0. (1)

The cumulative density of order prices yields the fraction
of order prices realized at or below a specific value, which
is similar to the probability that an order is placed with an-
other trader offering a similar or better deal. Consequently,
the reverse of this cumulative density approximates the prob-
ability for an agent to offer a better deal than other competi-
tors. Hence, the reverse cumulative density of order prices
associated with product g on game day d is an estimation
of the probability that a customer will place an order o with
an agent, given its offer price pdg , P (o|pdg). Acceptance
probabilities can therefore be estimated as

P (o|pdg) =
(

1− Fp (pdg; θ)
)
, 0 < pdg < u

=
(

1−
(

1− (1− F (pdg; θ))
ndg
)mdg)

,

0 < pdg < u, ndg,mdg > 0. (2)

Equation (2) can be used to estimate the share of received
orders with respect to the total number of RFQs for product
g on game day d, generated by a price offered on all these



RFQs. Now, let q∗dg be the sales quota (i.e., desired accep-
tance probability (Ketter et al. 2008)) for product g on day d,
with mdg associated RFQs, for each of which ndg prices are

offered. This implies that P
(
o|p∗dg

)
is required to be q∗dg .

Solving the equation to p∗dg yields the optimal offer price p∗dg
expected to yield the desired quota. This way, products can
be priced using estimations of offer price distributions.

Model Parameter Estimation When pricing products,
the unknown parameters θ and ndg in the acceptance prob-
ability approximation detailed in (2) must be estimated for
a product g on game day d. When all data is available, ndg
can be determined by a counting process. Furthermore, θ
can be estimated by maximum likelihood as follows. As-
suming all prices in the sample of prices ~pdg offered for all
mdg RFQs issued for product g on game day d to be iden-
tically and independently distributed in accordance with the
offer price distribution f (pdgri; θ), the joint distribution of
all valid offer prices can be derived as

f (~pdg; θ) =
mdg∏
r=1

ndgr∏
i=1

f (pdgri; θ) , 0 < pdgri < u, (3)

where pdgri is the ith of ndgr prices offered on game day d
for RFQ r for product g and parameters θ can be estimated
by minimizing the negative log-likelihood function of these
parameters for a sample of observed offer prices ~pdg (e.g.,
using the Newton-Raphson method described in (Coleman
and Li 1996)):

L (θ; ~pdg) =
mdg∑
r=1

ndgr∑
i=1

− ln (f (pdgri; θ)) ,

0 < pdgri < u. (4)
However, data on offer prices is not available in TAC

SCM, due to limited visibility of the real-time environment.
Hence, the distribution parameters θ and ndg can be esti-
mated using a vector of real-time available information, ~x.
The relations between available information and distribu-
tion parameters, hθ (~x) and hndg (~x), can be modeled using
Artificial Neural Networks (ANNs), yielding approxima-
tions of these relations: ĥθ (~x) and ĥndg (~x). An ANN is a
mathematical model inspired by biological neural networks,
which provides a general, practical method for learning real-
valued, discrete-valued, and vector-valued functions over
continuous and discrete-valued attributes from examples
in order to facilitate regression or classification (Mitchell
1997). The model consists of interconnecting artificial neu-
rons (nodes), ordered into an input layer, hidden layers, and
an output layer.

Due to the ability of an ANN of capturing complex non-
linear relations, which is a useful feature in case of learn-
ing functions whose general form is unknown in advance,
parameter estimation using (4) can be replaced with such a
model, albeit with different inputs (i.e., real-time available
data). Representing the unknown relations between distri-
bution parameters and data using ANNs also brings the at-
tractive feature of fast evaluation of these (modeled) func-
tions, which is crucial in case of real-time product pricing.

Other advantages include robustness to noise in the training
data (Mitchell 1997), the possibility to introduce adaptiv-
ity by adjusting the weights of each node’s inputs on-the-fly
using newly obtained examples (if any), and the fact that
ANNs have proven to be useful for economic forecasts in
various domains (Kovalchuk and Fasli 2008). Moreover,
our experimental results regarding TAC SCM showed that
ANNs better captured the relation between data and distribu-
tion parameters than for instance a linear regression model.

We propose to use a specific type of ANN for parame-
ter estimation: a Radial Basis Function Network (RBFN). A
RBFN is a two-layer ANN consisting of a hidden layer and
an output layer. The activation function in each hidden unit
h is a local function Kh (d (~xh, ~x)), the output of which ap-
proaches 0 as d (~xh, ~x) – the (typically Euclidian) distance
between an instance characterized by a vector of features ~x
and the center ~xh – increases. The local functions in the
hidden layer typically are Gaussians, centered at ~xh with
variance σ2

h. The number of Gaussians H is subject to op-
timization and their centers can be determined by clustering
the data, using for example the k-means algorithm (Mac-
Queen 1967). The network’s output for an instance ~x, ĥ (~x),
is a linear combination of the activation units, weighted for
their weights wh, and a bias w0 (Mitchell 1997):

ĥ (~x) = w0 +
H∑
h=1

whKh (d (~xh, ~x)) , (5)

Kh (d (~xh, ~x)) = e
1

2σ2
h

d2(~xh,~x)
. (6)

Hence, a RBFN is a global approximation ĥ (~x) of a tar-
get function h (~x), represented as a linear combination of
local functions around their centers. Because RBFNs can
be designed and trained in a fraction of the time it takes
to train standard feed-forward back-propagation neural net-
works (Mitchell 1997), a RBFN would be a good approxi-
mator for distribution parameters.

Adaptive Regime-Based Product Pricing
In (Walsh et al. 2008), an English auction scenario is consid-
ered, in which bidders have independent private values, all
originating from the same distribution. These private values
result in bids up to the private values. The best (highest) bid
wins. The distribution of the private values of the bidders
is estimated using averaging and binary search techniques,
combined with simulations. In this approach, adaptivity to
market disruptions is realized by assuming changes in bid-
ding (and thus market disruptions) to actually be a shift in
the underlying value distribution. Therefore, the estimated
distribution of private values is shifted accordingly.

The product pricing process we target is somewhat similar
to the scenario described in (Walsh et al. 2008). In our case,
traders bid on an RFQ and the best (lowest) bid wins. How-
ever, our RFQ bidding processes resemble (reverse) sealed
bid, first price auctions rather than English auctions, as TAC
SCM trading agents are not aware of bids of their competi-
tors and the best (lowest) bid wins. Therefore, changes in
bidding behavior of the competitors cannot be observed.



However, information on economic regimes might help
in modeling changes in bidding behavior of manufactur-
ers participating in a market, as realized order prices and
hence the associated order probabilities tend to vary, de-
pending on the economic regime (Ketter et al. 2006; 2007;
2009). Hence, changes in pricing behavior can be accounted
for by incorporating regime information into the process of
estimating order price distributions and the associated cus-
tomer offer acceptance probabilities (Ketter et al. 2008).
Therefore, we propose to dynamically model the relations
between available data and price distributions using eco-
nomic regimes. To this end, distribution parameters θk and
ndgk for product g on day d can be estimated per domi-
nant regime k using RBFNs. When M dominant regimes
are considered, this yields M separate price distribution es-
timations. The acceptance probabilities P (ok|pdgk) derived
from these distributions can be weighted with the associated
regime probabilities for regime Rdgk, P (Rdgk).

The weights in the RBFNs could be updated on-line,
based on new data. However, when new training samples
cannot be presented to the networks (due to limited visibil-
ity of market characteristics), daily acceptance probability
estimations done using the RBFNs can be adjusted by mul-
tiplying the acceptance probabilities by a factor representing
the ratio between the number of actually received orders and
the number of predicted orders, as proposed in (Pardoe and
Stone 2006a). If more orders have been received than pre-
dicted, the acceptance probability is larger than expected, to
an extent equal to the ratio between received and predicted
number of orders. If less orders have been received than pre-
dicted, the acceptance probability should be adjusted down-
wards. This ratio, which can also be referred to as a residual
error term ε, enables market responses to be fed back to the
model, as this ratio can be updated in real-time. A smoothed
error term ε̃ can be used in order to prevent over- or under-
compensation.

For dominant regime k, the probability that a customer
accepts an offer of a manufacturer and hence places an or-
der ok with this manufacturer, given price pdgk for product
g on game day d, P (ok|pdgk), ranges from 0 to 1. Multiply-
ing this customer offer acceptance probability with the sug-
gested ratio ε̃(d−1)gk (which depends on regime k and has
been updated using performance information up until day
d−1) yields a corrected customer offer acceptance probabil-
ity P (ok|pdgk)′ in the range

[
0, ε̃(d−1)gk

]
. This implies that

no suitable price can be found for q∗dg ≥ ε̃(d−1)gk, which
is an undesirable feature when ε̃(d−1)gk < 1. However,
when the corrected customer offer acceptance probability
P (ok|pdgk)′ is defined as

P (ok|pdgk)′

= P (ok|pdgk)ε̃(d−1)gk , 0 < pdgk < u, ε̃(d−1)gk > 0,

=
(

1−
(

1− (1− F (pdgk; θk))ndgk
)mdg)ε̃(d−1)gk

,

0 < pdgk < u, ndgk,mdg, ε̃(d−1)gk > 0, (7)

customer offer acceptance probabilities continue to range
from 0 to 1 for 0 < pdgk < u after correction.

Using (7), the corrected offer price p∗
′

dg expected to
yield the desired sales quota q∗dg for product g on day d
can be defined for each dominant regime k, by requiring

P
(
ok|p∗

′

dgk

)′
for that product on that day to be q∗dg . Solving

the equation to p∗
′

dgk yields the optimal corrected offer price
p∗
′

dgk expected to yield the desired quota q∗dg under dominant
regime k. When these corrected prices are then weighted
for their associated regime probabilities P (Rdgk), the cor-
rected price p∗

′

dg expected to yield the required quota can be
obtained.

The error term considered in (7) should be assigned val-
ues such that under each dominant regime k, the expected
customer offer acceptance probabilities P

(
ok|p∗

′

(d−1)g

)
as-

sociated with an offer price p∗
′

(d−1)g are corrected by the un-
smoothed exponential error terms to the proportion of ac-
tually received number of orders q(d−1)g . The found error
terms can subsequently be smoothed. Hence, offer price and
customer response should be related as shown in (8).

q(d−1)g = P
(
ok|p∗

′

(d−1)g

)ε(d−1)gk

, 0 < q(d−1)g < 1,

0 < p∗
′

(d−1)g < u, ε(d−1)gk > 0. (8)

The error terms can be smoothed using double exponen-
tial smoothing (Brown, Meyer, and D’Esopo 1961), where
the smoothing factor β is weighted for the associated regime
probabilities in order for errors only to be attributed to the
models responsible for these errors. Smoothing is done by
linearly combining two components (see (12)), the first of
which (defined in (10)) is a linear combination of the latest
error (see (9)) and the previous first component. The second
component (defined in (11)) is a linear combination of the
first component and the previous second component.

ε(d−1)gk =
ln
(
q(d−1)g

)
ln
(
P
(
ok|p∗

′

(d−1)g

)) , 0 < q(d−1)g < 1,

0 < P
(
ok|p∗

′

(d−1)g

)
< 1, (9)

ε̃ ′(d−1)gk = βP
(
R(d−1)gk

)
ε(d−1)gk+(

1−
(
βP
(
R(d−1)gk

)))
ε̃ ′(d−2)gk, (10)

ε̃ ′′(d−1)gk = βP
(
R(d−1)gk

)
ε̃ ′(d−1)gk+(

1−
(
βP
(
R(d−1)gk

)))
ε̃ ′′(d−2)gk, (11)

ε̃(d−1)gk = 2ε̃ ′(d−1)gk − ε
′′

(d−1)gk. (12)

So far, the proposed framework assumes the offer prices
to be distributed in accordance with a distribution the type
and parameters of which have not been defined yet. For this
purpose, we propose a log-logistic distribution, as this dis-
tribution covers a variety of shapes depending on the param-
eters α and γ and has the attractive feature that an analyti-
cal closed form expression exists for the cumulative density
function. Moreover, we determined that this distribution suf-
ficiently describes the data in the TAC SCM game in over
60% of the analyzed price samples from historical game



data1, according to the Kolmogorov-Smirnov test (Massey
1951) (when requiring the p-value to be over 0.05). The re-
maining samples could not sufficiently be described using a
simple parametric distribution such as the log-logistic distri-
bution due to the complex form of their true densities. The
log-logistic distribution f(p;α, γ) and its cumulative form
F (p;α, γ) (Mood, Graybill, and Boes 1974), truncated such
that the distribution is defined on the domain 0 < p < u
and reparameterized such that α represents the median and
γ quantifies the distribution tightness, can be described as

f (p;α, γ) =
(α−γ − u−γ) γp−γ−1

(α−γ − 2u−γ + p−γ)2 ,

0 < p < u, α, γ > 0, (13)

F (p;α, γ) =
α−γ − u−γ

α−γ − 2u−γ + p−γ
,

0 < p < u, α, γ > 0. (14)

When F (pdgk; θk) in (7) is substituted for (14), the cor-
rected price p∗

′

dg expected to yield a required sales quota
q∗dg can be obtained as shown in (15) through (17). Here,
let 1 ≤ k ≤ M , with the number of considered regimes
M = 5 (Ketter et al. 2006; 2007; 2009).

q∗
′

dg = ndgk

√
1− mdg

√
1− ε̃(d−1)gk

√
q∗dg,

0 < q∗dg < 1, mdg, ndgk, ε̃(d−1)g > 0, (15)

p∗
′

dgk =

u−γk
(
α−γkk (uγk − 2αγkk ) q∗

′

dg + 1
)

1− q∗′dg

−
1
γk

,

αk, γk > 0, (16)

p∗
′

dg =
5∑
k=1

P (Rdgk) p∗
′

dgk, 0 < p∗
′

dgk < u. (17)

We now have a product pricing approach, which assumes
a double-bounded log-logistic distribution to be underlying
offer prices, the parameters of which can be estimated real-
time using RBFNs, based on available information. This
approach can adapt to market disruptions, characterized us-
ing economic regimes, as product prices are determined per
dominant regime using (15) and (16) and weighted for their
associated regime probabilities in (17). The relations be-
tween price distributions and available information are thus
dynamically modeled, depending on economic regimes.

Structural errors in the product pricing process are ac-
counted for by feeding back market responses to placed
offers using an error term, designed to transform the esti-
mated acceptance probability function into a function bet-
ter approximating the true acceptance probability. This er-
ror term is corrected using daily observations of expected

1TAC SCM 2007 Semi-Finals and Finals (9323–9327tac5 and
7308–7312tac3) (SICS AB 2004 2009) and TAC SCM 2008 Semi-
Finals and Finals (763–768tac02 and 794–799tac01) (University of
Minnesota 2003 2009) game data.

and observed acceptance probabilities – double exponen-
tially smoothed with a smoothing factor weighted for the as-
sociated regime probabilities – using (9) through (12). This
feedback process enables the product pricing model to adapt
to the true customer offer acceptance probabilities.

Performance in TAC SCM
The limited visibility of the TAC SCM market environment
advocates the need for effective modeling of the market en-
vironment, such that decision making processes are ade-
quately supported. As economic regimes have been shown
to be useful in effectively describing market conditions in
TAC SCM (Ketter et al. 2006; 2007; 2009), dynamically dif-
ferentiating pricing strategies using these economic regimes
would intuitively contribute to the performance of a manu-
facturer within the game.

Therefore, the final framework is evaluated by imple-
menting the approach in the MinneTAC agent (Collins, Ket-
ter, and Gini 2009) for TAC SCM. To this end, product
pricing should be done using (9) through (12) and (15)
through (17). The αk, γk, and ndgk parameters for product
g on game day d for dominant regime k are to be estimated
using RBFNs.

Implementation in the MinneTAC Agent The sales de-
cisions made by the MinneTAC agent originate from price
predictions based on microeconomic conditions, character-
ized for each individual market segment: economic regimes
are identified and predicted. These economic regimes can
be extreme scarcity, scarcity, a balanced situation, oversup-
ply, and extreme oversupply. On game day d, the regime
for good g is identified using regime probabilities. The
regime having the highest probability, given the estimated
normalized mean price of that day is the current dominant
regime. This price estimate is a smoothed normalized mid-
range price, ñpdg , which is the average of the double ex-
ponentially smoothed normalized minimum and maximum
price. To this end, prices are normalized by expressing these
prices in terms of their associated production costs, such that
these normalized prices npdg range from 0 to 1.25.

A product-level price density function has been modeled
on historical normalized order price data using a Gaussian
Mixture Model (GMM) (Titterington, Smith, and Makov
1985) with a sufficient number of Gaussians (25 at the mo-
ment), reflecting a balance between prediction accuracy and
computational overhead. Clustering these price distributions
over time periods (using the k-means algorithm) has yielded
distinguishable statistical patterns: economic regimes. In
TAC SCM, price information is only available up until the
preceding game day. Hence, the MinneTAC agent estimates
the mean price of day d using exponential smoothing pre-
diction of ñpdg and then returns the regime probabilities for
day d. When such an estimate is supplied to the model,
the individual Gaussians in the model are activated to a cer-
tain extent, thus generating an expected price distribution.
Subsequently normalizing all clusters’ price densities en-
ables determination of regime probabilities. Future regime
probabilities are determined by using Markov prediction



and Markov correction-prediction processes (for short-term
and long-term decision making, respectively) (Ketter et al.
2008). When current or future regime probabilities have
been determined, products are priced using acceptance prob-
abilities of these prices, such that a sales quota is fulfilled.

In the sales process configuration used as benchmark
in our research, price trends are estimated by the regime
model. The median price of a product is estimated using a
price-following approach implementing a double exponen-
tial smoother. These trends, combined with the estimated
median, are used in the allocation process, where sales quo-
tas are generated based on – among other things – these price
predictions. The curve representing the probability of accep-
tance is approximated using the estimated median price and
the curve’s slope in that median, estimated using exponen-
tially smoothed prices. This acceptance probability is used
for determining the price to be offered in order for the sales
agent to sell its desired quota.

In order to compensate for the uncertainty in generated
predictions, interval randomization is applied to offer prices,
which adds a slight variability to these prices. The esti-
mated median is corrected using feedback derived from the
desired customer offer acceptance probability and the asso-
ciated true acceptance probability observed the next day. A
major drawback here is the assumption that customer feed-
back is in response to the optimized offer price, whereas this
feedback is in response to a price randomized in an interval
around this price.

The price distributions estimated by the GMM are up-
dated on-line, but they do not account for factors other than
a mean price estimate and lack full adaptivity. In an at-
tempt to improve the product pricing process by combining
regime information with real-time available data, we replace
the sales model of the benchmark with a system designed
for Product Pricing using Adaptive Real-time Regime-based
Probability of Acceptance Estimations: PPARRPAE. The
algorithm (see Algorithm 1) involves parameter estimation
using RBFNs and subsequently pricing products using (15)
through (17) (with u = 1.25). In this process, an error term
is considered, following (9) through (12) (with β = 0.5, as
determined by a hill-climbing procedure).

The idea is to build an adapter, which combines charac-
teristics of price distribution estimated by the regime model
with available information. Using the RBFNs, the adapter
transforms available information into a parameterized ac-
ceptance probability function per dominant regime and as-
signs weights to these functions, equal to their associated
regime probabilities. This adapted distribution can subse-
quently be used in the product pricing process. Given a
quota for a product (specified by the allocation component),
the product pricing component uses the adapter to compute
the price expected to yield this quota per dominant regime
and weights the suggested prices for their associated regime
probabilities. The optimized price is then offered on all
selected RFQs for the considered product. The market re-
sponses to these offers are fed back to the adapter. In order
for this information not to be biased, interval randomiza-
tion is not applied to the optimized price, as opposed to the
benchmark approach.

foreach d in days do
foreach g in products do

// Update error using last
// feedback, using (9) through (12)
error = updateError(getFdback(d− 1, g));
// Retrieve data from regime model
regProbs = getRegProbs(d, g);
regPriceDistr = getRegPriceDistr(d, g);
trends = getTrends(d, g);
// Estimate parameters using RBFNs
priceDistr = estParams(regPriceDistr,
getData(d, g));
// Determine median price using (15)
// through (17)
median = priceForProb(0.5, priceDistr,
error, regProbs);
// Retrieve allocated quota
quota = getQuota(d, g, median, trends);
// Determine price expected to
// yield quota using (15) through (17)
price = priceForProb(quota, priceDistr,
error, regProbs);
// Bid price on selected RFQs
priceProduct(d, g, price);

end
end

Algorithm 1: The PPARRPAE approach.

The allocation model partially bases its decisions on price
predictions, which consist of an estimate of the median price
of the considered game day and trends representing expected
future deviations from this median. In the benchmark sales
model, the regime model provides trends, whereas the me-
dian is estimated using a price-follower approach. This
price-following component is also used for acceptance prob-
ability estimation and can thus be updated using market re-
sponses. Since in the proposed approach, market responses
are not related to the price-following median, but are fed
back to the adapter, the median price prediction should be
provided to the allocation component by the adapter.

Radial Basis Function Network Training For each dom-
inant regime k, a RBFN needs to be trained for estimating
αk, γk, and ndgk for product g on game day d. Therefore,
training and test datasets2 must be split into datasets per
dominant regime. These dominant regimes are identified by
the current regime model. We attempt to adapt regime-based
price distributions done using the GMM implemented in the
MinneTAC agent in order for them to be useful in the daily
product pricing process. Hence, these regime-based price
distributions should be used as RBFN inputs. For now, let
these distributions be described by their 10th, 50th, and 90th
percentile and the spread of these percentiles. The RBFNs
should adapt these distributions using on-line available data.

2TAC SCM 2007 Semi-Finals and Finals (9321–9328tac5 and
7306–7313tac3) (SICS AB 2004 2009) and TAC SCM 2008 Semi-
Finals and Finals (761–769tac02 and 792–800tac01) (University of
Minnesota 2003 2009) game data. The first two games and the last
game per server form the test set, the rest forms the training set.



TAC SCM price distributions tend to differ per product
type, so product types can indicate price distribution char-
acteristics. Offered prices can also be related to game days.
E.g., in the game’s start-up phase, prices are more likely to
be relatively high due to product scarcity. Another indica-
tor for a product’s offer price distribution can be the num-
ber of RFQs for that product, as the number of simultane-
ously run similar auctions affects the generated revenue due
to the auctions’ (partial) substitutivity (Walsh et al. 2008).
In TAC SCM, RFQs for a product type can be (partial) sub-
stitutes to bidding agents, as their production capacities are
limited. RFQ characteristics can indicate the pricing behav-
ior they generate too, so mean and standard deviation of re-
quested quantities, leadtimes, and reservation prices can be
considered. Prices realized on the preceding day are use-
ful too (Kovalchuk and Fasli 2008). In-game, only a prod-
uct’s minimum and maximum order prices (and their mid-
range and spread) realized on the preceding day are visible.
These prices can be double exponentially smoothed, yield-
ing a good estimate of the associated mean price (Ketter et
al. 2006; 2007; 2009).

The RBFNs should hence be trained to adapt regime-
based GMM price distribution estimates using data on prod-
uct type, game day, RFQ characteristics, and observable
prices. Using historical game data, target parameter values
can be determined by a counting process (for ndgk) and by
fitting distributions using (4) and (13) (for αk and γk). A
typical training dataset thus generated contains over 15,000
samples, a typical test dataset over 8,000. The performance
of RBFNs trained on the training set can be evaluated on the
test set, as the latter set is sufficiently large and representa-
tive (Mitchell 1997). The thus found optimal values for γk
tend to be distributed on an exponential scale; the increment
in γk needed to tighten the distribution increases as the dis-
tribution gets tighter. E.g., a distribution with a γk value of
2 is much more different from one with a γk value of 5 than
a distribution with a γk value of 200 is from one with a γk
value of 500, when all other parameters are fixed. Hence,
as the required accuracy decreases for an increasing γk, the
networks are trained to predict the natural logarithm of γk.

Using Weka (Witten and Frank 2005), the RBFNs can be
trained relatively easily. The results can be saved as serial-
ized Java objects, which can be used in Java software like
MinneTAC. Another advantage of Weka is the availability
of other model types. As most other models implemented
in Weka are classification rather than regression models and
preliminary tests indicate the preferability of the RBFN im-
plementation (RBFNetwork) over other regression models,
we use RBFNetwork. One drawback is that RBFNetwork
can only have one output. Hence, we train a RBFN per
dominant regime per parameter. We fix the random seed
RBFNetwork uses in the clustering process used to deter-
mine the centers of the Gaussians in the networks. One can
also specify a so-called ridge value, which indicates how
much the regression error in estimating model parameters
may diverge from the least squares measure. For all net-
works, this value is left at its default value, 1E-08. Other pa-
rameters are the number of clusters and the minimum stan-
dard deviation of these clusters.

Parameter Regime Clusters MinStdev RMSD
αk 1 25 15 0.0448
αk 2 50 10 0.0346
αk 3 100 5 0.0366
αk 4 50 5 0.0386
αk 5 300 5 0.0400

ln (γk) 1 100 15 0.7713
ln (γk) 2 150 5 0.6903
ln (γk) 3 150 5 0.6481
ln (γk) 4 200 5 0.6370
ln (γk) 5 150 2 0.6732
ndgk 1 50 15 1.0036
ndgk 2 25 5 1.0773
ndgk 3 200 5 0.9974
ndgk 4 300 2 0.9395
ndgk 5 100 5 0.8090

Table 1: Optimized configuration of number of clusters and
minimum standard deviation of clusters for RBFNs estimat-
ing distribution parameters, along with the RMSD of param-
eter values predicted by the models from their target values.

The configurations of the latter two parameters can be
determined by systematically evaluating all combinations
of different values. The configurations yielding the lowest
root mean squared deviation (RMSD) on the test set are se-
lected (Mitchell 1997). The RMSD can be defined as

RMSD =

√∑Ω
ω=1 (x̂ω − xω)2

Ω
, (18)

where x̂ω is a predicted observation in a set of Ω observa-
tions and xω is the associated actual value.

The optimal number of clusters could be anything
between relatively small and rather large. Using too
many clusters would cause the model to not general-
ize very well. Hence, taking into account the size of
the dataset, the set of number of clusters considered is
{25, 50, 100, 150, 200, 300} and standard deviations in the
set {1, 2, 5, 10, 15} are considered. Apparently, αk (rang-
ing between 0 and 1.25) can be estimated relatively well,
whereas ndgk (ranging between 0 and 6) and ln (γk)
(roughly ranging between -6 and 6) cannot (see Table 1).

Performance Evaluation By running and analyzing a
number of games, the performance of the proposed PPAR-
RPAE system can be compared with the performance of the
benchmark. In this experimental set-up, games are in accor-
dance with the 2006 TAC SCM game specifications (Collins
et al. 2005). The randomness incorporated in the game
(e.g., in customer demand) is an inconvenient characteris-
tic for a testing environment in which two approaches are to
be compared, as this randomness in market conditions im-
plies that many experiments should be run in order to ob-
tain results with any statistical significance. The issue of
randomness in the testing environment is tackled by a con-
trolled TAC SCM game server, in which random seeds –
which are used for generating market conditions – can be
controlled. Uncontrolled stochastic behavior of participat-
ing trading agents does not have a significant impact on the



overall agent profit levels and most significant profit differ-
ences between agents can already be detected in approxi-
mately 40 games (Sodomka, Collins, and Gini 2007).

The performance of the PPARRPAE system can hence
be evaluated in 40 experiment sets on a controlled server.
Each experiment set consists of a paired evaluation of the
performance of the benchmark and the PPARRPAE system
under equal market characteristics. We let the competitors
be the default competitors that come with the TAC SCM
game. These competitors use a make-to-order strategy. In
each evaluation, the final bank account balance can be con-
sidered, as well as the sales performance. To this end, the
mean and standard deviation of account balances over all
games can be computed. The number of obtained orders
should be considered in the analysis as well. The number of
times the agent proceeds to actually bidding on RFQs, given
an acceptance probability estimate, can also be analyzed.

Performance differences should also be assessed with re-
spect to their statistical relevance. This can be done with a
paired Student’s t-test (Goulden 1956), which tests whether
the population means of two samples are equal (this null
hypothesis is rejected at a significance level below 0.05).
However, this statistic assumes the observations to be dis-
tributed in accordance with a normal distribution and we do
not know whether this is a realistic assumption. Therefore,
we also assess statistical relevance of observed performance
differences using the paired, two-sided Wilcoxon signed-
rank test (Gibbons 1986; Hollander and Wolfe 2000). This
is a non-parametric test, which tests the hypothesis that the
differences between paired observations are symmetrically
distributed around a median equal to 0. If this null hypothe-
sis is rejected (at a significance level below 0.05), the com-
pared sets of samples can be assumed to be significantly dif-
ferent. This test is suitable in this experimental setup, as the
distribution of the values to be compared is unknown.

Over all experiments, PPARRPAE turns out to outperform
the benchmark with respect to final bank account balance
and the number of obtained orders (see Tables 2 and 3). Gen-
erally, when using PPARRPAE, final balances significantly
increase with about 160% (with a p-value of 0.0000 for both
the paired t-test and the Wilcoxon test) and the number of
orders significantly increases with over 50% (with a p-value
of 0.0000 for the paired t-test as well as for the Wilcoxon
test) with respect to the benchmark.

The increase in number of obtained orders can be ex-
plained by the significant increase of the number of usable
acceptance probability estimations with approximately 80%
(with p-values of 0.0000 for both tests). However, final ac-
count balance increase does not appear to be fully explained
by an increase in obtained orders. In some experiments, a
small increase (or even a decrease) in the number of obtained
orders still results in doubled profits. This indicates that or-
ders are better priced. This could be caused by prices of ob-
tained orders to be closer to second-lowest prices, instead of
being significantly lower, which results in a reduced margin
between customers’ reserve prices and realized order prices.
Hence, using the PPARRPAE approach improves the qual-
ity of acceptance probability estimations and consequently
results in better bid efficiency.

Benchmark PPARRPAE
Agent Mean Stdev Mean Stdev

MinneTAC 19.2614 12.4207 49.3933 2.7053
Make-to-order-1 12.9194 3.2799 14.0436 2.9310
Make-to-order-2 13.0250 3.3152 14.1313 3.1668
Make-to-order-3 12.7687 3.3184 14.1034 2.7711
Make-to-order-4 12.8552 3.4148 14.3529 2.9034
Make-to-order-5 13.0803 3.2224 14.2307 2.9874

Table 2: Mean and standard deviation of final bank account
balance per agent (in millions) over all experiments.

Benchmark PPARRPAE
Agent Mean Stdev Mean Stdev

MinneTAC 3.0865 1.0178 4.6474 0.4507
Make-to-order-1 3.2615 0.3367 3.0498 0.3129
Make-to-order-2 3.2615 0.3291 3.0571 0.3448
Make-to-order-3 3.2452 0.3386 3.0364 0.3267
Make-to-order-4 3.2198 0.3292 3.0387 0.3172
Make-to-order-5 3.2504 0.3480 3.0437 0.3301

Table 3: Mean and standard deviation of number of obtained
orders per agent (in thousands) over all experiments.

Conclusions and Future Work
When product pricing strategies are linked to price distribu-
tion estimations, taking into account real-time available in-
formation, the relation between available data and price dis-
tribution parameters can be dynamically modeled using eco-
nomic regimes (characterizing market conditions) and error
terms (accounting for customer feedback). Thus, in a con-
strained environment like TAC SCM, economic regime esti-
mations turn out to contribute to profit maximization when
they are used to differentiate product pricing strategies. Test
results indicate that this novel approach significantly im-
proves the performance of a price-following product pricing
approach; more orders are obtained against higher prices and
profits more than double. Much gain is obtained from us-
ing proper statistical methods, combined with effective real-
time parameter estimation.

Even though the performance of the proposed model al-
ready is very promising, some aspects still require more re-
search. First of all, the type and parameterization of models
for real-time price distribution and acceptance probability
approximation could be further improved. Other possible
predictors for acceptance probabilities could be considered
as well. Procurement information might be a good candi-
date here, as costs associated with specific orders could in-
fluence the price, depending on the cost allocation applied in
the participating trading agents. Our current RBFNs mostly
use information on RFQ characteristics as inputs in order
to account for possibly dependent bidding behavior caused
by (partial) substitutivity of RFQs per product type. Fu-
ture research could therefore also include moving compen-
sation for possible dependencies from the parameter estima-
tion phase to the underlying model. Another option for fu-
ture research could be trying to use the improved acceptance
probability estimations in the allocation or RFQ selection
process.



Finally, our approach of product pricing using adaptive
regime-based acceptance probability estimations could be
challenged in a situation with very tough competition. Cur-
rently, we are testing our approach against world’s leading
TAC SCM agents. If the MinneTAC agent could deal with
those agents as with the agents considered in this research,
MinneTAC would be more competitive than ever.
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