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Abstract. Pay–performance sensitivity is a common proxy for the strength of incentives.
We show that growth options create a wedge between expected-pay–effort sensitivity,
which determines actual incentives, and pay–performance sensitivity, which is the ratio of
expected-pay–effort to performance–effort sensitivity. An increase in growth option in-
tensity can increase performance–effort sensitivity more than expected-pay–effort sensi-
tivity so that, as incentives increase, pay–performance sensitivity decreases. We document
empirical evidence consistent with this finding. Pay–performance sensitivity, measured by
dollar changes inmanager wealth over dollar changes in firm value, decreases with proxies
for growth option intensity and increases with proxies for growth option exercise.

History: Accepted by Gustavo Manso, finance.
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1. Introduction
A fundamental insight of agency theory is thatmanagers
need incentives to maximize shareholder value (Jensen
and Meckling 1976). At a basic level, such incentives
require that a manager’s expected pay be sensitive to
the manager’s actions. In practice, these actions are
often unobservable, and as a result, compensation
contracts implement incentives by makingmanagers’
pay sensitive to performance. As such, a substantial
literature has developed that estimates managerial
incentives bymeasuring pay–performance sensitivity
(Murphy 1985, Jensen and Murphy 1990, Baker and
Hall 2004). However, as a measure of incentives, pay–
performance sensitivity is confounded by the sensi-
tivity of performance to managers’ actions. We show
that growth options cause the sensitivity of perfor-
mance to managers’ efforts to vary both across firms
andwithin a firm over time. This variationmeans that
pay–performance sensitivity is not a sufficient statistic
for incentives. Intuitively, growth options should increase
the optimal amount of incentives receive. We show
that pay–performance sensitivity can be decreasing in
growth-option intensity and provide empirical evi-
dence that supports this relation.

We first present the basic intuition behind why pay–
performance sensitivity is not a sufficient statistic for
incentives in the context of a simple principal–agent
problem. In this problem, a manager takes a hidden
action, that is, effort, that affects firmvalue. Shareholders
provide the manager with incentives by making the
manager pay a function of firm value. Three distinct

quantities emerge as related to themanager’s incentives:
expected-pay–effort sensitivity, performance–effort
sensitivity, and pay–performance sensitivity. Expected-
pay–effort sensitivity is defined by how sensitive the
manager’s expected pay is to the manager’s choice
of effort and directly determines the manager’s incen-
tives. When expected-pay–effort sensitivity is higher,
the manager expects to receive a greater reward for
any additional effort the manager applies, and the
manager will, thus, respond by applying more effort.
Performance–effort sensitivity is the marginal value
ofmanagerial effort to thefirm. Finally, pay–performance
sensitivity is the sensitivity of themanager’s pay to the
value of the firm. In this simple framework, pay–
performance sensitivity is the ratio of expected-pay–
effort sensitivity and performance–effort sensitivity
so that there is a wedge between pay–performance
sensitivity and incentives. As a result, a change in an
underlying characteristic of the firm that leads to
changes in both incentives and performance–effort
sensitivity can have an ambiguous effect on pay–
performance sensitivity.
Although the arguments we make in our simple

principal–agent framework apply to any firm charac-
teristic that affects the wedge between pay–performance
sensitivity and incentives, our focus is on growth op-
tions. Intuitively, an increase in growth options leads to
an increase in the sensitivity of firm value to effort and,
at the same time, increases the optimal amount of in-
centives that the shareholders choose to implement.
Herein lies the difficulty of measuring incentives
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withpay–performance sensitivity.When the elasticity
of incentives to growth options is less than that of
performance–effort sensitivity, an increase in growth
options increases incentives and decreases pay–
performance sensitivity.

Although our simple principal–agent framework
illustrates the core intuition of results, it lacks suffi-
cient richness to address why performance–effort
sensitivity might be more or less elastic than expected-
pay–effort sensitivity with respect to growth options.
To address this question, we present a continuous-
time moral-hazard model in which the presence of a
growth option interacts with the provision of in-
centives and characterize the circumstances underwhich
pay–performance sensitivity differs from expected-
pay–effort sensitivity.

In the model, an investor hires a manager to run a
firm. The investor also possesses a growth option to
increase thefirm’s capital base. Themanager can exert
unobservable effort to increase productivity growth.
The investor provides themanagerwith incentives by
exposing the manager to fluctuations in productivity.
The investor is risk neutral, and the manager is risk
averse, so it is costly to provide the manager with
incentives. Thus, from the investor’s perspective,
there are two components of the total cost of effort:
effort costs paid by the manager and the incentive
costs of forgone risk sharing. Our main result is that
expected-pay–effort sensitivity increases with the
size of the growth option, whereas pay–performance
sensitivity decreases if incentive costs are more convex
than effort costs.

The intuition for the result follows from the rela-
tion between expected-pay–effort sensitivity and
performance–effort sensitivity under the optimal
contract. An increase in the size of the growth option
increases the marginal benefit of effort and, thus,
increases the optimal level of effort. The contract
must increase expected-pay–effort sensitivity to im-
plement such an increase in effort. The manager’s
incentive compatibility constraint implies that expected-
pay–effort sensitivity is equal to the manager’s mar-
ginal effort cost. When incentive costs are more convex
than the manager’s effort costs, marginal incentive
costs increase more than marginal effort costs. At the
optimum, the first-order condition equates the mar-
ginal benefit of effort to the sumofmarginal effort and
incentive costs. As performance–effort sensitivity is
equal to the marginal benefit of effort, the first-order
condition implies that performance–effort sensitivity
increases by more than expected-pay–effort sensi-
tivity whenever incentive costs are more convex that
effort cost. As a result, pay–performance sensitivity
decreases with the size of the growth option, whereas
expected-pay–effort sensitivity increases.

We go on to present new evidence for the rela-
tionship between pay–performance sensitivity and
growth options. Using data on pay–performance sen-
sitivity calculated by Coles et al. (2013) as well as
executive and firm characteristics from the Execu-
comp and Compustat databases, we find that pay–
performance sensitivity is negatively related to proxies
for growth options. Specifically, we regress dollar
changes in manager wealth to dollar changes in firm
value, a measure of pay–performance sensitivity
suggested by Jensen and Murphy (1990) that we call
PPS, on market-to-book ratio and other proxies. We
find that, for a given firm, a one standard deviation
increase in themarket-to-book ratio is associatedwith
a 5.7% decrease in PPS. As a stand-alone fact, this
relationship seems inconsistentwith the intuition that
growth options make manager effort more valuable,
which should necessitate stronger incentives when
growth options are present. Viewed through the lens
of our model, we find this intuition to be compatible
with the empirical relationship as more growth op-
tions make manager effort more valuable to the firm.
If the value of manager effort increases faster than
manager incentives, wewould expect PPS to decrease
despite stronger managerial incentives. Thus, our
model also has implications for the provision of in-
centives. We investigate our model’s predictions re-
garding compensation design and find them consistent
with observed compensation structures among high-
growth pre-IPO firms.
Although our main result is about the wedge

between expected-pay–effort sensitivity and pay–
performance sensitivity in the presence of growth
options, the intuition behind our results holds in a
much broader setting. We illustrate the generality of
our results by extending our model to consider the
case of an abandonment option. Rather than an op-
portunity to invest in additional capital, the investor
instead has the opportunity to shut down the firm and
sell its assets for a fixed value. In this setting, the
liquidation value of the asset is a measure of the as-
sets’ redeployability.We find that redeployability has
an effect on incentives that is symmetric to the effect
of growth options: an increase in redeployability de-
creases expected-pay–effort sensitivity but increases
pay–performance sensitivity.
Our work is related to the large literature on ex-

ecutive compensation. Frydman and Jenter (2010)
and Murphy (2013) provide comprehensive reviews
of the theoretical and empirical findings in this lit-
erature. In emphasizing one important aspect of the
empirical evaluation of PPS, we are indebted to the
research that extensively documents the importance
of managerial incentives in firm decision making.
Coles et al. (2006), Hirshleifer and Suh (1992), and
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Rajgopal and Shevlin (2002) are among the many pa-
pers that document the effect of managerial incentives on
operational decisions. There has also been work on the
effect of incentives on other financing decisions as stud-
ied by Babenko (2009) and Chava and Purnanandam
(2010), among others. He et al. (2014) analyzes the
impact of uncertainty on managerial incentives and
finds that the desire for faster learning leads the in-
vestor to offer stronger incentives to the manager.

Theoretical studies have characterized the optimal
compensation contract in a variety of settings.1 An
important observationmade by Baker andHall (2004)
is that the optimal structure of compensation depends
on the model’s assumptions about how managerial
effort affects firm value. In the models of Lambert
(1983), Rogerson (1985), Edmans et al. (2012), and He
et al. (2014), a feature of the optimal contract is the
effect of present performance on both current and fu-
ture compensation. Those models are in discrete time,
whereas our work, like that of DeMarzo and Sannikov
(2006) and He et al. (2017), uses a continuous-time
setting. A continuous-time model is desirable because it
permits characterization of the optimal contract and the
firm’s value function using ordinary differential equations.

In our model, real options are a source of convexity
in firm value and create thewedge between incentives
and pay–performance sensitivity. First introduced in
Brennan and Schwartz (1985), there is substantial
literature analyzing the presence and implications of
investment opportunities as options. Berk et al. (1999)
finds that the optimal exercise of investment oppor-
tunities can simultaneously reproduce a multitude of
cross-sectional asset-pricing features. Carlson et al.
(2004) builds on this analysis by introducing oper-
ating leverage and reversible investment. In a similar
spirit, by analyzing real options in the context of
managerial incentives, we work to understand the
rich interdependence between managerial decision
making and investment opportunities.

By studying the effect of real options on incentives,
our paper contributes to the literature on manager in-
centives. The seminal paper in this area is Holmstrom
and Milgrom (1987), which studies the contract be-
tween a risk-averse manager and a risk-neutral firm.
Ourmodel is similar to thatofHe (2011) in that it features
a risk-averse manager who can exert effort to increase
expected cash flows. Unlike that model, our model
gives the firm a growth option. Similar to earlier models,
there are two kinds of costs in implementing effort as
described first in Holmstrom and Milgrom (1987): the
direct monetary cost and the risk–compensation term
to encourage the risk-averse agent to bear incentives.

Empirical studies on measuring PPS were pioneered
by the competing measures of Jensen and Murphy
(1990) and Hall and Liebman (1998). An important
contributionwasmade byCore andGuay (2002), who

provided amethodology for estimating the sensitivity of
option-based compensation. Our work both relies upon
and contributes to the measurement of PPS by identi-
fying growth options as an important source of variation
in PPS. In this way, ourwork contributes to the literature
on the determinants of executive compensation.2

Finally, our paper is related to the literature on
option exercise in the presence of agency problems
and asymmetric information. Grenadier and Wang
(2005) analyze how agency conflicts, such as moral
hazard and hidden information, can affect the timing
of real option exercise. Grenadier andMalenko (2011)
study a setting in which informed agents signal their
private information by exercising real options. Grenadier
et al. (2016) analyze how timing decisions interact
with communication. Cong (2017) studies the relation
between auctions of real options and investment-timing
decisions. The setup of our model follows that of
Gryglewicz and Hartman-Glaser (2016), which looks
at the timing of investment decisions in the presence
of agency conflicts. Rather than focusing on the in-
vestment decision, we focus on how growth options
can affect manager incentives.

2. Pay–Performance Sensitivity
and Incentives

In this section, we present a simple principal–agent
problem that illustrates our main point: pay–performance
sensitivity is not a direct measure of incentives. To
that end, consider an investor who hires a manager to
operate a firm. The gross value of this firm, V, is an
increasing function of a state X � a + Z, where a is the
manager’s hidden action a and Z is mean zero noise.
The shape of V is determined by an exogenous pa-
rameter λ. For example, λ could represent the firm’s
size, its level of productivity, or, as we focus on in this
paper, the firm’s endowment of growth options.
A contract specifies a compensation rule c that

determines the amount to be paid to the manager by
the investor. As the investor cannot observe the ac-
tions of the manager, the investor can only condition
themanager’s compensation on the realization offirm
value or X. For simplicity, we restrict attention to
contracts that are affine in firm value:

c(V) � W + φV, (1)

so that φ corresponds to the dollar increase in the
manager’s pay per dollar increase in firm value., that
is, the standard definition of pay–performance sen-
sitivity as in Jensen and Murphy (1990). Although
this restriction is not without loss of generality, it sub-
stantially simplifies the intuition we present. One ad-
vantage of the dynamic model we present in Section 3
is that it allows a characterization of the optimal
contract over an unrestricted contract space.
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Taking the compensation rule c as given, themanager
chooses the action a∗ that maximizes the manager’s
expected compensation net of a convex effort cost
g(a). The firm chooses the optimal contract to maximize
thevalueV net ofmanager compensation c, taking into
account themanager’s choice of action a∗. The optimal
contract then solves the following problem

max
c

{E V X( ) − c V X( )( ) | a∗[ ]} (2)

such that

a∗ ∈argmax
a

{E c V X( )( ) | a[ ] − g a( )}, (3)

and

E c V X( )( ) | a∗[ ] − g a∗( ) ≥ u0, (4)

where u0 is the value of the manager’s outside option.
In this setting, themanager’s incentives aredetermined

by the manager’s expected-pay–effort sensitivity, that
is, how much expected compensation increases in
response toan increase ineffort. This quantity,denotedβ,
is given by

β � dE c V X( )( ) | a[ ]
da

. (5)

To see why β captures the strength of the manager’s
incentives, examine the incentive compatibility con-
dition in Equation (3). It implies that the manager will
choose an effort level that equates the marginal cost
of effort with the marginal benefit, that is, the man-
ager’s expected-pay–effort sensitivity. Because the
cost of effort is convex, the higher the manager’s
expected-pay–effort sensitivity is, the higher the
manager’s optimal effort level will be.

We are interested in determining the conditions
under which inferences about manager incentives,
that is, expected-pay–effort sensitivity, can be drawn
by observing pay–performance sensitivity. For ex-
ample, suppose empirical evidence shows that pay–
performance sensitivity is decreasing in some firm
characteristic λ, for example, growth-option inten-
sity. Can we conclude that incentives are also de-
creasing in this characteristic? To answer this question,
we can examine the comparative statics of both φ and β
with respect to λ. If these two comparative statics
have the same sign, then the two measures are
aligned, and we can conclude that incentives are also
decreasing in λ. However, as we now show, β can be
increasing in λ even though φ is decreasing. This
relation implies that evidence that pay–performance
sensitivity is decreasing in some firm characteristic is
not sufficient to conclude that incentives are also
decreasing.

Given our restriction to affine contracts, expected-pay–
effort sensitivity is the product of pay–performance
sensitivity and the marginal value of manager effort

β � φ
dE V(X) | a[ ]

da
� φE V′(X) | a[ ]. (6)

Taking a derivative of Equation (6) with respect to
λ gives

1
β

∂β

∂λ
� 1
φ

∂φ

∂λ
+ 1

E V′(X) | a[ ]
( )

∂E V′(X) | a[ ]
∂λ

. (7)

Inwords, Equation (7) just states that the elasticity of β
with respect to λ is the sum of the elasticities of φ and
the marginal value of manager effort. Thus, φ can be
decreasing in λ while β is increasing in λ if the elas-
ticity of the marginal value of manager effort is suf-
ficiently positive.
In the specific case in which λ represents growth

opportunity intensity, an increase in λ increases
V′(X). An increase in λ, thus, increases the marginal
value of manager effort, and the amount of incentives
provided per unit of pay–performance sensitivity in-
creases. As a result, actual incentives can increase
even as pay–performance sensitivity decreases.
This analysis also has implications for the design of

incentives. A typical feature of many contracting
models is that executive pay that is convex in per-
formance provides strong incentives. This feature
would seem to imply that if a firm’s owners seek to
provide powerful incentives, then executive pay
should include option-like compensation. Equation (6)
shows that some convexity in incentives is present
just because the firm value is itself a convex function
of the underlying effort of the manager. When a firm
has growth opportunities, firm value is an option-like
function of productivity. As a result, paying execu-
tives with stocks or deep-in-the-money options still
provides convex incentives.
Equation (6) also indicates that the problem of

drawing inferences about incentives using data on
pay–performance sensitivity is akin to using average
q to draw inference about marginal q. As is well un-
derstood, marginal and average q are not necessarily
equivalent if the marginal value of investment is not
constant. In the same vein, pay–performance sensi-
tivity is not necessarily equivalent to incentives if the
marginal value of manager effort is not constant.
However, just as average q is useful in the empirical
investigation of real investment because it is readily
observable and measurable, so is pay–performance
sensitivity in the empirical investigation of incen-
tives. Our point is that one must take care to control
for the marginal value of manager effort when using
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pay–performance sensitivity as a proxy for incentives
in the same way that one must take care to properly
control for the marginal value of investment when
using average q as a proxy for marginal q.

In this simple principal–agent problem, not only is
pay–performance sensitivity distinct from incentives,
but observed changes in the former are uninformative
about the latter. In the next section, we formalize the
simple intuition we have presented in the context of a
fully specified model in which the relation between
growth-option intensity and pay–performance sensi-
tivity arises endogenously from a dynamic principal–
agent problem.

3. A Dynamic Model of Real Options and
Manager Moral Hazard

We now present a dynamic model that builds on
Holmstrom andMilgrom (1987) andHe (2011), which
explicitly solves for the optimal contract and relates the
manager’s incentives to the primitives of the model.
The dynamic model has the advantage of allowing us
to characterize firm value and the optimal contract in
closed form and analyze comparative statics of pay–
performance sensitivity versus pay–effort sensitivity.
Building on the intuition of the previous section, we
find that the two are distinct and respond differently
to changes in the value of managerial effort.

In the model, time is continuous and indexed by t.
An infinitely lived firm generates a continuous cash
flow given by XtKt, where Kt is the capital base and Xt

is firm productivity. Capital Kt takes the initial value
K0 � 1, and the firm has a real option to pay P and in-
crease capital to k. Let τdenote the time of investment.

A risk-neutral investor hires a risk-averse manager
to run the firm. The common discount rate is denoted
by r. Both Xt and Kt are observable to the investor.
A moral-hazard problem arises because the manager
affects the firm’s productivity. Specifically, prior to
investment, productivity Xt depends on that man-
ager’s effort at ∈ [0, amax] and follows the process

dXt � atXtdt + σXtdZt, (8)

where σ is a positive constant and dZt is a Brownian
motion that is unobservable to the investor. We as-
sume that r> amax so that firm value is finite. The
manager’s effort is unobservable to the investor.

In our model, the value of the manager is due to the
manager’s ability to grow the firm’s productivity Xt.
This view of a manager is consistent with charac-
terizations of CEOs as focused on growth and future
performance. As our interest lies in the interaction
of agency conflicts and growth opportunities, we
simplify the analysis and assume that, after an in-
vestment at time τ, firm productivity stays at Xτ

forever and there are no agency conflicts. Thus, the

postinvestment value of the firm’s cash flow is just
(Xτk)/r. In what follows, we examine the optimal con-
tracting and valuation of the firm before investment.
The investor receives the cash flows from the firm and

pays the manager compensation ct so that the man-
ager’s net cash flow Dt follows dynamics given by

dDt � XtKtdt − ctdt − PdJt, (9)

where Jt � I t ≥ τ( ). We note that this specification for
cash flows links current cash flows and operations to
the payoff to the growth option. This feature is not
essential. An alternative formulation of our model is
to letXt only affect the productivity of new capital, not
current cash flows, and would yield the same eco-
nomic mechanism we discuss. The key ingredient for
the results we present is that managerial effort affects
the value of the growth option through productivity
growth.
The manager has constant absolute risk aversion

(CARA) preferences over consumption and effort with
instantaneous utility

u ct, at( ) � − 1
γ
e−γ(ct−g(at)Xt). (10)

The manager’s private cost of effort, g(at)Xt, is mea-
sured in units of consumption. We assume the cost func-
tiong(a) is continuous, increasing, and convex in effort
a: g(a) ∈#1([0,amax]), g′(a)>0, g′′(a)>0, g(0) � g′(0) � 0,
and g′(amax) �∞. This specification for effort costs
ensure that any optimal contract will specify interior
effort in 0,amax( ). The cost of effort increases with the
firm’s current level of productivity and, therefore,
with firm size. This captures the intuition that it is
more difficult and costly for a manager to improve the
productivity of an already productive firm.
The manager has the ability to engage in unobserved

savings and borrowing at the rate r. This assumption
restricts the type of incentives that the investor can
impose on the manager. If the manager did not have
access to private savings, the investor could imple-
ment more powerful incentives by distorting the
manager’s intertemporal margin and ratcheting up
incentives over time. When the manager has access
to private savings, the investor can only expose the
manager to long-term risk via deferred compensa-
tion; otherwise, the manager could use precautionary
savings to undo incentives. Without loss of general-
ity, we assume that the manager starts with zero
savings. It is also important to note that the manager
cannotgainexposure to thefirm’s equity except through
the contract as this would also allow the manager
to undo incentives. Furthermore, the manager has a
outside option, which the manager values at w0.
A contract consists of a compensation rule, a rec-

ommended effort level, and an investment policy,
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denoted Π � c, a{ }, τ( ), where c{ } � ct{ }t≥0 and a{ } �
at{ }t≥0 are stochastic processes adapted to the filtra-
tion of public information ^t and τ is an ^t-stopping
time.

Given contract Π, the manager chooses the sto-
chastic processes c̃, ã{ } (which can differ from those
recommended by the contract, c, a{ }) to maximize the
manager’s utility from the contract as follows:

W0 Π( ) � max
{c̃,ã}

E

∫ ∞

0
− 1
γ
e−γ(c̃t+g ãt,Xt)( )−rt

[ ]
, (11)

such that Xt, Kt, and St follow the dynamics induced
by the consumption and effort plan c̃, ã{ }. The in-
vestor’s value given a contract Π is

v0 Π( ) � E ã{ }
∫ ∞

0
e−rtdDt

[ ]
, (12)

such that Xt, Kt, and St follow the dynamics induced
by the consumption and effort plan c̃, ã{ } and where
c̃, ã{ } solves (11). The expectation operator Eã de-
notes dependence of expectations on the dynamics
under effort ã{ }. Therefore, the investor chooses the
optimal contract to maximize v Π( ) subject to pro-
viding the manager at least the manager’s outside
option w0.

A contractΠ is termed incentive-compatible and zero-
savings if the manager’s choice of c̃, ã{ } is equal to the
payment rule and recommended effort plan c, a{ }
given in Π. We restrict our attention to incentive-
compatible and zero-savings contracts by virtue of
the following version of the revelation principle.

Lemma 1. Let Π̃ be an arbitrary contract. There exists an
incentive-compatible and zero-savings contract Π that sat-
isfies v(Π) ≥ v(Π̃) and W(Π) ≥ W(Π̃).
3.1. No-Savings and Incentive-

Compatibility Conditions
The manager is compensated in current pay and
promised deferred pay. The zero-savings property of
the optimal contract has implications for current pay.
As the manager is risk averse, the manager values
smooth consumption. Thus, if current compensation
is high relative to the manager’s wealth, the manager
will only consume a part of the compensation and
save the rest. Conversely, if current compensation is
low relative to the manager’s wealth, the manager
will borrow to increase current consumption. With
CARA preferences, the manager will not save or bor-
row if the manager’s current utility from consuming
exactly the manager’s compensation equals the risk-
free yield on the manager’s continuation utility from
the contract.

Lemma 2. A contract implements zero savings if and only if
the manager’s instantaneous utility is equal to the yield on
the manager’s continuation utility:

u ct, at( ) � rWt. (13)

Given the manager’s continuation utility Wt and ef-
fort at, the no-savings property pins down an exact
level of current pay. Next, we analyze deferred pay
and its role in providing incentives. To do so, we char-
acterize the dynamics of Wt under the recommended
consumption and effort plan. Utility from current pay
and a change of the continuation utility from deferred
paymust, in expectation, equal the required returnon the
continuation utility; that is, it holds that

Et u(ct, at)dt + dWt[ ] � rWtdt. (14)

The no-savings condition (13) implies that Et dWt[ ] � 0.
Using the martingale representation theorem as in
Sannikov (2008),we canwrite the following dynamics
for the manager’s continuation utility:

dWt � βt(−γrWt) dXt − atXtdt( ) (15)

for some progressively measurable process βt. The
term βt(−γrWt) is the sensitivity of the manager’s
continuation utility to unexpected shocks to the firms’
productivity. The term −γrWt is a scaling factor that
equals the marginal utility of consumption. As a re-
sult, βt measures the sensitivity of the manager’s
continuation value to unexpected shocks to productivity
in monetary terms. If the manager deviates from the
recommended effort policy, the manager expects the
investor to perceive anunexpected shock to productivity
and the manager’s continuation value to adjust by βt.
Thus, βt measures the manager’s incentive to deviate
from the contract’s recommended effort policy.
We can now characterize the incentive compatibility

constraint for the manager. Consider the manager’s
choice of effort ãt. As the manager chooses ãt to max-
imize the sum of the manager’s instantaneous utility
u ct, ãt( )dt and the expected change in the manager’s
continuationutilityWt, themanager’s expected change
in continuation utility achieved by a deviation from
the recommended effort level at to ã is

E dWt|ã[ ] � βt(−γrWt) ã − at( )Xtdt. (16)

For the recommended effort level at to be incentive-
compatible, it must be the case that

at ∈ argmax
ã

u ct, ã( ) + βt(−γrWt) ã − at( )Xt
{ }

. (17)

According to our assumptions about the cost func-
tion g(a), the optimal choice of effort will take on an
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interior solution in the interval 0, amax( ). Taking the
first-order condition yields

ua ct, at( ) + βt(−γrWt)Xt � 0. (18)

Substituting ua ct, at( ) � −uc ct, at( )g′(at)Xt and the no-
savings condition (13), we can rearrange the first-
order condition as follows:

βt � g′(at). (19)

Intuitively, incentive compatibility requires that the
sensitivity, βt, of the manager’s continuation utility to
unexpected output shocks is equal to the manager’s
marginal cost of effort g′(at)Xt, scaled by the marginal
effect of effort on output, Xt.

Lemma 3. A contract is incentive-compatible and imple-
ments zero savings if and only if the solution Wt to the
manager’s problem has dynamics given by (15), where βt is
defined by (19).

The agent’s continuation utility Wt can be used as a
state variable to solve for the optimal contract. It is useful
to further transform Wt into its certainty equivalent

Yt � − 1
γr

ln(−γrWt), (20)

so that we can take Yt to be a state variable for the
investor’s problem in place of Wt. Applying Ito’s
lemma shows that the dynamics of Yt under an
incentive-compatible, zero-savings contract are given
by the following equation:

dYt � 1
2
γr(σβtXt)2 dt + σβtXtdZa

t , (21)

where Za
t is a Brownian motion under the probability

measure induced by effort a. Although Wt is a mar-
tingale, the difference in risk aversion between the
investor and the manager implies that the certainty
equivalent Yt must have additional drift for each
additional unit of volatility. This positive drift will
appear in the investor’s Hamilton–Jacobi–Bellman
(HJB) equation as the cost of providing incentives.

3.2. Solving for the Optimal Contract
We now present a heuristic derivation of the optimal
contract. First, we characterize the payment rule to
the manager. Recall that the zero-savings condition
links the manager’s instantaneous utility u ct, at( ) and
the manager’s continuation utility Wt. This link al-
lows us to express the manager’s compensation as a
function of the state of the firm Xt, the recommended
effort level at, and the certainty equivalent Yt:

ct � rYt + g(at)Xt. (22)

We see that the manager’s compensation is the yield
on the manager’s continuation utility plus the man-
ager’s cost of effort.
Note that Equation (22) also specifies themanager’s

compensation after investment. As there is no more ef-
fort implemented after investment for t ≥ τ, the man-
ger’s continuation utility stays constant, and the
manager’s compensation is simply the yield on the
manager’s continuation utility, ct � rYτ. The present
dollar value of such compensation is Yτ.
We take the dynamic programming approach to

determine the optimal effort and the investment tim-
ing. The investor’s value function v(X,Y) depends on
both the firm’s productivity X and the certainty
equivalent of the manager’s continuation utility Y.
Over any interval of time in which there is no invest-
ment, the investor receives the flow equal to X minus
compensation c. An application of Ito’s lemma to the
dynamics of X and Y gives the following Hamilton–
Jacobi–Bellman equation for v(X,Y):
rv(X,Y) � max

a

{
X − (rY + g(a)X) + aXvX(X,Y)

+ 1
2
σ2X2vXX(X,Y) + 1

2
γr(σg′(a)X)2

· vY(X,Y) + 1
2
(σg′(a)X)2vYY(X,Y)

}
.

(23)

As firm value is monotonically increasing in X, the
optimal investment time τ follows a threshold rule
given by τ � inf{t|Xt ≥ X̄}. Following standard solu-
tion methods, we find this threshold using value-
matching and smooth-pasting conditions:

v(X,Y) � Xk
r

− P − Y, (24)

vX(X,Y) � k
r
. (25)

We can simplify the problem by noting that, be-
cause of the absence of wealth effects implied by the
manager’s CARA preferences, the total firm value is
independent of the manager’s continuation utility. In
other words, the investor’s value depends on the
manager’s continuation utility only by the certainty
equivalent cost of the future obligation to the man-
ager. It, thus, holds that v(X,Y) � V(X) − Y, where
V(X) represents total firm value. Using this relation,
we can rewrite Equation (23) as

rV(X) � max
a

{
X − (g(a) + ρ(a))X + aXV′(X)

+ 1
2
σ2X2V′′(X)

}
, (26)
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where

ρ(a) � 1
2
γr(σg′(a))2X (27)

represents the incentive cost of effort. Boundary
conditions (24) and (25) can be rewritten as

V(X) � Xk
r

− P, (28)

V′(X) � k
r
. (29)

In summary, we obtain the following result.

Proposition 1. The optimal contract is given by the solu-
tion to (26), (28), and (29).

4. Growth Options and Optimal Incentives
In this section, we consider the implications of real
options for managerial incentives. Our question is
how optimal incentives and common measures of
pay–performance sensitivity respond to an increase
in the size of the growth option as measured by k.
Keeping the cost of investment P constant, increased k
means that the growth option is larger and more
valuable. Although there have been many empirical
investigations, reviewed by Murphy (1999) and
Frydman and Jenter (2010), into the relation between
pay–performance sensitivity and firm size, there has
been less attention paid to the relation between in-
vestment and pay–performance sensitivity. Our re-
sults guide the empirical analysis presented in the
following section.

4.1. Measuring Incentives in the Presence of
Growth Options

The manager’s compensation and incentives depend
on the level of effort stipulated by the optimal con-
tract. Therefore, we begin our inquiry with a dis-
cussion of managerial effort. Given our assumptions
on the manager’s effort cost function g(a), the optimal
effort is interior and satisfies the first-order condition

V′(X) � g′(a∗(X)) + ρ′(a∗(X)). (30)

The marginal benefit of effort is the value of increasing
the growth rate of productivity orV′(X). Themarginal
cost of effort includes two terms. The first is the
marginal increase in compensation the manager re-
quires to cover the manager’s effort. The second is the
marginal increase in incentive costs the investor must
pay to increase incentives. In the following analysis,
we restrict our attention to parameter values such that
the maximum a∗(X) satisfies the second-order condi-
tion.3 Optimal effort, which varies with productivity
Xt, depends on the fundamental parameters of the
model and the presence of growth opportunities.

A direct measure of the manager’s incentives in
our model is the sensitivity of the manager’s dollar
(certainty-equivalent) continuation utility to productivity
shocks.4 Prior to investment, the optimal contract sets
the quantity to

β∗(X) � g′(a∗(X)). (31)

This expression follows directly from substituting the
optimal effort policy a∗(X) into the incentive com-
patibility condition given by Equation (19). Note that
β∗(X) is also the expected dollar increase in the
manager’s dollar wealth resulting from an additional
unit of effort as an additional unit of effort is expected
to raise productivity by one unit. In otherwords, β∗(X)
is the manager’s expected-pay–effort sensitivity and
is equivalent to pay–performance sensitivity as long
as changes in performance are measured by changes
in current productivity. Unfortunately, changes in
productivity are difficult to measure empirically.
A standard approach for the measurement of in-

centives is to compute the sensitivity of the manager’s
wealth to changes in firm value, that is, the manager’s
value-based pay–performance sensitivity, as first pro-
posed by Jensen and Murphy (1990).5 This approach
is particularly convenient from an empirical point of
view as it is based on firm value changes, which are easy
tomeasure. In ourmodel, as inHe (2011), the manager’s
dollar value–based pay–performance sensitivity is
equal to the sensitivity of the manager’s dollar con-
tinuationvalue to changes infirmvalue,V(X). Under the
optimal contract, this quantity is given by

φ∗(X) � β∗(X)
V′(X) �

g(a∗(X))
V′(X) . (32)

Note that, althoughφ∗(X) is closely related to β∗(X), it is
scaled by the slope of the value function in outputV′(X).
Thus, the presence of growth options affects φ∗(X) by
changing both β∗(X) and V′(X). To relate to the simple
analysis that we conduct in Section 2, the size of the
growth option affects both the optimal expected-pay–
effort sensitivity and the sensitivity of the performance
measure, in this case,firm value, to effort. Aswe show in
the next proposition, the wedge between β∗ and φ∗ in-
duced byV′(X) can lead the two quantities to respond
in opposite ways to changes in growth option size.

Proposition 2. As the size of the growth option increases:
(1) Optimal effort a∗(X) and expected-pay–effort sen-

sitivity β∗(X) increase,
(2) Pay–performance sensitivity φ∗(X) decreases if and

only if the incentive cost of effort is more convex than the
direct cost of effort, that is, if and only if

ρ′′(a)
ρ′(a) >

g′′(a)
g′(a) . (33)
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The intuition behind Proposition 2 is as follows.
A larger growth opportunity increases the benefits
that the investor derives from managerial effort and,
hence, increases optimal effort. To induce this increased
effort, expected-pay–effort sensitivity increases. The
intuition for the second part of the proposition re-
lies on the relation between expected-pay–effort and
value–effort sensitivity. First note that, as a unit of
effort leads to a unit of expected increase in X, we
can interpret V′(X) as value–effort sensitivity. Thus,
the first-order condition in Equation (30) states that
value–effort sensitivity is equal to expected-pay–effort
sensitivity, β∗(X), plus the marginal incentive costs
evaluated at the optimal level of effort, ρ′(a∗). When
the incentive cost of effort is more convex than the
direct cost of effort, an increase in optimal effort re-
sults in marginal incentive costs comprising a great-
er proportion of the total marginal effort costs.
The first-order condition then implies that expected-
pay–effort sensitivity does not increase by as much as
value–effort sensitivity in response to an increase in
growth-option size. As a result, value-based pay–
performance sensitivity decreases.

We note that a wide range of effort cost functions
satisfy the condition given in Equation (33). First note
that, given the definition of ρ(a), an equivalent way to
state the condition is that the marginal cost of effort is
convex, that is,

g′′′(a)> 0, (34)

which is common in the contract theory literature
(Cheng et al. 2015, Bolton et al. 2016). For example, the
condition is satisfied if effort costs are given by a
power function, g(a) � aη, where η> 2 by a log-linear
function g(a) � (eηa − 1) with η> 0 or by an increasing
convex function g(a) � aη

amax−a with η ≥ 1 (which en-
sures interior effort).

One way to interpret the shape of the marginal cost
of effort is as a measure of the degree of complexity of
the task. Some tasks are relatively simple no matter
the scale of effort and, therefore, have an increasing
but concave marginal cost of effort. Other tasks get
more andmore complex as the scale of effort increases
and, thus, have a convex marginal cost of effort. For
example, implementing process systems that increase
the productivity of capital likely gets more and more
complex as the scale of these systems increases. This
latter case applies to our model, and we expect that
the condition in Equation (33) should hold in the data.

Another implication of our model is that different
definitions of pay–performance sensitivity can have
different comparative statics with respect to the same
underlying parameter. For example, if we measure
pay–performance sensitivity using the sensitivity of
themanager’s dollar continuation value to percentage

changes in firm value, denoted ϕ∗(X) � V(X)φ∗(X), we
can write the comparative static as

∂ϕ∗(X)
∂k

� V(X) ∂φ
∗(X)
∂k

+ ∂V(X)
∂k

φ∗(X). (35)

Proposition 2 gives a condition for φ∗ to be decreasing
in the size of the growth option and, thus, for the first
term on the right-hand side of (35) to be negative. At
the same time, the second term on the right-hand side
of (35) is positive as it is always the case that the value
of the firm is increasing in the size of the growth
option, k, and that the optimal sensitivity φ∗ is posi-
tive. Thus, even if φ∗ is decreasing in k, ϕ∗ need not be
decreasing. As a result, our model provides guidance
as to why different conclusions regarding managerial
incentives can arise when using seemingly similar
measures of pay–performance sensitivity.

4.2. Implications for the Implementation
of Incentives

In this section, we discuss the implications that the
presence of growth opportunities have for the prac-
tical implementation of incentives. A common question
in the literature on incentives, for example, as Murphy
(1999) summarizes, is what is the shape of incen-
tive structures, either under an optimal contracting
model or in the data? To shed light on this question,
we first consider a simple implementation of our
optimal contract.
The optimal contract can be implemented using a

combination of wages and a managed equity account
to provide incentives. The manager’s wages ensure
that the manager has compensation net of effort costs
equal to rY, the riskless yield on the manager’s cer-
tainty equivalent. The managed equity account en-
sures that the manager’s wealth is sensitive to
changes in firm value. The share units in the equity
account adjust in response to changes in firm value to
maintain the managers pay–performance sensitiv-
ityφ. Alternatively, the equity account can implement
the same pay–performance sensitivity using a man-
aged portfolio of options with appropriate delta
sensitivity Δ. Varying levels of incentives can be
achieved by performance vesting of stock and option
grants or by nonlinearity of option holdings.
The typical approach for the analysis of incentives

in the context of an implementation such as the
preceding one is to determine the convexity or con-
cavity of the manager’s managed incentive account
with respect to the firm’s share price. In our model,
this exercise corresponds to determining the slope of
pay–performance sensitivity in firm value V. For
example, a pay–performance sensitivity increasing in
firm value V indicates an incentive scheme convex in
share price. However, it is crucial to account for the
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fact illustrated in Section 2 and Proposition 2 that pay–
performance sensitivity is not equivalent to incentives.

Suppose that managerial incentives measured by
pay–effort sensitivity β are increasing in firm value V.
Recall that pay–performance sensitivity φ equals β
divided by V′(X), value–effort sensitivity. In the
presence of growth options, as productivity X in-
creases and the firm gets closer to the investment
threshold, V′(X) increases. As a result, φ must be
increasing less steeply in V than β is and, in fact, can
even be decreasing in V. The intuition is that growth
options increase the impact of the manager on firm
value by generating convexity in firm value, V′′(X)> 0,
so that the manager’s pay can be less sensitive to
performance and still provide sufficient incentives.
To illustrate the distinction between pay–effort sensi-
tivity (incentives) and pay–performance sensitivity,
we plot pay–effort sensitivity β and pay–performance
sensitivity φ against firm value V in Figure 1. We see
that pay–effort sensitivity is increasing in firm value,
implying that optimal effort is also increasing in firm
value, yet pay–performance sensitivity is decreasing
in firm value.

Figure 1 illustrates that, in firms with significant
growth opportunities, it is not necessary for the op-
timal contract to prescribe an incentive scheme that
is convex in firm value because firm value itself
is convex. This pattern is broadly consistent with
the common practice of granting employees in-the-
money stock options in technology companies.6 In
January 2014, GoPro (GPRO) issued employees stock
options, which had a strike price of $16.22 per share,
as part of their compensation. This price was signif-
icantly lower than GPRO’s June 2014 IPO price of
$24.00 per share. Other firms that did this include
Snap (SNAP), which in 2014 offered options at a strike
price of $1.00 per share when its latest valuation put
it at $3.40, as well as Veritone (VERI), which offered
options at a strike of $8.24 per share against an IPO
price of $15.00 per share. Given the institutional con-
straints that necessitate the use of options in employee
compensation schemes, granting in-the-money options
reduces the convexity of the incentive package com-
paredwith an incentive package featuring at-the-money
or out-of-the-money options and, thus, more closely
matches the desired convexity of the optimal contract. By
highlighting the fact that convexity of pay–performance
sensitivity can come from either convexity in the com-
pensation structure or convexity of the underlyingfirm
value, our model helps explain the popular choice to
use in-the-money options in compensation packages.

5. Empirical Findings
In this section, we provide evidence that value-based
pay–performance sensitivity decreases with the size
of growth opportunities.

5.1. Data
Wemerge data from three main sources. We use data
on pay–performance sensitivity for the 1992–2014 period
at the manager–firm level from the website of Lalitha
Naveen.7 An empirical equivalent of ourmodel’s value-
based pay–performance sensitivity is Jensen and
Murphy’s (1990) measure of pay–performance sen-
sitivity, that is, dollar changes in manager wealth
divided by dollar changes in firm value. We call this
variable Jensen and Murphy’s PPS, and we use the
logarithm of it as the dependent variable in the regres-
sions in this section. We merge the PPS data with data
on manager characteristics from Execucomp and data on
firm characteristics from Compustat for the same period.
We use several proxies for growth opportunities.

As there is no consensus in the literature on the
measurement of growth opportunities, our approach
is to use a broad set of several proxies suggested in
previous studies and to show that our findings are
robust across these proxies. Ourfirst proxy for growth
opportunities is the market-to-book ratio. Market
value is defined as the market value of equity plus the
book value of debt divided by total assets. A number
of studies, including Gompers (1995), Collins and
Kothari (1989), Korteweg and Polson (2009), and
He et al. (2014), have used themarket-to-book ratio as
a proxy for growth options, and previous theoretical
work by Berk et al. (1999) and Carlson et al. (2004)
establishes the link between growth options and
market-to-book ratios. The use of price data in our
proxies is both a blessing and a curse. It is grounded
in the assumption that the market incorporates a
firm’s future investment opportunities into its stock
price, thus elevating themarket value of afirm’s assets

Figure 1. The Shape of Incentives in Firm Value

Notes. Optimal pay–effort β and pay–performance sensitivity φ are
presented over a range of firm value V. Parameters used for this plot
are given by r � 10%, amax � 5%, σ � 20%, θ � 1, 000, γ � 1, k � 1.75,
and p � 0.25. The effort function g(a) � θ a3

amax−a is chosen to satisfy the
conditions laid out in Proposition 2.
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beyond the book value of those assets. However, as
discussed in Berk (1995), the potential for mispricing
means that it is unsatisfactory to rely solely on this
measure. Equally worrying, a relation based on price-
based measures can be unrelated to the operating
characteristics of the firms and can instead reflect
changes in market risk premiums. Despite these well-
founded concerns, previous research by Adam and
Goyal (2008) and Kallapur and Trombley (1999) has
found that the market-to-book ratio performs well as
a proxy for growth options and investment oppor-
tunities. Nevertheless, we also include several non–
price-based growth-option proxies.

Our second proxy is the value-to-book ratio as in-
troduced in Rhodes-Kropf et al. (2005). This mea-
sure attempts to preserve the intuition behind the
market-to-book ratio while correcting for potential
mispricing by estimating firm value using a regression.
Rhodes-Kropf et al. (2005) decomposes themarket-to-
book ratio into three terms: (i) firm-specific mispric-
ing, (ii) industry mispricing, and (iii) value to book.
However, we use the two-term decomposition found
in Lyandres and Zhdanov (2013): (i) firm-specific,
within-industry mispricing and (ii) value to book.
We estimate the value of firm i in industry j at time t by
performing a within-industry j regression with log-
arithms of market value M on book value B:

logMijt � αjt + βjt logBijt + εjt. (36)

Subtracting the log book value from the fitted value
from the regression M̂ijt yields an estimate of log value
to book. As discussed in Rhodes-Kropf et al. (2005),
the link betweenfirmvalue, corrected formispricings,
and book value rests on two assumptions: the first
links future returns on equity to future discount rates
within industries, and the other assumes that book
equity grows at a constant rate. To the extent that
these assumptions are unsatisfactory, the value-to-
book ratio we use is an imperfect proxy.

In addition to market-based proxies, we include
research and development (R&D) expenditures, an
investment-based measure used in Kallapur and
Trombley (1999) and Lyandres and Zhdanov (2013).
We scale R&D expenditures by the book value of as-
sets. In our main analysis, we omit firms with missing
R&D expenditures and, as a robustness check, repeat
this analysis using all firms, setting R&D expendi-
tures to zero if they are missing. These measures are
independent of a firm’s price data and are, thus, un-
contaminated by mispricing. The downside is that
industry-specific accounting practices restrict the clas-
sification of R&D expense, exposing this measure to
concerns of a systematic bias that varies by industry.
A firm’s growth opportunities may include acquisition
opportunities or investments in subsidiaries, which are

not included in R&D expenses. Kallapur and Trombley
(1999) finds that R&D spending is inconsistently
correlated with realized measures of realized growth
in a three- to five-year horizon, making R&D-based
measures a weaker proxy for short-term investment
opportunities than the market-to-book ratio, which
they find to be a more relevant proxy.
Another set of investment-based measures is based

on capital expenditures and following Purnanandam
and Rajan (2017). This measure assumes that capital
expenditures correspond to the exercise of growth
options and their conversion into physical assets. As
with R&D, capital expenditure–based measures are
independent of a firm’s stock price. To account for the
fact that a firm’s capital expenditure includes main-
tenance costs for an existing capital base, we calculate
our first measure as the residual of a regression of firm
CapEx scaled by assets, including a firm fixed effect to
capture the predictable investment level of the firm. In
terms of regression coefficients, this produces identical
estimates to a regression in which capital expenditure
is directly used as a regressor. The second measure is
the residual from a one-lag autoregressive model of ex-
pected scaled capital expenditures and is, thus, a better
measure of unanticipated capital expenditures.
These proxies are motivated by the fact that a firm’s

reported capital expendituresmight reflect preexisting
projects or other ongoing commitments, making the
level of capital expenditures a noisymeasurement that
misrepresents afirm’s growth opportunities. By taking
the residual, we better capture the discretionary or un-
committed portion of a firm’s capital expenditures,
which better captures the exercise (and, thus, reduc-
tion) of growth options at the firm. A potential downside
of capital expenditure–based measures is that the price
of capital is affected by economy-wide demand, and
thus, the firm’s level of capital expenditures is exposed
tomispricing at amarket- or industry-wide level, albeit
in a more indirect way than a measure based on the
firm’s stock price.
Standard measures of Tobin’s q fail to account for in-

tangible capital, which, per accounting rules, is usually
expensed rather than capitalized and, thus, not found
on a firm’s balance sheet. The augmented Tobin’s q
measure of Peters and Taylor (2017) accounts for firms’
intangible assets using an accruals-based accounting
approach. In doing so, their measure better captures the
market value of firms’ assets and predicts investment
better than standard estimates of firm-level q.
Each of our previous proxies captures the presence

of growth options and also contains measurement
error. We use principal component analysis to ex-
tract a statistical measure of growth options and re-
duce the impact of measurement error. By taking the
first principal component, we extract the common var-
iation in these proxies, which we call hybrid growth
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opportunities. Under the assumption that the other de-
terminants of our proxies are uncorrelated with the true
measure of growth options, hybrid growth opportunities
better capture firms’ underlying growth options. The
drawback of this approach is that, because of sample
limitations, we are limited to firm-year observations for
which we have observations of all our growth proxies,
thus limiting the sample and our statistical power.

Our sample then includes all firm–executive com-
binations from ExecuComp from 1992 to 2015. The
Execucomp database focuses on the largest 1,500
publicly traded companies and has similar industry
coverage to the Compustat database. We employ a
broad set of standard firm- andmanager-level control
variables; Appendix B provides their exact defini-
tions. Additionally, we include year and industry
dummies (the latter based on the 48 Fama–French
industries) to control for time and industrial fixed
effects in managerial incentives. We winsorize the
continuous variables at the 1st and 99th percentiles.
In all the regressions presented, we lag independent
variables by one year (as in, e.g., He et al. 2014). Table 1
displays summary statistics from our data set.

5.2. Results
We regress Jensen and Murphy’s PPS variable on the
market-to-book variable and various controls for
manager andfirm characteristics. The results for these
regressions are presented in Table 2 alongside results
for regressions using our other market-based mea-
sure of growth options, value to book. The depen-
dent variable is the logarithm of the dollar-to-dollar
pay–performance sensitivity (Jensen and Murphy’s
PPS). We construct the fixed effects for industry fixed
effect using the Fama and French (1997) 48 sectors.
The fixed effects in the model in column (3) are in
firm–executive pairs. All of the standard errors are
robust and clustered at the firm level. The main effect
of interest can be seen in the coefficient on market to
book in column (3). This coefficient states that a one
standard deviation change in market to book is as-
sociated with a roughly 5.7% decrease in Jensen and
Murphy’s PPS. Although the magnitude of the effect
on PPS is smaller than that of firm size, this effect is
still economically significant.

For our value-to-book results, other than the al-
ternative measure of growth options, all of the other
controls are identical to those in columns (1)–(3). The
coefficient in column (6) states that a one standard
deviation increase in value to book is associated with
a 1.1% decrease in Jensen andMurphy’s PPS. We note
that the effect of the value-to-book ratio is statistically
significant and of a larger magnitude than our other
specifications, and we also find that the quantita-
tive effect associated with a one standard devia-
tion change in the value-to-book ratio is significantly

stronger when we focus on subsamples of our panel.
For example, when we restrict our sample to the
2006–2014 period and still include firm–manager and
year fixed effects, we find that a one standard de-
viation change is associated with a decline of 4.5% in
PPS, which is in line with our estimates using the
market-to-book ratio as a proxy.
Next, we regress Jensen andMurphy’s PPS on R&D

and various controls for manager and firm charac-
teristics. The results for these regressions are given in
Table 3. The dependent variable is the logarithmof the
dollar-to-dollar pay–performance sensitivity. All of
the other controls are identical to those in Table 2.
Again, the main effect of interest is the coefficient on
R&D in column (3). A one standard deviation increase
in R&D expenses is associated with a 5.0% decrease
in Jensen and Murphy’s PPS, which is on the same
order of magnitude as our previous regressions. We
note that reported R&D expenses, although directly
measuring growth opportunities, suffer from rela-
tively low coverage in the Compustat database. We
obtain the same results if we take an alternative ap-
proach and substitutemissingR&Dexpenses for zero.
As another robustness check, we regress Jensen and

Murphy’s PPS on the capital expenditures variable
along with the same set of controls for manager and
firm characteristics. The results of these regressions
are in Table 4. The dependent variable is again the
logarithm of dollar-to-dollar pay sensitivity. The
coefficient of 0.391 on capital expenditures in column (3)
shows that a one standard deviation increase in capital
expenditures is associatedwith a 2.3% increase in PPS.
Significantly, because capital expenditures represent
the exercise of growth options, the expected sign of
our estimate is reversed. An increase in growth op-
tions leads to a decrease in PPS, and so the exercise
of growth options leads to an increase in PPS. We get
an estimate of similar magnitude when we replace
capital expenditures with capital expenditure inno-
vations as a dependent variable. We obtain the in-
novations from fitting an AR(1) model to a firm’s
capital expenditures and capturing the unanticipated
or discretionary portion of a firm’s investments. In
situations in which a large portion of a firm’s invest-
ments are recurring or reflect ongoing commitments,
it is the incidence of new projects that is informative
about the exercise of growth options.
We also regress Jensen and Murphy’s PPS on

augmented Tobin’s q and our hybrid measure of
growth opportunities. The results for these regres-
sions are given in Table 5. All other controls are
identical to those in Table 2. Themain effect of interest
is the coefficient on Tobin’s q in column (3) and the co-
efficient on hybrid growth opportunities in column (6).
This coefficient shows that a one standard deviation
increase in Tobin’s q is associated with a 2.7% decrease
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in PPS, and a one standard deviation increase in our
hybrid measure is associated with a 4.2% decrease in
PPS, both of which are consistent with our previous
specifications.

Finally, we present results of regressions of hybrid
growth opportunities on alternative measures of
pay–performance sensitivity. These results are given
in Table 6. Given the differing scales of thesemeasures
of PPS, it is more informative to consider the scaled
interpretation of the coefficients in columns (3) and (6),
corresponding to regressions on dollar-to-percentage
PPS and wealth performance sensitivity, respectively
(Edmans et al. 2008). The economic interpretation of
these coefficients is that a one standard deviation
increase in hybrid growth opportunities increases the
PPS measures by 5.1% and 3.5%, respectively. Con-
sistent with the predictions of our model, the effect of
growth opportunities on Jensen and Murphy PPS can
be negative, whereas its effect on percentage-based
PPS measures is positive.

The presented regression coefficients are from or-
dinary least squares and fixed-effects models. Similar
results are obtained from a random-effects model. In
Appendix C, we present the results of an analysis in
which we address potential biases introduced to the
Execucomp database by the inclusion of backfilled
data. We find that our results are qualitatively identical
and quantitatively larger in magnitude.

6. Redeployability and Optimal Incentives
Although our main focus is on investment options,
many real options within firms pertain to the optimal

time to abandon an ongoing project. In this section,
we investigate the implications of abandonment op-
tions for the measurement of incentives. Specifically, we
consider the redeployability of capital by assuming
that at any point the firm can liquidate its existing
capital for a price P. For simplicity, we abstract from
the growth option and assume that thefirmhas afixed
capital stock until liquidation. Given this assumption,
the problem of providing the manager with incen-
tives is essentially the same as the case we consider
in Section 3. The optimal contract and firm value are
given by the solution to the following Hamilton–
Jacobi–Bellman equation for V(X):

rV(X) � max
a∈ 0,amax[ ]

{
X − (g(a) + ρ(a))X

+ aXV′(X) + 1
2
σ2X2V′′(X)

}
, (37)

where ρ(a) is the cost of incentives as derived pre-
viously. Again, as firm value monotonically increases
with manager effort a, the optimal abandonment
policy will be to liquidate the firm when X crosses
some lower boundary X , pinned down by the follow-
ing value-matching and smooth-pasting conditions:

V(X) � P, (38)
V′(X) � 0. (39)

AsX tends to infinity, the probability of abandonment
becomes zero. Moreover, the incentive cost of effort
grows faster than the increase in cash flow because of

Table 1. Summary Statistics

Observations Mean Standard deviation Minimum Maximum Median

Jensen and Murphy PPS 182,395 1.070 2.646 0.002 18.858 0.285
$ to % PPS (PPS2) 182,447 197.307 494.850 0.193 3,573.206 45.971
Wealth performance sensitivity (PPS3) 35,725 31.252 104.043 0.000 888.708 6.636
Market to book 182,391 1.917 1.293 0.771 8.529 1.473
Value to book 182,432 1.735 0.566 0.956 4.023 1.636
R&D 95,546 0.054 0.069 0.000 0.366 0.027
Total q 154,342 1.336 1.426 0.044 7.899 0.851
Capital expenditure 175,638 0.054 0.054 0.000 0.294 0.038
Firm size 182,432 9,897.879 27,705.211 50.598 202,475.000 1,643.600
Cash flow volatility 182,447 0.032 0.035 0.002 0.231 0.023
Firm age 182,447 21.735 13.878 0.000 56.000 19.000
Tangibility 180,163 0.270 0.237 0.003 0.880 0.197
Profitability 180,986 0.126 0.099 −0.242 0.423 0.124
Advertisement 182,447 0.011 0.029 0.000 0.176 0.000
Leverage 181,668 0.223 0.183 0.000 0.820 0.205
Dividend paying 182,097 0.556 0.497 0.000 1.000 1.000
CEO chair 115,893 0.589 0.492 0.000 1.000 1.000
Fraction of inside directors 115,893 0.284 0.163 0.000 1.000 0.250
CEO 182,447 0.186 0.389 0.000 1.000 0.000
Female 182,447 0.059 0.236 0.000 1.000 0.000

Notes. The sample covers all executives and firms in Execucomp from 1992 to 2015 and is mergedwith Compustat data. Jensen andMurphy PPS
is dollar-to-dollar pay–performance sensitivity. Control variables are defined in Appendix B. R&D, research and development.
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effort, and therefore, the optimal effort will tend to
zero. Thus, the value function must approach a linear
function consistent with zero effort and no growth as
X goes to infinity:

lim
X→∞V′(X) � 1

r
. (40)

As in the growth-options case, expected-pay–effort
sensitivity and pay–performance sensitivity diverge
as redeployability increases so long as incentive costs
are more convex than effort costs.

Proposition 3. As redeployability increases:
(1) Optimal effort a∗(X) and expected-pay–effort sen-

sitivity β∗(X) decrease.
(2) Pay–performance sensitivity φ∗(X) increases if the in-

centive cost of effort is more convex than the direct cost of effort,
that is, if

ρ′′(a)
ρ′(a) >

g′′(a)
g′(a) .

The intuition behind this result is symmetric to that
of Proposition 2. As redeployability increases, the

Table 2. Market-Based Proxies and Pay–Performance Sensitivity

Market to book Value to book

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

Market to book −0.066*** −0.063*** −0.041***
(−8.75) (−5.85) (−6.63)

Value to book −0.071*** −0.068** −0.019
(−3.06) (−2.41) (−1.29)

Firm size −0.408*** −0.378*** −0.373*** −0.404*** −0.383*** −0.361***
(−48.50) (−35.50) (−18.70) (−47.40) (−35.75) (−18.19)

Cash flow volatility −1.028*** −0.858*** −1.359*** −0.966***
(−3.50) (−3.92) (−4.65) (−4.38)

Firm age −0.087*** −0.317*** −0.077*** −0.302***
(−4.32) (−6.17) (−3.84) (−5.89)

Tangibility −0.333*** −0.145 −0.282*** −0.124
(−3.55) (−1.28) (−2.96) (−1.09)

Profitability −0.339** −0.093 −0.742*** −0.257***
(−2.46) (−1.03) (−5.48) (−2.73)

Advertisement −0.368 −0.748 −0.473 −0.803
(−0.69) (−1.34) (−0.86) (−1.43)

Advertisement missing 0.033 0.011 0.035 0.007
(1.11) (0.51) (1.16) (0.33)

Leverage 0.496*** 0.393*** 0.540*** 0.420***
(6.28) (6.35) (6.82) (6.80)

Dividend paying −0.170*** −0.137*** −0.169*** −0.139***
(−5.99) (−5.28) (−5.90) (−5.37)

CEO chair 0.164*** 0.023* 0.165*** 0.021*
(7.95) (1.86) (7.93) (1.76)

Fraction of inside
directors

0.684*** −0.079 0.681*** −0.081*
(8.63) (−1.61) (8.56) (−1.66)

CEO 1.745*** 0.400*** 1.745*** 0.400***
(93.88) (23.27) (93.81) (23.32)

Female −0.267*** −0.264***
(−8.95) (−8.85)

Industry dummies Yes Yes No Yes Yes No
Firm–manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 158,278 92,715 92,715 158,309 92,730 92,730
R2 0.278 0.503 0.121 0.276 0.502 0.119

Notes. The sample covers all executives and firms in Execucomp from 1992 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar pay–performance sen-
sitivity. Market value is defined as the market value of equity plus the book value of debt divided by total
assets. Value to book is calculated as the fitted value from awithin-industry regression of log market value
on log book value less log book value. Control variables are defined in Appendix B. t-statistics based on
heteroskedasticity-consistent, and firm-level clustered standard errors are provided in parentheses. PPS,
pay–performance sensitivity.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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marginal benefit of effort decreases, and incentives op-
timally decrease. When incentive costs are more convex
than direct-effort costs, marginal incentives costs
decrease proportionally more than marginal effort
costs. As the sum of marginal effort and incentive
costs are equal to the marginal benefit of effort, the
marginal benefit of effort decreases by less than the
marginal cost of effort, which, in turn, implies that
pay–performance sensitivity increases even though
incentives decrease.

Although we do not test our results on redeploy-
ability and pay–performance sensitivity to the data,

we note that they provide a further dimension along
which to determine the empirical validity of our
theory. For example, one could examine the relation
between changes in industry-level redeployability
and pay–performance sensitivity.

7. Conclusion
We analyze a model in which an investor needs a
manager to operate a firm. In our setting, the investor
would like the manager to exert costly effort and grow
the firm but is unable to directly observe whether the
manager exerts the recommended effort. To incentivize

Table 3. R&D-Based Proxies and Pay–Performance Sensitivity

R&D R&D (zero if missing)

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

R&D −0.592*** −0.469 −0.649**
(−2.63) (−1.41) (−2.40)

R&D (zero if missing) −0.643*** −0.437 −0.541*
(−2.91) (−1.45) (−1.93)

Firm size −0.430*** −0.414*** −0.361*** −0.401*** −0.380*** −0.366***
(−42.47) (−32.85) (−13.82) (−46.82) (−35.36) (−17.94)

Cash flow volatility −1.483*** −0.792*** −1.297*** −0.947***
(−4.11) (−3.07) (−4.37) (−4.29)

Firm age −0.078*** −0.338*** −0.078*** −0.298***
(−3.44) (−5.42) (−3.87) (−5.83)

Tangibility −0.139 0.016 −0.289*** −0.106
(−1.14) (0.10) (−3.03) (−0.93)

Profitability −0.604*** −0.310** −0.794*** −0.278***
(−3.77) (−2.57) (−5.84) (−2.95)

Advertisement −0.012 −0.802 −0.528 −0.791
(−0.02) (−1.18) (−0.97) (−1.41)

Advertisement missing 0.053 −0.019 0.030 0.008
(1.47) (−0.60) (1.00) (0.34)

Leverage 0.617*** 0.360*** 0.534*** 0.421***
(7.16) (4.38) (6.63) (6.84)

Dividend paying −0.186*** −0.176*** −0.172*** −0.138***
(−5.13) (−5.91) (−6.02) (−5.32)

CEO chair 0.165*** 0.010 0.163*** 0.021*
(6.58) (0.64) (7.85) (1.73)

Fraction of inside
directors

0.515*** −0.099* 0.675*** −0.081*
(5.25) (−1.67) (8.50) (−1.66)

CEO 1.745*** 0.402*** 1.745*** 0.399***
(74.98) (18.25) (93.81) (23.29)

Female −0.256*** −0.265***
(−7.56) (−8.86)

Industry dummies Yes Yes No Yes Yes No
Firm–manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 82,431 50,088 50,088 158,309 92,730 92,730
R2 0.280 0.530 0.119 0.276 0.502 0.119

Notes. The sample covers all executives and firms in Execucomp from 1992 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar, pay–performance
sensitivity. Control variables are defined in Appendix B. t-statistics based on heteroskedasticity-
consistent, and firm-level clustered standard errors are provided in parentheses. PPS, pay–performance
sensitivity; R&D, research and development.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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the recommended effort level, the investor provides the
manager with exposure to firm cash flows as part of the
manager’s compensation package. The investor also
has an option to increase the firm’s capital level, in-
creasing the effect of the manager’s effort on firm
value. We characterize the optimal contract between
the investor and the manager and analyze the man-
ager’s incentives in this setting.

An optimal contract provides the manager with
sensitivity to the firm’s performance through exposure

to unexpected output shocks. Because of the growth
option, the manager’s expected-pay–effort sensitivity
differs from the manager’s pay–performance sensi-
tivity. We develop conditions under which decreas-
ing pay–performance sensitivity occurs alongside
increasing expected-pay–effort sensitivity, that is,
incentives. We go on to document evidence consis-
tent with our model. Pay–performance sensitivity is
strongly and negatively related to proxies for growth
options.

Table 4. Capex-Based Proxies and Pay–Performance Sensitivity

Capex Capex innovations

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

Capital expenditure 0.361 1.659*** 0.431***
(1.62) (5.45) (3.12)

Capex innovations 0.459 1.429*** 0.155
(1.58) (4.65) (1.34)

Firm size −0.397*** −0.378*** −0.360*** −0.387*** −0.371*** −0.340***
(−46.15) (−34.88) (−17.61) (−38.12) (−30.65) (−13.95)

Cash flow volatility −1.524*** −1.009*** −1.225*** −1.008***
(−5.23) (−4.57) (−3.73) (−3.98)

Firm age −0.065*** −0.295*** −0.074*** −0.337***
(−3.23) (−5.62) (−3.29) (−5.34)

Tangibility −0.520*** −0.198* −0.386*** 0.012
(−4.72) (−1.66) (−3.66) (0.09)

Profitability −0.912*** −0.287*** −0.821*** −0.180*
(−6.60) (−3.04) (−5.53) (−1.71)

Advertisement −0.553 −0.859 −0.470 −0.893
(−1.01) (−1.51) (−0.81) (−1.57)

Advertisement missing 0.032 −0.000 0.036 0.005
(1.04) (−0.00) (1.06) 0.16

Leverage 0.576*** 0.437*** 0.519*** 0.449***
(7.23) (6.95) (6.09) (6.35)

Dividend paying −0.159*** −0.140*** −0.166*** −0.139***
(−5.54) (−5.41) (−5.39) (−4.90)

CEO chair 0.163*** 0.021* 0.171*** 0.037**
(7.87) (1.67) (7.46) (2.47)

Fraction of inside
directors

0.680*** −0.075 0.790*** −0.072
(8.39) (−1.50) (8.68) (−1.28)

CEO 1.749*** 0.407*** 1.670*** 0.415***
(92.82) (23.19) (82.87) (19.73)

Female −0.267*** −0.235***
(−9.00) (−6.85)

Industry dummies Yes Yes No Yes Yes No
Firm–manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 151,830 89,646 89,646 92,500 64,828 64,828
R2 0.278 0.505 0.119 0.274 0.516 0.114

Notes. The sample covers all executives and firms in Execucomp from 1992 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar, pay–performance
sensitivity. Capital expenditure innovation is calculated as the residual from a one-lag firm-specific
autoregressive model of expected scaled capital expenditures. Control variables are defined in Appendix B.
t-statistics based on heteroskedasticity-consistent, and firm-level clustered standard errors are provided in
parentheses. PPS, pay–performance sensitivity.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Although our model provides clean results on man-
agerial incentives, we acknowledge that a variety
of other factors may interact with and complicate
real-worldmanager compensation. In particular, the
origin and size of growth options at a firm, which we
take as exogenously given, are themselves decisions
made by firms and are affected by moral hazard.
Further research could explore the multifaceted role

of managerial effort in simultaneously creating growth
options, increasing growth-option size, and increasing
firm productivity.
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Table 5. Additional Proxies and Pay–Performance Sensitivity

Total q Hybrid

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

Total q −0.018** −0.041*** −0.022***
(−2.53) (−3.94) (−3.45)

Hybrid growth
opportunities

−0.053*** −0.061*** −0.033***
(−6.41) (−5.55) (−4.96)

Firm size −0.419*** −0.390*** −0.361*** −0.428*** −0.394*** −0.371***
(−49.07) (−35.46) (−17.15) (−49.13) (−36.10) (−17.24)

Cash flow volatility −1.235*** −0.921*** −1.029*** −0.909***
(−4.04) (−4.04) (−3.35) (−3.97)

Firm age −0.075*** −0.324*** −0.073*** −0.324***
(−3.63) (−6.25) (−3.57) (−6.25)

Tangibility −0.277*** −0.175 −0.263*** −0.163
(−2.94) (−1.57) (−2.80) (−1.46)

Profitability −0.393*** −0.168* −0.340** −0.139
(−2.78) (−1.75) (−2.46) (−1.45)

Advertisement −0.497 −1.096* −0.328 −1.056*
(−0.90) (−1.81) (−0.59) (−1.73)

Advertisement missing 0.046 −0.013 0.043 −0.007
(1.47) (−0.46) (1.37) (−0.27)

Leverage 0.560*** 0.415*** 0.529*** 0.406***
(7.54) (6.41) (7.08) (6.27)

Dividend paying −0.184*** −0.154*** −0.186*** −0.154***
(−6.31) (−5.95) (−6.39) (−5.89)

CEO chair 0.149*** 0.020 0.147*** 0.020
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Fraction of inside
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CEO 1.745*** 0.405*** 1.744*** 0.406***
(89.25) (21.93) (89.27) (21.85)
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(−8.51) (−8.60)

Industry dummies Yes Yes No Yes Yes No
Firm–manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 134,062 80,482 80,482 133,092 79,985 79,985
R2 0.287 0.511 0.123 0.289 0.512 0.124

Notes. The sample covers all executives and firms in Execucomp from 1992 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar, pay–performance
sensitivity. Tobin’s q is taken fromWharton Research Data Services based on the methodology of Peters
and Taylor (2017). Hybrid growth opportunities is calculated as the first principal component of market
to book, value to book, scaled R&D, and scaled Capex. Control variables are defined in Appendix B. t-
statistics based on heteroskedasticity-consistent, and firm-level clustered standard errors are provided
in parentheses. PPS, pay–performance sensitivity; R&D, research and development.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Appendix A. Proofs
Proof of Lemma 2. Suppose that c̃, ã{ } solves the manager’s
problem for a given contract Π and results in zero savings.
Further suppose that the manager is endowed with sav-
ings 6> 0 at time t ≥ 0. As the manager has CARA prefer-
ences, the optimal consumption plan for s ≥ t is c̃s + r6, and
the manager’s effort provision ãs is unchanged. Thus, an
increase in savings from zero to 6 increases the manager’s
instantaneous utility by a factor of e−γr6 for s ≥ t. Therefore,

Table 6. Alternative Measures of Pay–Performance Sensitivity

Dollar-to-percentage PPS Wealth performance sensitivity

(1) log
(PPS2)

(2) log
(PPS2)

(3) log
(PPS2)

(4) log
(PPS3)

(5) log
(PPS3)

(6) log
(PPS3)

Hybrid growth opportunities 0.369*** 0.284*** 0.149*** 0.246*** 0.180*** 0.037***
(36.16) (22.59) (15.45) (15.53) (9.56) (2.65)

Firm size 0.513*** 0.570*** 0.144*** 0.053*** 0.078*** −0.021
(60.03) (53.00) (5.14) (3.99) (4.60) (−0.55)

Cash flow volatility −1.120*** −0.641** −1.589*** −0.192
(−3.23) (−1.97) (−3.26) (−0.36)

Firm age −0.085*** −0.303*** −0.085*** −0.255***
(−3.73) (−4.61) (−2.70) (−2.78)

Tangibility −0.249*** −0.260* 0.201 −0.155
(−2.66) (−1.70) (1.42) (−0.83)

Profitability 2.065*** 1.006*** 1.313*** 0.606***
(12.37) (7.90) (5.83) (3.17)

Advertisement 0.097 −1.988*** −0.553 −2.259**
(0.16) (−2.59) (−0.49) (−2.02)

Advertisement missing 0.027 −0.014 −0.058 −0.042
(0.79) (−0.39) (−0.98) (−0.79)

Leverage −0.535*** −0.362*** −0.607*** −0.170
(−6.42) (−4.50) (−4.84) (−1.54)

Dividend paying −0.139*** −0.190*** 0.006 −0.099**
(−4.29) (−5.71) (0.13) (−2.09)

CEO chair 0.163*** 0.029* 0.458*** −0.003
(6.92) (1.76) (12.39) (−0.14)

Fraction of inside directors 0.751*** −0.079 1.702*** 0.042
(7.97) (−1.21) (11.37) (0.40)

CEO 1.724*** 0.390*** 0.713*** 0.144***
(91.95) (19.32) (21.96) (5.55)

Female −0.288*** −0.413***
(−8.65) (−3.76)

Industry dummies Yes Yes No Yes Yes No
Firm–manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 133,130 79,997 79,997 27,855 16,630 16,630
R2 0.301 0.523 0.257 0.165 0.251 0.0781

Notes. The sample covers all executives and firms in Execucomp from 1992 to 2015 and is merged with
Compustat data. The dependent variable for columns (1)–(3) is the logarithm of the dollar-to-percentage
pay–performance sensitivity. The dependent variable for columns (4)–(6) is the logarithm of wealth
performance sensitivity. Hybrid growth opportunities is calculated as the first principal component of
market to book, value to book, scaled R&D, and scaled Capex. Control variables are defined in
Appendix B. t-statistics based on heteroskedasticity-consistent, and firm-level clustered standard errors
are provided in parentheses. PPS, pay–performance sensitivity; R&D, research and development.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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we canwrite themanager’s utility for contractsΠ and savings
6 as follows:

Wt Π;6( ) � e−γr6Wt Π; 0( ). (A.1)

For the zero-savings condition to hold, it must be the case
that

uc c̃t, ãt( ) � ∂

∂6
Wt Π; 0( ), (A.2)

which implies that −γu c̃t, ãt( ) � −γrWt Π; 0( ) or u c̃t, ãt( ) �
rWt Π; 0( ). □

Proof of Lemma 3 and Verification of Incentive Com-
patibility. We restrict the manager’s consumption plan
to satisfy the following integrability and transversality
conditions:

E

∫ ∞

0
−e−rsu c̃s, ãs( ) ds

[ ]
<∞, (A.3)

lim
t→∞ St

a.s� 0. (A.4)

Consider an arbitrary contract, comprised of the tuple
(βt, at, τ), and note that, ifWt solves Equation (15), thenWt is
equal, by construction, to the manager’s continuation
utility from choosing savings St � 0 and effort at. Now
suppose βt and at satisfy Equation (17) and consider an
arbitrary consumption and effort policy c̃t, ãt( ). Let

Gt �
∫ t

0
e−rsu c̃s, ãs( ) ds + e−rte−γrStWt, (A.5)

where St �
∫ t
0 e

r t − s( ) cs − c̃s( )ds is themanager’s accumulated
savings at the point the manager chooses the alternative
consumption plan. An application of Ito’s lemma gives

ert+γrStdGt � (−γrWt ct − c̃t( ) − γrWtβt ãt − at( )Xt

+ eγrStu c̃t, ãt( ))dt − γrWtβtdZt. (A.6)

The c̃t and ãt that maximize the drift term must satisfy the
following first-order conditions:

γrWt � −eγrStuc c̃t, ãt( ), and (A.7)
γrWtβtXt � −XtKtg′ a( )eγrStuc c̃t, ãt( ) (A.8)

as ua � −ucXtKtg′ a( ). These first-order conditions are solved
for c̃t � ct + rSt and ãt � at, as rWt � u ct, at( ). Moreover, for
c̃t � ct + rSt and ãt � at, the drift term is zero. Thus, for all
other choices of consumption and effort, the drift term is
weakly negative and Gt is a supermartingale. □

Now consider the manager’s value from choosing the
policy c̃t, ãt( ):

E

∫ ∞

0
e−rsu c̃s, ãs( )ds

[ ]

� E Gt[ ] + E

∫ ∞

t
e−rsu c̃s, ãs( )ds − e−r(t+γSt)Wt

[ ] (A.9)

≤ G0 + E

∫ ∞

t
e−rs(u c̃s, ãs( ) − eγrStu(cs, as))ds

[ ]
. (A.10)

Now note that limt→∞ St
a.s� 0 so that limt→∞ |c̃t − ct| a.s� 0,

which, in turn, implies that

lim
t→∞

∫ ∞

t
e−rs

(
u c̃s, ãs( ) − eγrStu cs, as( ))ds a.s� 0. (A.11)

Finally, by the condition given in Equation (A.3) and
Fubini’s theorem, we can take the limit as t → ∞ of both
sides of Equation (A.10) to get

E

∫ ∞

0
e−rsu c̃s, ãs( )ds

[ ]

≤ G0 + lim
t→∞E

∫ ∞

t
e−rs(u c̃s, ãs( ) − eγrStu cs, as( )) ds

[ ]
(A.12)

� G0 � W0. (A.13)

Therefore, all other consumption and effort plans c̃t, ãt( ) yield
no more utility than ct, at( ) to the manager, and the contract
is an incentive-compatible, no-savings contract.

The conditions given are necessary for a contract to be no-
savings by Lemma 2. To see that the conditions are also
necessary for incentive compatibility, consider any contract
βt, at, τ
( )

such that βt does not satisfy the condition given in
Equation (17); then the same argument given shows that
the optimal response to such a contract would be to choose
ãt 
� at.

Proof of Proposition 1. We verify the optimality of the
proposed contract with the following steps. In step 1, we
show that we can replace the investor’s maximization problem
with one in which we maximize a function independent of
Yt. We then assume that the optimal investment policy must
be a threshold rule that satisfies the boundary conditions
given in Equations (28) and (29). In step 2, we consider a
fixed investment threshold and verify that the solution to
the HJB equations solves the investor’s problem for this
investment threshold. Finally, we note that we have already
verified that the proposed contract is incentive compati-
ble and satisfies the no-savings condition in the proof of
Lemma 3. Although the model as presented in the paper
assumes a k � 1 pre-exercise of the option, we prove the
proposition for a general ks pre-exercise and kb postexercise,
where kb > ks. □

Before we complete these steps, we make the following
technical assumption on βt:

E

∫ ∞

0
β2t X

2
t dt

[ ]
<∞, (A.14)

where the expectation is taken with respect to the measure
induced by the incentive compatible dynamics of Xt given βt.
This restriction does not rule out contracts under which the
manager has incentives to exert maximal effort forever.
However, such contracts would be infinitely costly to im-
plement, so this assumption can be made without loss of
generality.

Step 1. Let v(x, y) be the value to the investor under a
given incentive-compatible, no-savings contract c, a, τ( )
with X0 � X and Y0 � X, where Y0 � − 1

2 ln(−γrW0). Note
that Lemmas 2 and 3 imply that the compensation process
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ct must be given by Equation (22). The investor’s value is
simply the present value of the cash flows of the firm, net
of compensation to the manager, and so we have

v X,Y( )�E

∫ ∞

0
e−rt XtKt − ct( ) dt − e−rτP | X0 � X,Y0 � Y

[ ]

(A.15)

�E

∫ ∞

0
e−rt(XtKt(1 − g at)) − rYt( ) dt

[

− e−rτP | X0 � X,Y0 � Y
]

(A.16)]

�E

∫ ∞

0
e−rtXtKt 1 − g at( )( )

dt
[

− e−rτP | X0 � X,Y0 � Y
]

(A.17)]

+ E re−rt Y0 +
∫ t

0

1
2
γrσ2β2sX

2
s ds

([

+
∫ t

0
σXtβtdZu

t

)
dt | X0 � X,Y0 � Y

]
,

where the last line follows from the dynamics of Yt given in
Equation (21). Evaluating separately the three terms of the
last expectation, we have

E

∫ ∞

0
re−rtY0dt

[ ]
� Y0,

E

∫ ∞

0
re−rt

∫ t

0

1
2
γrσ2β2sX

2
s dsdt

[ ]
� E

∫ ∞

0

∫ ∞

s
re−rt

1
2
γrσ2

[

· β2sX2
s dtds

]

� E

∫ ∞

0
e−rs

1
2
γrσ2β2sX

2
s ds

[ ]
,

E

∫ ∞

0
re−rt

∫ t

0
σXtβsdZu

t dt
[ ]

�
∫ ∞

0
re−rtσE

∫ t

0
XtβstdZu

t

[ ]
dt

� 0,

where we exchange the order of integration according to
Fubini’s theorem and the assumption given in Equation
(A.14). Collecting terms gives

v X,Y( ) �E

∫ ∞

0
e−rt Xt(Kt − g a( )) − 1

2
γrσ2β2t X

2
t

( )
dt

[

− e−rτP | X0 � x
]
− Y. (A.18)

Thus, the investor’s problem is equivalent to the following
problem:

V X0( )�max
β,a,τ

E

∫ ∞

0
e−rt Xt(Kt − g at( )) − 1

2
γrσ2β2t

( )
dt − e−rτP

[ ]
,

(A.19)
such that

dXt � atXtdt + σXtdZt, (A.20)

Kt � ks + kb − ks( )I t ≥ τ( ), and (A.21)

βt � g′ at( ). (A.22)

Step 2. Fix an arbitrary investment rule τ̂. Let V̂ and β̂t solve

rV̂ � max
β

{
+(X, k, V̂; β, a)

}
, (A.23)

where

+(X, k,V; β, a) � X(k − g a( )) − 1
2
γrβ2X2 + aX

dV
dX

+ 1
2
σ2X2 d

2V
dX2

(A.24)

such that

β � g′ a( ), (A.25)

V Xτ;K � ks( ) a.s�V Xτ;K � kb( ) − P, (A.26)

and let ĉt be the compensation given by Equation (22) that

makes ât incentive compatible. In other words, β̂, â
( )

is the

optimal contract given investment time τ̂. Now, consider an
arbitrary incentive-compatible, no-savings contract

(
β̃t, ãt

)
and let

Gt �
∫ t

0
e−rs X̃s K̃s − g ãs( )( ) − 1

2
γrσβ̃2s X̃

2
s

( )
ds

+ e−rtV̂ X̃t, K̃t
( ) − I τ̂ ≤ t( ) e−rτ̂P, (A.27)

where Gt measures the gains in present value at time t � 0
derived from using

(
β̃t, ãt, τ

)
up to time t and X̃t and K̃t are

the productivity and capital induced by the contract{
β̃t, ãt

}
, τ̂

( )
. Using Ito’s lemma gives

ertdGt � + X̃t, K̃t; β̃t, ãt
( ) − rV̂

( )
dt + σX̃t

dV̂
dx

dZt

+ V̂ Xt, kb( ) − V̂ Xt, ks( ) − P
( )

dN̂t,

(A.28)

where dN̂t � I t � τ̂( ) is a counting process that measures the
arrival of the investment time τ̂. Note that the drift term
given in (A.28) is always weakly negative by Equation (A.23)
and that the last term of (A.28) is always zero. Therefore, Gt

is a supermartingale.
Now, consider the value from choosing the contract(

β̃t, ãt
)
. We have

E

∫ ∞

0
X̃s K̃s − g ãs( )( ) − 1

2
γrσ2β̃2s X̃

2
s

( )
ds − e−rτ̂P

[ ]
(A.29)

� E Gt[ ] + e−rtE
∫ ∞

t
e−r s−t( )

(
X̃s K̃s − g ãs( )( )[

− 1
2
γrσ2β̃2s X̃

2
s

)
ds − V̂ X̃t, K̃t

( )] (A.30)

≤ G0 + e−rtE
∫ ∞

t
e−r s−t( )

(
X̃s K̃s − g ãs( )( )[

− 1
2
γrσ2β̃2s X̃

2
s

)
ds − V̂ X̃t, K̃t

( )]
. (A.31)

Now note that, as g ãs( ) ≥ 0 and β̃2s X̃
2
s > 0, we have

E

∫ ∞

t
e−r s−t( ) X̃s K̃s − g ãs( )( ) − 1

2
γrσ2β̃2s X̃

2
s

( )
ds

[ ]

≤ E

∫ ∞

t
e−r s−t( )X̃sK̃sds

[ ]
(A.32)

≤ E

∫ ∞

t
e−r s−t( )X̃skbds

[ ]
(A.33)

≤ X̃tkb
r − amax

, (A.34)
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where the last inequality states that the firm value is bounded
above by the expected present value of the gross (of effort and
incentive costs) cash flow X̃tK̃t achieved when ãt � amax and
Kt � kb for all t. Next note that

V̂ X, k( ) ≥ Xk
r

> 0 (A.35)

by Equation (A.23). Therefore,

E

∫ ∞

0
e−rs X̃s K̃s − g ãs( )( ) − 1

2
γrσ2β̃2s X̃

2
s

( )
ds − e−rτ̂P

[ ]

≤ G0 + e−rtE
X̃tk

r − amax

[ ]
(A.36)

≤ G0 + e− r−1( )t X0k
r − amax

, (A.37)

where we bound E X̃t
[ ]

above by evaluating the expectation
under the assumption of perpetual maximum effort so that
X̃t is a geometric Brownian motion. Taking limits of both
sides as t → ∞ gives

E

∫ ∞

0
e−rs X̃s K̃s − g ãs( )( ) − 1

2
γrσ2β̃2s X̃

2
s

( )
ds − e−rτ̂P

[ ]

≤ G0 � V̂ X0,K0( ), (A.38)

and thus, we conclude that any contract
(
β̃, ã, τ̂

)
yields a

weakly lower value than the contract β̂, â, τ̂
( )

.

Proof of Proposition 2. We first note that the manager’s
performance–effort sensitivity is measured by β:

β∗(X) � g′(a∗(X)), (A.39)

and the manager’s pay–performance sensitivity is given by

φ∗(X) � β∗(X)
V′(X) �

g′(a∗(X))
V′(X) . (A.40)

Under the optimal contract, the optimal effort policy a∗(X) is
given by the first-order condition

−g′(a∗(X)) − γrσ2g′(a∗(X))g′′(a∗(X))X + V′(X) � 0. (A.41)

Differentiating the first-order condition with respect to k
and rearranging it gives the expression

da∗

dk
� − VXk(X)

−g′′(a∗) − γrσ2X(g′′(a∗)2 + g′(a∗)g′′′(a∗)) . (A.42)

In the following analysis, we restrict our attention to parame-
ter values such that the optimal a∗(X) satisfies the second-
order condition. As the denominator of Equation (A.42) is
simply the second derivative of the value function with
respect to effort, we find that optimal effort is increasing
with the size of the growth option k. We address each
measure separately. □

Expected-Pay–Effort Sensitivity. We first show that
expected-pay–effort sensitivity increases with growth
options k. Differentiating the expression for output-based
incentives, we have

dβ∗

dk
� σXg′′(a∗) da

∗

dk
, (A.43)

where, using (A.42), we can see that

sign
dβ∗

dk

( )
� sign

da∗

dk

( )
. (A.44)

Recall that the denominator of (A.42) is negative according
to our assumption that the second-order condition for the
optimality of a∗ holds.

Furthermore, we demonstrate that VXk > 0. Beginning
with the Hamilton–Jacobi–Bellman equation

rV � X − g a∗ X( )( )X − 1
2
γr σg′ a∗ X( )( )X( )2

+ a∗ X( )X ∂V
∂X

+ 1
2
σ2X2 ∂

2V
∂X2 , (A.45)

we differentiate with respect to both size, X, and growth-
option intensity, k, to get

(r − a∗ X( ) − a∗X X( )X)VXk � a∗ X( ) + σ2
( )

XVXXk + 1
2
σ2X2VXXXk,

(A.46)

where the envelope theorem tells us that the effect of
varying k on the optimal effort level a∗ X( ) can be ignored
when taking the derivative. This result is due to the opti-
mality of a∗ and the first-order condition of the Hamilton–
Jacobi–Bellman equation.

We invoke a generalized version of the Feynman–Kac
formula, provided as Lemma A.1, to write the function VXk

as the following expectation:

VXk X( ) � E e−
∫ τ

0
r−a∗ Xt( )−a∗X Xt( )Xt( )dtVXk X

( ) | X0 � X
[ ]

� E e−
∫ τ

0
r−a∗ Xt( )−a∗X Xt( )Xt( )dt ∂2

∂X∂k
Xk
r

⃒⃒⃒
⃒
X�X

| X0 � X
[ ]

� E e−
∫ τ

0
r−a∗ Xt( )−a∗X Xt( )Xt( )dt 1

r
| X0 � X

[ ]
> 0.

(A.47)

With this,we have the result thatVXk > 0, and therefore, growth
options increase expected-pay–effort sensitivity, dβ∗

dk > 0.

Pay–PerformanceSensitivity. Wecanwritepay–performance
sensitivity as

φ∗(X) � 1 − ρ′ a∗( )
V′ X( ) . (A.48)

Differentiating Equation (A.48) with respect to k, we have

∂φ∗(X)
∂k

� − 1
V′ X( )2 ρ′′ a∗( ) ∂a

∗

∂k
V′ X( ) − ρ′ a∗( ) ∂V

′ X( )
∂k

[ ]
.

Because V′ X( )2 > 0, we can ignore the denominator and
write

sign
∂φ∗

∂k

( )
� −sign ρ′′ a∗( ) ∂a

∂k
V′ X( ) − ρ′ a∗( ) ∂V

′ X( )
∂k

( )
.

(A.49)

Note that differentiating the first-order condition in Equa-
tion (30) with respect to the size of the growth option k gives

g′′ a∗( ) ∂a
∗

∂k
+ ρ′′ a∗( ) ∂a

∗

∂k
� ∂V′ X( )

∂k
. (A.50)
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Thus,

sign
∂φ∗

∂k

( )
� −sign ρ′′ a∗( ) ∂a

∂k
V′ X( ) − ρ′ a∗( )

(

· g′′ a( ) ∂a
∗

∂k
+ ρ′′ a∗( ) ∂a

∗

∂k

( ))
. (A.51)

where we have substituted (A.50) for the derivative of
marginal firm value with respect to the size of the growth
option. Canceling and combining like terms, we have

sign
∂φ∗

∂k

( )
� −sign (ρ′′(a∗)(V′(X) − ρ′(a∗)) − ρ′(a∗)g′′(a∗)).

(A.52)

Substituting the first-order condition (30) allows us to write
this condition in terms of the ratio of marginal incentive
costs ρ′ a∗( ) to marginal effort costs g′ a∗( )

sign
∂φ∗

∂k

( )
� −sign (g′ a∗( )ρ′′ a∗( ) − g′′ a∗( )ρ′ a∗( )). (A.53)

Thus, ∂φ∗
∂k < 0 if and only if

ρ′′(a)
ρ′(a) >

g′′(a)
g′(a) .

Lemma A.1. Suppose that Xt evolves according to dXt � μ Xt( )dt+
σ Xt( )dZt. Then, for bounded functions f : 0,Y( ] → R, r : 0,Y( ] →
R+, and Ω : R → R, a function F : 0,Y( ] → R solves both

r X( )F X( ) � f X( ) + μ X( )FX X( ) + 1
2
σ X( )2FXX X( ), (A.54)

with a boundary condition F Y( ) � Ω Y( ) and

F X( ) � E
∫ τ

0
e−
∫ t

0
r Xs( )dsf Xt( )dt + e−

∫ τ

0
r Xs( )ds

Ω Y( ) | X0 � X
[ ]

,

(A.55)

where τ � inf t ≥ 0 | Xt ≥ Y{ }.
Proof of Lemma A.1. The proof essentially follows the proof
of lemma 4 in DeMarzo and Sannikov (2006). Suppose that V
solves Equation (A.54) and define a process Ht by

Ht �
∫ t

0
e−
∫ s

0
r Xu( )duf Xs( )ds + e−

∫ t

0
r Xs( )dsV Xs( ).

An application of Ito’s formula gives the dynamics forHt as

e
∫

t
0
r Xs( )dsdHt �

(
f Xt( ) + μ Xt( )VX Xt( )

+ 1
2
σ Xt( )2VXX Xt( )−r Xt( )V Xt( )

)
dt

+ σ Xt( )V Xt( )dZt.

By Equation (A.54), the drift of Ht is zero, and Ht is a
martingale. AsV X( ) is bounded on the interval 0,X

[ ]
,Hτ is a

martingale and V satisfies

V X0( ) � H0 � E Xτ | X0[ ]
� E

∫ τ

0
e−
∫ t

0
r Xs( )dsf Xt( )dt + e−

∫ τ

0
r Xs( )dsV Xτ( ) | X0

[ ]

� E
∫ τ

0
e−
∫ t

0
r Xs( )dsf Xt( )dt + e−

∫ τ

0
r Xs( )ds

Ω Y( ) | X0

[ ]
,

where the last equality follows from the definition of τ as a
stopping time, and the boundary condition V Y( ) � Ω Y( ). □

Proof of Proposition 3. We prove the proposition by first
showing that the cross-derivative of firm value V with re-
spect to productivity X and redeployability P is negative so
that the marginal value of effort is decreasing in rede-
ployability. From there, the proof follows the results of
Proposition 2 to show that expected-pay–effort sensitivity
decreases in redeployability, whereas pay–performance sen-
sitivity increases. □

Let p1 and p2 denote two levels of redeployability with
p2 > p1. The value of a firmwith the option to sell its capital for
p2 will always exceed the value of a firm with the inferior
option to sell for p1 so that V2 >V1. From Lemma A.2, we can
focus our analysis simply on the gapG betweenV2 andV1 for
a fixed value of productivity X.

Lemma A.2. If the difference in value between the high value firm
and the low value firm is decreasing in X, then the marginal value of
effort is decreasing in redeployability.

The difference in firm values is given by

G X( )≜V2 X( ) − V1 X( ),
so that G′ X( )< 0 implies V′

1 X( )>V′
2 X( ). As p1 and p2 are

arbitrary subject to p2 > p1, ∂2V
∂X∂P < 0.

We first establish some properties of the function G. Vi

is the solution to an ordinary differential equation, so
we know that G ∈ # 2( ). Furthermore, G 0( ) � p2 − p1, and
limX→∞ G X( ) � 0. At zero, the value of the firm is given by
the redeployability of the firm’s capital. As productivity
increases and the probability of exercising the option de-
creases, effort also becomes too expensive, and firm value is
simply the perpetuity value of its period cash flows X

r , which
does not depend on the option to redeploy capital.

We proceed by proof by contradiction. Assume that there is
some interval x0, x1( ) on which G is weakly increasing. As
limX→∞ G X( ) � 0, there must then exist some x2 ∈ x2,∞[ ) and
some positive ε such that G′ x2( ) � 0 and G′ x( )< 0 for all
x ∈ x2, x2 + ε( ). This means that G′′ x2( ) ≤ 0. This is equiva-
lent to V′′

1 x2( ) ≥ V′′
2 x2( ).

Recall that the HJB equation for firm value was

rV(X) � max
a∈ 0,amax[ ]

{
X − (g(a) + ρ(a))X + aXV′(X)

+ 1
2
σ2X2V′′(X)

}
.

The second derivative of firm value V′′ does not depend
upon a, and so the optimal level of effort a∗ is a function of only
V′ and X. Therefore, if V′

1 x2( ) � V′
2 x2( ), then a∗1 x2( ) � a∗2 x2( ),

and both firms will recommend the same level of effort for
the manager at X � x2. Given that both firms choose the
same level of effort and V′′

1 >V′′
2 , the HJB equation implies

that V1 x2( ) ≥ V2 x2( ). However, this is a contradiction of the
fact that firm value is increasing in redeployability ∂V

∂P > 0,
so G must be strictly decreasing.

Fromhere, the proof is identical to the proof of Proposition 2
in that we use ∂2V

∂X∂P to sign the derivative of optimal effort a∗
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with respect to redeployability P. Using Equation (A.42),
we have that effort is decreasing in redeployability. Then,
by Equation (A.44), the derivative of expected-pay–effort
sensitivity β∗ has the same sign as ∂a∗

∂P,
∂β∗
∂P < 0 and expected-

pay–effort sensitivity is decreasing in redeployability.
The sign of the derivative of pay–performance sensitivity

is given by

sign
dφ∗

dk

( )
� sign −g′′′(a∗) da

∗

dk

( )
.

When g′′′ a∗( )> 0, then ∂φ∗
∂P > 0. This corresponds to the case

in which incentive costs are more convex than effort costs
so that pay–performance sensitivity is increasing in rede-
ployability, completing the proof.

Appendix B. Definitions of Variables
Advertisement: This variable is advertising expense/total
assets = XAD/AT. Advertisement missing is an indicator
variable for whether this measure was missing data.
Capital expenditures: This variable is capital expenditures/total
assets = CAPX/AT.
CEO: This variable is an indicator variable for whether the
manager in question is the CEO of the firm.
CEO chair: This variable is an indicator variable forwhether the
CEO is also chairman of the board.
Dividend paying: This variable is an indicator variable for
whether dividends on common stock (DVC) is strictly positive.
Female: This variable is an indicator for whether the manager
is female.
Firm age: This variable equals the year of the data entry less
the first year the firm appeared in the Center for Research in
Security Prices database.
Firm size: This variable is the natural log of total assets =
log(AT).
Fraction of inside directors: This variable is the number of
inside board directors divided by board size. Inside di-
rectors are those who personally or had a family member
serve as a current or former firm manager.
Leverage: This variable is (long termdebt + short termdebt)/
total assets = (DLTT + DLC)/AT.
Market to book: This variable equals (market value of equity +
bookvalueofdebt)/bookvalueof assets = (CSHO×PRCC_F +
AT - CEQ)/AT.
Profitability: This variable is operating income before D&A/
total assets = OIVDP/AT.
R&D: This variable equals R&D expense/book value of
assets = XRD/AT.
Tangibility: This variable equals net PP&E/total assets =
PPENT/AT.

Tobin’s q: This variable is the Peters–Taylor measure of
total Tobin’s q found on WRDS = Q_TOT.

Value to book: First, we regress log(market value of equity
plus book value of debt) = log(CSHO × PRCC_F + AT −
CEQ) on log(book value) of assets (log(AT)), including an
industry fixed effect, in which industry is determined by
four-digit standard industrial classification codes. Second,
we subtract log book value of assets (log(AT)) from the
fitted values from the regression.

Appendix C. Accounting for Biases in the
Execucomp Data Set

In this appendix, we address concerns of selection and bias
in our data set. Our data set consists of a merge between
Compustat, which covers all public firms, and Execucomp,
which primarily covers larger public firms. In Figure C.1,
we plot the distribution of Fama–French 48 industries for
both Compustat as awhole and ourmerged data set.We see
that the distribution of industry coverage does not differ
significantly with the exception of pharmaceuticals and
trading. These firms tend to be smaller than other public
firms and, thus, are systematically underrepresented in
Execucomp relative to the universe of public firms.

Another potential source of bias stems from the practice
of backfilling data in Execucomp. As discussed in Gillan
et al. (2017), the habit of including backfilled data means
that ex post successful firms are overrepresented in the data
as they are added onto indices if clients of S&P request the
data be added. This practice of backfilling ceased after 2006
because of changes in the regulatory environment.

A natural test would be to perform our regressions on our
entire data set, excluding those observations that were
included because of backfilling. However, based on the
data set provided by Gillan et al. (2017),8 virtually all
compensation data from the 1994–2005 period is backfilled.
Therefore, we instead restrict our sample to the post-
backfilling period from 2006 onward and find that our
qualitative results are unchanged. Summary statistics for
the restricted sample are reported in Table C.1. The results
are reported in Tables C.2–C.6. We find that, in the latter
part of the sample, a one standard deviation increase in the
market-to-book ratio is associated with a 6.75% decrease in
Jensen and Murphy’s PPS. This is slightly larger than the
5.7% decrease we estimate over the full sample but still of a
similarmagnitude. Our estimates using only post-2005 data
are of similar magnitude to those corresponding to the full
sample. Importantly, the sign of our coefficient estimates do
not change and remain consistent with the direction pre-
dicted by theory.
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Table C.1. Summary Statistics

Observations Mean Standard deviation Minimum Maximum Median

Jensen and Murphy PPS 75,829 0.749 2.046 0.002 18.858 0.208
$ to % PPS (PPS2) 75,844 176.999 452.758 0.193 3,573.206 42.791
Wealth performance sensitivity (PPS3) 14,547 17.667 65.274 0.000 888.708 4.988
Market to book 75,826 1.810 1.125 0.771 8.529 1.443
Value to book 75,840 1.646 0.454 0.956 4.023 1.599
R&D 40,141 0.050 0.065 0.000 0.366 0.024
Total q 64,149 1.214 1.267 0.044 7.899 0.824
Capital expenditure 75,721 0.044 0.050 0.000 0.294 0.029
Firm size 75,840 12,141 31,095 50.598 202,475 2,306
Cash flow volatility 75,844 0.035 0.040 0.002 0.231 0.023
Firm age 75,844 24.463 14.989 0.000 56.000 21.000
Tangibility 74,844 0.239 0.233 0.003 0.880 0.155
Profitability 75,488 0.122 0.096 −0.242 0.423 0.119
Advertisement 75,844 0.011 0.029 0.000 0.176 0.000
Leverage 75,498 0.216 0.185 0.000 0.820 0.192
Dividend paying 75,724 0.543 0.498 0.000 1.000 1.000
CEO chair 56,518 0.504 0.500 0.000 1.000 1.000
Fraction of inside directors 56,518 0.215 0.114 0.000 1.000 0.200
CEO 75,844 0.192 0.394 0.000 1.000 0.000
Female 75,844 0.081 0.273 0.000 1.000 0.000

Notes. The sample covers all executives and firms in Execucomp from 2006 to 2015 and is mergedwith Compustat data. Jensen andMurphy PPS
is the dollar-to-dollar, pay–performance sensitivity. Control variables are defined in Appendix B. R&D, research and development.

Figure C.1. (Color online) Fama–French 48 Industry Coverage

Notes. The representation of each of the 48 Fama–French industries is presented for both the Execucomp and Compustat databases. Although
trading and pharmaceutical firms represent a larger proportion of Compustat than of Execucomp, we attribute this to Execucomp’s focus on
larger firms.
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Table C.2. Market-Based Proxies and Pay–Performance Sensitivity, Backfill Bias-Free
Sample

Market to book Value to book

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

Market to book −0.103*** −0.084*** −0.059***
(−7.94) (−4.53) (−5.27)

Value to book −0.211*** −0.090 −0.090**
(−3.82) (−1.41) (−2.48)

Firm size −0.407*** −0.406*** −0.419*** −0.409*** −0.407*** −0.408***
(−38.19) (−29.86) (−13.69) (−37.22) (−29.57) (−13.43)

Cash flow volatility −0.836** −0.410 −1.204*** −0.535**
(−2.00) (−1.54) (−2.88) (−2.02)

Firm age −0.046* −0.200*** −0.037 −0.184***
(−1.72) (−2.84) (−1.40) (−2.66)

Tangibility −0.199* 0.133 −0.136 0.156
(−1.72) (0.87) (−1.16) (1.02)

Profitability −0.424** −0.034 −0.977*** −0.194
(−1.99) (−0.29) (−5.22) (−1.65)

Advertisement 0.248 −0.975 0.211 −0.997
(0.39) (−0.94) (0.33) (−0.96)

Advertisement missing 0.040 0.011 0.044 0.009
(1.03) (0.29) (1.15) (0.24)

Leverage 0.565*** 0.312*** 0.608*** 0.337***
(5.70) (3.67) (6.14) (3.98)

Dividend paying −0.104*** −0.122*** −0.107*** −0.127***
(−2.83) (−3.31) (−2.90) (−3.45)

CEO chair 0.229*** 0.028* 0.229*** 0.029*
(8.32) (1.69) (8.27) (1.73)

Fraction of inside
directors

0.910*** −0.081 0.901*** −0.076
(6.78) (−1.05) (6.64) (−0.97)

CEO 1.736*** 0.365*** 1.737*** 0.365***
(81.00) (15.67) (80.86) (15.67)

Female −0.269*** −0.263***
(−8.31) (−8.09)

Industry dummies Yes Yes No Yes Yes No
Firm–manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 63,307 45,759 45,759 63,317 45,764 45,764
R2 0.244 0.495 0.0811 0.240 0.493 0.0789

Notes. The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar, pay–performance
sensitivity. Market value is defined as the market value of equity plus the book value of debt divided by
total assets. Value to book is calculated as the fitted value from a within-industry regression of log
market value on log book value less log book value. Control variables are defined in Appendix B.
t-statistics based on heteroskedasticity-consistent, firm-level clustered standard errors are provided in
parentheses. PPS, pay–performance sensitivity.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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TableC.3. R&D-Based Proxies and Pay–Performance Sensitivity, Backfill Bias-Free Sample

R&D R&D (zero if missing)

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

R&D −0.676* −0.157 −0.723
(−1.72) (−0.30) (−1.62)

R&D (zero if missing) −0.609 −0.170 −0.495
(−1.61) (−0.36) (−1.06)

Firm size −0.418*** −0.435*** −0.405*** −0.397*** −0.403*** −0.406***
(−29.07) (−25.64) (−9.47) (−36.27) (−29.33) (−12.78)

Cash flow volatility −1.379** −0.228 −1.205*** −0.551**
(−2.49) (−0.71) (−2.86) (−2.07)

Firm age −0.028 −0.294*** −0.038 −0.177**
(−0.84) (−3.15) (−1.41) (−2.56)

Tangibility −0.002 0.116 −0.135 0.189
(−0.01) (0.53) (−1.15) (1.23)

Profitability −0.884*** −0.486*** −1.015*** −0.221*
(−3.66) (−2.96) (−5.41) (−1.87)

Advertisement 0.271 −1.689 0.156 −0.907
(0.35) (−1.20) (0.24) (−0.89)

Advertisement missing 0.058 0.024 0.043 0.009
(1.23) (0.44) (1.11) (0.24)

Leverage 0.790*** 0.209* 0.605*** 0.338***
(6.55) (1.94) (6.06) (4.01)

Dividend paying −0.148*** −0.194*** −0.108*** −0.125***
(−2.95) (−4.42) (−2.93) (−3.40)

CEO chair 0.235*** −0.009 0.229*** 0.028*
(6.50) (−0.40) (8.26) (1.69)

Fraction of inside directors 0.652*** −0.175 0.903*** −0.073
(3.59) (−1.62) (6.67) (−0.94)

CEO 1.746*** 0.400*** 1.737*** 0.365***
(62.73) (13.84) (80.87) (15.67)

Female −0.220*** −0.262***
(−5.16) (−8.07)

Industry dummies Yes Yes No Yes Yes No
Firm–manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 33,195 24,648 24,648 63,317 45,764 45,764
R2 0.253 0.520 0.0962 0.240 0.493 0.0784

Notes. The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar, pay–performance
sensitivity. Control variables are defined in Appendix B. t-statistics based on heteroskedasticity-consistent,
firm-level clustered standard errors are provided in parentheses. PPS, pay–performance sensitivity; R&D,
research and development.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C.4. Capex-Based Proxies and Pay–Performance Sensitivity, Backfill Bias-Free
Sample

Capex Capex innovations

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

Capital expenditure 0.047 1.640*** 0.262
(0.15) (4.03) (1.25)

Capex innovations 0.213 1.665*** 0.054
(0.49) (3.20) (0.22)

Firm size −0.394*** −0.400*** −0.400*** −0.407*** −0.406*** −0.482***
(−36.69) (−29.34) (−13.01) (−30.40) (−25.06) (−11.58)

Cash flow volatility −1.315*** −0.538** −0.980** −0.136
(−3.16) (−2.02) (−2.10) (−0.37)

Firm age −0.032 −0.174** −0.036 −0.195**
(−1.21) (−2.52) (−1.11) (−2.01)

Tangibility −0.384*** 0.123 −0.231 −0.170
(−2.78) (0.74) (−1.57) (−0.81)

Profitability −1.146*** −0.251** −1.327*** −0.286**
(−5.98) (−2.10) (−6.25) (−2.00)

Advertisement 0.120 −0.942 0.434 −1.749**
(0.19) (−0.92) (0.58) (−2.50)

Advertisement missing 0.045 0.010 0.031 −0.033
(1.17) (0.27) (0.70) (−0.93)

Leverage 0.644*** 0.340*** 0.621*** 0.475***
(6.49) (4.02) (5.45) (4.54)

Dividend paying −0.095** −0.127*** −0.101** −0.154***
(−2.57) (−3.44) (−2.42) (−3.53)

CEO chair 0.229*** 0.027 0.256*** 0.018
(8.33) (1.64) (7.74) (0.81)

Fraction of inside 0.907*** −0.070 1.064*** −0.184*
directors (6.74) (−0.89) (6.00) (−1.65)

CEO 1.738*** 0.367*** 1.697*** 0.305***
(80.84) (15.75) (67.86) (10.31)

Female −0.259*** −0.239***
(−7.93) (−6.00)

Industry dummies Yes Yes No Yes Yes No
Firm−manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 63,220 45,680 45,680 33,845 26,494 26,494
R2 0.239 0.494 0.0780 0.248 0.505 0.0665

Notes. The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar, pay–performance
sensitivity. Capital expenditure innovation is calculated as the residual from a one-lag firm-specific
autoregressive model of expected scaled capital expenditures. Control variables are defined in
Appendix B. t-statistics based on heteroskedasticity-consistent, firm-level clustered standard errors
are provided in parentheses. PPS, pay–performance sensitivity.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Table C.5. Additional Proxies and Pay–Performance Sensitivity, Backfill Bias-Free Sample

Total q Hybrid

(1) log
(PPS1)

(2) log
(PPS1)

(3) log
(PPS1)

(4) log
(PPS1)

(5) log
(PPS1)

(6) log
(PPS1)

Total q −0.061*** −0.065*** −0.022**
(−4.96) (−3.79) (−2.13)

Hybrid growth
opportunities

−0.102*** −0.083*** −0.045***
(−6.98) (−4.05) (−3.71)

Firm size −0.414*** −0.414*** −0.405*** −0.428*** −0.420*** −0.420***
(−36.90) (−28.96) (−12.63) (−37.57) (−29.36) (−13.10)

Cash flow volatility −0.906** −0.423 −0.700 −0.360
(−2.08) (−1.48) (−1.59) (−1.26)

Firm age −0.040 −0.139* −0.037 −0.139*
(−1.45) (−1.89) (−1.35) (−1.89)

Tangibility −0.198* 0.099 −0.192* 0.086
(−1.70) (0.65) (−1.65) (0.57)

Profitability −0.409* −0.195 −0.377* −0.137
(−1.89) (−1.52) (−1.73) (−1.09)

Advertisement 0.307 −1.286 0.493 −1.291
(0.50) (−1.15) (0.79) (−1.15)

Advertisement missing 0.053 −0.003 0.047 −0.002
(1.33) (−0.07) (1.17) (−0.04)

Leverage 0.627*** 0.313*** 0.607*** 0.306***
(6.24) (3.56) (6.00) (3.48)

Dividend paying −0.126*** −0.153*** −0.131*** −0.152***
(−3.30) (−4.38) (−3.43) (−4.35)

CEO chair 0.205*** 0.026 0.201*** 0.026
(7.11) (1.48) (6.95) (1.48)

Fraction of inside
directors

0.847*** −0.083 0.813*** −0.086
(5.96) (−1.00) (5.72) (−1.03)

CEO 1.746*** 0.364*** 1.746*** 0.363***
(75.72) (14.46) (75.74) (14.44)

Female −0.264*** −0.265***
(−7.51) (−7.58)

Industry dummies Yes Yes No Yes Yes No
Firm−manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 53,591 39,645 39,645 53,575 39,636 39,636
R2 0.253 0.504 0.0801 0.255 0.504 0.0813

Notes. The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged with
Compustat data. The dependent variable is the logarithm of the dollar-to-dollar, pay–performance
sensitivity. Tobin’s q is taken fromWharton Research Data Services based on the methodology of Peters
and Taylor (2017). Hybrid growth opportunities is calculated as the first principal component of market
to book, value to book, scaled R&D, and scaled Capex. Control variables are defined in Appendix B.
t-statistics based on heteroskedasticity-consistent, firm-level clustered standard errors are provided in
parentheses. PPS, pay–performance sensitivity; R&D, research and development.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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Endnotes
1 See, for example, Gabaix and Landier (2008), Edmans and Gabaix
(2011), and Chaigneau et al. (2014).
2 See also Baker et al. (1988), Deckop (1988), Yermack (1995), and
Becker (2006).
3 If the second-order derivative of the objective function with respect
to a is zero (a knife-edge case given its dependence of X), then the
implicit function theorem is not applicable.
4Given a performance metric, a standard way of measuring in-
centives is ΔManager's Wealth/ΔPerformance. When performance is
a diffusion process Q, the continuous-time analog to this measure is
dY/dQ because Y measures the dollar value of the manager’s wealth.
Because dZ · dt � 0 and dZ2 � dt, we have

dY
dQ

� dY
dQ

dZ
dZ

� σg′(a∗(X))X
σQ

,

where the numerator is the volatility of Y given in Equation (21)
and σQ is thevolatilityofQ. PerformancemetricQ isX in Equation (31)
and is V in Equation (32).
5 See also Yermack (1996) and Bergstresser and Philippon (2006).
6Data on firm-specific employee stock options are from SEC filings
around the respective firms’ IPOs.
7Available at http://astro.temple.edu/elnaveen/data.html, accessed
March 7, 2017. Core and Guay (2002) and Coles et al. (2006) are the
first papers to use these data; see Coles et al. (2013) for an explanation
of their construction.

TableC.6. AlternativeMeasures of Pay–Performance Sensitivity, Backfill Bias-Free Sample

Dollar-to-percentage PPS Wealth performance sensitivity

(1) log
(PPS2)

(2) log
(PPS2)

(3) log
(PPS2)

(4) log
(PPS3)

(5) log
(PPS3)

(6) log
(PPS3)

Hybrid growth opportunities 0.385*** 0.309*** 0.141*** 0.282*** 0.226*** 0.082***
(21.48) (12.99) (7.45) (11.90) (7.83) (3.36)

Firm size 0.530*** 0.548*** −0.017 0.066*** 0.067*** −0.171***
(44.60) (37.28) (−0.43) (3.86) (3.23) (−2.93)

Cash flow volatility −1.327*** −0.690 −1.669** −0.734
(−2.69) (−1.49) (−2.48) (−0.98)

Firm age −0.035 −0.101 −0.041 −0.187
(−1.18) (−1.17) (−1.09) (−1.35)

Tangibility −0.202* −0.394* 0.171 −0.683**
(−1.70) (−1.76) (0.97) (−2.25)

Profitability 1.769*** 0.481*** 1.249*** 0.013
(6.82) (2.93) (3.81) (0.05)

Advertisement 0.690 −2.446 −1.521 −2.160
(0.94) (−1.61) (−1.22) (−0.92)

Advertisement missing 0.034 −0.032 −0.129* −0.166*
(0.77) (−0.57) (−1.89) (−1.76)

Leverage −0.329*** −0.206** −0.377** −0.160
(−3.05) (−1.97) (−2.44) (−0.99)

Dividend paying −0.098** −0.151*** 0.036 −0.104*
(−2.28) (−3.51) (0.64) (−1.84)

CEO chair 0.221*** 0.024 0.510*** −0.012
(7.05) (1.01) (10.57) (−0.31)

Fraction of inside directors 0.814*** −0.141 1.758*** 0.059
(5.20) (−1.32) (7.25) (0.37)

CEO 1.735*** 0.355*** 0.791*** 0.170***
(77.49) (12.43) (16.97) (4.30)

Female −0.281*** −0.361***
(−7.42) (−3.04)

Industry dummies Yes Yes No Yes Yes No
Firm−manager dummies No No Yes No No Yes
Year dummies Yes Yes Yes Yes Yes Yes
Observations 53,583 39,640 39,640 11,604 8,524 8,524
R2 0.293 0.510 0.242 0.113 0.220 0.105

Notes. The sample covers all executives and firms in Execucomp from 2006 to 2015 and is merged with
Compustat data. The dependent variable for columns (1)–(3) is the logarithm of the dollar-to-percentage
pay–performance sensitivity. The dependent variable for columns (4)–(6) is the logarithm of wealth
performance sensitivity. Hybrid growth opportunities is calculated as the first principal component of
market to book, value to book, scaled R&D, and scaled Capex. Control variables are defined in
Appendix B. t-statistics based on heteroskedasticity-consistent, firm-level clustered standard errors are
provided in parentheses. PPS, pay–performance sensitivity; R&D, research and development.∗p< 0.10; ∗∗p< 0.05; ∗∗∗p< 0.01.
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