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We analyze how the costs of smoothly adjusting capital, such as incentive costs, affect
investment timing. In our model, the owner of a firm holds a real option to increase a lumpy
form of capital and can also smoothly adjust an incremental form of capital. Increasing the
cost of incremental capital can delay or accelerate investment in lumpy capital. Incentive
costs due to moral hazard are a natural source of costs for the accumulation of incremental
capital. When moral hazard is severe, delaying investment in lumpy capital is costly, and
overinvesting relative to the first-best case is optimal. (JEL G31, D92, D86)
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Financial economists often view patterns of inefficient investment through
the prism of agency conflicts. For example, in his seminal paper, Jensen
(1986) posits that managers’ private benefits of investment, that is, empire-
building preferences, cause firms to overinvest relative to outside shareholders’
preferences. In contrast, a substantial body of literature links underinvestment
to managers’ private costs of firm operations. For example, DeMarzo and
Fishman (2007) show that managers’ ability to divert cash flow decreases the net
return of adding new capital and thus lowers investment. As such, a dichotomy
has emerged in the literature: overinvestment is a result of managers’ private
benefits of investment, whereas underinvestment is a result of their private
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costs of firm operations.1 The main contribution of this paper is to challenge
this dichotomy and show that a manager’s ability to shirk or divert cash flow,
a form of private costs of firm operations, can accelerate investment when
investment technology is lumpy.

We specify a dynamic model of investment in which a firm optimally
accumulates two inputs of production. The firm can smoothly adjust the first
input, such as productivity or organization capital, at a total cost that derives
from both direct expenditure and from incentives for the firm’s manager.
Specifically, the manager needs incentives to prevent her from diverting funds
allocated to cover the direct cost. The firm also has an option to invest in
a discrete amount of capital, such as a new factory or an acquisition. The
two inputs are complements in the production function: an increase in the
quantity of one in the firm increases the marginal productivity of the other. It
is then optimal to delay exercising the option until the output has reached an
endogenous investment threshold. For convenience, we call the first and second
inputs incremental and lumpy capital, respectively.

An increase in the severity of the moral hazard problem, and thus the cost
of incremental capital investment, has a nonmonotonic effect on the optimal
investment threshold for the real option to increase lumpy capital. When the
cost is low, increasing it leads to a delay in the optimal time to exercise the
lumpy capital expansion option. The intuition for this case is straightforward.
Increasing the cost of incremental capital reduces both its optimal growth rate
and the value of investing in lumpy capital because the two forms of capital
are complements in the production function of the firm. In general terms, the
agency conflict makes lumpy capital less productive, thus curtailing investment,
like in much of the literature on operational conflicts and investment, such as
DeMarzo et al. (2012). This intuition only applies to our setting when the cost
of investment in incremental capital is low.

When the cost of investment in incremental capital is high, increasing it
can accelerate investment in lumpy capital. Before the exercise of the option
to invest in lumpy capital, the optimal growth rate of incremental capital
takes two benefits into account. First, additional incremental capital increases
contemporaneous cash flow. Second, it increases the value of the option to
add lumpy capital. After investors exercise the option, only the first benefit
remains. Thus, the optimal investment rate in incremental capital can decrease
after lumpy capital expansion. When the cost of investment in incremental
capital is large, that is, when the moral hazard problem is severe, this decrease
is also large. For example, if the cost is large enough the optimal investment rate
in incremental capital is positive before the exercise of the growth option and
zero afterward. In this case, an increase in the cost of investment in incremental
capital decreases net cash flow before the option exercise and leaves net cash

1 Stein (2003) provides a thorough review of the literature on empire building. Tirole (2010) provides a treatment
of the effects of the private costs of firm operations on investment.
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flow unchanged afterward. This, in turn, increases the marginal cost of delaying
the exercise of the real option and lowers the investment threshold.

By treating moral hazard as an additional cost of investing in incremental
capital, we can contribute to the debate on the causes of over- versus
underinvestment. First, our reasoning above is not specific to moral hazard
costs. We can decompose the total cost of investing in incremental capital
into two components: direct costs that are given by the resource expenditure
required to acquire new incremental capital and incentive costs that are given by
the additional cost of acquiring incremental capital through an agent. Increasing
the direct costs can have the same effects discussed above even without moral
hazard—in other words, under the first-best case. However, when the incentive
costs are high relative to the direct costs, the investment threshold is lower
under moral hazard than under the first-best case. This behavior is a form
of overinvestment in that the firm exercises the growth option earlier than it
otherwise would if not for the incentive costs. In this way, a manager’s private
costs of firm operations—that is, consuming the resources required to grow
incremental capital on her own account—can cause overinvestment.

Beyond showing that a manager’s private costs of firm operations can
cause overinvestment, we also argue that incentive costs are an empirically
relevant source of costs for the smooth accumulation of capital. Whereas capital
investments made in lumpy fashion, such as building an entire plant, are likely to
be readily observable and subject to contracts, investment in small increments,
such as adding or maintaining machinery at existing plants, is more likely to
be subject to managerial discretion and hence to moral hazard. Managers can
divert resources meant for incremental investment for their consumption, as
such resources are difficult to measure and quantify in real time. As a result, an
empirical examination of the interaction between incremental investment and
the exercise of large real options requires an understanding of the role moral
hazard plays in the accumulation of capital. This stance is broadly consistent
with empirical evidence on acquisitions, such as in Datta, Iskandar-Datta, and
Raman (2001) and Harford and Li (2007), showing that acquisition decisions
are related to managerial incentives, both before and after acquisitions.

An important difference between incentive costs and the direct cost of
incremental capital lies in how uncertainty affects the optimal exercise policy
for the lumpy capital expansion option. In our model, uncertainty is represented
by the volatility of capital depreciation shocks. The effect of a change in this
volatility acts through two channels. First, like in a classic real option exercise
problem, increasing volatility increases the value of the option to wait to invest
and thus lowers the investment threshold. Second, the moral hazard problem
leads to an endogenous link between volatility and incentive costs. When
volatility is higher, providing the manager with incentives for investment in
incremental capital requires her to take on more risk, which, in turn, increases
incentive costs. When the moral hazard problem is already severe, the second
effect dominates the first, and an increase in volatility decreases the optimal
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investment threshold. This result cannot be obtained without moral hazard, as,
in that case, volatility does not affect the cost of incremental capital investment.

Our results are consistent with several findings in the empirical literature on
large investments. In particular, our model offers a framework for interpreting
observed patterns of managerial compensation and firm performance around
acquisitions. For example, Harford and Li (2007) study the dynamics of
executive incentives around acquisition events and find that incentives change
substantially around merger events with a decrease in pay-performance
sensitivity. We can interpret the lumpy capital investment option in our model
as an option to acquire another firm, in which case our model implies that the
strength of incentives should occur post-merger to decrease the optimal rate
of investment in incremental growth. Harford and Li (2007) also find that firm
performance suffers post-acquisition, which is consistent with a decrease in
incremental growth after a large investment. Titman, Wei, and Xie (2004) find
that firms tend to have poor long-term performance after undertaking large
capital expenditures. If large capital expenditures are indicative of the exercise
of growth opportunities, then these results are again consistent with our finding
of a drop in incremental growth following large investments.

Our results also shed light on the choice between innovation through internal
investment and innovation through acquisitions. Importantly, these two forms of
innovation are often complements: more productive firms can more efficiently
exploit technology that they acquire externally, as documented by Cassiman
and Veugelers (2006). The complementarity of internal and external innovation
would seem to indicate that firms should actively invest in both forms of
innovation. However, mature firms tend to innovate through acquisitions while
young firms tend to innovate via incremental internal investment (Huergo and
Jaumandreu (2004) and Zhao (2009)). This pattern is consistent with our model
if more mature firms are subject to more severe agency conflicts. Relatedly,
Balsmeier, Fleming, and Manso (2017) show that agency conflicts negatively
affect innovation. In this context, the model implies that industries characterized
by a large number of mature firms will feature frequent acquisitions, as is
currently the case in the technology industry.2

This paper contributes to the literature on corporate investment under
uncertainty. Our model of real options is based on the seminal work of
McDonald and Siegel (1986), Brennan and Schwartz (1985), and Abel and
Eberly (1996). In the classic real options literature, growth, either in cash flows
or in productivity, is taken as exogenous. In our model, the firm’s owners and
managers must expend resources to grow the prospects of the firm.

This paper also contributes to the growing literature on the inter-
section of dynamic agency conflicts and investment under uncertainty.
On the dynamic contracting side, Holmstrom and Milgrom (1987) and

2 See, for example, The Economist (2018).
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Spear and Srivastava (1987) introduce the notion that agents may be provided
with incentives over many periods. More recently, there has been renewed
interest in dynamic contracting. Biais et al. (2007) analyze a rich discrete-time
model of a dynamic agency conflict and its continuous-time limit. We adopt the
continuous-time framework of He (2011).3 On the investment side, DeMarzo
and Fishman (2007), Biais et al. (2010), and DeMarzo et al. (2012) consider
dynamic moral hazard with investment. One important distinction between our
paper and both Biais et al. (2010) and DeMarzo et al. (2012) is that in their
models, the first-best effort is optimal even under moral hazard. Malenko (2018)
also studies a dynamic capital-budgeting problem, but in contrast to much
of the literature, directly considers managerial empire-building preferences.
Grenadier, Malenko, and Malenko (2016) study how strategic communication
between a firm’s managers and its owners can distort the optimal timing of real
options. Grenadier and Malenko (2011) show that managers may distort the real
option exercise to signal private information to investors. In subsequent work,
Gryglewicz, Hartman-Glaser, and Zheng (2018) use a similar model to the one
used in this paper to show that pay-performance sensitivity can decrease with
the increasing intensity of growth options, and they provide empirical evidence
consistent with this prediction.

Grenadier and Wang (2005) study how agency conflicts can affect the
exercise of real options. In their model, the owner of a real option delegates the
investment timing decision to a manager who can exert effort to increase the
payoff of the option. The manager also privately observes this payoff. In this
setting, the manager has an incentive to report that the option has low value
and to consume the difference between the true value of the project and her
report. Under the optimal contract, the owner sets the investment threshold for
low-value projects higher than in the first-best case to dissuade the manager
from underreporting project quality. In our model, the owner of the firm and the
manager have no conflict of interest over investment timing. We also assume
that the cost of the moral hazard problem directly depends on when the option is
exercised. Importantly, this second feature means that incentivizing managerial
effort affects the real option exercise without assuming any additional conflicts
of interest.

Philippon and Sannikov (2007) consider real options in a dynamic moral
hazard setting similar to ours. In their model, cash flows follow an i.i.d. process,
and, hence, there is no real option problem under the first-best case. That is,
in the first-best case, the firm always immediately invests, as the investment is
assumed to have a positive net present value. Introducing the agency problem
in their setting induces a valuable option to delay investment until the agent
has sufficiently high continuation utility and the firm is very unlikely to be
liquidated. Consequently, moral hazard can only delay investment in their

3 For more examples of continuous-time dynamic contracting, see Sannikov (2008), DeMarzo and Sannikov
(2006), Piskorski and Tchistyi (2010, 2011), and He (2009).
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setting. In contrast, we model cash flows that grow in expectation, and, as
a consequence, optimal managerial effort depends on the level of cash flows
where investment and effort may serve as substitutes. This difference means
that in our model, unlike in that of Philippon and Sannikov, moral hazard can
either raise or lower the investment threshold.

1. A Model of Incremental and Lumpy Investment

In this section, we present a model of investment in which a firm produces
cash flow using two forms of capital. The first form of capital can be adjusted
via a neoclassical investment technology. The second form of capital can be
increased by a discrete amount in the manner of a standard real option to invest.
Our analysis characterizes how changes to the cost of investing in the first form
of capital affect the optimal timing of investing in the second.

1.1 Setup
Time is continuous, infinite, and indexed by t . The risk-free rate is r . A risk-
neutral investor owns a firm that produces cash flow Ytdt using lumpy capital
Kt , which can only be added in a discrete amount, and incremental capital
Xt , which can be smoothly adjusted according to the following production
function:4

Yt =XtKt . (1)

The firm starts with K0 =ks>0 units of lumpy capital. The investor has a one-
time option to increase lumpy capital to kb>ks at cost P =p(kb −ks), where p
is the per-unit price.5 We let τ denote the stopping time at which the investor
exercises this option.

Incremental capital Xt accumulates according to the following dynamics:

dXt =Itdt +σXtdZt , (2)

where It ≥0 is the investment in incremental capital and Zt is the standard
Brownian motion driving incremental capital depreciation shocks. Investment
inX incurs a cost F (I,x,k)=G(I,x)k per unit of time and can include both the
direct price of acquiring the capital and the adjustment cost. This specification
for the cost of investment captures the notion that it is more costly to increase
incremental capital when the firm uses more lumpy capital. It is convenient to

4 Appendix C.3 considers a version of the model with a single form of capital that can be adjusted using both
investment technologies described above. The results are similar. However, distinguishing between the two forms
of capital facilitates the economic interpretation of the primitives of the model.

5 Appendix C.4 considers a version of the model in which a firm holds an option to abandon instead of an option
to invest.
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represent investment in incremental capital as a per-unit rate, it =It/Xt , and
rewrite the dynamics of Xt as follows:

dXt = itXtdt +σXtdZt . (3)

We assume thatG(I,X) is homogenous of degree one in I andX, allowing the
total investment cost to be written as follows:

F (I,x,k)=θg(i)xk,

for some function g and some constant θ >0. We assume that this rate must
be positive and cannot exceed some upper limit such that it ∈ [0,imax], where
imax<r . Finally, we assume that F is such that g(i) is continuous and g(i)≥
0, g′(i)>0. To simplify the analysis, we also assume that either g′′(i)=0 or
g′′(i)>0 for all i. Note that this production technology implies that X and
K are complements in the production function in that increasing the quantity
of one improves the marginal productivity of the other. For a more formal
discussion of the complementarity between X and K , see Appendix C.1.

Given the technology described above, the investor’s problem is to choose
an investment policy i in incremental capital and a time τ to exercise the real
option to expand lumpy capital to maximize the present value of the firm’s cash
flow net of investment costs:

max
i,τ
E

[∫ ∞

0
e−rt (XtKt−θg(it )XtKt )dt−e−rτP

]
. (4)

1.2 Model solution
We take the standard dynamic programming approach to solve the investor’s
problem in Equation (4). First, we characterize the optimal investment rate for
incremental capital. Over any region of x such that the investor does not exercise
the real option, an application of Ito’s formula, together with the dynamic
programming principle, implies the following Hamilton-Jacobi-Bellman (HJB)
equation for the value of the firm V (x,k):

rV = max
i∈[0,imax]

{
xk(1−θg(i))+ix

∂V

∂x
+

1

2
σ 2x2 ∂

2V

∂x2

}
. (5)

The right-hand side of Equation (5) is the sum of the cash flow generated by
the firm net of the cost of investing in incremental capital and the expected
capital gains in firm value from this investment. Let î(x,k) be the solution to a
first-order condition for Equation (5)6:

θg′(î)k=
∂V

∂x
. (6)

6 If g′′(i)>0, then Equation (6) has a unique solution. If g′′(i)=0, then i∗ ∈{0,imax}.
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Then the optimal investment rate, denoted by i∗(x,k), is given by the following:

i∗(x,k)=

⎧⎪⎨
⎪⎩

0 if θg′(0)k≥ ∂V
∂x
,

imax if θg′(imax)k≤ ∂V
∂x
, and

î(x,k) otherwise.

(7)

Next, we characterize the optimal time at which to exercise the real option
to expand lumpy capital. As is common in real options to invest, the optimal
exercise policy takes the form of a threshold rule, τ =inf{t :Xt ≥ x̄}. The location
of the exercise threshold is identified using the following value-matching and
smooth-pasting conditions:

V (x̄,ks)=V (x̄,kb)−P (8)

∂

∂x
V (x̄,ks)=

∂

∂x
V (x̄,kb). (9)

Finally, the value of the firm must be zero when incremental capital falls to
zero:

V (0,k)=0. (10)

We summarize our results about the firm value function and optimal policies
in the proposition below.

Proposition 1. The value of the firm V (x,k), the optimal investment rate i∗
in incremental capital, and the optimal exercise time τ of the option to expand
lumpy capital are provided by the solution to Equation (5) with the boundary
conditions in Equations (8) to (10).

V (x,kb)=
1−θg(i∗(x,kb))

r−i∗(x,kb)
xkb, (11)

where i∗(x,kb), if it is interior, solves the following

θg′(i∗)=
1−θg(i∗)

r−i∗ .

Whether analytical solutions for the pre-exercise firm valueV (x,ks) and optimal
exercise threshold x̄ exist depends on the structure of the cost of investing in
incremental capital. We analyze various cases in the next sections. In each case,
we study the effect of an increase in the cost of investment in incremental capital
on the optimal exercise threshold for the real option.

2. Cost of Incremental Capital and the Real Option Exercise

In this section, we consider the effect of optimal investment in incremental
capital on the optimal real option exercise policy in the context of increasingly
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rich specifications of the model that we describe in Section 1. To begin our
analysis, we study a pure real option problem in which the investment in
incremental capital only plays a role after the real option to expand lumpy
capital has been exercised. In the following subsections, we allow investment
in incremental capital to enter the investor’s problem both before and after the
exercise of the real option. We show that the presence of this additional decision
means that increasing the cost of incremental capital can lead to a lower optimal
exercise threshold for the option to expand lumpy capital.

2.1 Real option to initiate a project
In this section, we consider the problem in which the firm starts with zero
lumpy capital. When ks =0, the cost of investment in incremental capital is
zero before exercising the real option, and it is therefore always optimal to
set i∗(x,ks)= imax. Here, our model resembles a classic real option problem of
when to initiate a project in the spirit of McDonald and Siegel (1986). The
firm starts life producing zero cash flows and incurring no costs. Incremental
capital grows at a fixed rate imax in expectation. Once the firm has accumulated
enough incremental capital, there is a time at which it is optimal to begin the
project by investing in lumpy capital. The main difference between our model
and the classic real option problem is that in our model, unlike the standard
model, initiating the project substantially changes the cost of future growth in
incremental capital. As a result, the cost of investing in incremental capital has
a direct effect on the optimal time at which to expand lumpy capital.

Intuitively, increasing the cost of incremental capital investment decreases
the value of the project once it has been initiated, which delays the initiation
of the project. Given that the post-exercise firm value is linear in x and that
there is zero cash flow before the exercise, a standard argument allows us to
solve for x̄ in closed form (see, e.g., Dixit and Pindyck (1994)). Guessing the
functional form ofV (x,0) and applying the value-matching and smooth-pasting
conditions given in (8) and (9) shows that x̄ solves the following equation:

(η−1)

(
1−θg(i∗(x,kb))

r−i∗(x,kb)

)
x̄kb︸ ︷︷ ︸

marginal cost
of delaying investment

= ηpkb︸︷︷︸
marginal benefit

of delaying
investment

, (12)

where η>1 is a constant that depends on r , imax, and σ . Equation (12) states that
at the optimal investment threshold x̄, the marginal cost of delaying investment
in lumpy capital must equal the marginal benefit. More specifically, the left-
hand side is the marginal cost of delay due to postponing the increase in cash
flows that results from investment in new lumpy capital. The right-hand side
is the marginal benefit of delay that results from postponing the expenditure
of pkb.

The effect of an increase in incremental investment costs θ on the optimal
lumpy capital investment threshold x̄ is determined by how such an increase
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affects the marginal benefit and cost of delaying investment. Differentiating
both sides of (12) with respect to θ shows the following:

∂x̄

∂θ
= x̄

(
1−θg(i∗(x,kb))

r−i∗(x,kb)

)−1(
g(i∗(x,kb))

r−i∗(x,kb)

)
≥0.

In words, increasing the cost of investing in incremental capital decreases the
marginal cost of delay because it lowers the present value of the cash flows that
result from investment in lumpy capital. At the same time, such an increase
does not affect the marginal benefit of delay. As a result, increasing θ delays
investment in lumpy capital. Formally, we have the following result.

Proposition 2. Suppose that ks =0. An increase in θ increases the optimal
exercise threshold x̄.

Note that Proposition 2 holds for any weakly convex g(i) such that the
result is not driven by the shape of the cost of incremental capital. Rather,
the driving force behind the above result is that the cost only affects the optimal
accumulation of incremental capital, and hence the value of the firm, after the
exercise of the real option. As we show below, once this cost directly affects
the pre-exercise accumulation of incremental capital, the sign of the effect of
an increase in θ on the optimal exercise boundary x̄ can change.

2.2 Linear incremental investment cost
In this section, we analyze the case in which a firm begins with a positive
amount of lumpy capital, ks >0, and pays a linear cost to add incremental
capital, g(i)= i. We analyze this case for two reasons. First, this specification
has a natural interpretation. When g(i)= i, θ represents the unit price of x scaled
by k. Second, linear investment costs allow for closed-form solutions that yield
transparent results. As we show in the subsequent analysis, the intuition and
results from the linear cost case carry over to specifications with richer cost
functions.

Given the linear cost function, the optimal investment rate i∗ is either 0 or
imax. Indeed, the marginal benefit of an additional unit of incremental capital is
∂
∂x
V (x,k) such that if the marginal cost of this unit is constant, it is optimal to

invest either as much as possible (i.e., set i = imax) or as little as possible (i.e.,
set i =0). After the exercise of the option to expand lumpy capital, the marginal
benefit of incremental capital is expressed as follows:

∂

∂x
V (x,kb)=

1−θi
r−i kb.

Thus, if θ < 1
r
, it is optimal to set i = imax. This condition is independent of the

amount of incremental capital. The option to increase lumpy capital provides
an additional benefit from investing in incremental capital. Consequently, it
must also hold that it is optimal to select imax before the exercise of the option
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to expand lumpy capital whenever θ < 1
r
. Thus, it is natural to consider two

separate cases within the set of feasible parameters. First, we analyze the
problem when θ < 1

r
and thus i(x,ks)= i(x,kb)= imax. Next, we analyze the

problem when θ > 1
r
. In this case, it is optimal to set i(x,kb)=0. However,

before the exercise of the option to expand lumpy capital, the additional benefit
of incremental capital implied by the option to expand means that for some
regions of x, it is optimal to set i(x,ks)= imax.

First, consider the case in which θ < 1
r
. In this case, the optimal incremental

capital investment is imax regardless of the current stock of k. It follows that
the cash flow per unit of k and cash flow growth are the same both before and
after the firm exercises the option to increase k. Like in the previous section,
applying the value-matching and smooth-pasting conditions shows that the
optimal exercise boundary x̄ is given by equating the marginal cost and the
marginal benefit of delaying investment

(η−1)

(
1−θimax

r−imax

)
(kb −ks)x̄︸ ︷︷ ︸

marginal cost
of delaying investment

=ηp(kb −ks)︸ ︷︷ ︸
marginal benefit

of delaying
investment

. (13)

The left-hand side of Equation (13) is the marginal cost of delaying lumpy
capital investment and, as is also the case in Equation (12), is proportional
to the increment (1−θimax)(kb −ks)x̄ in the level of cash flows that results
from investing in lumpy capital. An increase in the cost of incremental capital
investment θ leads to decreases in cash flow both before and after lumpy capital
investment proportional to the stock of lumpy capital and therefore decreases
the cash flows that result from lumpy capital investment. As a result, an increase
in θ lowers the marginal cost of delaying investment:

∂

∂θ

[
(η−1)

(
1−θimax

r−imax

)
(kb −ks)

]
=−(η−1)

(
imax

r−imax

)
(kb −ks)<0. (14)

At the same time, such an increase in θ does not affect the marginal benefit of
delaying investment ηp(kb −ks). In sum, an increase in θ lowers the marginal
cost of delaying investment in lumpy capital and does not affect the marginal
benefit, and it therefore increases x̄ and delays investment in lumpy capital.

Now consider the case in which θ > 1
r
. In this case, as we argue above, it is not

optimal to invest in incremental capital after the exercise of the real option. Prior
to the exercise of the lumpy capital growth option, incremental capital growth
increases both current cash flows and the value of the option to expand lumpy
capital. When the current stock of incremental capital is small, the likelihood
that it will grow to the point at which it is optimal to expand lumpy capital is so
remote that investment in incremental capital is not optimal. However, when x
is sufficiently close to x̄, an increase in incremental capital leads to a substantial
increase in the value of the option to expand lumpy capital, and it is optimal
to set i∗(x,ks)= imax if θ≤ kb

ks

(
1
r

)
. The intuition is that close to the exercise
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boundary x̄, the cost of investment in incremental capital is proportional to ks,
but the benefit is proportional to kb. In this case, the optimal exercise boundary
x̄ satisfies the following optimality condition

(η−1)

(
kb

r
−
(

1−θimax

r−imax
−m(x̄)

)
ks

)
x̄︸ ︷︷ ︸

marginal cost
of delaying investment

=ηp(kb −ks)︸ ︷︷ ︸
marginal benefit

of delaying investment,

, (15)

wherem(x̄) is a term that accounts for the fact that prior to investment in lumpy
capital, the firm does not invest in incremental capital when x is small.

Comparing Equation (15) to Equation (13), we see that the key difference
is in the marginal cost of delaying investment in lumpy capital. This term
now accounts for the fact that net cash flows per unit of capital change from
(1−θimax)x to x and cash flow growth changes from imax to zero. Both of
these changes occur because the optimal investment rate in incremental capital
changes from imax to zero at the moment the firm invests in lumpy capital.

Again, the effect of an increase in θ on the threshold x̄ operates through the
marginal cost of delaying investment. Now, an increase in θ increases the cash
flows that result from investment in lumpy capital because such an increase
does not affect the cash flow after the investment in new lumpy capital, and it
decreases the cash flow beforehand. One can show that the effect that θ has on
m(x) is small, and, thus, an increase in θ leads to an increase in the marginal
cost of delaying investment:

∂

∂θ

[
(η−1)

(
kb

r
−
(

1−θimax

r−imax
−m(x̄)

)
ks

)]
=

(
imax

r−imax
+
∂

∂θ
m(x̄)

)
ks >0.

(16)
Thus, when θ≥1/r , an increase in θ decreases the marginal benefit of delaying
investment and lowers x̄. We formalize these results in the proposition below.

Proposition 3. Suppose that g(i)= i. The optimal investment threshold
increases with θ if θ is low and decreases with θ if θ is high. That is, ∂x̄

∂θ
>0 if

θ < 1
r

and ∂x̄
∂θ

≤0 if 1
r
<θ < 1

r

(
kb
ks

)
.

The important new result here lies in the effect of the cost of investing in
incremental capital θ on the optimal threshold at which to invest in lumpy
capital. Intuitively, increasing the cost of incremental capital should decrease
the value of investment in lumpy capital and hence raise the threshold x̄.
However, this intuition ignores the effect that the increase in lumpy capital
has on the optimal investment policy in incremental capital. If the cost of
incremental capital is relatively low, then it is optimal to invest in x at the
maximum rate both before and after exercising the real option. In this case, an
increase in the cost of incremental capital would have a larger marginal effect on
post-expansion firm value than on pre-expansion firm value, and the preceding
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A B

Figure 1
Effect of the cost of investment in incremental capital on the first-best investment threshold
This figure illustrates the optimal investment threshold for two possible costs of investment in incremental capital,
θ1<θ2. In both panels, the solid curves represent the value functions for the pre-exercise (upper solid curve)
and post-exercise (lower solid curve) firm when θ =θ1. The dashed curves represent the value functions for the
pre-exercise (upper dashed curve) and post-exercise (lower dashed curve) firm when θ =θ2. In panel A, which
illustrates a low cost of investment in productivity growth, increasing the cost from θ1 to θ2 decreases both the
pre- and post-exercise firm values but has a larger effect on the latter. Thus, such an increase leads to an increase
in x̄. In panel B, which illustrates a high cost of investment in incremental capital, increasing the cost from θ1
to θ2 decreases the pre-exercise firm value but has no effect on the post-exercise firm value, as the post-exercise
investment in incremental capital is zero. Thus, such an increase in θ leads to a decrease in x̄.

intuition is correct. Figure 1, panel A, illustrates this intuition. Alternatively, if
the cost of incremental capital is relatively high, then it is optimal to invest in x
at the maximum rate before exercising the real option and to forgo investment
afterward. In this case, an increase in the cost of incremental capital has a greater
marginal effect on the pre-investment firm than on the post-investment firm.
In other words, further increasing the cost of incremental capital decreases the
value of the pre-investment firm and does not change the post-investment value
of the firm. Hence, the optimal investment threshold decreases. Figure 1, panel
B, illustrates this intuition.

The intuition we outline above underlies the deep mechanism of our model.
Although the linear specification of the cost of incremental capital growth is
both tractable and economically relevant, the question remains whether this
mechanism is generalizable to richer specifications of this cost function. In
the next section, we demonstrate that this effect persists even when the cost
function is strictly convex and the optimal investment rate in incremental capital
is interior.

2.3 Convex adjustment costs
Our linear specification for the costs of investing in incremental capital in the
preceding section has the advantage of allowing closed-form solutions and
analytical comparative statics. However, it is somewhat restrictive in that it
implies that the investment rate in incremental capital is either maximal or zero.
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One then may be concerned that our results are an artifact of this feature of the
model. To allay such concerns, in this section, we analyze the cost of investment
that includes a convex adjustment cost and stipulates interior investment rates.

To illustrate the model’s implications, we use a particular parameterization.
Following He (2011), we use a risk-free rate of r =5% and a standard deviation
of productivity growth of σ =0.25. The maximum growth rate of incremental
capital needs to be less than the risk-free rate to ensure finite valuations for all
levels of θ . We choose an upper bound on the growth rate of x of imax =3%,
which is less than the value for imax that citethe2011model assume and reflects
the fact that, in our model, the growth rate of productivity is bounded below
by 0 because of the nonnegativity of incremental capital investment and the
multiplicative specification for the effect of incremental capital on productivity.
The cost of investment in incremental capital includes a quadratic adjustment

term, g(i)= i+ 1
2ψ
(

i
imax−i

)2
, where we use ψ =0.05. The denominator of

the adjustment cost, imax −i, ensures that the marginal cost of incremental
investment is infinite at imax so that nonzero investment rates are interior. Lumpy
capital increases at the time of investment from ks =1 to kb =2 at cost p=10 per
unit of new capital.

Using these parameter values, Figure 2, panel A, presents the effects of the
cost of incremental capital on the investment threshold. As is the case with
linear investment costs, an increase in the cost of incremental capital measured
by θ can lead to either an increase or a decrease in the threshold to exercise the
option to invest in lumpy capital. When the investment cost θ is relatively low,
an increase in θ leads to an increase in the investment threshold. If θ is somewhat
higher, an increase in θ leads to a decrease in the investment threshold. The
level of θ at which x̄ starts to decrease is denoted by θ∗. Figure 2, panel B,
shows that introducing and increasing the convex adjustment cost expands the
region in which x̄ decreases with θ . The figure plots the cutoff level θ∗ for
various levels of ψ , the parameter scaling the adjustment cost. As ψ increases,
θ∗ decreases, which increases the parameter space in which x̄ decreases.

Figure 2, panel C, shows the investment rates in incremental capital
just before and after the exercise of the real option, i∗(x̄,ks) and i∗(x̄,kb),
respectively. When θ is small enough and both i∗(x̄,ks) and i∗(x̄,kb) are
high, x̄ increases with θ . Consistent with the intuition in the linear cost case,
for x̄ to decrease with θ , the investment rate in incremental capital must
drop at the moment of investment. If this drop is sufficiently large, then
increasing θ decreases pre-investment firm value more than post-investment
firm value, and the optimal x̄ decreases. This occurs when θ is large enough
to generate a nonmonotonic relation between x̄ and θ . Finally, Figure 2, panel
D, demonstrates that the accumulation of incremental capital intensifies as
x approaches the exercise threshold x̄ because the growth option becomes
more valuable closer to x̄, increasing the benefits of investing in incremental
capital.
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A B

C D

Figure 2
Adjustment costs of incremental capital and the investment threshold x̄
Panel A plots the real option exercise threshold x̄ for different levels of θ . The cutoff level θ∗ separates the regions
of delayed and accelerated investment in lumpy capital. Panel B plots θ∗ for different levels of the adjustment
costs of investing in incremental capital ψ . Panel C plots the investment rates in incremental capital at x̄ before
and after the exercise of the real options using solid and dashed curves, respectively. Panel D plots the investment
rates in incremental capital as a function of x for various values of θ . The constant parameter values are r =0.05,
σ =0.25, imax =0.03, ψ =0.05, ks =1, kb =2, and p=10.

3. Investment in Incremental Capital and Moral Hazard

The results of the previous section highlight a new relation between investment
in a capital stock that can be adjusted smoothly, that is, incremental capital,
and one that can be adjusted only in a lumpy fashion, that is, lumpy capital.
Although it is perhaps counterintuitive that increasing the cost of accumulating
incremental capital can accelerate the exercise of a real option to expand lumpy
capital, this result depends on the cost being high. This calls into question
whether the result is empirically relevant.

In this section, we extend the model to include moral hazard over investment
in incremental capital. This extension is natural to consider for a variety of
reasons. First, investment in incremental capital is difficult to observe in reality
and is thus likely to be subject to moral hazard. Second, this moral hazard
problem can increase the cost of incremental capital such that even when the
real cost of incremental capital is low, the total cost to the investor is high.
Third, variation in moral hazard provides an empirically relevant source of
variation to study in the data. Indeed, two firms that operate in the same line of
business can face identical direct costs of incremental capital accumulation yet
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substantially different amounts of moral hazard, leading to different investment
patterns. Fourth, and finally, moral hazard provides an endogenous link between
volatility and the cost of incremental capital that overturns a classic result in
real option theory.

3.1 Moral hazard problem
We consider the model setup that we described in Section 1.1 with one important
difference. We now assume that although the investor can directly control
the exercise of the real option to expand lumpy capital, she must contract
with a manager to implement investment in incremental capital. We further
assume that the investor does not observe depreciation shocks to incremental
capital. The total cost of investment in incremental capital is the same as
before, but because the investor cannot observe investment in incremental
capital, the manager can divert funds allocated to cover these costs for her
own consumption. The manager has constant absolute risk aversion (CARA)
preferences over consumption and values a stream of consumption {c̃t }:

E

[∫ ∞

0
− 1

γ
e−γ c̃t−rt dt |{i}

]
,

where γ is a measure of risk aversion. In addition, the manager can save and
borrow at the risk-free rate r . We assume that the manager begins with zero
savings.

We use the manager’s coefficient of risk aversion γ to measure the severity
of the moral hazard problem because, as we show below, γ scales the cost of
providing the manager with incentives to implement a given incremental capital
investment policy. In an extended version of our model that includes shocks to
incremental capital that are observable to the investor, it can be shown that the
degree of observability of the manager’s effort works in the same way as the
coefficient of the manager’s risk aversion. The former measure of the moral
hazard problem has some advantages in that it is easier to estimate and varies
more between firms and across time. We use γ as a measure of the severity of the
moral hazard problem for its simplicity. Appendix C.2 presents the extension
with partially observable shocks to incremental capital.

A contract consists of a compensation rule, a recommended investment rate
inX, and a stopping time denoted by	=(c,i,τ ). The compensation rule {ct }t≥0

and recommended investment rate {it }t≥0 are stochastic processes adapted to
the filtration of public information, Ft . For simplicity, we drop the subscript
t whenever we refer to the entire process of consumption or incremental
investment. The investment policy τ is Ft -stopping time, which dictates when
the firm exercises the option to increase capital.

Given an initial outside option of the manager w0, the investor solves the
following problem:

max
c,i,τ

E

[∫ ∞

0
e−rt (XtKt−θg(it )XtKt−ct )dt−e−rτP

]
, (17)
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such that

i∈argmax
ĩ

{
max
s̃
E

[∫ ∞

t

− 1

γ
e−γ (ct+θ (g(it )−g(ĩt ))XtKt−s̃t )−r(s−t)ds

]}
, (18)

where st is the amount the manager adds to her savings at time t . The key
difference between the investor’s problem under no moral hazard given in
Equation (4) and the problem given in Equation (17) is that in addition to the
direct cost of investing in incremental capital, the investor must also compensate
the manager. This compensation, ct , must, in turn, provide the manager with
incentives to choose the recommended investment rate i.

Appendix A.1 provides a detailed analysis of the solution to the optimal
contracting problem. The key outcome of that analysis for the current problem
is that the manager’s continuation utility (i.e., the present value of all future
consumption at any point in time) must be sufficiently sensitive to innovations
inX. This incentive compatibility condition, in turn, implies that the manager’s
compensation ct is risky. As the manager is risk averse, and the investor is risk
neutral, risk in ct causes a loss in the form of forgone risk-sharing benefits.
This loss acts as an extra cost of investment in incremental capital. We solve
for these costs in the closed form in Appendix A.1. This allows us to show that
the solution to the investor’s problem in Equation (17) is given by the solution
to the following HJB equation:

rV = max
i∈[0,imax]

{
xk(1−θg(i))+ix

∂V

∂x
+

1

2
σ 2x2 ∂

2V

∂x2
−ρ(i,x,k)

}
, (19)

where

ρ(i,x,k)=
1

2
1(i >0)γ r

(
θσg′(i)xk

)2
(20)

represents the incentive cost of investment in X. The HJB equation in (19) is
identical to that in Equation (5) up to the additional cost given by ρ. The optimal
investment policy is again defined by a threshold x̄ at which it is optimal for
the investor to increase lumpy capital. The value function must satisfy the same
standard value-matching and smooth-pasting conditions, like in the first-best
case. We verify that this approach indeed yields the optimal contract in the
proof of the following proposition in Appendix B.

Proposition 4. The optimal contract under moral hazard is given by the
solution to Equation (19) with the boundary conditions in Equations (8)–(10).

3.2 Incentives and real option exercise: Linear investment cost
In this section, we return to the linear investment cost specification we study
in Section 2.2. Like in that section, here we consider g(i)= i. We also restrict
attention to θ≤ 1

r
. Recall that without moral hazard, this restriction implies that
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the firm always sets i = imax and that an increase in the cost of incremental capital
thus delays the exercise of the real option to expand lumpy capital. With moral
hazard, investment in incremental capital entails an additional incentive cost
that is increasing and convex in x. As such, it is not always optimal to invest in
incremental capital at the maximal rate. This implies that even when the direct
cost of investment in x is low, an increase in the total cost via an increase in the
severity of the moral hazard problem γ can decrease the exercise threshold x̄.

First, we consider the optimal investment rate after the exercise of the option
to expand lumpy capital. Given that the total cost of investment in incremental
capital is convex in x, we hypothesize that there is a threshold x∗

b below which
the contract recommends maximal investment and above which it recommends
zero investment:

i∗(x,kb)=

{
imax if x≤x∗

b

0 otherwise.
(21)

Appendix A.2 provides the explicit solutions for x∗
b . This control satisfies

Equation (19) and is therefore optimal.
Before exercising the option to expand lumpy capital, it is optimal to

implement maximal investment in incremental capital as long as the price p
of the new lumpy capital is sufficiently small. Thus, we consider two natural
cases. In the first case, investment in lumpy capital leads to no change in the
current rate of investment in incremental capital, that is, x̄≤x∗

b . In the second
case, when investment in lumpy capital leads to a decrease in the current rate
of investment in incremental capital, that is, x̄≥x∗

b . The appendix shows that
x̄≤x∗

b if and only if γ ≤γ1 for some constant γ1. Intuitively, when γ is small,
incentives are relatively inexpensive, and a high rate of incremental capital
investment will be optimal even after the exercise of the option to invest in
lumpy capital.

When investment in lumpy capital leads to no change in the current rate
of investment in incremental capital, we can combine the value-matching and
smooth-pasting conditions to obtain

(η−1)

(
1−θimax

r−imax

)
(kb −ks)x̄︸ ︷︷ ︸

marginal cost
of delaying increase in cash flow

=

ηp(kb −ks)︸ ︷︷ ︸
marginal benefit

of delaying
investment expenditure

+(η−2)

(
γ r(θσ )2

2(r−2imax −σ 2)

)
(k2

b −k2
s )x̄2

︸ ︷︷ ︸
marginal benefit of delaying increase

in incentive costs

. (22)

Comparing Equation (22) with Equation (13), we see that incentive costs,
represented by the second term on the right-hand side of Equation (22), create
an additional marginal effect of delaying investment in lumpy capital. The
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appendix shows that η−2 and r−2imax −σ 2 have the same sign, and, thus, the
incentive cost term is always positive and represents a marginal benefit from
delaying investment. In other words, investing in lumpy capital increases the
flow of incentive costs given the optimal incremental investment policy. This
intuition follows the standard narrative in the literature: increasing moral hazard
decreases the net return of new capital and therefore curtails investment. As a
result, increasing γ , that is, the severity of the moral hazard problem, increases
the marginal benefit of delay that is due to incentive costs and thus raises x̄ and
delays investment in lumpy capital.

When investment in lumpy capital leads to a decrease in the current rate of
investment in incremental capital, the flow of incentive costs decreases once the
new lumpy capital is installed. In this case, we can combine the value-matching
and smooth-pasting conditions to obtain

(η−1)

(
1−θimax

r−imax

)
(d1(x̄)kb −ks)x̄︸ ︷︷ ︸

marginal cost
of delaying increase in cash flow

=

ηp(kb −ks)︸ ︷︷ ︸
marginal benefit

of delaying
investment expenditure

+(η−2)

(
γ r(θσ )2

2(r−2imax −σ 2)

)
(d2(x̄)k2

b −k2
s )x̄2

︸ ︷︷ ︸
marginal effect of delaying change in incentive costs

, (23)

where d1(x) and d2(x) account for the fact that for small x, the firm will invest
in incremental capital even after the exercise of the lumpy capital expansion
option.7 It is possible to show that d2(x̄)k2

b −k2
s >0 if and only if γ <γ2 for some

constantγ2. Thererfore, whenγ <γ2, the marginal effect of delaying investment
in lumpy capital that is due to the change in incentive cost represents a marginal
benefit of delay. This effect is due to the fact that although the flow of incentive
costs decreases at the moment of investment, they increases if x falls below x∗

b .
In this case, an increase in γ delays investment for the same intuition we give
above.

When γ >γ2, the marginal effect of delaying investment in lumpy capital due
to the change in incentive costs represents a marginal cost of delay. As a result,
increasing the moral hazard problem by increasingγ increases the marginal cost
of delaying investment in lumpy capital and lowers the investment threshold
x̄. In other words, investing in lumpy capital leads to a decrease in the flow of
incentive costs, which makes investment more attractive. This effect is missing
from the standard intuition for the effect of moral hazard on investment because
that intuition relies on incentive costs remaining proportionally constant in
capital under the optimal contract.

7 Appendix A.2 provides the explicit solutions for d1(x) and d2(x).
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Proposition 5. Suppose that θ≤ 1
r

andg(i)= i. The optimal exercise threshold
increases with the severity of the moral hazard problem when γ is small and
decreases when γ is large. That is, there exists γ2<∞ such that ∂x̄

∂γ
<0 if and

only if γ >γ2.

The explicit expression for γ2 is given in the proof of Proposition 5. It is
worth noting that while γ2 is finite, it need not be positive. However, γ2>0
whenever kb is large relative to ks or imax is small relative to r .

Proposition 5 gives the effect of moral hazard on investment in the case
of a marginal increase in the severity of the moral hazard problem. The
effect of an increase in γ on x̄ operates through a similar mechanism as the
comparative static of x̄ with respect to the θ determined in Section 2.2. In both
cases, increasing the cost of investment in incremental capital (either direct
or incentive costs) changes the optimal investment policy after the exercise of
the real option, which can increase the benefit of expanding lumpy capital and
lower the exercise threshold for the real option. In this sense, moral hazard
amplifies the effect of incremental investment costs on the optimal exercise
threshold.

In addition to amplifying the mechanism through which incremental
investment costs affect the optimal lumpy investment policy, moral hazard can
also cause the investment threshold x̄ to fall below what it would have been
without moral hazard, which we call x̄FB. Intuitively, the investment threshold
does not depend on γ when there is no moral hazard problem, whereas an
increase in γ decreases x̄ when there is moral hazard. This result stands in
stark contrast to the literature, which has shown that moral hazard typically
leads to underinvestment. In our model, moral hazard erodes option value and
can lead to a form of overinvestment in that investors optimally exercise a
growth option at a lower threshold than they would if there were no moral
hazard problem. The following proposition formally states this result.

Proposition 6. Suppose that θ≤ 1
r

and g(i)= i. The investment threshold
under moral hazard is below that of the first-best case if and only if the moral
hazard problem is severe. That is, there exists γ3<∞ such that x̄ <x̄FB if and
only if γ >γ3.

3.3 Volatility and real option exercise
A well-known finding in the real options literature is that an increase in volatility
increases the value of the option to wait and thus increases the optimal exercise
threshold. Without moral hazard, this result also applies to our model. However,
moral hazard creates an endogenous link between volatility and the cost of
investment in incremental capital through the incentive cost term ρ. Keeping
everything else constant, incentive costs increase when volatility is high because
the manager needs to be compensated for risk exposure. Increasing volatility

328

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/33/1/309/5488961 by Erasm

us U
niversiteit R

otterdam
 user on 14 January 2020



[17:21 27/11/2019 RFS-OP-REVF190055.tex] Page: 329 309–357

Investment Timing and Incentive Costs

thus has two effects in our model. First, increasing volatility increases the
value of the option to wait to invest, like in a standard real options model. This
effect operates through the dependence of Equations (22) and (23) on the term
η. Second, when γ ≥γ2, incentive costs create an additional cost of delaying
invest in lumpy capital relative to the first-best case. In this case, increasing
volatility amplifies the effect that incentive costs have on the marginal cost
of delaying investment in lumpy capital. When incentive costs are sufficiently
large, that is, when γ ≥γ4 for some constant γ4, the second effect dominates
the first and an increase in volatility accelerates investment. We formalize this
intuition in the following proposition.

Proposition 7. Suppose that θ≤ 1
r
, g(i)= i, and r >2imax +σ 2. The optimal

exercise boundary x̄ decreases with volatility σ when γ is large. That is, there
exists γ4<∞ such that ∂x̄

∂σ
<0 for γ >γ4.

3.4 Incentives with convex adjustment costs
In this section, we generalize the cost of investing in incremental capital to a
convex function that includes direct-cost and adjustment-cost terms. Like in
Section 2.3, here we assume that the cost function takes the following form:

g(i)= i+ 1
2ψ
(

i
imax−i

)2
. This generalization allows us to analyze investment

rates i away from the corner imax and verify the robustness of the tractable
linear model of the preceding sections. In addition, the added flexibility enables
a more convincing quantitative analysis than would be possible with simple
linear investment costs. This allows us to evaluate the relevance of the incentive
costs for investment behavior.

We solve the model numerically using the parameter values introduced in
Section 2.3. Figure 3, panel A, illustrates the effect of moral hazard on the

A B C

Figure 3
Moral hazard and optimal investment
Panel A plots the real option exercise threshold x̄ as a function of the severity of the moral hazard problem γ (the
dashed line represents the first-best level for γ =0). Panel B plots the investment rates in incremental capital at
x̄ before and after the exercise of the real options using solid and dashed curves, respectively. Panel C plots the
investment rates in incremental capital as a function of x for various values of γ . The constant parameter values
are r =0.05, σ =0.25, imax =0.03, θ =8, ψ =0.05, ks =1, kb =2, and p=10.
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exercise threshold. As is the case with linear costs (see Proposition 5), an
increase in the severity of the moral hazard problem can lead to either an
increase or a decrease in the investment threshold. When the moral hazard
problem measured by γ is relatively low, then an increase in γ leads to an
increase in the investment threshold and underinvestment relative to the first-
best case. If γ is somewhat higher, an increase in γ leads to a decrease in the
investment threshold. Consistent with the result in the case of linear cost (see
Proposition 6), if γ is sufficiently high, the investment threshold is below that
of the first-best case.

The incentive cost in Equation (20) generates an additional cost of investing
in incremental capital and thus decreases the rate of investment i relative to
the first-best case. Next, we show that the incentive cost also has an important
qualitative effect on the rate of investment in incremental capital. In the model
without moral hazard, the rate i increases with x; see Figure 2, panel D. This is a
growth option effect in that the benefit of investing in x increases as the value of
the growth option increases closer to the exercise threshold. In the model with
moral hazard, there is an opposing effect. As it becomes increasingly expensive
to incentivize the manager as the amount of incremental capital increases, the
incentive cost is convex in x. Figure 3, panel C, demonstrates that for our
parameter values and various values of γ , the incentive cost effect dominates
the real option effect, and the investment rate i decreases with x as x approaches
the exercise threshold.

The last observation indicates the possibility that even in cases in which
optimal investment in lumpy capital is at a lower threshold under moral hazard
than under the first-best case, moral hazard may delay exercise when measured
in time units as the rate of investment in x decreases. We verify this by
numerically analyzing the expected time to exercise the growth option under
moral hazard and in the first-best case. We find that the expected exercise times
are always consistent with the relation of the exercise threshold for our baseline
parameter values (for brevity, the results are not reported here). That is, a lower
threshold is always associated with an earlier time to invest. This implies that
the effect of moral hazard on the exercise threshold must be relatively large and
dominate the weakened growth in x.

Indeed, quantitatively, the under- and overinvestment effects on the exercise
threshold are large. To assess the magnitudes in greater detail, we examine
a range of costs of investing in incremental capital. For the other parameters
of the model, we use the values specified in Section 2.3. Table 1 presents
the ratios of the investment thresholds under moral hazard to the investment
thresholds in the first-best case. Values above one represent underinvestment
and values below one represent overinvestment. Overinvestment is associated
with low efficiency of investment in incremental capital (high θ and ψ). The
threshold under agency is 12% smaller than in the first-best case with high costs
of investment in incremental capital of θ =10 and ψ =0.08. Underinvestment
tends to be the highest with low costs of investment in incremental capital.
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Table 1
Under- and overinvestment due to agency conflicts

Cost of incremental
investment

x̄/x̄FB θ =6 θ =8 θ =10

Adjustment cost
ψ =0.02 1.10 1.20 1.16
ψ =0.05 1.07 1.05 0.92
ψ =0.08 1.06 0.93 0.88

This table reports the ratios of the investment thresholds under agency to the investment thresholds in the first-best
case. Values above one represent underinvestment, and those below one represent overinvestment. The constant
parameter values are r =0.05, σ =0.25, imax =0.03, γ =0.5, ks =1, kb =2, and p=10.

A B

Figure 4
Moral hazard and optimal investment with interior incremental investment
Panel A plots the real option exercise threshold x̄ as a function of the severity of the moral hazard problem γ

(the dashed line represents the first-best level for γ =0). Panel B plots the investment rates in incremental capital
at x̄ before and after the exercise of the real options using solid and dashed curves, respectively. The constant
parameter values are r =0.05, σ =0.25, imax =0.03, θ =8, ψ =0.1, ks =1, kb =2, and p=10.

For instance, when θ =8 and ψ =0.02, the investment threshold under agency
exceeds the first-best case by 20%.

We close this subsection by showing that the results discussed above do
not depend on incremental investment reaching zero. Note that the direct
linear cost of investing in incremental capital introduces a fixed incentive cost
for nonzero investment levels.8 This fixed cost can cause large firms to stop
investing in x, like in the example in panel B of Figure 3. To eliminate the
influence of zero investment, we remove the linear cost from g(i) and consider

g(i)= 1
2ψ
(

i
imax−i

)2
. We use the same parameter values used in Figure 3, except

that ψ is increased from 0.05 to 0.1, to compensate for the removal of the
direct cost of investment. The results presented in Figure 4, panel A, show
that the nonmonotonic relation between x̄ and γ is also present in this case.
Panel B shows that investment in incremental capital drops at x̄ but remains

8 Specifically, the incentive cost, which is given in Equation (20), is a function of g′(i), which has a constant term
if g(i) includes a linear component.
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positive. This suffices to generate accelerated investment in lumpy capital.
Specifically, when γ is large, lumpy investment creates a sufficiently large
drop in the incentive cost to induce a lower threshold x̄.

4. Discussion and Empirical Predictions

In this section, we discuss the empirical relevance of our model. We first discuss
some examples of specific instances in which incentive costs could affect the
timing of investment. Next, we discuss industrial settings in which the forces
that we identified above should be particularly salient and provide empirical
predictions to guide future work.

4.1 Incremental and lumpy capital investment in practice
In this section, we give practical examples of the types of investment that we
consider in our model. One example of a capital stock that managers must often
develop is organization capital, like in the literature founded by Prescott and
Visscher (1980). In particular, our model applies to incremental investment in
organization capital that increases the productivity of physical capital that can
only be added in a lumpy fashion. A large body of literature demonstrates the
importance of organization capital for firm outcomes and includes Atkeson and
Kehoe (2005), Carlin, Chowdhry, and Garmaise (2012), and Lustig, Syverson,
and Van Nieuwerburgh (2011). Our model demonstrates that the moral hazard
associated with the smooth accumulation of organization capital has important
implications for investment in lumpy physical capital (e.g., factories).

To be concrete, consider gains in efficiency that are the result of process
innovations, that is, the organizational capital associated with the knowledge
of how to best use physical capital.9 To accumulate this type of organizational
capital, the manager makes a number of changes to the firm’s manufacturing
processes that increase the efficiency (i.e., the productivity) of the existing
machinery, for example, colocating all of the machinery needed to complete one
unit of output within a factory (cellular manufacturing). Finding the particular
production process that maximizes the efficiency of a given firm’s capital
requires the manager to experiment and learn. This on its own may not be
related to the amount of physical capital installed at the firm; however, as
implementing changes requires the manager to communicate them to the many
levels of workers involved in production, it is clear that a variety of control costs
will be incurred. In this way, a manager can treat a small firm as a laboratory
in which to hone her knowledge. Then any new factories can begin operations
with the benefit of the firm’s accumulated knowledge or organizational capital.

A second example of the type of investment that we consider in our model
is internal investment in innovation, which we contrast with external and

9 See, for example, the lean production process described by Shah and Ward (2007).
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lumpy investment in innovation via acquisitions. Evidence documented by
Cassiman and Veugelers (2006) suggests that in general, internal and external
innovation are complements, which is consistent with our model. For example,
consider Facebook’s acquisition of Instagram in 2006. In this case, Facebook
engaged in internal innovation by improving its own product to grow its
user base and deepen the network of connections therein. Facebook then
purchased Instagram, which increased users. The incremental revenue from
new users from Instagram was magnified by the depth and size of Facebook’s
existing network. However, the question remains as to why Facebook purchased
Instagram at such an early stage in Instagram’s development rather than
internally growing its own network of users and waiting to acquire Instagram.
While anti-competitive forces may have played a role, our results provide an
alternative explanation. At the point of acquisition, Facebook had developed
to a point at which further internal innovation and growth carried significant
incentive costs, which eroded its option value to wait to acquire Instagram and
thus hastened its acquisition.

Facebook’s acquisition of Instagram is one example of numerous instances of
external innovation acquisitions by mature firms in the information technology
industry. Many such acquisitions are surprising to market observers. In light
of our model, the agency conflicts inherent in mature technology firms and
the resultant high incentive costs of internal innovation make early external
innovation acquisitions optimal.

4.2 Empirical predictions
We now discuss the empirical implications of our model. Like in the first
setting discussed above, lumpy capital can refer to larger physical capital
investments; in such cases, incremental capital corresponds to organization
capital. Alternatively, like in the second setting discussed above, lumpy capital
can refer to external acquisitions and incremental capital to internal growth.

We begin with two direct implications of our main results:

Prediction 1. Lumpy investment is delayed (accelerated) in response to an
increase in the cost of acquiring incremental capital for low (high) measures of
the cost.

Prediction 2. Lumpy investment is delayed (accelerated) in response to an
increase in incentive costs for low (high) measures of the cost.

One distinguishing feature between the models with and without moral
hazard can be seen in Figure 3, panel C, and Figure 2, panel D. In these figures,
we plot the relation between the investment rate in incremental capital and its
current level. Without moral hazard, the investment rate in incremental capital
increases. When moral hazard is included, the investment rate in incremental
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capital decreases. The reason for this difference is that moral hazard introduces
an extra cost to the accumulation of incremental capital (the cost is quadratic
in the level of incremental capital). When the moral hazard problem is severe,
this cost dominates and the investment rate in incremental capital decreases.
This leads to the following prediction:

Prediction 3. For firms with substantial (negligible) moral hazard, incre-
mental capital growth is negatively (positively) correlated with the level of
capital.

5. Conclusion

We present a model of investment in lumpy and incremental capital. In our
model, physical capital productivity is determined by a stock of incremental
capital. The owners of a firm can accumulate incremental capital subject to a
cost. We show that this cost is naturally affected by the presence of managerial
moral hazard. We find that the effect of the costs of accumulating incremental
capital on the timing of real option exercise depends on the magnitude of these
costs. When the cost of investing in incremental capital is low, for example,
because the moral hazard problem is not severe, it is optimal to implement high
investment in incremental capital, and an increase in the cost raises the threshold
for exercising the real option. When the cost of accumulating incremental
capital is high, the opposite effect is obtained. The finding that a manager’s
ability to shirk or divert cash flow can increase investment is new, and it provides
an alternative to empire-building and managerial hubris-based explanations of
overinvestment.

Our model can be extended and applied to specific contexts in the real option
literature without agency conflicts (e.g., mergers and acquisitions, real estate
development, initial public offerings [IPOs], and venture capital financing). In
each case, we have omitted important institutional details from the model for
clarity. However, an examination of these details may provide interesting new
results and implications. For example, in mergers and acquisitions, investment
may depend on the productivity of both the bidding and target firms. An
important feature of real estate development that may interact with the agency
conflict is that investment typically requires time to build. Finally, in IPOs and
venture capital financing, the manager may have private information that affects
the value of the growth option.

Appendix A: Solving the Moral Hazard Problem

This appendix provides the solution to the optimal contracting problem in Section 3 and the value
functions used in Section 3.2.

A.1 Optimal Contract
Because the manager can privately save, the compensation specified by the contract ct need not be
equal to the manager’s consumption at time t . The manager’s accumulated savings is denoted by
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St , her actual time t consumption by c̃t , and her incremental investment by ĩt . Given a contract,
the manager chooses a consumption and incremental investment plan to maximize her utility from
the contract:

Wt (	,{Xs,Ks}s≤t ;S)=max
c̃,ĩ
E

[∫ ∞

t

e−r(s−t)u(c̃s )ds

]
, (A.1)

where the manager’s instantaneous utility is

u(c̃)=− 1

γ
e−γ c̃,

such thatXt ,St ,, andKt have the dynamics induced by consumption and the incremental investment
plan (c̃,ĩ):

dSs =rSsds+(c̃s−cs +θ (g(ĩ)−g(i))XsKs )ds, St =S,

dXs = ĩsXsds+1(ĩs >0)σXsdZs,

Ks =

{
ks +(kb −ks)1(t≥τ ) if K0 =ks

kb otherwise.

Wt is the manager’s continuation utility at time t . Following Sannikov (2008), this continuation
utility is a natural state variable for the dynamic contracting problem that we consider below.

We call a contract 	 incentive-compatible and zero-savings if the solutions {c̃t } and {ĩt } to
the manager’s problem (A.1) are equal to the payment rule and the recommended incremental
investment plan given in the contract. As is standard in the literature, without loss of generality,
we focus on contracts in which the solution to problem (A.1) is to follow the recommended action
level and maintain zero savings by virtue of the following version of the revelation principle.

Lemma A.1. For an arbitrary contract 	̃, there is an incentive-compatible and zero-savings
contract 	 that delivers at least as much value to the investor.

Next, we derive the necessary and sufficient conditions for a contract to be incentive-compatible
and zero-savings. Following He (2011), we use the following intuition to first characterize the zero-
savings condition. Suppose that (č,ǐ) solves problem (A.1) for a given contract that implements
zero savings. Further suppose that we simply endow the manager with savings S>0 at some time
t >0. How would her consumption and incremental investment plans respond? Because of the
absence of wealth effects implied by the manager’s CARA preferences, the optimal consumption
plan for s≥ t would be čs +rS, and the incremental investment plan would remain unchanged.
Thus, an increase in savings from zero to S increases the manager’s utility flow by a factor of
e−γ rS forever.10 Put differently, the manager’s marginal utility for an additional unit of savings
when she currently has none is −γ r multiplied by her current continuation utility. Moreover, for
the manager to have no incentive to save, her marginal utility of consumption u′(c̃t ) must be equal
to her marginal utility of savings −γ rWt . This implies the following lemma:

Lemma A.2. A contract is zero-savings if and only if

u(c̃t )=rWt . (A.2)

10 As utility is always negative, the factor e−γ rS <1 represents an increase in utility.

335

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/33/1/309/5488961 by Erasm

us U
niversiteit R

otterdam
 user on 14 January 2020



[17:21 27/11/2019 RFS-OP-REVF190055.tex] Page: 336 309–357

The Review of Financial Studies / v 33 n 1 2020

For a given compensation ct , recommended rate i, and actual rate ĩt , the zero-savings condition
implies that the manager’s consumption is c̃t =ct +θ (g(it )−g(ĩt ))XtKt .

We now consider the incentive-compatibility condition. Standard martingale representation
arguments suggest that the investor provides incentives by making the manager’s continuation
utility Wt contingent on unexpected performance (see, e.g., Sannikov (2008)). For an arbitrary
incentive-compatible and zero-savings contract, consider the following process:

Mt =Et

[∫ ∞

0
e−rsu(cs )ds

]
.

This process is clearly a martingale with respect to the filtration of public information Ft ; thus, the
martingale representation theorem implies that progressively measurable processes βt exists such
that the following holds:

dMt =−γ rWte
−rt βt (dXt−itXt dt). (A.3)

Mt is related to the manager’s continuation utility Wt (under the recommended consumption and
investment plans) as follows:

dWt =(rWt−u(ct ))dt +e
rt dMt . (A.4)

Combining the zero-savings condition (A.2) with Equations (A.3) and (A.4) gives the following
dynamics for the manager’s continuation utility:

dWt =−γ rWtβt (dXt−itXt dt). (A.5)

As a deviation from the recommended policy results in an unexpected (from the investor’s
perspective) shock to the growth of incremental capital, βt measures the manager’s incentives
to deviate from the contract’s recommended policy.

For a given contract, problem (A.1) implies that the manager chooses the current rate of
investment in incremental capital to maximize the sum of her instantaneous utility u(ct )dt and the
expected change in her continuation utilityWt .11 The manager’s expected change in continuation
utility from deviating from the recommended policy it to ĩt is expressed as follows:

E[dWt |ĩ]=βt (−γ rWt )(ĩ−it )Xtdt.
Thus, incentive compatibility requires the following:

it =argmax
ĩ

{
u(c̃t )+βt (−γ rWt )(ĩ−it )Xt

}
, (A.6)

where c̃t =ct +θ (g(it )−g(ĩt ))XtKt . Taking a first-order derivative of the objective function in
problem (A.6) with respect to ĩ and evaluating it at ĩ = i yields the following:

∂

∂ĩ
u(ct )+βt (−γ rWt )Xt .

As ∂

∂ĩ
u(ct )=−u′(ct )θg′(it )XtKt and the zero-savings condition isu′(ct )=−γ rWt , we can simplify

the first-order derivative above and find that it is constant in i:

γ rWtθg
′(it )XtKt +βt (−γ rWt )Xt .

If this expression is strictly negative (positive), then only a minimal (maximal) investment rate is
incentive-compatible. If this expression is zero, the manager is indifferent between all levels of i

11 This argument is only heuristic. We provide a formal verification argument in the proof of Proposition A.3.
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in [0,imax]. We follow the usual convention that indifferent managers choose the recommended
incremental investment rate. Thus, we obtain the following condition on incentive-compatible βt :

βt

⎧⎪⎨
⎪⎩

≤θg′(it )Kt if it =0

=θg′(it )Kt if it ∈ (0,imax)

≥θg′(it )Kt if it = imax.

(A.7)

Intuitively, incentive compatibility requires the sensitivity of the manager’s continuation utility to
unexpected output shocks to be greater than or equal to her marginal cost of incremental investment
θg′(it )XtKt scaled by the marginal effect of incremental investment on output Xt . Lemma A.3
characterizes an incentive-compatible zero-savings contract.

Lemma A.3. A contract is incentive-compatible and zero-savings if and only if the solution Wt

to problem (A.1) has the dynamics given by (A.5), where βt satisfies (A.7).

It is useful to represent the manager’s continuation utilityWt in terms of its certainty equivalent,
Yt =−1/(γ r)ln(−γ rWt ). Note that we can use Yt as a state variable for the investor’s problem in
place ofWt , as Yt is a deterministic function ofWt . Applying Ito’s lemma to (A.5) and combining it
with Lemma A.3 demonstrates that the dynamics of Yt under an incentive-compatible zero-savings
contract are given by the following:

dYt =
1

2
γ rσ 2β2

t X
2
t dt +σβtXtdZt . (A.8)

The drift term in Equation (A.8) comes from the difference in risk aversion between the investor
and the manager. As the manager is risk averse, the certainty equivalent ofW must have additional
drift for each additional unit of volatility. AsW is a martingale, the drift term in Y is entirely due to
this effect. This positive drift shows up in the investor’s Hamilton–Jacobi–Bellman (HJB) equation
as the cost of providing incentives. We also impose an integrability restriction on βt , which is
detailed in the proof of Proposition 4 in Appendix B.

Next, we characterize the payment rule to the manager. Recall that the zero-savings condition in
Equation (A.2) provides a link between instantaneous utility and continuation utility. This allows us
to express the manager’s compensation as a function of the current state of the certainty equivalent
of her continuation utility Yt as follows:

ct =rYt . (A.9)

The first term in Equation (A.9) is the cost of investing in incremental capital and the second is the
risk-free rate times the certainty equivalent of her continuation utility. In other words, the contract
pays the manager investment expenses at the recommended level plus the yield on her continuation
utility. Given Equations (A.8) and (A.9), we can describe any incentive-compatible zero-savings
contract by (β,i,τ ).

We now move to the investor’s problem. Denote by v(x,y,k) the investor’s value that solves
objective (17). The problem can be simplified by noting that due to the absence of wealth effects
implied by the CARA preferences of the manager, maximizing the investor’s payoff is equivalent
to maximizing the value function of the investor plus the certainty equivalent of the manager’s
continuation utility. Thus, rather than directly dealing with the investor’s value function, we
maximize the total firm value V (x,k):

V (x,k) = v(x,y,k) + y.

The dependence on y cancels out, as the risk-neutral investor values the manager’s consumption
stream at exactly its certainty equivalence. An application of Ito’s formula then yields that over
any interval of time in which there is no investment in physical capital, V (x,k) must satisfy the
HJB equation, Equation (19). We also observe that due to the concavity of the value function, the
investor would never expose the manager to more risk than is required to provide incentives. Thus,
the optimal contract would always set βt =0 for it =0, and βt =θg′(it )Kt otherwise.
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A.2 Solutions for Value Functions in Section 3.2

This appendix solves the value function and optimal contract for the model given in Section 3.2.
The derivation follows the standard methods for solving real option exercise problems (see Dixit
and Pindyck (1994) for an introduction to the topic). For ease of exposition, we assume that θ < 1

r
;

the case of θ > 1
r

is similar.
First, consider the optimal contract after the real option has been exercised. We hypothesize

that there exists a threshold x∗
b such that the optimal incremental capital investment rate is given

by Equation (21). The threshold x∗
b and firm value after the exercise of the real option are given by

the solution to the following equations:

rV (x,kb)=xkb(1−θimax)− 1

2
γ r (θσxkb)2 +imaxxVx (x,kb)

+
1

2
σ 2x2Vxx (x,kb) for x<x∗

b (A.10)

rV (x,kb)=xkb +
1

2
σ 2x2Vxx (x,kb) for x≥x∗

b (A.11)

lim
x→x

∗−
b

V (x,kb)= lim
x→x∗+

b

V (x,kb), (A.12)

lim
x→x

∗−
b

xVx (x,kb)= lim
x→x∗+

b

xVx (x,kb) (A.13)

lim
x→x

∗−
b

x2Vxx (x,kb)= lim
x→x∗+

b

x2Vxx (x,kb). (A.14)

Equations (A.12) and (A.13) are the value-matching and smooth-pasting conditions, respectively.
Equation (A.14) is a hyper-contact condition that guarantees the optimality of x∗

b . Equations (A.14)-
(A.14) imply that the hypothesized control satisfies the HJB equation given in Equation (19) and
must therefore be optimal.

The solution to Equations (A.10)-(A.14) is given by

V (x,kb)=

⎧⎨
⎩
(
ε+1
η+ε

)
h1(x)Bxkb −

(
ε+2
η+ε

)
h2(x)Ax2k2

b for x≤x∗
b((

ε+1
η+ε

)
1
rB

+
(
η−1
η+ε

)
d1(x)

)
Bxkb −

(
η−2
η+ε

)
d2(x)Ax2k2

b for x>x∗
b ,

where

A=
γ r(θσ )2

2(r−2imax −σ 2)
, (A.15)

B =
1−θimax

r−imax
, (A.16)

h1(x)=
(η+ε

ε+1

)
+

(
1

rB
−1

)(
x

x∗
b

)η−1

, (A.17)

h2(x)=
(η+ε

ε+2

)
−
( x
x∗
)η−2

, (A.18)

d1(x)=

(
1

rB

)
+

(
1− 1

rB

)(
x

x∗
b

)−(ε+1)

, (A.19)
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d2(x)=

(
x

x∗
b

)−(ε+2)

, (A.20)

x∗
b =

(
η−1

η−2

)(
ε+1

ε+2

)(
B− 1

r

)(
1

Akb

)
, (A.21)

ε=− 1

2
+

√
1

4
+

2r

σ 2
, (A.22)

and

η=−
(
imax

σ 2
− 1

2

)
+

√(
imax

σ 2
− 1

2

)2

+
2r

σ 2
. (A.23)

Note that x∗
b solves the following first-order condition

(η−1)B
∂d1(x)

∂x∗
b
xkb −(η−2)A

∂d2(x)

∂x∗
b
x2k2

b =0. (A.24)

Next, we characterize the value function for the firm before investment, along with the optimal
investment threshold x̄. As discussed in Section 3.2, we restrict our attention to the parameters that
imply that the optimal contract recommends a full rate of investment in incremental capital for all
x≤ x̄.

Assumption A.1. The price of new capital is not too high relative to the severity of the moral
hazard problem:

p≤ L

γ
, (A.25)

where L is the positive constant given in Equation (B.45) of Appendix B. The expansion option is
not too small.

kb

ks
>rB. (A.26)

The above assumption directly implies that the optimal contract calls for maximal investment in
incremental capital before expansion, as stated in the following Lemma.

Lemma A.4. If Assumption A.1 holds, then i∗(x,ks)= imax for all x≤ x̄.

Two important aspects of Assumption A.1 require more explanation. First, the constant L is such
that the assumption is not overly restrictive. Indeed, all of the numerical examples that we consider
below parameterize the model so that it satisfies the assumption. Second, the assumption is not
necessary to guarantee that i∗(x,ks)= imax for all x≤ x̄. Restricting the parameters to the case in
which the optimal contract calls for i = imax for all x≤ x̄, the value function is given by the following:

rV (x,ks)=xks(1−θ )− 1

2
γ r (θσxks)

2 +imaxxVx (x,ks)+
1

2
σ 2x2Vxx (x,ks), (A.27)

V (x̄,ks)=V (x̄,kb)−p(kb −ks), (A.28)

Vx (x̄,ks)=Vx (x̄,kb). (A.29)

The solution to Equations (A.27)-(A.29) is of the form

V (x,ks)=Bxks −Ax2k2
s +Csx

η,

where Cs is a constant and A and B are as defined in Equations (A.16) and (A.15). Moreover, if
the boundary conditions given in Equations (A.28) and (A.29) have multiple solutions, then each
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solution yields a candidate value function. These candidates differ in the constant coefficient Cs

only. Thus, the optimal value function is given by the solution with the largest such constant.
We can combine conditions (A.28) and (A.29) to obtain

(η−1)B(kb −ks)x̄−(η−2)A(k2
b −k2

s )x̄2 =ηp(kb −ks), if i∗(x̄,kb)= imax (A.30)

(η−1)B(d1(x̄)kb −ks)x̄−(η−2)A(d2(x̄)k2
b −k2

s )x̄2 =ηp(kb −ks), if i∗(x̄,kb)=0 (A.31)

The final step to determining the solution to Equations (A.27)-(A.29) is to determine i∗(x̄,kb).
If i∗(x̄,kb)= imax, Equation (A.30) either has two positive roots or no real roots. If there are no
real roots, then i∗(x̄,kb)= imax is not optimal. By solving Equation (A.28) for Cs, we obtain the
following:

Cs =Cs2 =

(
B

((
ε+1

η+ε

)
h1(x̄)kb −ks

)
x̄−A

((
ε+2

η+ε

)
h2(x̄)k2

b −k2
s

)
x̄2 −p(kb −ks)

)
x̄−η).

Taking the derivative of Cs2 with respect to x̄ yields the following:
∂Cs2

∂x̄
=
(
−(η−1)B(kb −ks)x̄+(η−2)A(k2

b −k2
s )x̄2 +ηp(kb −ks)

)
x̄−(η+1) (A.32)

If there are no real roots of Equation (A.30), then Equation (A.32) is positive for any x̄≥0. Thus,
the value function Vs, which depends on x̄ only via Cs, increases in x̄, and it is optimal to postpone
option exercise until x reaches x∗

b when i∗(x̄,kb)=0. It follows that i∗(x̄,kb)=1 cannot be optimal.
Now consider the case in which the roots of Equation (A.30) are positive. To find the optimal
threshold from the two positive roots, note that Equation (A.32) is negative between the two roots,
and so Cs2 is decreasing between the two candidate thresholds. Thus, the smaller root of Equation
(A.30) is the only possible candidate for an optimal threshold. This root is given by

x̄1 =
(η−1)B−√((η−1)B)2 −4η(η−2)pA(kb +ks)

2(η−2)A(kb +ks)
. (A.33)

If i∗(x̄,kb)=0, then Equation (A.31) either has two positive roots or no real roots. In the event
that Equation (A.31) has two positive roots, the smaller root is always less than x∗

b , and thus the
larger root, which we denote by x̄2, is the only candidate solution. If x̄1 is real, then x̄2 ≤ x̄1 because
the left-hand side of Equation (A.30) is always weakly smaller than the left-hand side of Equation
(A.31). This implies that if x̄1 ≤x∗

b , then x̄2 ≤x∗
b and thus i∗(x̄2,kb)=1, which implies that x̄2 is

not optimal, and x̄1 must be the optimal threshold.
To summarize, if x̄1 ≤x∗

b , then x̄2 is not a solution to Equations (A.28) and (A.29), and x̄1 is the
optimal investment threshold. If x̄1 ≥x∗

b , then x̄1 is not a solution to Equations (A.28) and (A.29),
and x̄2 is the optimal investment threshold. To determine when x̄1 ≤x∗

b , note that when γ is small
(large), x∗

b is large (small) and x̄1 is small (large), and x̄1 (x̄2) will be the optimal threshold. We
state this result in the following lemma.

Lemma A.5. There exists γ1 such that the optimal investment threshold is given by

x̄ =

{
x̄1 if γ ≤γ1

x̄2 otherwise.
(A.34)

Finally, we introduce some additional notation that will be helpful in the proofs of our main
results. Let f1(x) and f2(x) be given by

f1(x)=(η−1)B(kb −ks)x−(η−2)A(k2
b −k2

s )x2 −ηp(kb −ks)

f2(x)=(η−1)B(d1(x̄)kb −ks)x̄−(η−2)A(d2(x̄)k2
b −k2

s )x̄2 −ηp(kb −ks).

Note that f1(x) is concave because (η−2)A>0 and using the definitions of d1(x),d2(x), and x∗
b ,

we have

f ′′
2 (x)=2(η−1)Ak2

s +ε

(
ε+1

ε+2

)
(η−1)

(
B− 1

r

)
x∗

b

(
x

x∗
b

)−(ε+2)

>0 (A.35)

and thus f2(x) is convex. Moreover, f1(x̄1)=f2(x̄2)=0.
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Appendix B: Proofs

Appendix B is divided into two parts. Section B.1 contains the proofs of the results presented in the
main text of the paper. Section B.2 contains the proofs of the supporting results used throughout
the appendix.

B.1 Proofs of Main Results

Proof of Proposition 1 By the verification argument we provide in the proof of Proposition 4,
Equation (5) with boundary conditions (8)-(10) is sufficient for optimality. �

Proof of Proposition 2 The proof is in the text preceding the statement of the propositions. �

Proof of Proposition 3 The case of θ < 1
r

is covered in the text. In the case of 1
r
<θ <

(
kb
ks

)
1
r

, first

note that

V (x,kb)=
xkb

r
.

Thus, the smooth-pasting condition in Equation (9) for x̄ implies that

∂

∂i
(−θix̄ks +ix̄Vx (x̄,ks))= x̄

(
−θks +

kb

r

)
>0

and Equation (7) implies that i∗(x̄,ks)=1. Differentiating the smooth-pasting condition with respect
to θ yields the following:

∂x̄

∂θ
(Vxx (x̄,kb)−Vxx (x̄,ks))=Vxθ (x̄,ks). (B.1)

Vxx (x,kb)=0, and by the ODE in Equation (5), we obtain the following:

Vxx (x̄,ks)=
rV (x̄,ks)− x̄ks(1−θimax)−imaxx̄Vx (x̄)

1
2σ

2x̄2
, (B.2)

=
x̄kb
(
1− 1

r
imax

)− x̄ks(1−θimax)
1
2σ

2x̄2
, (B.3)

>
x̄kb (1−θimax)− x̄ks(1−θimax)

1
2σ

2x̄2
>0, (B.4)

such that we can rearrange Equation (B.1) and apply the one-sided version of l’Hôpital’s rule to
obtain the following:

∂x̄

∂θ
=

Vxθ (x̄,ks)

Vxx (x̄,kb)−Vxx (x̄,ks)
= lim
x↑x̄

Vxθ (x̄,ks)

Vxx (x̄,kb)−Vxx (x̄,ks)
= lim
x↑x̄

Vθ (x̄,ks)

Vx (x̄,kb)−Vx (x̄,ks)
. (B.5)

By the ODE given in Equation (5), Vθ (x,ks )<0. Moreover, we claim that there exists ε>0 such
that Vx (x,kb)−Vx (x,ks)>0 for all x∈ (x̄−ε,x̄). This claim implies that there exists ε>0 such
that

Vθ (x,ks)

Vx (x,kb)−Vx (x,ks)
<0

for all x∈ (x̄−ε,x̄), which, in turn, implies the following:

lim
x↑x̄

Vθ (x,ks)

Vx (x,kb)−Vx (x,ks)
≤0,

as Vθ (x,ks) and Vx (x,kb)−Vx (x,ks) are nonzero and continuous. Thus, ∂x̄
∂θ

≤0.

341

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/33/1/309/5488961 by Erasm

us U
niversiteit R

otterdam
 user on 14 January 2020



[17:21 27/11/2019 RFS-OP-REVF190055.tex] Page: 342 309–357

The Review of Financial Studies / v 33 n 1 2020

We now prove the claim that there exists ε>0 such that Vx (x,kb)−Vx (x,ks)>0 for all x∈
(x̄−ε,x̄) by contradiction. Suppose that there does not exist ε>0 such that Vx (x,ks)<Vx (x,kb)
for all x∈ (x̄−ε,x̄); then, for all ε>0, there exists x∈ (x̄−ε,x̄) such that Vx (x,ks)≥Vx (x,kb). As
Vx (x̄,ks)≥Vx (x̄,kb), Vx (x,kb), and Vx (x,kb) are continuous, this implies that there exists ε>0
such that Vx (x,ks)≥Vx (x,kb) for all x∈ (x̄−ε,x̄). This implies that for x∈ (x̄−ε,x̄), we have the
following:

V (x,kb)−V (x,ks)=V (x̄,kb)−V (x̄,ks)−
∫ x̄

x

(Vx (z,kb)−Vx (z,ks))dz≥p(kb −ks),

which contradicts the definition of x̄. �

Proof of Propositions 1 and 4 We first prove Proposition 4. The argument for Propisition 1 is a
special case. The proof proceeds in three steps. In Step 1, we show that we can replace the investor’s
maximization problem (problem (B.7)) with one in which we maximize a function independent
of Yt (problem (B.9)). In Step 2, we fix an exercise threshold and verify that the solution to the
HJB equation solves problem (B.9) for this investment policy. In Step 3, we show that the optimal
investment policy must be a threshold rule that satisfies the boundary conditions given in Equations
(8)-(10). Finally, we have already verified that the proposed contract is incentive-compatible and
zero-savings in the proof of Lemma A.3. Before we complete these steps, we make the following
technical assumption on βt :

E

[∫ ∞

0
β2
t X

2
t dt

]
<∞, (B.6)

where the expectation is computed with respect to the measure induced by the incentive-compatible
dynamics ofXt givenβt . This restriction rules out contracts under which the manager has incentives
to exert maximal effort forever. However, such contracts would be infinitely costly to implement,
so this is without loss of generality.

Step 1: Let v(x,w,k) be the value to the investor under a given incentive-compatible zero-savings
contract (c,i,τ ) with X0 =x and W0 =w. Formally, v(x,w,k) solves

v(x,w,k)=max
c,i,τ

E

[∫ ∞

0
e−rt (XtKt−θg(it )XtKt−ct )dt−e−rτ P

]
, (B.7)

such that dXt = ĩtXt dt +σXtdZt , X0 =x,

Kt =

{
ks +(kb −ks)1(t≥τ ) if k=ks

kb otherwise,

w≤E
[∫ ∞

0
− 1

γ
e−γ c̃t−rt dt

]
,

where (c̃,ã) solves problem (A.1). Lemmas A.2 and A.3 imply that the compensation process ct
must be given by Equation (A.9). The investor’s value is the present value of the cash flows of the
firm net of compensation to the manager; thus, we have the following:

v(x,w,k)

=E

[∫ ∞

0
e−rt (XtKt (1−θg(it ))−ct )dt−e−rτ P

∣∣∣X0 =x,Y0 =− 1
γ r

ln(−γ rw),K0 =k

]
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=E

[∫ ∞

0
e−rt (XtKt (1−θg(it ))−rYt )dt−e−rτ P

]

=E

[∫ ∞

0
e−rtXtKt (1−θg(it ))dt−e−rτ P

]

+E

[∫ ∞

0
re−rt

(
Y0 +

∫ t

0

1

2
γ rσ 2β2

s X
2
s ds+

∫ t

0
σβsXsdZs

)
dt

]
,

where the last line follows from the dynamics of Yt given in Equation (A.8) and the conditioning
is suppressed for clarity. Separately evaluating the three terms of the last expectation above, we
obtain the following:

E

[∫ ∞

0
re−rt Y0dt

]
=Y0,

E

[∫ ∞

0
re−rt

∫ t

0

1

2
γ rσ 2β2

s X
2
s dsdt

]
=E

[∫ ∞

0

∫ ∞

s

re−rt
1

2
γ rσ 2β2

s X
2
s dtds

]

=E

[∫ ∞

0
e−rs

1

2
γ rσ 2β2

s X
2
s ds

]
,

and

E

[∫ ∞

0
re−rt σβtXtdZtdt

]
=
∫ ∞

0
re−rtE

[∫ t

0
σβtXtdZt

]
dt

=0.

We can exchange the order of integration in the second and third steps above by Fubini’s theorem
and the assumption given in Equation (B.6). Collecting the terms yields the following:

v(x,w,k)=E

[∫ ∞

0
e−rt

(
XtKt (1−θg(it ))− 1

2
γ rσ 2β2

t X
2
t

)
dt−e−rτ P

]
−y,

where y =− 1
2 γ r ln(−γ rw). Combining the above arguments with Lemma A.3, problem (B.7) is

equivalent to

V (x,k)= max
β,λ,i,τ

E

[∫ ∞

0
e−rt

(
XtKt (1−θg(it ))− 1

2
γ rσ 2β2

t X
2
t

)
dt−e−rτ P

]
, (B.8)

such that dXt = itXt dt +σXtdZt , X0 =x,

Kt =

{
ks +(kb −ks)1(t≥τ ) if k=ks

kb otherwise

and the incentive-compatibility condition, Equation (A.7). From problem (B.8), it is clear that it is
optimal to set βt as low as possible in absolute value so that the incentive-compatibility constraints
in (A.7) are binding for nonzero levels of i and βt =0 when i equals 0, as setting βt larger than
necessary to provide incentives can only decrease the objective function. Thus, problem (B.8)
further simplifies to the following:

V (x,k)=max
a,τ

E

[∫ ∞

0
e−rt

(
XtKt (1−θg(it ))− 1

2
γ rσ 2β2

t X
2
t

)
dt−e−rτ P

]
, (B.9)
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such that

dXt = ĩtXt dt +σXtdZt , X0 =x,

Kt =

{
ks +(kb −ks)1(t≥τ ) if k=ks

kb otherwise
,

βt =θg′(it )Kt1(it >0).

Step 2: Fix an arbitrary investment rule τ̂ and let V̂ and î solve the following:

rV̂ =max
i

L(x,k,V̂ ;i), (B.10)

where

L(x,k,V ;i)=xk(1−θg(i))− 1

2
γ rσ 2β2x2 +ix

∂V

∂x
+

1

2
σ 2x2 ∂

2V

∂x2
,

such that

β =θg′(i)k1(i >0), (B.11)

V̂ (Xτ ,ks)
a.s
= V̂ (Xτ ,kb)−P. (B.12)

In words, (î,τ̂ ) is the proposed optimal incentive-compatible zero-savings effort contract fixing the
investment time τ̂ and V̂ is the corresponding value function. Let (ĩ,τ̂ ) be an arbitrary incentive-
compatible zero-savings contract with the same investment time τ̂ and let

Gt =
∫ t

0
e−rs

(
X̃sK̃s (1−θg(ĩs ))− 1

2
γ rσ 2β̃2

s X̃
2
s

)
ds+e−rt V̂ (X̃t ,K̃t )−1(t≤ τ̂ )e−rτ̂ P , (B.13)

where Gt measures the gain in present value at time t =0 using the contract (ĩ,τ̂ ) until time t and
then following the proposed optimal contract (î,τ̂ ). X̃t and K̃t are the productivity and capital,
respectively, induced by the contract (ĩ,τ̂ ). An application of Ito’s lemma yields the following:

ert dGt =
(
L(X̃t ,K̃t ,V̂ ; ĩt )−rV̂

)
dt +σX̃t

∂V̂

∂x
dZt +(V̂ (Xt ,kb)−V̂ (Xt ,ks)−P )1(t = τ̂ ). (B.14)

The drift term given in (B.14) is always weakly negative by Equation (B.10) and the last term of
(B.14) is always zero. Thus, Gt is a supermartingale.

Consider the value from choosing the contract (ĩ,τ̂ ). We have the following:

E

[∫ ∞

0
e−rs

(
X̃sK̃s (1−θg(ĩs ))− 1

2
γ rσ 2β̃2

s X̃
2
s

)
ds−e−rτ̂ P

]

=E [Gt ]+e−rtE
[∫ ∞

t

e−r(s−t)
(
X̃sK̃s (1−θg(ĩs ))− 1

2
γ rσ 2β̃2

s X̃
2
s

)
ds−V̂ (X̃t ,K̃t )

]

≤G0 +e−rtE
[∫ ∞

t

e−r(s−t)
(
X̃sK̃s (1−θg(ĩs ))− 1

2
γ rσ 2β̃2

s X̃
2
s

)
ds−V̂ (X̃t ,K̃t )

]
.

The inequality follows from the fact that Gt is a supermartingale. As g(ĩs )≥0 and β̃2
s X̃

2
s >0, we

obtain the following:

E

[∫ ∞

t

e−r(s−t)
(
X̃sK̃s (1−θg(ĩs ))− 1

2
γ rσ 2β̃2

s X̃
2
s

)
ds

]
≤E

[∫ ∞

t

e−r(s−t)X̃sK̃sds
]

≤E
[∫ ∞

t

e−r(s−t)X̃skbds

]

≤ X̃t kb

r−imax
,
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as the greatest possible expected present value of the gross (of effort and incentive cost) cash flow
X̃t K̃ is achieved when ĩt = imax and Kt =kb for all t . Note that

V̂ (x,k)≥ xk

r
>0

by Equation (B.10). Thus,

E

[∫ ∞

0
e−rs

(
X̃sK̃s (1−θg(ĩs ))− 1

2
γ rσ 2β̃2

s X̃
2
s

)
ds−e−rτ̂ P

]

≤G0 +e−rtE
[
X̃t kb

r−imax

]

≤G0 +e−(r−imax)t X0kb

r−imax
,

where the last step again follows from the fact that the largest possible expected value for X̃t is
achieved by setting is = imax for all s≤ t under which X̃t is a geometric Brownian motion so that
E[X̃t ]=X0e

imax t . Taking the limit as t→∞ of both sides yields the following:

E

[∫ ∞

0
e−rs

(
X̃sK̃s (1−θg(ĩs ))− 1

2
γ rσ 2β̃2

s X̃
2
s

)
dt−e−rτ̂ P

]
≤G0 = V̂ (X0,K0).

Thus, the contract (ĩ,τ̂ ) yields a weakly lower value than the contract (î,τ̂ ).
Next, we show that there is no loss of generality if we restrict our attention to solutions to

Equations (B.10)-(B.12) with i∈{0,imax} when g(i)= i. Suppose that i∈ (0,imax) solves Equation
(B.10); then i must satisfy the following first-order condition:

0=
∂L(x,k,V̂ ;i)

∂i
=−θxk+x

∂V̂

∂x
.

However, this implies that L(x,k,V̂ ;i)=L(x,k,V̂ ;i′) for all i,i′>0, which implies that there is
no loss of generality if we restrict our attention to the solution with i∈{0,imax}.

Step 3: Having established Steps 1 and 2, the resultant investment problem is a one-dimensional
optimal stopping problem that satisfies standard Lipschitz and growth conditions. Thus, Theorem
4 of Strulovici and Szydlowski (2015) applies, and the value function is smooth and satisfies the
boundary conditions given in Equations (8) and (9). The verification argument of Proposition 7 of
Strulovici and Szydlowski (2015) applies, as the terminal payoff V (x,kb) is twice continuously
differentiable as established in Appendix A.2.

If we impose the constraint βt =0 on problem (B.7), then we are left with problem (4). Nothing
in the above argument relies on βt 
=0, so it also applies to problem (4), thus proving Proposition 1.
�
Proof of Proposition 5 First, consider γ ≤γ1. Lemma A.5 then implies x̄ = x̄1. Differentiating
Equation (A.30) with respect to γ and solving then gives

∂x̄

∂γ
=− 1

f ′
1(x̄1)

(
∂f1(x̄1)

∂γ

)
. (B.15)

Because x̄1 is the smaller root of the concave function f1(x), we have

f ′
1(x̄1)>0. (B.16)

Next, we have

∂f1(x̄1)

∂γ
=− 1

γ
(η−2)A(k2

b −k2
s )x̄2

1 <0 (B.17)

Because (r−2imax −σ 2)(η−2)−1 = imax + 1
2 (η+1)σ 2>0 by the definition η, so (η−2)A>0.

Combining Equations (B.16) and (B.17) gives ∂x̄
∂γ
>0.
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Now consider γ >γ1. Lemma A.5 then implies that x̄ = x̄2. Differentiating Equation (A.31) with
respect to γ and solving then gives

∂x̄

∂γ
=− 1

f ′
2(x̄2)

(
∂f2(x̄2)

∂γ

)
. (B.18)

Because x̄2 is the larger root of the convex function f2(x), we have

f ′
2(x̄2)>0. (B.19)

Next, we have

∂f2(x̄2)

∂γ
=

(
(η−1)B

∂d1(x̄2)

∂x∗
b

x̄2kb −(η−2)A
∂d2(x̄2)

∂x∗
b

x̄2
2k

2
b

)
∂x∗

b

∂γ

− 1

γ
(η−2)A(d2(x̄2)k2

b −k2
s )x̄2

2 . (B.20)

Substituting the optimality condition for x∗
b given in Equation (A.24) into (B.20) gives

∂f2(x̄2)

∂γ
=− 1

γ
(η−2)A(d2(x̄2)k2

b −k2
s )x̄2

2 . (B.21)

Because (η−2)A>0, the sign of ∂f2(x̄2)
∂γ

is determined by the sign of d2(x̄2)k2
b −k2

s . For γ =γ1, we
have x̄2 =x∗

b , so [
d2(x̄2)k2

b −k2
s

]
γ=γ1

=kb −ks>0. (B.22)

Next, we have limγ→∞x∗
b =0 and limγ→∞ x̄2>0, so

lim
γ→∞

(
d2(x̄2)k2

b −k2
s

)
=−ks. (B.23)

Now, let γ2 solve
d2(x̄2

∣∣
γ=γ2

)k2
b −k2

s =0. (B.24)

Rearranging Equation (B.24) gives that

x̄2
∣∣
γ=γ2

=x∗
b

∣∣
γ=γ2

(
ks

kb

)− 2
ε+2

. (B.25)

Substituting Equations (B.24) and (B.25) into Equation (A.31) yields

x∗
b

∣∣
γ=γ2

=
p(kb −ks)

(
η
η−1

)(
ks
kb

) 2
ε+2(

1
r

+
(
B− 1

r

)(
ks
kb

) ε+2
ε+1

)
kb −Bks

, (B.26)

which together with Equation (A.21) gives the following unique solution for γ2

γ2 =

⎛
⎜⎜⎜⎜⎝

(
1
r

+
(
B− 1

r

)(
ks
kb

) ε+2
ε+1

)
kb −Bks

p(kb −ks)
(

η
η−1

)(
ks
kb

) 2
ε+2

⎞
⎟⎟⎟⎟⎠
(
η−1

η−2

)(
ε+1

ε+2

)(
B− 1

r

)(
2(r−2imax −σ 2)

kb(θσ )2

)
.

(B.27)
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Note that γ2<∞ because kb>ks and (r−2imax −σ 2)(η−2)−1 = imax + 1
2 (η+1)σ 2 by the definition

of η. Note that γ2>0 if and only if

1

r
+

(
B− 1

r

)(
ks

kb

) ε+2
ε+1

kb ≥B
(
ks

kb

)
. (B.28)

Because d2(x̄2) is continuous in γ , Equations (B.22) and (B.23) then imply that d2(x̄2)kb −ks ≤0
if and only if γ ≥γ2. Moreover, note that [d2(x̄2)kb −ks]γ=γ1 >0, so γ1<γ2. As a result,

∂x̄

∂γ

{
≤0 if γ <γ2

>0 otherwise,
(B.29)

which completes the proof. �

Proof of Proposition 6 First note that x̄|γ=0 = x̄FB . Thus, if γ2 ≤0, then x̄ <x̄FB for all γ by
Proposition 5. In this case, γ3 =0.

If γ2>0, then let γ3>0 be a constant such that

f2(x̄FB )
∣∣∣
γ=γ3

=0. (B.30)

Note that f2(x̄FB )
∣∣∣
γ=0

=0, x̄ is increasing for 0<γ <γ2, and f2(x) is decreasing in x, so

f2(x̄FB )
∣∣∣
γ=0

>f2(x̄)
∣∣∣
γ=0

=0 and γ3>γ2. Next note that f2(x) is decreasing in γ for all x and

that limγ→∞f2(x)=−∞, so there is a unique finite solution for γ3 in Equation (B.30).
Proposition 5 implies that x̄ is decreasing in γ for all γ ≥γ3 because γ3>γ2. Moreover, by the

definition of γ3, xFB is the larger root of Equation (A.31), and thus x̄ = x̄FB. Because x̄ is decreasing
for all γ ≥γ3, it must be that x̄ <x̄FB for γ >γ3. �

Proof of Proposition 7 Note that r >2imax +σ 2 implies A>0 and η>2. Let

γ4 =max

⎧⎨
⎩γ2,

(
σηp(kb −ks)

imax + 1
2 (2η−1)σ 2

)[(
p(kb −ks)ks

Bkb

)(
imaxr(θσ )2

(imax + 1
2 (η+1)σ 2)2

)]−1
⎫⎬
⎭.

and let γ ≥γ4. First note that i∗(x̄,kb)=0, so x̄ is given by Equation (A.31). Differentiating both
sides of Equation (A.31) and solving for ∂x̄

∂σ
gives

∂x̄

∂σ
=− 1

f ′
2(x̄2)

(
∂f2(x̄2)

∂σ

)
. (B.31)

In the proof of Proposition 5, we show that f ′
2(x̄2)>0. We claim that γ >γ4 implies ∂f2(x̄2)

∂σ
>0

and thus also implies ∂x̄
∂σ
<0. We have

∂f2(x̄2)

∂σ
=
∂η

∂σ

(
B(d1(x)kb −ks)x̄−A(d2(x̄)k2

b −k2
s )x̄2 −P

)

−(η−2)
∂A

∂σ
(d2(x̄)k2

b −k2
s )x̄2

+(η−1)B

(
∂d1(x)

∂ε

∂ε

∂σ
+
∂d1(x)

∂x∗
b

∂x∗
b

∂σ

)
xkb

−(η−2)A

(
∂d2(x)

∂ε

∂ε

∂σ
+
∂d2(x)

∂x∗
b

∂x∗
b

∂σ

)
x2k2

b .

347

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/article-abstract/33/1/309/5488961 by Erasm

us U
niversiteit R

otterdam
 user on 14 January 2020



[17:21 27/11/2019 RFS-OP-REVF190055.tex] Page: 348 309–357

The Review of Financial Studies / v 33 n 1 2020

∂f2(x̄2)

∂σ
=
∂f2(x̄2)

∂x∗
b

∂x∗
b

∂σ
+
∂f2(x̄2)

∂ε

∂ε

∂σ
+
∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ

The optimality condition for x∗
b given in Equation (A.24) gives ∂f2(x̄2)

∂x∗b
=0. Next, we have

∂f2(x̄2)

∂ε
=

(
(η−1)B

∂d1(x)

∂ε
xkb −(η−2)A

∂d2(x)

∂ε
x2k2

b

)
∂ε

∂σ

=−
(

(η−1)

(
B− 1

r

)
−(η−1)Ax∗

bkb

)(
x̄

x∗
b

)−ε
log

(
x̄

x∗

)
x∗

bkb
∂ε

∂σ

=−
(
η−1

ε+2

)(
B− 1

r

)(
x̄

x∗
b

)−ε
log

(
x̄

x∗

)
x∗

bkb
∂ε

∂σ
(B.32)

where the last step follows from the definition of x∗
b . Observe that ε>0, η>1, B> 1

r
, x̄ >x∗

b , and
∂ε
∂σ
<0, so Equation (B.32) implies

∂f2(x̄2)

∂ε

∂ε

∂σ
>0. (B.33)

We can use the definition of A to obtain
∂f2(x̄2)

∂A

∂A

∂σ
=−(η−2)

(
2(r−2imax)

σ (r−2imax −σ 2)

)
A(d2(x̄)k2

b −k2
s )x̄2>0, (B.34)

because γ >γ2 implies d2(x̄)k2
b −k2

s <0.
Next, we have

∂f2(x̄2)

∂η
=B(d1(x̄)kb −ks)x̄−A(d2(x̄)k2

b −k2
s )x̄2 −p(kb −ks)

=

(
1

η−1

)(
−A(d2(x̄)k2

b −k2
s )x̄2 +p(kb −ks)

)
(B.35)

where the last step follows from applying Equation (A.31). We thus have

∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ
=−
(

(η−2)

(
2(r−2imax)

σ (r−2imax −σ 2)

)
+

1

η−1

∂η

∂σ

)
A(d2(x̄)k2

b −k2
s )x̄2

+
p(kb −ks)

η−1

∂η

∂σ
(B.36)

We have
∂η

∂σ
=− ση(η−1)

imax + 1
2 (2η−1)σ 2

,

r−2imax −σ 2 =(η−2)(imax +
1

2
(η+1)σ 2)),

r−2imax =(η−2)imax +
1

2
η(η−1)σ 2,

which together imply

(η−2)

(
2(r−2imax)

σ (r−2imax −σ 2)

)
+

1

η−1

∂η

∂σ
=

2(η−2) imax
σ

+η(η−1)σ

imax + 1
2 (η+1)σ 2

− ησ

imax + 1
2 (2η−1)σ 2

≥ 2(η−2)imax +η(η−1)σ−ησ
imax + 1

2 (η+1)σ 2

≥ 2(η−2)imax

imax + 1
2 (η+1)σ 2

>0 (B.37)
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since η>2. Substitution (B.37) into (B.36), and using d2(x̄)≥0, we have

∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ
≥
(

2(η−2)imax

imax + 1
2 (η+1)σ 2

)
Ax̄2k2

s − σηp(kb −ks)

imax + 1
2 (2η−1)σ 2

. (B.38)

Finally note that x̄≥ p(kb−ks)
Bkb

, so

∂f2(x̄2)

∂A

∂A

∂σ
+
∂f2(x̄2)

∂η

∂η

∂σ
≥
(

2(η−2)imax

imax + 1
2 (η+1)σ 2

)
A

(
p(kb −ks)ks

Bkb

)2

− σηp(kb −ks)

imax + 1
2 (2η−1)σ 2

,

>0, (B.39)

by the definition of γ4. Thus ∂f2(x̄2)
∂σ

>0 which completes the proof. �

B.2 Proofs of Supporting Results

Proof of Lemma A.1 Consider an arbitrary contract	=({ct ,it },τ ) and suppose that the solution to
the manager’s optimization problem (A.1) for this contract is given by {c̃t ,ĩt } and that the manager’s
associated value for this contract is W̃0.

Now, consider the alternative contract 	̃=({c̃t ,ĩt },τ ). Under this contract, the manager again
obtains utility W̃0 from the consumption effort pair {c̃t ,ãt }. We claim that the solution to the
manager’s optimization problem (A.1) is again {c̃t ,ĩt }. Suppose that it is not and that there is an
alternative feasible pair {čt ,ǐt } such that this policy yields the utility W̌0>W̃0 to the manager. The
consumption effort pair {čt ,ǐt } is also feasible under the original contract 	 as

lim
t→∞E

[
e−rt

∫ t

0
(cs− čs )ds

]
= lim
t→∞

(
E

[
e−rt

∫ t

0
(ct− c̃t )dt

]
+E

[
e−rt

∫ t

0
(c̃s− čs )ds

])

= lim
t→∞E

[
e−rt

∫ t

0
(cs− c̃s )ds

]
+ lim
t→∞E

[
e−rt

∫ s

0
(c̃s− čs )ds

]

=0.

Thus, the manager could achieve utility W̌t >W̃t under the original contract 	, a contradiction.
Finally, the investor achieves the same value under the new contract 	̃ as under the original

contract 	, as effort and investment are unchanged, and the transversality condition implies that
the two consumption streams have the same present value. �
Proof of Lemma A.2 Consider the manager’s problem (A.1) and denote its optimal consumption-
investment solution by (c∗,i∗) given savings St =S and associated value Wt (	,{Xs,Ks}s≤t ;S).
We claim that for S =0, a feasible plan (c∗ −rS,i∗) solves problem (A.1). It then holds that
Wt (	,{Xs,Ks}s≤t ;0)=eγ rSWt (	,{Xs,Ks}s≤t ;S). Suppose that there is some alternative (č,ǎ)
that yields a higher utility to the manager with zero savings. That is, W̌t (	,{Xs,Ks}s≤t ;0)>
Wt (	,{Xs,Ks}s≤t ;0). Now, consider the plan (č+rS,ǐ) and note that this plan is feasible under
St =S, but that under this plan, the manager can achieve the following utility:

W̌t (	,{Xs,Ks}s≤t ;S)=e−γ rSW̌t (	,{Xs,Ks}s≤t ;0)

≥e−γ rSWt (	,{Xs,Ks}s≤t ;0)

=Wt (	,{Xs,Ks}s≤t ;S).

This contradicts the optimality of (c∗,i∗). Thus, (c∗ −rS,i∗) is indeed optimal, and

Wt (	,{Xs,Ks}s≤t ;0)=eγ rSWt (	,{Xs,Ks}s≤t ;S).
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This implies the following:

∂

∂SWt (	,{Xs,Ks}s≤t ;0)=−γ rWt (	,{Xs,Ks}s≤t ;0). (B.40)

In any optimal consumption-savings plan, the manager’s marginal utility of consumption must
equal her utility of savings, or u′(c̃t )= ∂

∂SWt (	,{Xs,Ks}s≤t ;0). Substituting Equation (B.40) into
this last condition and noting that u′(c̃t )=−γ u(c̃t ) gives the desired result. �
Proof of Lemma A.3 We restrict the manager’s consumption plan to satisfy the following
integrability and transversality conditions:

E

[∫ ∞

0
−e−rsu(c̃s ,ĩs )ds

]
<∞, (B.41)

lim
t→∞St

a.s
= 0. (B.42)

Consider an arbitrary contract (β,i,τ ) and note that if Wt solves Equation (A.5), then Wt is
equal to the manager’s continuation utility from choosing savings St =0 and investment rate it
by construction. Suppose that βt and it satisfy Equation (A.6) and consider an arbitrary policy
(c̃,ĩ). Let

Gt =
∫ t

0
e−rsu(c̃s ,ĩs )ds+e−rt e−γ rSt Wt , (B.43)

where St =
∫ t

0 e
r(t−s)(cs− c̃s )ds is the manager’s accumulated savings when she chooses the

alternative consumption plan. An application of Ito’s lemma yields the following:

ert+γ rSt dGt =
(−γ rWt (ct− c̃t )−γ rWtβt (ĩt−it )Xt +eγ rSt u(c̃t ,ĩt )

)
dt−γ rWtβt dZt .

The c̃t and ĩt that maximize the drift term above must satisfy the following first-order conditions:

γ rWt =−eγ rSt uc(c̃t ,ĩt ),

γ rWtβtXt =−θg′(i)XtKt eγ rSt uc(c̃t ,ĩt ),

as ui (ct ,it )=−uc(ct ,it )θg′(it )XtKt . These first-order conditions are solved for c̃t =ct +rSt and
ĩt = it , as rWt =u(ct ,it ). Moreover, for c̃t =ct +rSt and ĩt = it , the drift term is zero. Thus, for all other
choices of consumption and effort, the drift term is weakly negative and Gt is a supermartingale.

The manager’s value from choosing the policy (c̃,ĩ) is expressed as follows:

E

[∫ ∞

0
e−rsu(c̃s ,ĩs )ds

]
=E[Gt ]+E

[∫ ∞

t

e−rsu(c̃s ,ĩs )ds−e−rt−γ rSt Wt

]

≤G0 +E

[∫ ∞

t

e−rs (u(c̃s ,ĩs )−eγ rSt u(cs ,is ))ds

]
. (B.44)

Now note that limt→∞St
a.s.
= 0 such that limt→∞|c̃t−ct |a.s.= 0, which, in turn, implies the following:

lim
t→∞

∫ ∞

t

e−rs (u(c̃s ,ĩs )−eγ rSt u(cs ,is ))ds
a.s
= 0.

Finally, by the condition given in Equation (B.41) and Fubini’s theorem, we can take the limit as
t→∞ of both sides of Equation (B.44) to obtain the following:

E

[∫ ∞

0
e−rsu(c̃s ,ĩs )ds

]
≤G0 + lim

t→∞E
[∫ ∞

t

e−rs (u(c̃s ,ĩs )−eγ rSt u(cs ,is ))ds

]

=G0 =W0.

Thus, all other consumption and effort plans (c̃t ,ĩt ) yield no more utility than (ct ,it ), and the
contract is incentive-compatible and zero-savings.
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The conditions given are necessary for a contract to be zero-savings according to Lemma A.2.
To see that the conditions are also necessary for incentive compatibility, consider any contract such
that βt does not satisfy the condition given in Equation (A.6). The same argument given above
would show that the optimal response to such a contract would be to choose ĩt 
= it . �
Proof of Lemma A.4 Let

L=

(
η−1

η

)(
kb

ks

)2(
kb

r
−Bks

)(
γ x∗

b

kb −ks

)
(B.45)

Note that L does not depend on γ because the dependence on γ in the term γ x∗
b cancels out.

Let V̂ solve

rV̂ =xks(1−θimax)+imaxxV̂x +
1

2
x2V̂xx , (B.46)

such that

V̂ (0)=0, (B.47)

V̂ (X̂)=V (x,kb)−p(kb −ks), (B.48)

V̂x (X̂)=Vx (x,kb). (B.49)

Observe that x̂ is finite, as kb(r−imax)>ksr(1−θimax). Suppose that x̂≥x∗
b ; then we can combine

Equations (B.48) and (B.49) to obtain the following:(
kb

r
−Bks

)
x̂+

(
η+ε

η−1

)
Cb2x̂

−ε =p

(
η

η−1

)
(kb −ks). (B.50)

As η>1, ε>0, and Cb2>0, Equation (B.50) implies the following:

x̂≤p
(

η

η−1

)
(kb −ks)

(
kb

r
−Bks

)−1

≤
(
L

γ

)(
η

η−1

)
(kb −ks)

(
kb

r
−Bks

)−1

=

(
kb

ks

)2

x∗
b .

As V̂ (x)≥V (x,ks), x̄≤ x̂≤
(
kb
ks

)2
x∗

b . Furthermore, imaxx
∗
bV (x∗

b ,kb)=θimaxx
∗
bkb +

1
2 γ r(θσx

∗
bkb)2 and V (x,kb) is convex for x>x∗

b . Thus, the smooth-pasting condition for
x̄ in Equation (A.13) implies the following:

imaxx̄Vx (x̄,ks)= imaxx̄Vx (x̄,kb)

≥ imaxx̄Vx (x∗
b ,kb)

=
x̄

x∗
b

(
imaxθx

∗
bkb +

1

2
γ r(θσx∗

bkb)2
)

= imaxθx̄kb +
1

2
x̄x∗

bγ r(θσkb)2

≥ imaxθx̄ks +
1

2
γ r(θσ x̄ks)

2,

which implies that i∗(x̄,ks)= imax, the desired result. �
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Proof of Lemma A.5 First, note that it is straightforward to see from Equation (A.33) that x̄2

is increasing in γ and from Equation (A.21) that x∗
b is decreasing in γ . Moreover, x̄1

∣∣
γ=0 =

x̄FB < limγ→0x
∗
b =∞ and limγ→∞x∗

b =0< limγ→0 x̄1 =∞. Thus, there exists a unique γ1 such
that x̄1 ≤x∗

b if and only if γ ≤γ1 and x̄1
∣∣
γ=γ1

=x∗
b

∣∣
γ=γ1

. Note that x̄1
∣∣
γ=γ1

=x∗
b

∣∣
γ=γ1

also implies

that d1(x̄1
∣∣
γ=γ1

)=d2(x̄1
∣∣
γ=γ1

)=1, so that Equations (A.30) and (A.31) are equivalent and x̄1
∣∣
γ=γ1

=

x̄2
∣∣
γ=γ1

. If γ >γ1, then the only possible solution is x̄2. �

Appendix C: Additional Results

C.1 The Complementarity of Incremental and Lumpy Capital
Our goal here is to clarify that the results of the paper are due to the dynamics of the problem rather
than simply due to a technological assumption of substitutability between inputs in our production
and profit functions. To this end, we show that incremental and lumpy capital are production
complements in the static version of the investment problem faced by investors. Consider the
following problem

max
i≥0,K∈{ks ,kb}

{X(1+i)K−θg(i)XK−P1(K =kb)}, (C.1)

where i is investment in X and g(i) an investment cost function for X with g′(i)≥0 and g′′(i)≥0
for i≥0. This problem assumes that the firm is endowed with ks units of capital and can add kb−ks
units of capital at total cost P . We want to determine how the value of the additional kb−ks units
of capital, denoted by �KV , depends on the cost of investment in X given by θ . It is optimal to
invest in additional capital if and only if �KV ≥P . Thus, if �KV is decreasing in θ , then X and
K are complements in that raising the cost of investment in X decreases investment in K .

First, we take a first-order condition of Problem (C.1) with respect to i to determine the optimal
investment in X

g′(i∗)=
1

θ
.

Note that optimal investment in X, i∗, does not depend on K . Moreover, this first-order condition
implies that i∗ is decreasing in θ because g′′(i)≥0. Next, we take the difference of the production
function X(1+i∗)K−θg(i∗)XK evaluated at kb and ks to obtain

�KV =(X(1+i∗)−θg(i∗)X)(kb−ks ).
Finally, we take a derivative of�KV with respect to θ and apply the first-order condition for i∗ to
obtain

d

dθ
�KV =

(
∂i∗

∂θ
X−g(i∗)X−θg′(i∗)

∂i∗

∂θ
X

)
(kb−ks )=−g(i∗)X(kb−ks )≤0,

so that �KV is decreasing in θ . This implies that increasing θ decreases optimal investment in
both X and K for all θ , and thus the two inputs are complements. The intuition is that with larger
θ , the firm will optimally operate at a lower productivity X, which makes capital less productive
and hence reduces investment in capital.

Note that we reach the same conclusion by considering the cross effect of inputs on the value
function. The marginal effect of X on the incremental benefit of investment in K , given by

d

dX
�KV =(1+i∗ −θg(i∗))(kb−ks ),

is always positive at the optimal i∗ assuming that the value function is weakly positive. Thus,
the incremental benefit of investment in K increases in the amount of X, in other words, the
value function is supermodular in X and K , which indicates that the two inputs are production
complements.
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C.2 Partially Observable Shocks to Incremental Capital

We assume that shocks to incremental capital Zt are given by the following:

dZt =
√
αdZ1

t +
√

1−αdZ2
t ,

where Z1
t and Z2

t are independent Brownian motions. Importantly, the investor observes Z2
t but

not Z1
t . Thus, α measures the severity of the moral hazard problem that the manager faces. When

α=0, the manager’s actions are perfectly observable and there is no moral hazard problem. When
α=1, the manager’s actions are as unobservable as possible and the moral hazard problem is severe.
We can think of Z2

t as an industry- or market-wide shock to productivity, whereas Z1
t is a shock

idiosyncratic to the firm.
The solution to the optimal contracting problem with partially observable shocks is similar to

the one of the baseline moral hazard model in Appendix A.1. In the following, we highlight the
necessary adoptions.

Lemmas A.1 and A.2 hold in the current setup. To derive the dynamics of Wt in an incentive-
compatible zero-savings contract with partially observable shocks, the martingale representation
theorem implies that there exist two progressively measurable processes βt and λt such that the
following holds:

dMt =−γ rWte
−rt (βt (dXt−itXt dt−σ√

1−αXtdZ2
t

)
+λtσ

√
1−αXtdZ2

t

)
.

This yields the following dynamics for the manager’s continuation utility under the recommended
consumption and investment plan:

dWt =−γ rWt

(
βt

(
dXt−itXt dt−σ

√
1−αXtdZ2

t

)
+λtσ

√
1−αXtdZ2

t

)
. (C.2)

Because a deviation from the recommended i offers the same costs and benefits as those in Appendix
A.1, it can be readily verified that the incentive-compatible, zero-savings βt must satisfy condition
(A.7), whereas λt is any progressively measurable process.

It is again convenient to use the certainty equivalent of the manager’s continuation utility as
a state variable for the investor’s problem. Applying Ito’s lemma to Yt =−1/(γ r)ln(−γ rWt ) and
Equation (C.2) yields that the dynamics of Yt under an incentive-compatible zero-savings contract
are given by the following:

dYt =
1

2
γ rσ 2(αβ2

t +(1−α)λ2
t )X

2
t dt +σXt (

√
αβtdZ

1
t +

√
1−αλtdZ2

t ),

where βt is given by Equation (A.7).
The remaining steps of Appendix A.1 are easily adapted. As before, the investor would never

expose the manager to more risk than is required to provide incentives. Thus, the sensitivity to
observable shocks λt is always zero. It follows that the total firm value function under the optional
contract must satisfy the HJB equation, Equation (19), where the incentive cost is given by the
following:

ρ(i,x,k)=
1

2
1(i >0)αγ r

(
θσg′(i)xk

)2
,

which differs from the incentive cost in the baseline moral hazard model in Equation (20) by the
linear dependence onα. This shows that the observability parameterα affects the contract in exactly
the same way as the coefficient of the manager’s risk aversion γ . A straightforward adaptation of
Proposition 4 verifies the optimality of the proposed contract under the partial observability of
shocks.
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C.3 Single-capital Version of the Model

This appendix analyzes the version of the model of Section 1 with only one form of capital and
abstract away from incremental capital. Consider a firm that can invest in capital K continuously
at rate I subject to adjustment cost F (I,k) and discretely with a one-time increase by fraction �
subject to a fixed cost P . In addition, capitalK depreciates at rate δ. Thus, the capital stock evolves
as follows:

dKt =(It−δtKt )dt +σKtdZt +�Kt1(t =τ ),

where σ is the volatility of the capital accumulation shock. Using it =It /Kt , dKt can be written
as follows:

dKt =(it−δ)Ktdt +σKtdZt +�Kt1(t =τ ).

We assume that the choice of i is constrained to [0,imax] for some positive imax<r . One unit of
capital generates one dollar of cash flow. The firm’s cash flows net of the investment costs are then
given by the following:

Ktdt−θG(it ,Kt )dt−P1(t =τ ),

whereG(i,k)=F (I,k). The problem is very similar in its structure to that of Section 1. Under some
regularity condition, the optimal policy for lumpy investment takes the form of an upper threshold
k̄. Denote the time to invest by τ =inf{t :Kt ≥ k̄}.

For simplicity, assume that δ=0. Standard arguments suggest that post-lumpy-investment firm
value, denoted by Vb(k), must satisfy the following HJB equation:

rVb =max
i
k−θG(i,k)+ikV ′

b +
1

2
σ 2k2V ′′

b . (C.3)

Pre-lumpy-investment firm value, denoted by Vs(k), solves a similar HJB equation:

rVs =max
i
k−θG(i,k)+ikV ′

s +
1

2
σ 2k2V ′′

s , (C.4)

subject to boundary conditions at k= k̄:

Vs(k̄)=Vb((1+�)k̄)−P, (C.5)

V ′
s (k̄)=(1+�)V ′

b((1+�)k̄). (C.6)

If interior, the optimal investment rate i∗j solves the following:

θGi (i
∗
j ,k)=kV ′

j (k), (C.7)

where the subscript j ∈{s,b} denotes the pre- and post-lumpy-investment values.
It is common to assume that F (I,k) is homogeneous of degree one in I and k, which means that

G(i,k) is separable in i and k,G(i,k)=g(i)k. Like in the model of Section 1, here the cost function
g(i) can encompass the direct and adjustment costs of investment. If g(i)= i, it captures only the
direct cost of investment in capital. An increasing and convex g(i) captures the adjustment costs.

Problem (C.3)-(C.6) is isomorphic to the one studied in Sections 1 and 2. Thus, we can readily
obtain results analogous to Propositions 2 and 3. The model also can be extended to incorporate
moral hazard analogous to Section 3.
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C.4 Option to Abandon
In this section, we consider a firm that holds an option to abandon its operations. The setup is
identical to that in Sections 1.1 and 3.1, except that instead of holding an option to increase capital,
the firm starts with lumpy capital k0 and can now liquidate and sell all of its capital for a fixed
priceQ. We assume that the firm honors the promised obligations to the manager after liquidation.
The problems of investment in incremental capital and of providing the manager with incentives
are essentially identical to those one analyzed in the main text for the case of a growth option. The
total value of the firm before liquidation is denoted by V (x). Before liquidation, the value of the
firm and optimal contract are given by the solution to the following HJB equation:

rV = max
i∈[0,imax]

{
xk0(1−θg(i))+ixV ′ +

1

2
σ 2x2V ′′ −ρ(i,x)

}
, (C.8)

where

ρ(i,x)=
1

2
1(i >0)γ r

(
θσg′(i)xk0

)2
. (C.9)

The equation is essentially the same as Equation (19), but it requires a set of different boundary
conditions that are consistent with the option to abandon. As expected, the optimal exercise policy
takes the form of a lower threshold x such that the firm liquidates the first time that Xt is at or
below x. At x =x, the following value-matching and smooth-pasting conditions must hold:

V (x)=Q (C.10)

V ′(x)=0. (C.11)

As x approaches infinity, the probability of abandonment approaches zero. As the incentive cost
of effort ρ (quadratic in x) increases more rapidly than cash flows (linear in x), i approaches zero.
Thus, V (x) becomes a linear function consistent with i =0 as x approaches infinity:

lim
x→∞V

′(x)=
1

r
. (C.12)

The optimality of the solution to Equations (C.8)-(C.12) can be verified by a straight-forward
adaptation of the proof of Proposition 4.

The main takeaway of this model is that an increase in the severity of the moral hazard problem
increases the optimal liquidation threshold x. This result is intuitive, as an increase in moral hazard
decreases the value of the firm before liquidation but does not affect the liquidation value Q and
thus makes early liquidation more attractive. This intuition mirrors the intuition that we present in
the main model with a growth option in that the effect of moral hazard on the timing of the option
exercise depends on the differences in sensitivity to the moral hazard of the values before and after
the option exercise. In the case of an option to abandon, this mechanism leads to the unambiguous
acceleration of liquidation with the increasing severity of moral hazard. We interpret this type of
early liquidation as a form of underinvestment due to moral hazard.
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