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ABSTRACT
In today’s complex supply chains, product pricing is a vi-
tal, yet non-trivial task. We propose a product pricing ap-
proach using adaptive real-time probability of acceptance
estimations based on economic regimes. Radial Basis Func-
tion Networks are trained to estimate parameters for double-
bounded log-logistic distributions assumed to be underlying
daily offer prices, using information available real-time. The
relation between data and parameters is dynamically mod-
eled using economic regimes (characterizing market condi-
tions) and error terms (accounting for customer feedback).
Given the parametric approximations of price distributions,
acceptance probabilities are estimated using a closed-form
mathematical expression, which is used to determine the
price yielding a desired quota. The approach is implemented
in the MinneTAC agent and tested against a price-following
product pricing method in the TAC SCM game. Perfor-
mance significantly improves; more customer orders are ob-
tained against higher prices and profits more than double.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence; K.4.4 [Computers and Society]: E-commerce

General Terms
Algorithms, economics, experimentation, performance, the-
ory

Keywords
Dynamic pricing, economic regimes, machine learning, sup-
ply chain management, TAC SCM
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1. INTRODUCTION
In today’s global economy, supply chains are everywhere.

A supply chain is a complex logistics system in which raw
materials are converted into products and distributed to the
final users [8]. The main idea of supply chains is that every
entity adds value to the final product and fulfills a func-
tion within the chain. Individual elements can be subject to
optimization, as well as the supply chain as a whole.

Effective Supply Chain Management (SCM), focussing on
more flexible and dynamic relationships between entities in
the supply chain, is vital to the competitiveness of manu-
facturers within this chain. SCM can yield this effect, as it
enables these manufacturers to respond to changing market
demands in a timely and cost effective manner [5] and can
thus improve a the agility of these manufacturers. Hence,
research into performance optimization in a supply chain is
important for the profit maximizing companies of today.

One of the challenges in this context is dynamic product
pricing. When flexible and dynamic relationships between
supply chain entities stimulate manufacturers to compete
for customer orders, optimal product prices are to be de-
termined while accounting for numerous aspects, such as
competitors’ strategies or market conditions [7, 19, 20, 29,
32]. This requires a sophisticated dynamic product pricing
approach, which may be facilitated by automated decision
support systems.

In real-time applications, the problem is that aspects rel-
evant to the product pricing process may not be (fully) ob-
servable. Therefore, we investigate how dynamically dif-
ferentiating product pricing decisions using estimations of
economic regimes [15, 16, 18] can contribute to profit max-
imization. Our approach is validated in the Trading Agent
Competition for Supply Chain Management (TAC SCM) [5],
which has been organized since 2002 in order to promote and
encourage high quality research into trading agents in sup-
ply chain environments. The game stimulates research with
respect to more flexible and dynamic supply chain practices
as opposed to the current common practices where supply
chains are essentially static and rely on long-term relation-
ships among key trading partners. In the TAC SCM game,
several manufacturers compete in a component procurement
market and in a sales market where assembled products are
sold through reverse auctions where they can bid on requests
for quotes (RFQs). The market is only partially observable.



In Section 2, we discuss related work on dynamic product
pricing. Our own product pricing approach is introduced
in Section 3. In Section 4, adaptivity is introduced to this
approach. We evaluate the novel approach in the TAC SCM
game in Section 5 and we conclude in Section 6.

2. RELATED WORK
An approximation of the probability of acceptance of of-

fers can be used in the product pricing process, as done
in [7] and [36]. Analyzing offer prices and their associated
estimated probabilities of acceptance is rather intuitive in a
product pricing process, because this can help a seller as-
sessing how sales targets can be met. In [7], products are
priced using a dynamic pricing algorithm which considers
an estimated distribution of the buyer reservation price for
products of a seller. Reversing the cumulative form of this
distribution yields a function expressing the proportion of
buyers willing to pay the seller a specified price, which can
also be interpreted as the probability that a customer ac-
cepts an offered price. This function can subsequently be
used to determine the price expected to yield a specified
sales quota. In [36], estimated distributions of buyer’s pri-
vate values are used in a similar way.

Another way of modeling acceptance probabilities is by
using linear regression on data points representing recent
prices offered, along with the resulting acceptance rate [28].
Acceptance probability distributions could also be trained
off-line [2]. Another option is to try to model the decision
function of the accepting entities, based on their decision
histories, e.g., using Chebychev polynomials [29].

Related work suggests some other aspects besides accep-
tance probability estimations to be taken into account as
well when pricing products. For instance, current and fu-
ture offers of competitors (outside options) could be con-
sidered [19, 20]. In [32], outside options are considered as
well. Here, a dynamic product pricing model is proposed in
which the price change of the product itself as well as the
relative price of competing products is quantified in a price
elasticity. Using scenario analysis for distinguishing between
various situations of price elasticity (i.e., market conditions),
the optimal pricing policy is selected.

Market conditions can also be accounted for using eco-
nomic regimes [15, 16, 18]. A regime can be considered to
be a set of conditions, characterizing the state of a system
or process. Regimes provide an intuitive way of condition-
ing behavior in different scenarios. In literature, several ap-
proaches to regime identification and prediction have been
proposed in different contexts [1, 11, 12, 26]. In an economic
context, traders could take into account economic regimes
because the ability of decision makers to correctly identify
the current regime and predict the onset of a new regime is
crucial in order to prevent over- or underreaction to market
conditions [22]. Economic regimes can guide tactical (e.g.,
product pricing) and strategic sales decisions (e.g., product
mix and production planning) [15, 16, 18].

Finally, in case of known demand and uncertain supply, a
responsive pricing policy, in which the retail price is deter-
mined after observing the realized supply, results in a higher
expected profit than a pricing policy in which the realized
supply is not taken into account [33]. Consequently, model-
ing expected or observed supply-side behavior in the product
pricing process could contribute to profit maximization.

3. A PRODUCT PRICING MODEL BASED
ON OFFER PRICE DISTRIBUTIONS

Given the considerations presented in Section 2, we pro-
pose to approximate customer offer acceptance probabilities
in a scenario as simulated in the TAC SCM game by tak-
ing into account the distribution of all offered prices. By
considering a full price distribution, we model the decision
making processes of all traders and obtain a complete esti-
mation of customer acceptance probabilities, as opposed to
for instance the linear regression on recent offer prices pro-
posed in [28]. Incorporating offer price distributions rather
than individual offers into the framework can compensate
for a drawback encountered in [19], where offer prices of in-
dividual competitors are predicted even though these com-
petitors may not actually bid, which structurally causes the
trader’s offers to be relatively low (i.e., lower than neces-
sary in order to win the bidding process). When reasoning
in terms of offer price distributions rather than individual
offers, the phenomenon of taking into account non-existing
offers is better accounted for, as the offer price distributions
are formed by all offers actually done rather than offers all
competitors would make, should they actually bid.

3.1 Dynamic Pricing
Assuming that customers only consider bids at or below

their reservation price and that they always select the trader
offering the requested product for the lowest price, the dis-
tribution of realized order prices can be derived from the
distribution of valid offer prices. Modeling order price dis-
tributions using offer price distributions is intuitive, as this
captures the market dynamics and facilitates the representa-
tion of relevant information on supply-side behavior. Now,
let for product g on game day d a mean number of ndg ran-
domly sampled valid offer prices pdg for each out of mdg

RFQs be identically and independently distributed in ac-
cordance with a distribution f (pdg; θ) and a cumulative dis-
tribution F (pdg; θ), with 0 < pdg < u (i.e., prices are non-
negative and have an upperbound u) and θ a vector of un-
known parameters. For such a distribution, the cumulative
distribution of the minimum valid offer prices (and thus the
order prices) p

dg
over all mdg RFQs can be derived as [14]

Fp

(
p

dg
; θ

)
=

(
1−

(
1− F

(
p

dg
; θ

))ndg
)mdg

,

0 < p
dg

< u, ndg, mdg > 0. (1)

The cumulative density of order prices, Fp

(
p

dg
; θ

)
, yields

the fraction of order prices realized at or below a specific
value, which is similar to the probability that an order is
placed with another trader offering a similar or better deal.
Consequently, the reverse of this cumulative density approx-
imates the probability for an agent to offer a better deal than
other competitors. Hence, the reverse cumulative density of
order prices associated with product g on game day d is an
estimation of the probability that a customer will place an
order o with an agent, given its offer price pdg, P (o|pdg).
Acceptance probabilities can therefore be estimated as

P (o|pdg) = 1− Fp (pdg; θ) , 0 < pdg < u

= 1−
(
1− (1− F (pdg; θ))ndg

)mdg

,

0 < pdg < u, ndg, mdg > 0. (2)



Equation (2) can be used to estimate the share of received
orders with respect to the total number of RFQs for product
g on game day d, generated by a price offered on all these
RFQs. Now, let q∗dg be the sales quota (i.e., desired accep-
tance probability [17]) for product g on day d, with mdg

associated RFQs, for each of which ndg prices are offered.
This implies that P

(
o|p∗dg

)
is required to be q∗dg. Solving the

equation to p∗dg yields the optimal offer price p∗dg expected
to yield the desired quota. This way, products can be priced
using estimations of offer price distributions.

3.2 Model Parameter Estimation
When pricing products, the unknown parameters θ and

ndg in the acceptance probability approximation detailed
in (2) must be estimated for a product g on game day d.
When all data is available, ndg can be determined by a
counting process. Furthermore, θ can be estimated by maxi-
mum likelihood as follows. Assuming all prices in the sample
of prices ~pdg offered for all mdg RFQs issued for product g
on day d to be identically and independently distributed in
accordance with the offer price distribution f (pdgri; θ), the
joint distribution of all valid offer prices can be derived as

f (~pdg; θ) =

mdg∏
r=1

ndgr∏
i=1

f (pdgri; θ) , 0 < pdgri < u, (3)

where pdgri is the ith of ndgr prices offered on game day d
for RFQ r for product g and parameters θ can be estimated
by minimizing the negative log-likelihood function of these
parameters for a sample of observed offer prices ~pdg (e.g.,
using the Newton-Raphson method described in [4]):

L (θ; ~pdg) =

mdg∑
r=1

ndgr∑
i=1

− ln (f (pdgri; θ)) ,

0 < pdgri < u. (4)

However, data on offer prices is not available in TAC SCM,
as usually in the real business world, due to limited visi-
bility of the real-time environment. Hence, the distribution
parameters θ and ndg can be estimated using a vector of real-
time available information, ~x. The relations between avail-
able information and distribution parameters, hθ (~x) and
hndg (~x), can be modeled using Artificial Neural Networks

(ANNs), yielding approximations of these relations: ĥθ (~x)

and ĥndg (~x). An ANN is a mathematical model inspired by
biological neural networks, which provides a general, prac-
tical method for learning real-valued, discrete-valued, and
vector-valued functions over continuous and discrete-valued
attributes from examples in order to facilitate regression or
classification [24]. The model consists of interconnecting ar-
tificial neurons (nodes), ordered into an input layer, hidden
layers, and an output layer.

Due to the ability of an ANN of capturing complex non-
linear relations, which is a useful feature in case of learning
functions whose general form is unknown in advance, pa-
rameter estimation using (4) can be replaced with such a
model, albeit with different inputs (i.e., real-time available
data). Representing the unknown relations between distri-
bution parameters and real-time available data using ANNs
also brings the attractive feature of fast evaluation of these
(modeled) functions, which is crucial in case of real-time
product pricing. Other advantages include robustness to
noise in the training data [24], the possibility to introduce

adaptivity by adjusting the weights of each node’s inputs on-
the-fly using newly obtained examples (if any), and the fact
that ANNs have proven to be useful for economic forecasts
in various domains [19]. Moreover, our experimental results
regarding TAC SCM showed that ANNs better captured the
relation between data and distribution parameters than for
instance a linear regression model.

We propose to use a specific type of ANN for parame-
ter estimation: a radial basis function network (RBFN). An
RBFN can be considered as a two-layer ANN consisting of
a hidden layer and an output layer. The activation function
in each hidden unit h is a kernel function Kh (d (xh, ~x)),
the output of which approximates 0 as d (xh, ~x) – the (typi-
cally Euclidian) distance between an instance characterized
by a vector of features ~x and the kernel center xh – in-
creases. The kernel functions in the hidden layer typically
are Gaussians, centered at xh with variance σ2

h. The number
of Gaussians H is subject to optimization and their centers
can be determined by clustering the data, using for example
the k-means algorithm [21]. The network’s output for an

instance ~x, ĥ (~x), is a linear combination of the activation
units, weighted for their weights wh, and a bias w0 [24]:

ĥ (~x) = w0 +

H∑

h=1

whKh (d (xh, ~x)) , (5)

Kh (d (xh, ~x)) = e
1

2σ2
h

d2(xh,~x)

. (6)

Hence, an RBFN is a global approximation ĥ (~x) of a
target function h (~x), represented as a linear combination
of local approximations of this target function, as the con-
tribution of each kernel is localized to a region around its
center. Because RBFNs can be designed and trained in a
fraction of the time it takes to train standard feed-forward
back-propagation neural networks [24], an RBFN would be
a good approximator for distribution parameters.

4. ADAPTIVE PRODUCT PRICING USING
ECONOMIC REGIMES

The real-time applicable product pricing model proposed
in Section 3 is static and does not adapt the modeled re-
lations between price distributions and observable data to
changing market conditions and market responses. In [36],
an English auction scenario is considered, in which bidders
have independent private values, all originating from the
same distribution. These private values result in bids up to
the private values. The best (highest) bid wins. The distri-
bution of the private values of the bidders is estimated using
averaging and binary search techniques, combined with sim-
ulations. Adaptivity to market disruptions is realized by as-
suming changes in bidding (and thus market disruptions) to
actually be a shift in the underlying value distribution. The
estimated private value distribution is shifted accordingly.

The product pricing scenario we target in our research is
somewhat similar to the scenario described in [36]. In our
case, traders bid on an RFQ. The best (lowest) bid wins.
However, contrary to the English auction scenario, our RFQ
bidding process much more resembles (reverse) sealed bid,
first price auctions, as we assume traders not to be aware of
bids of their competitors and the best (lowest) bid wins (as
is the case in the TAC SCM game). Therefore, changes in
bidding behavior of the competitors cannot be observed.



However, regime information might help here, as realized
prices and hence order probabilities tend to vary, depend-
ing on the economic regime [15, 16, 18]. Hence, changes
in pricing behavior can be accounted for by incorporating
regime information into the process of estimating order price
distributions and the associated customer offer acceptance
probabilities [17]. Therefore, in order to facilitate a truly
adaptive, real-time applicable product pricing approach, we
propose to dynamically model the relations between avail-
able data and price distributions using economic regimes,
such that product pricing strategies can be differentiated
depending on market characteristics. To this end, per domi-
nant regime k, price distribution parameters θk and ndgk for
product g on day d can be estimated using RBFNs. In case
of M considered dominant regimes, this yields M separate
price distribution estimations. The acceptance probabili-
ties P (ok|pdgk) derived from these distributions can subse-
quently be weighted with the associated regime probabilities
for regime Rdgk, P (Rdgk).

The weights in the RBFNs could be updated on-line, based
on new data. However, when new training samples cannot
be presented to the networks (due to limited visibility of
market characteristics), daily approximations of customer
offer acceptance probabilities – which use the parameters
estimated by the RBFNs – can be adjusted by multiplying
the acceptance probabilities by a factor representing the ra-
tio between the number of actually received orders and the
number of predicted orders, as proposed in [27]. If more
orders have been received than predicted, the acceptance
probability is larger than expected, to an extent equal to
the ratio between received and predicted number of orders.
If less orders have been received than predicted, the accep-
tance probability should be adjusted downwards. This ratio,
which can also be referred to as a residual error term ε, en-
ables market responses to be fed back to the model, as this
ratio can be updated in real-time. A smoothed error term ε̃
can be used in order to prevent over- or undercompensation.

For dominant regime k, the probability that a customer
accepts an offer and hence places an order ok, given price
pdgk for product g on game day d, P (ok|pdgk), ranges from
0 to 1. Multiplying this probability with the suggested ratio
ε̃(d−1)gk (which depends on regime k and has been updated
using performance information up until day d − 1) yields a
corrected probability P (ok|pdgk)′ in the range

[
0, ε̃(d−1)gk

]
.

This implies that no suitable price can be found for q∗dg ≥
ε̃(d−1)gk, which is an undesirable feature in case ε̃(d−1)gk <
1. However, when the corrected customer offer acceptance
probability P (ok|pdgk)′ is defined as

P (ok|pdgk)′

= P (ok|pdgk)ε̃(d−1)gk , 0 < pdgk < u, ε̃(d−1)gk > 0,

=
(
1−

(
1− (1− F (pdgk; θk))ndgk

)mdg
)ε̃(d−1)gk

,

0 < pdgk < u, ndgk, mdg, ε̃(d−1)gk > 0, (7)

offer acceptance probabilities continue to range from 0 to 1
for 0 < pdgk < u after correction.

Using (7), the corrected offer price p∗
′

dg expected to yield
the desired sales quota q∗dg for product g on day d can be de-

fined for each dominant regime k, by requiring P
(
ok|p∗′dgk

)′

for that product on that day to be q∗dg. Solving the equa-

tion to p∗
′

dgk yields the optimal corrected offer price p∗
′

dgk ex-

pected to yield the desired quota q∗dg under dominant regime
k. When these corrected prices are then weighted for their
associated regime probabilities P (Rdgk), the corrected price

p∗
′

dg expected to yield the required quota can be obtained.
The error term considered in (7) should be assigned val-

ues such that under each dominant regime k, the expected

customer offer acceptance probabilities P
(
ok|p∗′(d−1)g

)
as-

sociated with an offer price p∗
′

(d−1)g are corrected by the
unsmoothed exponential error terms to the proportion of
actually received number of orders q(d−1)g. The found error
terms can subsequently be smoothed. Hence, offer price and
customer response should be related as follows:

q(d−1)g = P
(
ok|p∗

′
(d−1)g

)ε(d−1)gk
, 0 < q(d−1)g < 1,

0 < p∗
′

(d−1)g < u, ε(d−1)gk > 0. (8)

The error terms can be smoothed using double exponential
smoothing (also referred to as Brown linear smoothing) [3],
where the smoothing factor β is weighted for the associated
regime probabilities in order for errors only to be attributed
to the models responsible for these errors. Smoothing is
done by linearly combining two components (see (12)), the
first of which (defined in (10)) is a linear combination of the
latest error (see (9)) and the previous first component. The
second component (defined in (11)) is a linear combination
of the first component and the previous second component.

ε(d−1)gk =
ln

(
q(d−1)g

)

ln
(
P

(
ok|p∗′(d−1)g

)) ,

0 < q(d−1)g < 1, 0 < P
(
ok|p∗

′
(d−1)g

)
< 1, (9)

ε̃ ′(d−1)gk = βP
(
R(d−1)gk

)
ε(d−1)gk+(

1− (
βP

(
R(d−1)gk

)))
ε̃ ′(d−2)gk, (10)

ε̃ ′′(d−1)gk = βP
(
R(d−1)gk

)
ε̃ ′(d−1)gk+(

1− (
βP

(
R(d−1)gk

)))
ε̃ ′′(d−2)gk, (11)

ε̃(d−1)gk = 2ε̃ ′(d−1)gk − ε ′′(d−1)gk. (12)

So far, the proposed framework assumes the offer prices
to be distributed in accordance with a distribution the type
and parameters of which have not been defined yet. For this
purpose, we propose a log-logistic distribution, as this distri-
bution covers a variety of shapes depending on the parame-
ters α and γ and has the attractive feature that an analyti-
cal closed form expression exists for the cumulative density
function. Moreover, this distribution appears to sufficiently
describe the data in the TAC SCM game in over 60% of the
analyzed price samples from historical game data1, accord-
ing to the Kolmogorov-Smirnov test [23] (when requiring the
p-value to be over 0.05). The remaining samples could not
sufficiently be described using a simple parametric distribu-
tion such as the log-logistic distribution due to the complex
form of their true densities. The log-logistic distribution
f(p; α, γ) and its cumulative form F (p; α, γ) [25], truncated
such that the distribution is defined on the domain 0 < p < u
and reparameterized such that α represents the median and
γ quantifies the distribution tightness, can be described us-
ing (13) and (14).

1TAC SCM 2007 Semi-Finals and Finals (9323–9327tac5
and 7308–7312tac3) [30] and TAC SCM 2008 Semi-Finals
and Finals (763–768tac02 and 794–799tac01) [35] game data.



f (p; α, γ) =

(
α−γ − u−γ

)
γp−γ−1

(α−γ − 2u−γ + p−γ)2
,

0 < p < u, α, γ > 0, (13)

F (p; α, γ) =
α−γ − u−γ

α−γ − 2u−γ + p−γ
,

0 < p < u, α, γ > 0. (14)

When F (pdgk; θk) in (7) is substituted for (14), the cor-

rected price p∗
′

dg expected to yield a required sales quota (i.e.,
acceptance probability [17]) q∗dg can be obtained as shown
in (15) through (17). Here, let 1 ≤ k ≤ M , with the number
of considered regimes M = 5 [15, 16, 18].

q∗
′

dg =
ndgk

√
1− mdg

√
1− ε̃(d−1)gk

√
q∗dg,

0 < q∗dg < 1, mdg, ndgk, ε̃(d−1)g > 0, (15)

p∗
′

dgk =


u−γk

(
α
−γk
k (uγk − 2α

γk
k ) q∗

′
dg + 1

)

1− q∗′dg



− 1

γk

,

αk, γk > 0, (16)

p∗
′

dg =

5∑

k=1

P (Rdgk) p∗
′

dgk, 0 < p∗
′

dgk < u. (17)

We now have a product pricing approach, which assumes
a double-bounded log-logistic distribution to be underlying
offer prices, the parameters of which can be estimated real-
time using RBFNs, based on available information. This ap-
proach is capable of adapting to market disruptions, which
are characterized using economic regimes, as product prices
are determined per dominant regime using (15) and (16)
and subsequently weighted for their associated regime prob-
abilities in (17). The relations between price distributions
and available information are thus dynamically modeled, de-
pending on economic regimes.

Structural errors in the product pricing process are ac-
counted for by feeding market responses to placed offers
back into the product pricing model. In order for the prod-
uct pricing approach to remain valid, market responses are
fed back using an exponential error term, designed to trans-
form the estimated probability of acceptance function into a
function better approximating the true acceptance probabil-
ity. This error term is corrected using daily observations of
expected and observed acceptance probabilities – double ex-
ponentially smoothed with a smoothing factor weighted for
the associated regime probabilities – using (9) through (12).
This feedback process enables the product pricing model to
adapt to the true customer offer acceptance probabilities.

5. PERFORMANCE IN TAC SCM
The final framework can be evaluated by implementing

the approach in the MinneTAC trading agent [6] for the
TAC SCM game. To this end, product pricing should be
done using (9) through (12) and (15) through (17). The
αk, γk, and ndgk parameters for product g on game day d
for dominant regime k are to be estimated using RBFNs.
This section elaborates on implementation and testing of
the proposed approach.

Figure 1: Schematic overview of a typical TAC SCM
game scenario.

In the TAC SCM game, a supply chain for PCs is consid-
ered in 220 game days of 15 real-time seconds each. This
supply chain consists of customers, manufacturers and sup-
pliers (see Figure 1). Every game day, customers issue RFQs
for 16 PC types, on which manufacturers can bid. Cus-
tomers always place an order with the manufacturer offer-
ing the requested product for the lowest price (if this price
is at or below their reservation price). The requested prod-
ucts are assembled by the manufacturers using components
procured from suppliers. These manufacturers are software
trading agents (such as MinneTAC) developed by competing
teams that all try to maximize their profit over a game. The
major challenge is the limited visibility of the market envi-
ronment. Real-time available data consists of information
about received RFQs and agent’s own orders, the preceding
day’s minimum and maximum order price of each PC type,
and aggregate market statistics issued every 20 days.

Order prices realized in the TAC SCM game tend to be
volatile. Order price distribution characteristics change over
time (see Figure 2, where prices are normalized by expressing
these prices in terms of their associated production costs).
First of all, the mean of these distributions changes over
time. Furthermore, the order price distributions sometimes
are tight (i.e., minimum and maximum order prices are close
together), whereas the spread of prices is larger on other
game days. The spikes in order prices are mostly caused by
opportunistic or manipulative agents. As price distribution
estimation is hard due to this volatility, TAC SCM is a good
testbed for our product pricing approach.

5.1 Implementation in the MinneTAC Agent
The sales decisions made by the MinneTAC agent orig-

inate from price predictions based on microeconomic con-
ditions, which are characterized for each individual mar-
ket segment: economic regimes are identified and predicted.
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Figure 2: TAC SCM order price sample over time.

These economic regimes can be extreme scarcity, scarcity,
a balanced situation, oversupply, and extreme oversupply.
On game day d, the regime for good g is identified using
regime probabilities; the regime having the highest probabil-
ity, given the estimated normalized mean price of that day is
assumed to be the current dominant regime. This price esti-
mate is a smoothed normalized mid-range price, ñpdg, which
is the average of the double exponentially smoothed normal-
ized minimum and maximum price. To this end, prices are
first of all normalized by expressing these prices in terms of
their associated production costs, such that these normal-
ized prices npdg range from 0 to 1.25.

A product-level price density function has been modeled
on historical normalized order price data using a Gaussian
Mixture Model (GMM) [34] with a sufficient number of Gaus-
sians, reflecting a balance between prediction accuracy and
computational overhead (currently in MinneTAC we are us-
ing a Gaussian Mixture Model with 25 Gaussians). Clus-
tering these price distributions over time periods (using the
k-means algorithm [21]) has yielded distinguishable statis-
tical patterns: economic regimes. In the TAC SCM game,
price information is only available up until the preceding
game day. Hence, the MinneTAC agent approximates the
mean price of day d using exponential smoothing predic-
tion of ñpdg and subsequently returns the regime probabil-
ities for day d. When such an approximation is supplied
to the model during a game, the individual Gaussians in
the model are activated to a certain extent, thus generating
an expected price distribution. Subsequently normalizing
all clusters’ price densities enables determination of regime
probabilities. Future regime probabilities are determined
using Markov prediction and Markov correction-prediction
processes (for short-term and long-term decision making, re-
spectively) [17].

When current or future regime probabilities have been
determined, products are priced based on the likelihood of
customer acceptance of these prices, such that a sales quota
is fulfilled. These processes of regime identification, regime
prediction, and product pricing, as well as other processes
in the MinneTAC trading agent, are supported by a con-
figurable chain of evaluators [6]. The software selects the
optimal configuration of evaluators.

Figure 3: Simplified schematic overview of the
benchmark MinneTAC sales process configuration
for an arbitrary product on an arbitrary game day.

In the sales process configuration used as benchmark in
our research, depicted in Figure 3, price trends are estimated
by the regime model. The median price of a product is
estimated using a price-following approach implementing a
Brown linear exponential smoother. These trends, combined
with the estimated median, are used in the allocation pro-
cess, where sales quotas are generated based on – among
other things – these price predictions. The curve represent-
ing the probability of acceptance is approximated using the
estimated median price and the curve’s slope in that me-
dian, estimated using exponentially smoothed prices. This
customer offer acceptance probability is used for determin-
ing the price to be offered in order for the sales agent to sell
its desired quota.

In order to compensate for the uncertainty in generated
predictions, interval randomization is applied to offer prices,
which adds a slight variability to these prices. The estimated
median is corrected using feedback derived from the desired
acceptance probability and the associated true acceptance
probability observed the next day. The error is computed
as the difference between the optimized offer price and the
actual price. The latter price is derived by solving the ac-
ceptance probability estimate to the observed probability. A
major drawback here is the assumption that customer feed-
back is in response to the optimized offer price, whereas this
feedback in fact is in response to a price randomized in an
interval around this price.

The price distributions estimated by the GMM are up-
dated on-line, but they do not account for factors other than
a mean price estimate and lack full adaptivity. In an at-
tempt to improve the product pricing process by combining
regime information with real-time available data, we replace
the sales model of the benchmark with a system designed
for Product Pricing using Adaptive Real-time Regime-based
Probability of Acceptance Estimations: PPARRPAE. The
algorithm (see Algorithm 1) involves parameter estimation
using RBFNs and subsequently pricing products using (15)
through (17) (with u = 1.25). In this process, an error term
is considered, following (9) through (12) (with β = 0.5, as
determined by a hill-climbing procedure). Figure 4 visual-
izes the relations between the logical components involved
in this process.

The main idea is to leave the regime model intact and to
build an adapter, which combines the characteristics of the
price distribution estimated by the regime model with real-
time available information. Using the RBFNs, the adapter
transforms this information into a parameterized acceptance
probability function per dominant regime and assigns weights
to these functions, equal to their associated regime proba-
bilities.



Figure 4: Simplified schematic overview of the pro-
posed PPARRPAE sales process configuration for
an arbitrary product on an arbitrary game day.

This adapted distribution can subsequently be used in the
product pricing process for an arbitrary product on an arbi-
trary game day (see Section 4). Given a quota specified by
the allocation component, the product pricing component
uses the adapter to compute the price expected to yield this
quota per dominant regime and weights the suggested prices
for their associated regime probabilities. The generated op-
timal price is then offered on all selected RFQs for the con-
sidered product. The market responses to these offers are
directly fed back to the adapter, which is able to learn from
its errors. Therefore, in order for this information not to be
biased, interval randomization is not applied to the gener-
ated optimal price, as opposed to the benchmark approach.

The allocation model bases its decisions – among other
things – on price predictions, which consist of an estimate
of the median price of the considered game day and trends
representing expected future deviations from this median.
In the benchmark sales model, the trends are estimated us-
ing the regime model, whereas the median is estimated using
a price-follower approach. This price-following component
is also used in the estimation of the daily probability of
acceptance function and can thus be updated using mar-
ket responses. Since in the proposed approach, market re-
sponses are not related to the price-following median, but
are fed back to the adapter, the prediction of the median
price should in this case be provided to the allocation com-
ponent by the adapter.

5.2 Radial Basis Function Network Training
For each dominant regime k, an RBFN needs to be trained

for estimating the αk, γk, and ndgk parameters for product g
on game day d. Therefore, training and test datasets2 must
be split into datasets per dominant regime. These dominant
regimes are identified by the current regime model.

As we attempt to adapt regime-based price distributions
done using the GMM implemented in the MinneTAC agent
in order for them to be useful in the daily product pric-
ing process, these regime-based price distributions should
be used as artificial neural network inputs. For now, let
these distributions be described by their 10th, 50th, and
90th percentile, as well as the spread of these percentiles.

In the TAC SCM game, price distributions tend to differ
per product type. Hence, the product type itself might be in-
dicative of the characteristics of the order price distributions
and hence the associated offer price distributions. Further-

2TAC SCM 2007 Semi-Finals and Finals (9321–9328tac5
and 7306–7313tac3) [30] and TAC SCM 2008 Semi-Finals
and Finals (761–769tac02 and 792–800tac01) [35] game data.
The first two games and the last game per server form the
test set, the rest forms the training set.

foreach d in days do
foreach g in products do

// Update error using last feedback,

// following (9) through (12)
error = updateError(getFeedback(d− 1, g));
// Retrieve data from regime model

regProbs = getRegProbs(d, g);
regPriceDistr = getRegPriceDistr(d, g);
trends = getTrends(d, g);
// Estimate parameters using RBFNs

priceDistr = estParams(regPriceDistr,
getData(d, g));
// Determine median price using (15)
// through (17)
median = priceForProb(0.5, priceDistr, error,
regProbs);
// Retrieve allocated quota

quota = getQuota(d, g, median, trends);
// Determine optimal price expected to

// yield quota using (15) through (17)
price = priceForProb(quota, priceDistr, error,
regProbs);
// Bid optimized price on selected RFQs

priceProduct(d, g, price);
end

end
Algorithm 1: The PPARRPAE approach.

more, offered prices might also be related to the game day,
as for example in the first phase of the game, prices are more
likely to be relatively high due to scarcity of products, which
is caused by the fact that agents start with zero inventory.

Another indicator for a product’s offer price distribution
could be the number of RFQs for that product, as the num-
ber of simultaneously run similar auctions affects the rev-
enue generated from these auctions due to their (partial)
substitutivity [36]. This might hold for TAC SCM too, as
each bidding agent is restricted by its limited product ca-
pacity. Even more, RFQs for the same product type could
be considered to be (partial) substitutes to some of the bid-
ders (depending on their product pricing and RFQ selection
strategy). Not only the number of RFQs, but the charac-
teristics of these RFQs as well could be indicators of the
pricing behavior they generate. Hence, the mean and stan-
dard deviation of requested quantities, requested leadtimes,
and reservation prices could be taken into consideration.

Prices realized on the preceding day could also be use-
ful [19]. In-game, as in real-world scenarios, only the mini-
mum and maximum order prices realized on the preceding
game day are available for each product. We can only es-
timate the mid-range price, and therefore an accurate esti-
mate of the price density is of paramount importance. These
prices and their associated mid-range and spread could be
double exponentially smoothed as well, as this provides a
good approximation of the mean price of the preceding game
day [15, 16, 18].

Hence, the RBFNs should be trained to adapt regime-
based GMM price distribution estimations using available
data on product type, game day, RFQ characteristics, and
observable prices as predictors. Using historical data in the
training and test sets, the target values for ndgk can be deter-
mined by a counting process and the αk and γk parameters



can be determined by fitting distributions using (4) and (13).
The performance of models trained on the training set can
be evaluated on the games in the test set, as the latter set is
sufficiently large and representative [24]. An average train-
ing dataset thus generated contains over 15,000 samples, an
average test dataset over 8,000.

The thus found optimal values for the γk parameter tend
to be distributed on an exponential scale; the increment in
γk needed to tighten the distribution increases as the distri-
bution gets tighter. E.g., a distribution with a γk value of
2 is much more different from one with a γk value of 5 than
a distribution with a γk value of 200 is from one with a γk

value of 500, when all other parameters are fixed. Hence,
as the required accuracy decreases for an increasing γk, the
networks are trained to predict the natural logarithm of γk.

Using Weka [37], the RBFNs can be trained relatively
easily. The results can subsequently be saved as serialized
Java objects, which enables them to be used in Java software
like the MinneTAC agent. One drawback of using Weka is
that the Weka implementation of an RBFN, RBFNetwork,
can have only one output. Hence, a network is to be trained
per dominant regime per parameter.

Some parameters can be adjusted in the RBFNetwork im-
plementation. First of all, the random seed used in the clus-
tering process used to determine the centers of the Gaussians
in the networks can be defined. Let this cluster seed be 0 for
all networks. One can also specify a so-called ridge value,
which indicates how much the regression error in estimating
model parameters may diverge from the least squares mea-
sure. For all networks, this value is left at its default value,
1E-08. Other parameters are the number of clusters and the
minimum standard deviation of these clusters.

The configurations of the latter two parameters can be
determined by systematically evaluating all combinations
of different values. The configurations yielding the lowest
root mean squared deviation (RMSD) on the test set are
selected [24]. The RMSD can be defined as

RMSD =

√∑Ω
ω=1 (x̂ω − xω)2

Ω
, (18)

where x̂ω is an observation in a set of Ω observations (in
this case a value predicted by the model), the associated
benchmark value in the test set of which is xω.

The optimal number of clusters could be anything be-
tween relatively small and rather large. Using too many
clusters would cause the model to not generalize very well.
Hence, taking into account the size of the dataset, the set of
number of clusters considered is {25, 50, 100, 150, 200, 300}
and standard deviations in the set {1, 2, 5, 10, 15} are con-
sidered. Apparently, αk (ranging between 0 and 1.25) can
be estimated relatively well, whereas ndgk (ranging between
0 and 6) and ln (γk) (roughly ranging between -6 and 6)
cannot (see Table 1).

5.3 Adaptive Product Pricing in the TAC SCM
Game based on Economic Regimes

By running and analyzing a number of games, the perfor-
mance of the PPARRPAE system proposed in Section 5.1
can be compared with the benchmark. In this experimen-
tal setup, games are in accordance with the 2006 TAC SCM
game specifications [5]. The randomness incorporated in the
game (e.g., in customer demand) is an inconvenient charac-

Parameter Regime Clusters MinStdev RMSD
αk 1 25 15 0.0448
αk 2 50 10 0.0346
αk 3 100 5 0.0366
αk 4 50 5 0.0386
αk 5 300 5 0.0400

ln (γk) 1 100 15 0.7713
ln (γk) 2 150 5 0.6903
ln (γk) 3 150 5 0.6481
ln (γk) 4 200 5 0.6370
ln (γk) 5 150 2 0.6732

ndgk 1 50 15 1.0036
ndgk 2 25 5 1.0773
ndgk 3 200 5 0.9974
ndgk 4 300 2 0.9395
ndgk 5 100 5 0.8090

Table 1: Optimized configuration of number of clus-
ters and minimum standard deviation of clusters for
RBFNs estimating distribution parameters, along
with the RMSD of parameter values predicted by
the models from their target values.

teristic for a testing environment in which two approaches
are to be compared, as this randomness in market condi-
tions implies that many experiments should be run in order
to obtain results with any statistical significance.

The issue of randomness in the testing environment is
tackled by a controlled TAC SCM game server, in which
random seeds used for generating market conditions can be
controlled. Random elements in decision processes of com-
peting agents cannot be controlled. Hence, multiple runs
with the same random seeds for market conditions could
still yield different results. However, under controlled mar-
ket conditions, such uncontrolled stochastic behavior of par-
ticipating trading agents does not have a significant impact
on the agent profit levels [31]. The results presented in [31]
also indicate that most significant profit differences between
agents can already be detected in approximately 40 games.

The performance of the PPARRPAE system can hence be
evaluated in 40 experiment sets on a controlled server. Each
experiment set consists of a paired evaluation of the perfor-
mance of the benchmark and the PPARRPAE system under
equal market characteristics. For now, let the competitors
be the default competitors that come with the TAC SCM
game. These competitors use a make-to-order strategy.

In each evaluation, the final bank account balance can be
considered, as well as the sales performance. To this end,
the mean and standard deviation of account balances over
all games can be computed. The number of obtained orders
should be considered in the analysis as well. The number of
times the agent proceeds to actually bidding on RFQs, given
an acceptance probability estimate, can also be analyzed.

Performance differences should also be assessed with re-
spect to their statistical relevance. This can be done with
a paired Student’s t-test [10], which tests whether pairs in
two samples are identically distributed (this null hypothe-
sis is rejected at a significance level below 0.05). However,
this statistic assumes the observations to be distributed in
accordance with a normal distribution and we do not know
whether this is a realistic assumption. Therefore, we can also
assess statistical relevance of observed performance differ-
ences using paired, two-sided Wilcoxon signed-rank test [9,
13]. This is a non-parametric test, which tests the hypoth-
esis that the differences between paired observations are
symmetrically distributed around a median equal to 0. If



Benchmark PPARRPAE
Agent Mean Stdev Mean Stdev

MinneTAC 19.2614 12.4207 49.3933 2.7053
Make-to-order-1 12.9194 3.2799 14.0436 2.9310
Make-to-order-2 13.0250 3.3152 14.1313 3.1668
Make-to-order-3 12.7687 3.3184 14.1034 2.7711
Make-to-order-4 12.8552 3.4148 14.3529 2.9034
Make-to-order-5 13.0803 3.2224 14.2307 2.9874

Table 2: Mean and standard deviation of final bank
account balance per agent, calculated over all exper-
iments. Values are expressed in millions.

Benchmark PPARRPAE
Agent Mean Stdev Mean Stdev

MinneTAC 3.0865 1.0178 4.6474 0.4507
Make-to-order-1 3.2615 0.3367 3.0498 0.3129
Make-to-order-2 3.2615 0.3291 3.0571 0.3448
Make-to-order-3 3.2452 0.3386 3.0364 0.3267
Make-to-order-4 3.2198 0.3292 3.0387 0.3172
Make-to-order-5 3.2504 0.3480 3.0437 0.3301

Table 3: Mean and standard deviation of number of
obtained orders per agent, calculated over all exper-
iments. Values are expressed in thousands.

this null hypothesis is rejected (at a significance level below
0.05), the compared sets of samples can be assumed to be
significantly different. This test would be suitable in this
experimental setup, as the distribution of the values to be
compared is unknown.

Over all experiments, PPARRPAE turns out to outper-
form the benchmark with respect to final bank account bal-
ance and the number of obtained orders (see Tables 2 and 3).
Generally, when using PPARRPAE, final balances signifi-
cantly increase with about 160% (with a p-value of 0.0000
for both the paired t-test and the Wilcoxon test) and the
number of orders significantly increases with over 50% (with
a p-value of 0.0000 for the paired t-test as well as for the
Wilcoxon test) with respect to the benchmark.

The increase in number of obtained orders can be ex-
plained by the significant increase of the number of usable
acceptance probability estimations with approximately 80%
(with a p-value of 0.0000 for both the paired t-test and
the Wilcoxon test). However, final account balance increase
does not appear to be fully explained by an increase in ob-
tained orders. In some experiments, a small increase (or
even a decrease) in the number of obtained orders still re-
sults in doubled profits. This indicates that orders are better
priced. This could be caused by prices of obtained orders
to be closer to second-lowest prices, instead of being sig-
nificantly lower, which results in a reduced margin between
customers’ reserve prices and realized order prices. Hence,
using the PPARRPAE approach improves the quality of ac-
ceptance probability estimations and consequently results in
better bid efficiency.

6. CONCLUSIONS AND FUTURE WORK
When product pricing strategies are linked to price distri-

bution estimations, taking into account real-time available
information, the relation between data and price distribu-
tion parameters can be dynamically modeled using economic
regimes (characterizing market conditions) and error terms
(accounting for customer feedback). Thus, in a constrained
environment like TAC SCM, economic regime estimations
turn out to contribute to profit maximization when they are

used to differentiate product pricing strategies. Test results
indicate that this novel approach significantly improves the
performance of a price-following product pricing approach;
more orders are obtained against higher prices and profits
more than double. Much gain is obtained from using proper
statistical methods, combined with effective real-time pa-
rameter estimation.

Even though the performance of the proposed model al-
ready is very promising, some aspects still require more re-
search. First of all, the type and parameterization of models
for real-time price distribution and acceptance probability
approximation could be further improved. Other possible
predictors for acceptance probabilities could be considered
as well. Procurement information might be a good candidate
here, as costs associated with specific orders could influence
the price, depending on the cost allocation applied in the
participating trading agents. Another option for future re-
search is trying to use the improved acceptance probability
estimations in the allocation or RFQ selection process.

Finally, our approach of product pricing using adaptive
regime-based acceptance probability estimations could be
challenged in a situation with very tough competition. Cur-
rently, we are testing our approach against world’s leading
TAC SCM agents. If the MinneTAC agent could deal with
those agents as with the agents considered in this research,
MinneTAC would be more competitive than ever.
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