
Genetic Algorithms for RDF Query Path
Optimization

Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

Erasmus School of Economics, Erasmus University Rotterdam
P.O. Box 1738, 3000 DR Rotterdam, The Netherlands

alexander.hogenboom@gmail.com

{milea, frasincar, kaymak}@few.eur.nl

Abstract. In this paper we present an approach based on genetic al-
gorithms for determining optimal RDF query paths. The performance
of this approach is benchmarked against the performance of a two-phase
optimization algorithm. For more complex queries, the genetic algorithm
RDFGA generally outperforms two-phase optimization in solution qual-
ity, execution time needed, and consistency in performance. Setting a
time limit improves the overall performance of RDFGA compared to
two-phase optimization even more.

1 Introduction

The potential of the Semantic Web has been demonstrated by different proof-of-
concept applications, generally focussing on small domains. This limited focus,
however, results in a Semantic Web that seems to be scattered into small pieces.
Being available only on a small scale and for very specific domains, the access
to the Semantic Web seems rather limited from the perspective of the average
user.

Addressing the average user could be achieved by offering something that
the current Web cannot offer: the possibility to query significant heaps of data
from multiple heterogeneous sources more efficiently, returning more relevant
results. In the context of the Semantic Web, the keyword is meta-data: describ-
ing the context of data and enabling a machine to interpret it. Semantic data
is commonly represented using the Resource Description Framework (RDF), a
World Wide Web Consortium (W3C) framework for describing and interchang-
ing meta-data [1].

Despite current efforts, a successful implementation of an application that is
able to query multiple heterogenous sources still seems far away. An interesting
research field in this context is the determination of query paths: the order in
which the different parts of a specified query are evaluated. The execution time
of a query depends on this order. A good algorithm for determining the query
path can thus contribute to quick and efficient querying.

In the context of the Semantic Web, some research in this field has already
been done: the iterative improvement (II) algorithm followed by simulated an-
nealing (SA), also referred to as the two-phase optimization (2PO) algorithm,

2 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

addresses the optimal determination of query paths [2]. This implementation
aims at optimizing the query path in an RDF query engine. However, other
algorithms have not yet been used for RDF query path determination, while
genetic algorithms (GA) have proven to be more effective than SA in cases with
some similar characteristics. For example, a GA performed better than SA in
solving the circuit partitioning problem, where components have to be placed on
a chip in such a way, that the number of interconnections is optimized [3]. The
query path determination problem is somewhat similar to this problem, since the
distinctive parts of the query have to be ordered in such a way, that the execu-
tion time is optimized. Furthermore, genetic algorithms have proven to generate
good results in traditional query execution environments [4]. Therefore, we seek
to apply this knowledge from traditional fields to an RDF query execution en-
vironment, which differs from traditional ones in that the RDF environment is
generally more demanding when it comes to response time; entirely new queries
should be optimized and resolved real-time. In the traditional field of query op-
timization for relational databases, queries considered for optimization tend to
be queries which are used more frequently and/or queries for which the duration
of the optimization process is not that big of an issue.

The main goal we pursue consists of investigating whether an approach based
on genetic algorithms performs better than a two-phase optimization algorithm
in determining RDF query paths. The current focus is on the performance of
such algorithms on a single source, and not in a distributed setting.

The outline of this paper is as follows. In Section 2 we provide a discussion
on RDF and query paths, the optimization of which is discussed in Section 3.
Section 4 introduces the genetic algorithm employed for the current purpose.
The experimental setup and obtained results are detailed in Section 5. Finally,
we conclude in Section 6.

2 RDF and Query Paths

Essentially, an RDF model is a collection of facts declared using RDF. The
underlying structure of these facts is a collection of triples, each of which consists
of a subject, a predicate and an object. These triples can be visualized using an
RDF graph: “a node and directed-arc diagram, in which each triple is represented
as a node-arc-node link” [1]. The relationship between a subject node and an
object node in an RDF graph is defined using an arc which denotes a predicate.
This predicate indicates that the subject has got a certain property, which refers
to the object.

An RDF query can be visualized using a tree. The leaf nodes of such a query
tree represent inputs (sources), whereas the internal nodes represent relational
algebra operations, which enable a user to specify basic retrieval requests on
these sources [5]. The nodes in a query tree can be ordered in many different
ways, which all produce the same result. These solutions all depict an order in
which operations are executed in order to retrieve the requested data and are
referred to as query plans or query paths.

Genetic Algorithms for RDF Query Path Optimization 3

When querying RDF sources is regarded as querying relational databases,
computing results for paths from partial results resembles computing the results
of a chain query. In a chain query, a path is followed by performing joins between
its sub paths of length 1 [2]. In the context of the Semantic Web, such queries can
be expressed as a set of node-arc-node patterns which can be chained (joined).
Each arc is to be interpreted as a predicate. Each node represents a concept
and is to be interpreted as a subject associated with the predicate following this
node and as an object associated with the predicate preceding this node. The
join condition used in joining the node-arc-node patterns is that the object of
the former pattern equals the subject of the latter pattern.

In an RDF context, bushy and right-deep query trees can be considered [2].
In bushy trees, base relations (containing information from one source) as well
as results of earlier joins can be joined. Right-deep trees, which are a subset
of bushy trees, require the left-hand join operands to be base relations. See
Figure 1 for an example of a bushy tree and a right-deep tree, where concepts
(c1, c2, c3, c4, c5, c6, c7) are joined and a ./ represents a join.

(a) Bushy tree (b) Right-deep tree

Fig. 1. Examples of possible trees

3 RDF Query Path Optimization

The order of joins of sub paths in a query path is variable and affects the time
needed for executing the query. In this context, the join-order problem arises.
The challenge is to determine the right order in which the joins should be com-
puted, hereby optimizing the overall response time. In this process, each join is
associated with costs, which are influenced by the number of elements in each
operand (their cardinalities) and the method used in the join operation. Several
methods can be used for implementing (two-way) joins, as discussed in [5].

The relevance of query path optimization can be demonstrated using a sim-
plified example, in which only the number of results a join yields is considered

4 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

in determining costs associated with that join. Let us consider an RDF model
of the CIA World Factbook [6] containing various data about 250 countries, de-
fined in over 100, 000 statements, generated using QMap [7]. Suppose a company,
currently located in South Africa, wants to expand its activities to a country al-
ready in a trading relationship (in this example an import partnership) with
South Africa. In order to assess the risks involved, the board wants to identify
the candidates that have one or more neighbours involved in an international
dispute. This query can be expressed in SPARQL, an RDF query language, in
the following way:

PREFIX ont: <http://www.daml.org/2003/09/factbook/factbook-ont#>
SELECT ?partner
WHERE { ?country ont:conventionalShortCountryName ?countryName .

FILTER regex(?countryName, "^south africa$", "i") .
?country ont:importPartner ?impPartner .
?impPartner ont:country ?partner .
?partner ont:border ?border .
?border ont:country ?neighbour .
?neighbour ont:internationalDispute ?dispute .

}

This query is a simple example of a chain query and can be subdivided into
five parts: the query for information on the import partners of the specified
country, the query for countries actually associated with other countries as im-
port partners, the query for the borders of the latter countries, the query for
countries associated with a country border as neighbours, and finally the query
for the international disputes the neighbouring countries are involved in. The
results of these sub queries can be joined in order to resolve the complete query.
Here, the number of statements resulting from a join is equal to the number of
statements compliant with both operands’ constraints.

In this case, the collection of considered concepts is (?country, ?impPartner,
?partner, ?border, ?neighbour, ?dispute). The model contains 226, 1177, 186,
616, 186, and 548 elements respectively associated with these concepts. How-
ever, since the ?country concept is constrained to South Africa, the model only
contains 1 compliant element.

An example of a query path consisting of joining the concepts in a particular
order for this case is shown in Figure 2a. This query path starts with joining
the last two concepts, yielding 181 compliant statements. These results are then
joined with the ?border concept, which yields 2412 compliant statements. Joining
these results with the ?partner concept yields 156 results. After a consecutive
join of these results with the ?impPartner concept, 2434 statements are still
compliant. A final join with the ?country concept yields 7 results. The sum of
elements considered in every sub path thus equals 5190.

However, another order of joins is much more efficient. This order is depicted
in Figure 2b. A first join of the first two concepts yields 8 results. Joining these
results with the ?partner concept again yields 8 compliant statements. Joining

Genetic Algorithms for RDF Query Path Optimization 5

(a) Inefficient join-order (b) Efficient join-order

Fig. 2. Possible query paths for the international disputes case

these results with the ?border concept results in 38 triples satisfying all condi-
tions. The model contains 33 triples compliant with a join between all previously
joined concepts and the ?neighbour concept. Finally, a join between these re-
sulting triples and the ?dispute concept yields 7 triples. The sum of elements
considered in every sub path of this query path equals a mere 94. The order of
joins of sub queries can thus make a big difference.

Two solution spaces can be distinguished for the join-order problem in an
RDF context: a solution space consisting of bushy trees and a subset of that
solution space, containing right-deep trees. The solution space of bushy trees
contains

(
2n
n

)
n!
2n points representing possible permutations of join-orders, for a

path length of n. There are 2n−1 possible query paths in the subset of right-
deep trees [2]. Algorithms for identifying neighbouring solutions in the solution
space differ per solution space [4]. If only right-deep query trees are considered,
identifying neighbours can be done using the Swap algorithm or the 3Cycle algo-
rithm [8]. However, if the complete solution space (containing bushy query trees)
is considered, neighbouring solutions can be found by transforming a solution
using transformation rules [9].

Since not every query path is as efficient as others, the challenge in de-
termining which query path should be selected is to optimize query response
time and/or execution costs. When utilizing a relational view on RDF sources,
queries on these sources could be translated into algebraic expressions. Using
some transformation rules for relational algebraic expressions, several heuristics
for algebraic query optimization have been developed [5, 10].

However, in complex solution spaces, these simple heuristics are not suffi-
cient; randomized algorithms (e.g. the iterative improvement algorithm and the
simulated annealing algorithm) and genetic algorithms have proven to generate
better results in traditional query execution environments [4]. Applying these
algorithms in determining the order of select and project operations would not
be very interesting due to the lack of complexity in the associated solution spaces
and due to the sufficiency of the heuristics mentioned above. The real challenge

6 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

lies in optimizing the order and nature of the joins, indicating randomized or
genetic algorithms as promising approaches in this area.

In the context of the Semantic Web, the query path determination problem
has already been addressed using an II algorithm followed by SA, also referred to
as the two-phase optimization (2PO) algorithm [2]. The II algorithm randomly
generates a set of initial solutions, which are used as starting points for a walk
in the solution space. These walks only consist of steps to neighbouring points
in the solution space that yield improvement. If no better neighbour can be
found in a specified number of tries, the current point is assumed to be a local
optimum. The number of times the algorithm tries to find a better neighbour
(i.e. randomly selects a neighbour) is limited to the number of neighbours of
that solution. The described process is repeated for all starting points.

The best local optimum thus found is subsequently used as a starting point
for the SA algorithm, which tends to accept (with a declining probability) moves
not yielding improvement. The latter algorithm thus searches the proximity of
possibly sub-optimal solutions, hereby reducing the risk for a local optimum.
Inspired by the natural process of annealing of crystals from liquid solutions,
SA simulates a continuous temperature reduction, enabling the system to cool
down completely from a specified starting temperature to a state in which the
system is considered to be frozen. Just like II, the algorithm always accepts
moves in the solution space yielding lower costs. However, SA can also accept
moves leading to higher costs, hereby reducing the chances for the algorithm to
get stuck in a local optimum. The probability for accepting such moves depends
on the system’s temperature: the higher the temperature, the more likely the
system is to accept moves leading to higher costs. However, for every state of
the algorithm applies that the more the costs associated with a solution exceed
the current costs, the less likely the system is to accept such a move [8].

4 A Genetic Algorithm for Determining RDF Query
Paths

As discussed in Section 1, GAs tend to perform better in query optimization.
Based on these results, we propose a GA for determining RDF query paths:
RDFGA. A GA is an optimization algorithm which simulates biological evolu-
tion according to the principle of survival of the fittest. A population (a set of
chromosomes, representing solutions from the solution space) is exposed to evo-
lution, consisting of selection (where individual chromosomes are chosen to be
part of the next generation), crossovers (creating offspring by combining some
chromosomes) and mutations (randomly altering some chromosomes). In this
process, the fitness of a chromosome (expressing the quality of the solution) de-
termines the chances of survival. Equation 1 depicts that higher the fitness Fs

of a chromosome s in relation to the total fitness of n chromosomes, the bigger
the probability that this chromosome and/or its offspring will make it to the
next generation. Evolution is simulated until either the maximum number of
iterations is reached or several generations have not yielded any improvement.

Genetic Algorithms for RDF Query Path Optimization 7

Pr (s selected) =
Fs∑n

c=1 Fc
(1)

Since a GA utilizes a randomized search method rather than moving smoothly
from one solution to another, a GA can move through the solution space more
abruptly than for example II or SA, by replacing parent solutions by offsprings
that may be radically different from their parents. Therefore, a GA is less likely
to get stuck in local optima than for example II or SA. However, a GA can
experience another problem: crowding [11]. An individual with a relatively high
fitness compared to others could reproduce quickly due to its relatively high
selection probability, hereby taking over a large part of the population. This
reduces the population’s diversity, which slows further progress of the GA.

Crowding can be reduced by using different selection criteria, sharing a solu-
tion’s fitness amongst similar solutions or controlling the generation of offspring.
Another option is using a hybrid GA (HGA), which essentially is a GA with
some additional, embedded heuristics. For instance, the initial population could
be generated using heuristics for finding (sub-optimal) solutions, heuristics could
be embedded in the crossover process or heuristics could (locally) optimize re-
sults generated by the crossover process. In these processes, local optimization
techniques such as II could be used. However, high quality solutions are not
guaranteed to be found within a reasonable running time, since the heuristics
implemented in an HGA often are time-consuming [12]. A final strategy to reduce
crowding is always selecting the fittest solution at least once (elitist selection) or
by applying ranking-based selection [4], in which the probability of a solution s
to be selected or used in a cross-over is determined by its rank Rs in relation to
the sum of all n ranks (see equation 2). Here, the fittest solution is ranked best,
whereas the least fit solution is associated with the worst rank.

Pr (s selected) =
Rs∑n

c=1 Rc
(2)

In order for a GA to be applicable in RDF query path determination, several
parameters must be set. General settings, derived from literature, are discussed
briefly in Section 4.1 before presenting suggestions for improving the performance
of a GA in an RDF query execution environment. Since a GA is based on the
principle of survival of the fittest, determining a solution’s fitness is a crucial step
in a GA. Section 4.2 discusses fitness determination and related issues. Finally,
Section 4.3 provides a quick overview of the encoding scheme used for the current
purpose to efficiently encode query paths.

4.1 Settings

Due to the time constraint associated with executing queries in an RDF envi-
ronment, using an HGA is not an option, regardless of its potential of returning
even better results than the algorithm used in [4]. This is because solutions of
good quality are not guaranteed to be found within a reasonable amount of time,

8 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

as discussed above. Therefore, it would be best to opt for a basic GA, adopting
the settings best performing in [4].

The algorithm, BushyGenetic (BG), considers a solution space containing
bushy query processing trees. A crowding prevention attempt is made by im-
plementing ranking-based selection. Furthermore, the population consists of 128
chromosomes. The crossover rate is 65%, while the mutation rate equals 5%. The
stopping condition is 50 generations without improvement. However, long exe-
cuting times are not desirable for a GA in an RDF query execution environment.
Therefore, the stopping condition is complemented with a time limit.

In literature, a GA has been proven to generate better results than a 2PO
algorithm in many cases. However, in order to accomplish these results, a GA has
turned out to be needing more execution time than 2PO. On the other hand,
research did show that a GA is aware of good solutions faster than 2PO [4].
Hence, the algorithm spends a lot of time optimizing good results before it
terminates. The latter property is an interesting property of GAs to exploit
in RDFGA for the current purpose. Since in a real-time environment like the
Semantic Web queries need to be resolved as quickly as possible, preliminary
and/or quicker convergence of the model might not be such a bad idea after all,
even though this increases the probability of outputting a sub-optimal result.
If the model could somehow quickly converge in the final stage of optimization
of good results, the execution time could be reduced remarkably and the sub-
optimal result would not be too far from the global optimum. The challenge is
to find a balance between execution time and solution quality.

The BG algorithm could be adapted in order to improve its performance
in an RDF query execution environment. For instance, the algorithm could be
forced to select the best solution for proliferation in the next generation at least
once (elitist selection), hereby avoiding the loss of a good solution. Replacing
ranking-based selection with fitness-based selection could be a subject of tests
too in this case, since this increases the probability of relatively fit solutions
to be selected, which could result in quicker convergence of the model due to
increased crowding. Furthermore, evolution could be considered to have stopped
after, e.g., 30 generations without improvement instead of 50; long enough in
order for the algorithm to be able to state with sufficient certainty that the
best known solution is either a very good local optimum or a global optimum,
especially in solution spaces with a relatively small number of solutions (which
is the case with smaller queries). Finally, the population size could be reduced
to for example 64 solutions, which would noticeably reduce the time needed
for computing the costs of all solutions in the population and would provide
just enough room for diversity in the population (especially for smaller queries),
hereby also enforcing quicker model convergence.

4.2 Determining a solution’s fitness

In the context of RDF query path determination, let the fitness Fs of a solution
s depend on its associated costs gs. When ranking the solutions, the solution
associated with the lowest costs should be associated with the highest rank and

Genetic Algorithms for RDF Query Path Optimization 9

the solution associated with the highest costs should be associated with the
lowest rank. In case of fitness-based selection, the probability of a solution to be
selected (as defined in equation 1) must be inverse proportional to its associated
costs [4]. This can be accomplished by defining the fitness Fs of solution s as
shown in equation 3, hereby assuming that the population contains n solutions.

Fs =
1− gs∑n

c=1 gc

n− 1
(3)

For the current goal, only nested-loop joins and hash joins are considered in
the calculation of solution costs. No index or hash key exists for the source used
here (making single-loop joins impossible) and the source data are unsorted (re-
quiring the sort-merge join algorithm to sort the data first, hereby unnecessarily
taking up precious running time).

When joining two operands, say c1 and c2, using a nested-loop join, the pro-
cessing costs are |c1|× |c2|×compC, where |c1| and |c2| represent the cardinality
of respectively operand c1 and c2 and compC denotes the cost of comparing two
elements. In case a hash join is used, the processing costs are (insC × |c1|) +
(retC × |c2| × avgB), where |c1| and |c2| again represent the cardinality of re-
spectively operand c1 and c2, insC denotes the costs of inserting an element into
the hash table, retC represents the cost of retrieving a bucket (which contains
elements) from the hash table and avgB stands for the average bucket size [2]. In
an RDF environment, cardinalities could be estimated, as actually performing
the joins in order to retrieve the number of elements resulting from each join of
sub paths would imply the execution time of the optimization process to be very
likely to exceed the execution time of a random query path. Hence, we work with
estimated cardinalities. These estimations could be updated after a query has
been evaluated; computed join costs can be saved for possible re-use in order to
reduce the time needed for evaluating joins.

4.3 Query path encoding

Encoding of query processing trees is done using an ordinal number encoding
scheme for bushy trees, proposed in [4], which not only efficiently represents
bushy trees (including the subset of right-deep trees), but enables relatively easy
and efficient crossover operations as well. This encoding algorithm iteratively
joins two concepts in an ordered list of concepts, the result of which is saved in
the position of the first appearing concept. In each iteration, the positions of the
selected concepts are saved into the encoded solution.

For example, consider the following ordered list of concepts: (c1, c2, c3, c4). An
initial join between the third and fourth concept yields the list (c1, c2, c3c4). An-
other join between the first and second concept in this new list yields (c1c2, c3c4).
A final join between the first and second concept in this list results in (c1c2c3c4).
A possible encoded notation of these joins is ((3, 4), (1, 2), (1, 2)). Additional
information, such as the applied join method, can also be stored in this encoded
notation. For details on the crossover and mutation methodology applied for the
current goal, we refer to [4].

10 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

5 Experimental Setup & Results

5.1 Experimental Setup

All experiments performed for the current purpose are run in a Microsoft Win-
dows XP environment, on a 2, 400 MHz Intel Pentium 4 system with 1, 534 MB
physical memory (DDR SDRAM). Tests are conducted on a single source: an
RDF version of the CIA World Factbook [6], generated using QMap [7]. The first
algorithm to be tested is the 2PO algorithm as proposed in [2]. The performance
of the BG algorithm [4] and its improved version (RDFGA) as proposed in Sec-
tion 4.1 are benchmarked as well. Finally, the performance of time-constrained
2PO and RDFGA (respectively 2POT and RDFGAT, in which the T denotes
the time-constrained nature of these algorithms) is evaluated.

Several experiments are conducted in order to determine the performance of
the considered algorithms; each algorithm is tested on chain queries varying in
length from 2 to 20 predicates (see Section 3 for a 6-predicate example). Each
experiment is iterated 100 times, in order to increase the accuracy of the re-
sults. The parameters in cost determination, compC, insC, retC and avgB, are
assigned random values of 0.02, 0.05, 0.05 and 5.0 respectively, since these ex-
ogenous variables are computer, programming language, and/or implementation
dependent and hence would be hard to determine. Since these variables are ex-
ogenous, their values will not affect the way the algorithm works, so their exact
values are not relevant for the goal pursued here.

The algorithms are configured according to the settings proposed in their
sources and thus all consider the entire solution space containing bushy query
trees. However, preliminary experimental results on the data set used in this
research show that, ranking-based selection perform quicker and yield better
results than fitness-based selection. Hence, we have decided to use the ranking
based-selection method in this research for RDFGA. Furthermore, the time limit
for 2POT and RDFGAT is set to 1000 milliseconds, since this allows the algo-
rithms to perform at least a couple of iterations and since in practice, waiting
1 second in order to have your complex query executed quickly, would probably
not be too long.

2PO 2POT

maxSol 10 10
startTempFactor 0.1 0.1
tempRed 0.05 0.05
frozenTemp 1 1
maxConsRedNoImpr 4 4
neighbourExpFactor 16 16
timeLimit - 1000

Table 1. Parameters of considered two-phase optimization algorithms

Genetic Algorithms for RDF Query Path Optimization 11

Table 1 presents an overview of the parameters of the 2PO algorithms con-
sidered. The maxSol parameter sets the maximum number of starting solutions
analyzed in the II part of 2PO. The fraction of the optimal cost resulting from
II to be used as starting temperature in SA is specified in startTempFactor,
whereas tempRed is the factor with which the temperature of the system is to
be reduced every iteration of SA. The frozenTemp parameter defines the temper-
ature below which the system is considered to be frozen. The maximum number
of consecutive temperature reductions not yielding improvement is defined in
maxConsRedNoImpr. For each visited solution, SA tries to move to neighbour-
ing solutions for a limited number of times, which equals the number of joins
in the query, multiplied by neighbourExpFactor. Finally, the maximum running
time in milliseconds is configured using the timeLimit parameter.

BG RDFGA RDFGAT

popSize 128 64 64
crossoverRate 0.65 0.65 0.65
mutationRate 0.05 0.05 0.05
stableFitnessGens 50 30 30
rankingBased true true true
elitist false true true
timeLimit - - 1000

Table 2. Parameters of considered genetic algorithms

An overview of the parameters of the GAs is presented in Table 2. The
number of chromosomes (solutions) to be subjected to a simulated biological
evolution process is defined using the popSize parameter. The crossoverRate pa-
rameter represents which fraction of each new generation is to be filled with
offspring resulting from crossover operations between pairs of randomly selected
chromosomes. The rest of the new generation is filled with direct selections from
the current generation. The fraction of the new population to be mutated is de-
fined using the mutationRate parameter. Furthermore, stableFitnessGens is the
number of consecutive generations not showing improvement in optimal fitness
needed for the fitness of the population to be considered stable. The ranking-
Based parameter is used to define whether ranking-based selection should be
applied rather than fitness-based selection, whereas the elitist parameter states
whether the best solution should always be selected for the next generation. The
maximum running time in milliseconds is defined in timeLimit.

5.2 Results

For each algorithm tested, Figure 3 visualizes the average time needed for op-
timizing chain queries. The chain queries considered in the experiments vary in

12 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

length from 2 to 20 predicates. The average execution times depicted in Figure 3
are based on 100 iterations of the query optimization process per experiment.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

Number of predicates

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

2PO
BG
RDFGA
2POT
RDFGAT

Fig. 3. Average execution times

For all considered query lengths, on average, BG needs the most execution
time of all considered algorithms. Furthermore, 2PO turns out to be the fastest
performing optimization algorithm for relatively small chain queries containing
up to about 10 predicates. For the latter chain queries, on average, RDFGA
performs slower than 2PO, but still needs less execution time than BG. For
bigger chain queries, RDFGA is the fastest performing algorithm. However, the
time-constrained variants of 2PO and RDFGA obviously take the lead for even
bigger queries, where RDFGA’s execution time exceeds the time limit.

For each algorithm that we consider, the average costs associated with the
optimal solutions of chain queries varying in length from 2 to 20 predicates, based
on 100 iterations of the query optimization process per experiment, do not appear
to differ very much. However, a closer look to the relative deviations from the
optimal solutions found by 2PO can reveal more clear indications of differences
in performance. Without a time limit, both genetic BG and RDFGA tend to find
lower cost solutions, especially for larger queries. When a time limit for query
optimization is set, a GA tends to generate even better results compared to 2PO,
as shown in Figure 4. The known behaviour of both algorithms supports this
observation, since a GA tends to generate better results in less time, although it
needs more time to converge than a 2PO algorithm (as discussed in Section 4.1).
Therefore, the earlier in the optimization process both algorithms are forced to
stop, the better the result of a GA will be compared to the solution generated
by 2PO.

The consistency in performance is shown in Figures 5 and 6, using coefficients
of variation (standard deviation, expressed in relation to the mean) of the exe-
cution times and optimal solution costs, respectively, of chain queries of varying

Genetic Algorithms for RDF Query Path Optimization 13

2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Number of predicates

R
el

at
iv

e
de

vi
at

io
n

2POT
RDFGAT

Fig. 4. Relative deviation of average optimal costs from 2PO average

lengths. These statistics are based on 100 iterations of the query optimization
process per experiment. A coefficient of variation close to 0 indicates all observed
values are closely clustered around the average. Hence, the higher the coefficient
of variation, the less consistent the performance of the algorithm.

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of predicates

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

2PO
BG
RDFGA
2POT
RDFGAT

Fig. 5. Coefficients of variation of execution times

The coefficients of variation of the execution times for chain queries of differ-
ent lengths indicate that time-constrained algorithms tend to perform more and
more consistently for bigger chain queries. This observation can be explained
by realizing bigger chain queries require longer execution times, which are in-
creasingly likely to exceed the time limit. Hence, increasing parts of iterations of

14 Alexander Hogenboom, Viorel Milea, Flavius Frasincar, and Uzay Kaymak

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of predicates

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

2PO
BG
RDFGA
2POT
RDFGAT

Fig. 6. Coefficients of variation of optimal costs

bigger queries execute exactly as long as allowed, hereby reducing the variance
in execution times. As for the algorithms not constrained by a time limit, the
GAs appear to be less consistent in execution time needed than 2PO, especially
for more complex queries.

The 2PO algorithm shows a higher coefficient of variation of optimal costs
than BG and RDFGA. Also, the more predicates a chain query consists of, the
higher the coefficient of variation of optimal costs. When a time limit is set, the
coefficient of the 2PO algorithm increases rapidly with the number of predicates
chain queries consist of. GAs on the other hand show a constantly low coefficient
of variation of optimal costs. The results of RDFGA are not clearly affected by
a time limit.

6 Conclusions

The results detailed in this paper lead to the conclusion that in determining the
(optimal) query path in a single-source RDF query execution environment, a cor-
rectly configured genetic algorithm can outperform the two-phase optimization
algorithm in i) solution quality, ii) execution time needed, and iii) consistency
in performance, especially for more complex solution spaces. The superiority
of genetic algorithms relative to the two-phase optimization algorithm becomes
more clear in positive correlation with the restrictiveness of the environment (e.g.
a time limit) and the complexity of the solution space. However, it should be
noted that in less complex solution spaces, a genetic algorithm performs worse
compared to the two-phase optimization algorithm when it comes to execution
time. Furthermore, in some cases, the optimization process could take longer
than the actual execution of a query. This falls outside the scope of this paper,
but the total query execution process deserves more detailed study and should
be considered for further research.

Genetic Algorithms for RDF Query Path Optimization 15

Acknowledgement

The authors are partially supported by the EU funded IST STREP Project FP6
- 26896: Time-determined ontology-based information system for realtime stock
market analysis. More information is available on http://www.towl.org.

References

1. Klyne, G., Carroll, J.: Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation (2004)

2. Stuckenschmidt, H., Vdovják, R., Broekstra, J., Houben, G.J.: Towards Dis-
tributed Processing of RDF Path Queries. International Journal of Web Engi-
neering and Technology 2(2-3), 207–230 (2005)

3. Manikas, T.W., Cain, J.T.: Genetic Algorithms vs. Simulated Annealing: A Com-
parison of Approaches for Solving the Circuit Partitioning Problem. Technical
report, Univerisy of Pittsburgh (1996)

4. Steinbrunn, M., Moerkotte, G., Kemper, A.: Heuristic and Randomized Optimiza-
tion for the Join Ordering Problem. The VLDB Journal 6(3), 191–208 (1997)

5. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems. 4th edn. Addison-
Wesley (2004)

6. Central Intelligence Agency: The CIA World Factbook (2007) See
https://www.cia.gov/cia/publications/factbook/, last visited April 2007.

7. Hogenboom, F., Hogenboom, A., van Gelder, R., Milea, V., Frăsincar, F., Kay-
mak, U.: QMap: An RDF-Based Queryable World Map. In: Third International
Conference on Knowledge Management in Organizations (KMO 2008), pp. 99–110
(2008)

8. Swami, A., Gupta, A.: Optimization of Large Join Queries. In: The 1988 ACM
SIGMOD International Conference on Management of Data (SIGMOD 1988), pp.
8–17 ACM Press, New York, NY, USA (1988)

9. Ioannidis, Y.E., Kang, Y.C.: Randomized Algorithms for Optimizing Large Join
Queries. In: The 1990 ACM SIGMOD International Conference on Management
of Data (SIGMOD 1990), pp. 312–321 ACM Press, New York, NY, USA (1990)

10. Frăsincar, F., Houben, G.J., Vdovjak, R., Barna, P.: RAL: An Algebra for Querying
RDF. World Wide Web Journal 7(1), 83–109 (2004)

11. Mitchell, T.M.: Machine Learning. McGraw-Hill Series in Computer Science.
McGraw-Hill (1997)

12. Misevicius, A.: A Fast Hybrid Genetic Algorithm for the Quadratic Assignment
Problem. In: The 8th Annual Conference on Genetic and Evolutionary Computa-
tion (GECCO 2006), pp. 1257–1264 ACM Press, New York, NY, USA (2006)

