
Flavius Frasincar,
Geert-Jan Houben,
Philippe Thiran (Eds.)

WISM’07
Fourth International Workshop on Web
Information Systems Modeling

Workshop at

CAiSE’07

The 19th International Conference on
Advanced Information Systems Engineering
Trondheim, 11-15 June, 2007

F. Frasincar, G.J. Houben and Ph. Thiran (Eds.)

Organization

Program committee

Djamal Benslimane France
Tommaso di Noia Italy
Flavius Frasincar The Netherlands
Martin Gaedke Germany
Jaime Gomez Spain
Volker Gruhn Germany
Geert-Jan Houben Belgium & the Netherlands
Ivan Jelinek Czech Republic
Zakaria Maamar UAE
Philippe Thiran Belgium
Riccardo Torlone Italy
Lorna Uden UK

Workshop organizers

Flavius Frasincar The Netherland
Geert-Jan Houben Belgium & the Netherlands
Philippe Thiran Belgium
Peter Barna The Netherlands

WISM’07: Fourth International Workshop on Web Information Systems Modeling

Preface

Web Information Systems (WIS) are data-intensive systems that use the Web
platform to present information. Due to the growing number of requirements that WIS
need to fulfil, there is an increasing demand for methodologies to design these
systems. Many of the WIS design methodologies use models to tackle the different
aspects of these systems and thus manage their complexity.

The Web Information Systems Modeling (WISM) workshop aims to discuss some
of the current issues involved in WIS modeling. This is the fourth edition of this
international workshop after three successful editions organized in Luxembourg
(2006), Sydney (2005), and Riga (2004). Due to the advantages that the Semantic
Web has to offer for modeling, sharing, and reusing data, we decided to focus in this
edition on how one can make use of Semantic Web technologies for WIS modeling.

Since the Web introduction there is an increased need to flexibly and efficiently
integrate heterogeneous distributed data sources. One way to achieve integration can
be realized by automatically mapping queries with the local schemas of the data
sources. In case that the data model of the data sources is unknown one can build
wrappers by exploiting the layout and ontological models specific to a certain domain.

In addition to the need to integrate data, there is a high need to integrate services
in open P2P environments. One approach to service discovery is based on building
communities of peers by matching their service descriptions. Such a matching
procedure can make use of ontologies for describing the functionality and the
input/output messages of services, and a thesaurus in order to allow more advanced
service matching facilities.

The ability to integrate services should be complemented with flexible ways of
querying. One of the most used query languages is SQL, and the standard language
for Web service description is WSDL. Due to the popularity of these languages there
is a need to build relational views on top of WSDL that can be subsequently queried
using SQL. An object-oriented query language that supports Web services data types
can be used to define relational views. These relational views can be subsequently
nested yielding high level views.

With the advent of the Semantic Web there is a growing need of having Web
pages annotated with metadata. Many of these Web pages are automatically generated
by WIS. One way to support the Semantic Web is to build WIS that can recognize the
end-user of a Web page: a human agent or software agent. For a software agent the
WIS will generate the metadata describing the information that is conveyed in the
current Web page.

Most of us did experience the long and tedious process of discovering articles on
the Web that we need for our current research tasks. Such a process can be
considerably improved by a recommender system that makes use of our research
interests. In order to avoid the manual registration of user interests these
recommender systems can automatically build user profiles by tracking researchers’
academic activities and publications.

F. Frasincar, G.J. Houben and Ph. Thiran (Eds.)

Most of the ontologies proposed for the Semantic Web are used for modeling
static domains. For modeling dynamic domains there is a need to represent time and
time-dependent aspects in ontologies. In order to be able to build such representations
the current ontology language on the Web, i.e., OWL, needs to be extended with
temporal primitives, and concepts able to change. The temporal primitives can be
defined using a concrete domain, and the changing concepts can be elegantly
specified by means of perdurants.

A lot of the information on the Semantic Web is stored as XML representations.
As these representations tend to be rather large and complex, it is important to be able
to efficiently query them. Given an XML query, a query processor needs to locate the
results set that satisfies the query constraints. By making use of index structures and
query processing strategies, one can improve the performance of the matching
operation.

We do hope that some of the above issues sufficiently raised the reader’s appetite
to have a closer look at the articles gathered in these proceedings. We would like to
thank all the authors, reviewers, and participants for their contributions making thus
the organization of this workshop possible.

Flavius Frasincar
Geert-Jan Houben
Philippe Thiran
(June, 2007)

WISM’07: Fourth International Workshop on Web Information Systems Modeling

Table of Contents

A Semantic Matching Approach for Making Heterogeneous Sources Interoperable
..
Michel Schneider and Damien Thevenet

Modelling Patterns for Deep Web Wrapper Generation ...
Thomas Kabisch and Susanne Busse

Semantic Driven Service Discovery for Interoperability in Web Information
Systems ..
Devis Bianchini, Valeria De Antonellis, Michele Melchiori and Denise Salvi

Web Service Mediation Through Multi-level Views ...
Manivasakan Sabesan and Tore Risch

S-FrameWeb: a Framework-Based Design Method for Web Engineering with
Semantic Web Support ...
Vitor Estevao Silva Souza, Thiago Wotikoski Lourenco, Ricardo de Almeida Falbo
and Giancarlo Guizzardi

Personalizing Bibliographic Recommendation under Semantic Web Perspective
……………...
Giseli Rabello Lopes, Maria Aparecida Martins Souto, Leandro Krug Wives and
Jose Palazzo Moreira de Oliveira

An OWL-Based Approach Towards Representing Time in Web Information
Systems ...
Viorel Milea, Flavius Frasincar, Uzay Kaymak and Tommaso di Noia

Optimizing XML-Based Web Information Systems ..
Colm Noonan and Mark Roantree

F. Frasincar, G.J. Houben and Ph. Thiran (Eds.)

�
�

��������	
����
�	�
�������
���������	�
�

������
�����������
�����������������
�

����������	��
����
����	������	���
�

����������������
�������������� !��"#$�%&%���
���
'������(���	��
��) �����(*��������	��
����)*���(*�+�

�
�
�

������
��� "���������� ��� ��,�� ��������� �������� �	��������-��� .����

����	�����/� �	�����0���
� .��	� �	�� ���� �-��� ��� �������� �� ������� ����

������0�	���/� ���-����(� ����� ��1������ ����� �� 0��-��� ������� ����� -��

���-�����
� ��� ����� �����	0�� -��.��	� ������ �������� ����� -�� ����-�����
�

-�*���� �	/���1�������	� -������
(� �����-2�����*� ����������� ��� ��� ���
/� ���

.���� ����	
�����
�����	� �����������	�-�� �	����0�
�.��	�	�	���*� ������

*��������������������� ������-��(����� �������	���	������ �	�������	0���1���/�

.����������*�����������������(���������������	���������������/������-���.��	�

���������������-�������������������������(�3�������	�����0���	0�������������	�

-/���	��
���	0����� �	��������-����/��*�������0�	�����4����������(�������

�������� ���� �������	��
� �	� ���� �3�� ��	0��0�(� 5������� ���� *��������
�

���	0��	�45#%&67��,����	0��0�(�������	0��*�	����� ��������
�-/����	0�

�	��	����0/��*�����
����	(�3�������
�������
���������/����	
���	
����
�

��	��-����*���������	��������������������������/��*�������������(�

�������������	��������-����/��8�����0�	���/����
�����	��������	0(�

�

�� �������
�	���

�����	��������-����/��*����������������0�	��������������������	����	��������	��������	0��

��	��
���	0� ���������*������	��*�	�������� �	*�������	� �������� -���� �	���������	��.��,��

9�	���	��:� �	
� �	� ��-���� 	��.��,�� 9�	���	��:(� 8�����0�	���/� ��� ���� ��	��1��	��� �*� ����

����	��/;�������������
���0	�
���������	��
��	
����
��	
���	
�	��/(�8�����0�	���/���	�

������� *���
�**���	�� �����	�;�
�**���	�� �/���� �*�
�����
�**���	�� �������	�����	�� �*�
�����

�**���	�� ��	�0���	�� ��*�.���� ���,�0��(� ���� �	��������-����/� ��	������ �	� ����.�	0� ����

�������	�������	��������	��*��������������������������	,�����
����.��������/���	���	(�������

	�������/������,��
�**���	�����������	��������-����	�	��������
����	�����������������	���

-���	������	����	��	������	��/����
���	���0�	�����(�

� �	��������-����/����-������������	����/�
�**���	��.�/��
���	
�	0��	�.���������������

�������������
�9
����-����:������7���������
�98�������4�����0��:��	�	7���������
�9�	/�

�

���:(� ���� ������� �	�������� ����� �	*���	���� ���� �����-�������� �*� �	��������-����/(� <���

�������� �.��
���� -����� ��	� -��
�**������ ��� ��,�� �	��������-��� .��	� ���/� ���� �	�/�

�������-��������0�������*���.�-��	���*����(�

� �	�� �	��������-����/� ���������.��������� -��	� ���
��
� *�����������/����� ��� -���
��	�

��
�����	� = !>�� =?>(�"���
�������	��/���� ����1���/��*� �������� -���,�� ���
�.	� �	��� ��-7

1�������*������������������������	
���7�����-�����������������*���-71���������������	�������

�	� �� ����0�	����� .�/(� ���� ��2����/��*� ��
�����	� �/������ �������� �	� �������
� .���
�

.������	��,	�.����������������������������,���	��������-��(��������������������
��	��0���

��� ����(� <����� ��� ��������-��� ��� -���
� �	� �	��0����
� �������.�������	��������� ����*���	���

���������������������*���������������1������(����	���� ��������-�����������/�������
������

.������������ �	*�������	�.���������	�������/�*��������	��������-����/��	
������������/����

��������������0�	���/����-����(�����
�**���	�� ,�	
���*� ������0�	���/� ��� -���������
� ����

	�.�������/� �
�	��*��
;� ������0�	���/��*���	��������� �	��	���	��� ����	���� ������0�	���/@�

������0�	���/� �*�
���� ����������� ��� ����������� ����	���� ������0�	���/@� ������0�	���/� �*�

��������������	���	�������	����������0�	���/(�
�**���	���������	�������-��	����
��
� �	
�

��������	��
��	�������������������-����(�<�����������.����	����������.��,��*�=�>��	
�=A>(�

<���� ������ �	������ �	�����0����	������/�	��������.��,�� �	�����	�
����������������������

����������� �*� �	��0�����	� �*� �������(� "	� ��������� .��� �����������/� �	�����0���
;� ����

�����	0��*��������(������
�����������-������	��*����������/���������������%��B�����
��

�C"���
�C%�����"��D�#%���#E�
(��	��.����*�	
��	��/�����	
����������	���*������

�/�������	�= ?>����=F>����= G>(������������������������*���������������	��*�������/����������

�������
��	�= >(�����������*��	����0����.���������	�����0���
(��	�=G>��	
�= >�������	�������

�*� �	����0���� *��� ���� ����	���� �	��������-����/� ��� �	
����	�
(� �������� ����������� �*�

�	��0�����	��*��	*�������	�-���
��	��	����0����.������00����
(��	��.����*�	
����/	�������

�*�����	�= �>(�������	�������/���������1���������.��,��*�=H>���00����	0�����0�����*�����*�������

�	��0�����	��*�
���(� �	� ���� ������.��,��� �����-2������� ��� ���-���
���0��-����������.�����

�	��0���������������������������(��

� 3��	��	����������� �	��	���������	��/�.���
�.���������������	���������������� ������

�������-������	��*���0��-���������������
�**���������,(����.���
�-��	�������/����-���-������

����	������� ���� �	��0����
��������������������	�.�������� �����	��
���
���������������	�

������� ������� ��,��� �� 	��-��� �*� ���	0��(� ��� ��������� ������
��.-��,�� �	� �	������

��������� ���� ����� -��	� �	�����0���
� ;� ���� 1���/� -���
� ��������(� �	� ����� ��������� 	��

0��-��� ������� �����1����
(����� �	��0�����	����-����� ���� �����
�
���	0�1���/�	0(� ������

���	��/��������	�-��������*��
��	����������0��/;��	*�������	���	�*��
��/�������	*��������

�/����� �	
� ��	0������ �/����(� �	*�������	� ��	�*��
� = I>� ����� �������� ����-�������� ���

������	�� ��.� ��1���/���	� -�� �����
(� �	*�������� = �>� ��� �	� �0�	�7-���
� �/��������	0�

�	����0����*������*����	0��	*�������	�0������	0��	
��	��/�������,�(���	0�������/�����=�>�

����������	��-2������	0��0�����*������������������*���/�1������(���

� �	������������.����00�����	����������.�������	������-����	��
���
����1���/7����	��
(�

������-���
��	�������	����������	0�-��.��	����������1���/��	
�������������������(�����

�����*��������������1���/�-/����	0�����,	�.��
0���*�����
����	(��	�/�������������.�����

��������������.���� ����1���/� ������	��
���
(� ���������1���/� �����.�����	� *��� ������*�

�������������������
�	0�������� �	*�������	��������/(����������������������	��	�����0���
(�

&������� ���� *�������
� �	
� �	��0����
(� ����� ��������� �**���� �������� �
��	��0��(� ����

��.����	0� �������� ��� �������(� "� 	�.� ������� ��	� -�� �	�����
� ��� �	/� ����(� ���� �	�/�

�-��0����	������������
���	��
�1������������	�����	��*������������(�

� ���������������0�	���
����*����.�(��	�������	�G�.��0�����	��������������	�����	��*�����

��������(� ������	� �� ���
�����
� ��� ���� 1���/� ��	0��0�� �	
� ������	� ?� ��� ���� �3��

�

�������	�����	� �*� �������(� �	� ������	� F� .�� ������	� ���� ���	� *�������� �*� ���� ������	0�

��0������(�������	������������������������.����	0��*���1���/(�������	�!����
�����
���������

��������	���.������������/����*������/����(�������	�A������	�����	��-����*���	������	��

�	
�������������(�

 � !��������	����������������
��

�������������.�����.����������
����	���������0��-���������(���������������*����������

���� 1���/� -/� ���	0� ���� ��������� ,	�.��
0�� �*� ����
����	� ��� -/� ��,�	0� �	� ���������

��*���	�������	��	����0/��*�����
����	(
� ���������������������	����������	���*������/����(����������������������1���/���	
�����

�������,����
������	���*� �����1���/���	�-��������
������
�����������9*�0���� :(������������

�������������	0������������������������	�����	��*������
������������	��������	�*���������

9.�� �������� �3�� ��� �������� ����� *���������� �*� ������	� �:(� ��� ����� ������� *��� ��

��������	
�	���-��.��	�����1���/��	
�������������-/���,�	0��	��������	�������������	
�

���������������*�����1���/(��	��������/���������������������	��	�.�����1���/�������������*�����

1���/� ����� ��������	
� ��� ������ �*� ���� ������� �	
� ���� ���������� �*� ���� 1���/� �����

��������	
����������*�����������(�
�

� #������/���

�

�

�

�

� ������	0���/���

�

�

�

�

�

�

�
������/���

�

�

�

�

����������������������������<�0���� ;��������������������*������/�����

�

� 3�� �������� �� 1���/� ��	0��0�� -���
� �	� �� ������*��
� ������	� �*� 45#%&6(� ����

�����������*���1���/���������
�*�	�
������0��������������������.�������������	�������������

<�&���%���38%&%(�"���������	
�	����������-�����
�.��������������*�������*�������������

��������������	
�	���	������3���������	�����	��*�����������(������������/������% ��%G��J ��

%,�-��������(������������������	
�	����*��	����	�*�	
��	������3���������	�����	���������

� ���G��J ���,������������2�������/	�	/������/��	/���*�%2�*���2∈= ��,>��	
���������������/�

��������*���������������K �*����∈= ��,7 >������		����
�-/�������������	��*�������������	�����

�3�� �������	�����	(� �	� ������ .��
��� ��� ��� 	�������/� ��� *�	
� �� ��-���� �*� ���� �3��

5���/�

#����

��������

�3��

&������	�����	�

�3��

&������	�����	�

4���*����� 4���*�����

����	�

�	����0/�

�

�������	�����	�.����������-����
�-/���������(�����	����	���*��/	�	/���	
��/��	/������

�*�	�
������0�������	����0/��*�����
����	(��

�

<��� ����������	��
��� ���� *����.�	0�1���/� �����*��
�.�������� ������*��
�45#%&6�

��	0��0��;�

�

� 5�;� *����L���	�����������L-��	����������

����������� .�����L-M	����N�O&�	��
O��	
��L�M��0��	�N�L-M��0��	�

��������� �����	�P-Q�'L-+PM-Q�

�

� ������,��*�������������.����	����R&�	��
S��	
�����	0��	������������0��	��������������(�

������������������ �������������������� ��	���� �	
� �����-����������������	
��� ���������

���������0��	(�

�

� ��	��
��������.������7���������
����������*�*�0����G(��

� ��� ��� �����0��*��.��
� ��� �	*��� ����� ����1���/��������� .���� ���� *����� ������� ��	��� ����

��������������	���	
�������������������	��-�������������	������	������	�����*�.��������

��0��	(���������������������	�����,�������������	������	����������	�/��	��(�"�������	0�

*��� ��������	
����������		���-�� �	*����
���� �����/(�<����� �����������������
�������� �����

-�/��� ��� �	��/��	/���*���������(����	� �������� ���	� ���� ��������/���.��
� �	���
��� ���

����-����������������������	
���-�/�������-������		����
�������	�1�����0��	(�������������	
�

�������������������	
�
����*�������.����	0��*�1���/�5(��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� 3������	�.��-��������������������.��,�	0��*������/����(��

� �	�����*����������������/������	����������������		�����	�.���������	����0/��	
�0����-��,�

����	������*��������������	
�����������������	������3���������	�����	(������/�����������	�

���
/������	
���1������(�

� �	� ���� ����	
� ������� .��	� ���� �/����� ��������� �� 1���/�� ��� *����� �	�����0����� ����

�	����0/������������������/	�	/����	
������/��	/����*������������*�������1����(���� ���	�

�	�������� ������������	��*�������	0� *���������*� �����������*� ����1���/(�����������.����	0�

�����-�������� ��	� -�� �������
(� ��� ����
� �	��	��	��	�� ��.����	0��� .�� ��	��
��� �	�/� ����

�/��	/����*�������� �����(�

� ��������
���������������	
�����������������	��*��	��������������*���������.����	0���	�

��������������	���	�
(������/�-��	�������/�������	�*����������.����	0�(��������������	����

���*����
�.������.����������������
���������������(�

�

�

�

�

������

������������������

	������0��	���0��	�

��0��	�

-�/������������

	����

<�0����G�;��.������7���������
���������

�

"� #��������
��
��

����1���/���	0��0�������������*��
�������	��*�45���/(����������.������������������-����/�

�*����	0�����<�3&���	��������*�45#%&6�.�������������	���	
�����
�-���.(�

� 7���	������������
����	���,	�.�����
�����	���.�������	������
���	��	�.����	������*�

�����	�������������
(��������������*���������������	�����*��	������	�(������/�����.����

��,������������	���������
�����	�������	0����������	������	�������
���������	(�

� 7���	������������
����	���,	�.����������������*�����
�������������������	��������-���*���

�������
���
���*����������������	
������	������	���������	������-���(�8�.����������������

�����-����/��*����	0������/�-���T)T�����	
��������������.�	�������������*����	������-���(�����

�/�����.����*��������,�*�������������	
�	���.�����	������-�����-����*���������	��������-�������

.������	��	��� ���� ��������	������	��(��*� �����/�-���T)T����	��������	��� �����������.����-��

��
������������������	���	������	����	
������-����(��

� 7� "����� ��� ��� �������-��� *��� ���� ����� ��� ,	�.� .������� �.�� �����	��� ����
������/�

��		����
���� �*� ������ �����	����� �������� �	�����
����� �����	��(� ��� ��� ���	��������-��� ���

�**���	������ ����
����	���*��	��������OMO��	
� ����
����	���*� ���������������O� MM�O(���� ����

�/�����.����-�������	��-���*��������	0�����
����	�������������������(��

� 7�����*�	����	���*�4E"�8�����	����������	��
��	�����������*��
�������	(�

� 7�B��
�**���	��������
���	�����1���/������-��.��	���.���������	
�������������������(�

�����/�����.������,�����������������.����	0��*�������������������
�*���������.����	0��*�����

��1����(�

�

$� %& '������������	��������������
����

�����,������������	0�������/���������
�
������/�.��,��	�����
�
��������4�����������*�
�����������(�3�����*����
����
�����-������/���������	��3��*����������������	�(�"��*������
���.��.�	�� �����������.���� �������� �/�����*���������� ����������	0�.����-�� �������	��
�

������������������<�0�����;���������7���������
��������"�

�

.��������	0���,�	
��*�
���������	��	
�.����-������	
���	
�	��*���������/�����*������������(�
���	� .�� *������� �������
� ������	�� �*� ���� ��������� �	� ����������� -/� �����	0� ����	����
�		������	�� �	� ����
���������	��*� �������(�������	�0���	���*� ������ �		������	��.����-��
��
������������	���/�.�����	��3���������	�����	(�<�	���/������������-��������,���
��	��0��
�*��3�T�����������������������	������������	0(��

� 3�� ���-�����
� �	� ��0������� .���� .����� ��
�
� ��	� -�� �����
� �	��� �	� �3��

�������	�����	(�����������	0����-�2������;�*���������3���������	�����	�������������-������

��0�	����������
�
(��	�����*����.�	0�.��0�����������	��������*����������	0(�

� �������	� �
��� ��� ����������	�� ����/� �����	���*� ����
�
� -/� �	��3�������(�%���/�

*�����7��	� ��	,� -��.��	� �.�� �����	��� ��� ���	� �������	��
� -/� �	� �3�� �������/(� "	�

�����-���� ���������������	��
�-/����������/(�3��	���*�����������	�������	�/�����	0�����	�

�����	����������
�	����/��*��������	�����������	��
�-/�������	0�������������	��	������������/�

��		����	0������.�������	��(�3��	�����*�����������	��������������������	���.���

��	�

�	�����
��������������-���-����������������������/������������
�	�������(�

�

�

�

� "0�����	��� *��� ���� 	����� �*� �������� �	
� ����������� ���� ��� *����.�	0(� ���� ������

�������	��	0��	������	��.����-��	���
�.��������	�����*����������	�(�<����	��	�����
�����

������9���������
�������������������	�:�� ����	�����*�����������.������	���	�����	������*�

�����	���.���������������������1������	�-���,���(�3��	������	���������	0���	��	���/���	�-��

���
(�"��������/�-��.��	��.����������.��������/������.��	�������������
�-/������	�(�<���

�����-������ �����/�-���T)T�������
������������� ����	�����*� �����������	
�����	�����*� ����

�����-���(�

<�0����?;��3���������	�����	�*��������&
%&������	���	
�������	���	��������"�

�

P�.�;�������
*;�
NO�&
%&OQ�P�
*�;��-������*Q�P�.�;&���������	Q�

P�.�;�	E������/��
*;��������NOU�&
%&(V������� @OMQ�

P�.�;���
�	����/��
*;
����/��NOV��
@	�	B�0������	��0��OQ� �PM�.�;���
�	����/Q��

PM�.�;&���������	Q��PM�
*��;��-������*Q��PM�.�;�����Q�

P�
*;E������/��
*;�
NO�&
%&(V������� @OQ�

P�
*�;
����	��
*;��������NOU�&
%&OMQ�P�
*��;���	0���
*;��������NOUV������� @OMQ��

PM�
*;E������/Q�

P�.�;�������
*;�
NOV������� @OQ��

P�
*�;��-������*Q�P�.�;&���������	Q�

P�.�;�	E������/��
*;��������NOUV������� @(�#����%&OMQ�P�.�;���
�	����/�

�������
*;
����/��NOV��
@	�	B�0������	��0��OQ� �PM�.�;���
�	����/Q�PM�.�;&���������	Q�PM�
*��;��-������*Q�

J J (�

P�
*�;��-������*Q�P�.�;&���������	Q�

P�.�;�	E������/��
*;��������NOUV������� @(E&�
#��OMQ�P�.�;��	���
�	����/�

��������
*;
����/��NOV��
@	�	B�0������	��0��OQ� �PM�.�;��	���
�	����/Q�PM�.�;&���������	Q�PM�
*��;��-������*Q�

PM�.�;�����Q�

P�
*;E������/��
*�;�
NOV������� @(�#����%&OQ�

P�
*��;�
����	��
*;��������NOUV������� @OMQ�

P�
*�;��	0���
*;��������NOU�#����%&OMQ��

PM�
*;E������/Q�

�

� "���	������������������	��
��� ���� �����	���&
%&��*� ���� �������"�� ������������*�

.�����������.	��	�*�0�����(�
� �	�����
�
������
�*�	����	��*�����������	����;��

�����PW%�%�%B���&
%&9�#����%&����"�#����#EE��%&��E&�
#��K:Q��

� �	���
�������-���	������3���������	�����	�����������&
%&����������
��	
�������	��

�	�����
����� ������ ���� 	���� �*� .����� ��� 9�#����%&�� ��"�#��� �#EE��%&��

E&�
#��K:(�<������������	
�����	
�	0�������	���/�V�������� �����	���
���
������������

�����	�����	������3��*���(����	����������/���		����	0��&
%&�.�������������������������

������
�� �	
� ���� ���
�	����/� �	� ���� ������ �&
%&� ��� ���������
(� �	� ����
�*�	����	� �*� ����

���������������������������	���*����
�	�������������	���
���
�*���������*����������	��(�<���

�#����%&����"�#���	
��#EE��%&���������
�	����/����*����
����-�� (����	������������

����������
������		����������������������.����������*��������������#����%&����"�#���

�#EE��%&��	
�E&�
#���9*�0����?:(�

� #��	0� ���� ����� ���	�������� ��� ��� �����-��� ���
���0	� �	� ��0������� .����� ����� ��

�������	�����������	��������������3���������	�����	(�������������������	�-������	
�
����

���������.�����������	����������(

(� ���
�	�
���
��	����

3����������*�	
���������	0�*���������*������������*�����1���/(�
� ��� ��,�� ���� ������	0� .�� �������	�� �� ����� ��� �� ����� ����	0� 	������ 	�
��� �	
�

��	
����	�	�
��(�<���������������������

�����������
��=��������M	���NOE�����O>�M���
���=�����Q F>�

����������	��
�-/�����������	�*�0����F(��	������������������/�	�
��������������
���������������

�������
��	�/��*������������	��*���������������
�-/������/�-���RMS(�

����������	0��*����������� ���	���
�� �����0���.�����	�*�	����	� �����������E���9�E:�

�	
������E���9E:(�

����

� �����E��-�������������������������
� ���	�
��B�(����� *�	����	 �����������E���9�E�:�

���,���	������3���������	�����	�*���������������������E�2�.������������������	0�.�����E�(�

<��� ��������� ���� �E�N% M%GM%�(� "� ����� �E� � �������� .���� �E�� �*� % �� %G�� %�� �����

��������	
�	���� ���G������	������3���������	�����	��	
��*�� ������		����
�����G��	
��G�

�����		����
� �����(�%2���������	
�� ����2��*�%2�����	�%2T���/	�	/������	�%2T���/��	/�� ���

�
�	������ ��� �2(� � � �����		����
� ����G� �*� � � �	
��G� ������		����
� ������� -/� ��
���������

�	�������������/�����������-/�������������	��*�
�������	
��	����������������(

<�0����F;������������������	
�	0�����������

�

� ���������*��������E�2� 2∈= ��,>�.������������������	0�.�����E��������������
��������/�

	�
��B�9�E�:(�"�	�
��.���������-���������	��
�-/�B�9�E����E�2�2∈= ��,>:(��
� ����*�	����	������E���9E:�������.��������*����������������-�/��*����������������	�-��

*��	
�.�������������	
���������������*�E(�����B��-����	�
���*�����������	
�B�K ��	���*�����

��	�(��	����/����������������-�/�-��.��	������������������E����*�B���	
��	
������������

������E�K �	��*�B�K �������������*���������������	���*��E��������		����
�.��������*����������	��

�*��E�K �	(� ���� *�	����	������E���9E:���������� ���� ���������-����������������-����� *���E(�

%�����*������������-������������	�����������	������������.�����������������	0�.����E(

)� *���	�	�
�������+�����

�����.�������1���/�.������0��
��������������	�����,��*�������.����	0��*�������*����������(�

������.����	0��*��������E�����	���	�������	��������	0�����	�����1���/�-/��	���*�����������E�,�

.�������������.���� E�� �	
� �	� �	�����	0� ����	���0����	�����������-��.��	� ���� �����	��(�

3��	��	�E�,��	��������*������������� �������������G�-/���
�������������/��.���	�/��	�����

����
����	�����������MM�-��.��	�������������	
�	0������	����	���E�(��*��	��������*����� �

����G�-/��	��	�������������/��.���	�������������	����������(��

� "�������	
��*���������0���	����	��-���	�����������.����	0��*�����1���/(��

,� !��������������-���	������

���� ������/��� .����� .�� -����� �������	��� ���� ������������� �����	��
� �	� *�0���� (� 3��

�	���������
� ���� ����� �"4�B7$� = F>� ��� ������� �����3���������	�����	�(�3�����
� ����

�	����0/�3�&
B%�� ��� ����
����	� �	����0/(� ��	���3�&
B%�� ��� �	� *���� �� 0�	�����

�	����0/�� .�� ������ ���� �������� *��� ���� ��������	��� .�����
�� 	��� ��	���	� ��0��/�

���<�0�����;���������7���������
��������$�

�

�

����������
������(�3�&
B%����� ��������
��	�/���������
���/	�	/����	
��/��	/����*�

������ �	
� ��� ��	����� ����� �� ���������	� �*� ������ ���	0� �� ����� ��� �������-��(� "������ ���

3�&
B%�������
�������0������X"Y"�"E��X����3��
B�����-���/�=!>(�����-�
/��*�����

�����������.�����	��	�X"Y"(�3��������������	��
������.��������	0�*�	����	��
�����-�
�

�	�������	�F(��

� ������������	���.������	
����
��	� �������"������
/������	��
� �	� *�0������ �	
��	�

�������$������	��
��	�*�0�����(��

� 3���������-�����
�
�**���	��1������� �������������/��(�3�����.��������������-���	�
�

.���������.����������"��	
�$(��

�

#���������'��
��=��������M	���NOE�����O>M���
���=�����Q F>+�

�

&�.����	0��*����������";�

 ;�'MM�&
%&=(MM�#����%&MMB"�%�N�OE�����O>�MME&�
#��=(M)�����Q F>+�

�

&�.����	0��*����������$;�

 ;�

�

<��������1���/����������������������������������.����	0�*����������"(����
����	��������	/�

�/	�	/������/��	/�(�B����.����	0�����������
�*����������$(�

�

�

#����� ���'*���L���	����������.�����L�M	����	NO<&"B�%O������	�L�+�

�

&�.����	0��*����������";�

 ;�'*���L���	�MM�#EE��%&�.�����L�MMB"���B�N�O<&"B�%O������	�L�+�

�

&�.����	0��*����������$;�

 ;�'*���L���	�MME&�Y�
%&�.�����L�M)B����	�N�O<&"B�%O������	�L�+�

�

�	��������"��B"���B�����	������	���	
��	��������$���������	������-���(��	�-���������������

�������������
�����������������.����	0(�

�

#�����"����

'*��� L�� �	� ���������� L-� �	� ��	�*�������� .����� L�M	���NL-M	���� �	
� L�M	����	� N�

O<&"B�%O������	�L�+� �

�

&�.����	0��*����������";�

 ;� '*���L�� �	� MM�#EE��%&��L-� �	� MM�"B#<"��#&%&�.�����L�M)	���� N�L-M)	����

�	
�L�MMB"���B�N�O<&"B�%O������	�L�+�

�

&�.����	0��*����������$;�

 ;�

�

<��� �������$�� ������������
����	��������
�� �	/���.����	0(� <��� �������"�� ������������ ��

�	�1��������	�	����.����	0(��

� "���.����	0��������;�

�

'*��� L�� �	� MM�#EE��%&�� L-� �	� MM�"B#<"��#&%&� .����� L�MM&%D��BM)	���� N�

L-M)	�����	
�L�MMB"���B�N�O<&"B�%O������	�L�+��������������
�
�-/�����������	0�

��0������(��������.����	0�������*��������*�����������������������	�����������-����R	���S��*�

�����	��&%D��B�.�������	�-��������
�*�����#EE��%&(��������.����	0���	���	���������/�

��.����	0� ��	
����	��������	�	��*�����������(�������*������
��	��	��

����	��������-/����	0�����

����.�	0�����;�R������.����	0������E ��������-7������*��	��������.����	0������EG�.��������

�����������	0�	�
���
������EG�*�������������*��������	�S(��

�

#�����$�;�'*���L���	������	��L-��	����������.�����L�M	���NL-M	���������	�L�+�

�

&�.����	0��*����������";�

 ;� '*���L�� �	� MM�"B#<"��#&%&��L-� �	� MM�#EE��%&�.�����L�M)	���� N�L-M)	����

�����	�L�+�

G;�'*���L���	�MM�#����%&��L-��	�MM�#EE��%&�.�����L�MMB"�%�N�L-M)	���������	�L�+�

�;�'*���L���	�MMB"�%��L-��	�MM�#EE��%&�.�����L��N�L-M)	���������	�L�+�

�

&�.����	0��*����������$;�

 ;�'*���L���	�MME%&��B��L-��	�MME&�Y�
%&�.�����L�M)B����N�L-M)B���������	�L�+�

�

���� �������� �����
��� ������ ��.����	0�� *��� ������� "� ��	��� �#EE��%&��

�"B#<"��#&%&��B"�%������/��	/����*�E%&��B�9����������:(�������.����	0�� ��	
�

G�����-���������	�	���	
����������
������	�����������	�*���������(�&�.����	0�����	����������

������(����������*����������-�0���/��*����	0��	�������������*��������"��	������	�������

B"�%� .����� ��� �� �/��	/�� �*� E%&��B(� �	� *���� ����� ��.����	0� ��� ��
�	
�	�� .����

��.����	0�G;�����������������-7������*���.����	0�G��	
�-���������	���������������������	�(�

������.����	0�� G� �	
� ��0���� ���� ������������.��	� �������
��	� ���� ������(�3����	�����

�	������ *������	0������-���
��	� ��-7�����(� �	� ����������.�� �����	���� ������.����	0� G� �	
�

,�����	�/�������.����	0��(��

� &�.����	0���������;�

'L�� �	� MM�"B#<"��#&%&�� L-� �	� MM�#EE��%&� .����� L�M)	���� N�

L-MM&%D��BM)	���������	�L�+�

���� �����
�
� -/� ���� ������	0� ��0������(� ��,�� *��� 1���/� ��� ������ ���� *������
� �	� ����

�

����	�������(�

� ���� �������� *������� ����� ��.����	0�� ����� ��;� '*��� L-� �	� MM�#EE��%&�� L�� �	�

MM�#EE��%&� .����� L�M)	���� N� L-M)	���� �����	� L�+� .����� ���� �������� -��� .�����

��������	
��������������������	��	
�
��	���0���������	�	���������(�

� �*�.�������	�/������/��	/����*������� �*��������1���/��������������0����	���	�.���*���

�������"(� ����� �������� ���.��������/� ���� �	��������*� �/��	/���� -��� ����� �������-�����

.��������/���	������.��	���	*��	��	0���������-�0������������(��

� <����������$������������������
������	�1�����.����	0�.�������������	�	�(�

.� /��
���	�������������
�	0���

�����0�� ���� �������� �-���	�
�� ��� �������� ����� ���� �/����� ��� �-��� ��� *�	
�
���� *���� �	�

�	������	� �*� ���� ������ �	������	� ��������
� �����0�� �	� ��������� �����	� �*� ����
����	�

�������-���.���������	����0/(��

�

� ���� ���	� ���������	� ������ *���� ���� *���� ����� ���� �/����� ��	� �������� ��������	��

��.����	0��*�����1���/(�������*� �������	�-�������	���
�-/��
�1�����*������	0������(��	��

��	�����������	���������������	�
������	������	����0/(��

� ���� 1�����/� �*� ���� �	����0/� ��� ��0��/� �������	�� ��� ����
� ��������	�� ��.����	0�(�

�	����0/�3�&
B%�����
�*���������������	����������0�	������	
���	���-����������	
�	0�

-��,�������	/��������	�(�D�	�������������������	�����	��-����J ���	���-��������	�������

����	��-����*���������	���������	�(����.���
����-��	�������/������	�����������������	�����

�����������������	
��������������������������������(�

� ����� ���-�����
��������	�������� ���
����.���� ��������-���(�"��������	�.�����.�� ����

�	�����0���	0���������	����	������ �	������	0��		������	���	������3���������	�����	���� ����

�������*����������������������(��������		������	��.����-����������
�-/������������������,��

�	��������	������	����*��������9��	����*������������	�	0��*����������/:(��������		������	��

����
�-�� �	������
���	����/�-/� ���� �
��	����������*� ���� ����������������������/�-/� ����

�/�����-/����,�	0��������	��	��*�����������.��	�����������.����	0�����������-��(���������

���� ������	0� �	�� ��	� ��,� ���� ����� ��� �����*/� ���� 1���/� �*� ���� �/�����
������� �����

��-�0������(�

� 3�����	,���������������������	�������
���������	��	��**����	���/����(�

� �����/�������	�-������	
�
����
����.�����������/�����*���������9�������	�����-2���:(�

� �������	��
��	��0���*�����������������������-���	����.������0��
����������������	��*�

�������(� 3��	� �� 	�.� ������� ��� �	�����
�� ��� ��� ��**����	�� ��� ���-������ ���� �3��

�������	�����	� ��� ����� ��� ��	� -�� ��������
� -/� ���� �/����(�3��	� �� ������� ��������� ��� ���

��**����	������������������3���������	�����	(��

� 3������������	0�0�
��	��	���������������	���*�����������/��� �	���
����������.�����

2��	��*�������������	0�*����
�**���	���������(��	�������������1���/������.�����	��	���������

��-71���������������-71�������-��	0���������������
�**���	��������(�����������	0���0�������

��	�-�������/��
����
�*�������������0�	�������������	(�������	�������/�������,�*�����-7������

�	�
�**���	�����������	
�������������2��	���	
����	�-��.��	���-7������9���������	���	�
��

�*�����-7������������������	
�.��������������	�
���*��	��������-7����:(��

� "	������ �������	�����	����	���	�� �������*����	�����*�������������(��������	0��	���

������� ���� �������-��� ������ �*� �� 1���/� ��� ���� ��������� ���0�(� 3�� �	�����0����
�**���	��

�������	���	���
������������������/����������������(�

� ����� �� �/����� ��	� -�� ���/� ���*��� *���
�**���	�� ����������	�(� �	���������
� �	��� �	�

�	���	��� �/������ ���.���
� ����.� ������� ��������� ����
���� ��������.������� ,	�.�	0� ������

��������� -/� -��	0� -���
� �	�/��	� ����
����	� �	����0/(� �	� �� EGE� �/������ ��� ����
� -��

�	������
��	����������������	����������7���������*��������������������
����-/�����������	����(�

���� �	�/� �-��0����	� *��� �� ����� .���
� -�� ��� ��-����� ����
���� -/� ���	0� ���� �3��

�������	�����	(��

*������
���

 (�$��	����	�E(�"(�����	�,��(��E������������(�� �	
�5�����(;� �	
�������7����	0��� �������
������	0(���D��
�&����
��Y��(�����B��?������A7?���GII?(�

G(�����Z(��X�	���
(���[$���	�E(;���������	��	����0/7-���
��	*�������	��	��0�����	(��X�"���

���������GII (��

�(�
���	�0�&(��
��������C(&(;�"�5���/� -���
�"�������� *��� �	��0����	0�8�����0�	�����

�����������(���C��GIII����(�?F�7?�I(�

�

?(�D�����7����	��8(��E���,�	���	��	���6(��5�����
(��&�2�����	�"(����0���6(��#����	�X(��
Y�������� Y(� �	
�3�
���X(;� ���� �������� ��������� ��� ��
�����	;�
���� ��
���� �	
�
��	0��0��(� X���	��� �*� �	�����0�	�� �	*�������	� �/������ �� Y��(� A�� B�(� G�� ��(� !7 �G��
 HH!(�

F(�8���
��8(�����	�,��(��&����%(;����������	��*��������������	0�%��������	�(�3�-��
3�-7�����������	
�
���-�����/�����(����GG 7G�!��GIIG(��

�(�8����&(;���	�0�	0�����	����������0�	���/��	�
���-����;�"������������������������(�E���(�
�*� �����/���������	�E��	��������*�
���-�����/������ 9E�
�:�������	��"����	�����(�
F 7� �� HH!(�

!(�X3B�(�X����3��
B�����-���/(������;MM������*��0�(��M���2����M2.��
	��(�
A(�C�
�
�Z(���������%(;�
����	0�.��������	����8�����0�	���/�
���	0�
���� �	��0�����	(�

E�����*������	���	����	���%	���/�&������	�������	*���	������(��GF7��H�� HHH(�

H(� ��	����	�� �(;� ��0����� <��	
����	�� *���
���� �	��0�����	(� ��<�%�� GIIF(� ��� �A7?I��

GIIF(�

 I(����/�"(�(��&�2�����	�"(����
�����X(X(;�5���/�	0�8�����0�	������	*�������	���������

#��	0��������
���������	�(�Y�
$� HH�����(�GF 7G�G�
 (� �����,�**� �(�� ��0��	�� <(�� GII?(� "	� �	����0/7-���
� E���*���� *��� ����	����

�	��������-����/(�8�	
-��,��	��	����0���(����� !7��?��GII?(��
 G(� �����	��
��� �(�� ������ <(�� ����	����-� �(;� ���������	� �*� ������� ������	0�

�/�����(�3%��9G:����� ? 7 ?!��GIIF(��

 �(� B�
�	�� �(8(�� <�.���� X(�� E���/� $(;� "������ �	*�������	� D������	0� �	� �	*�������(�

��
"�� HHH����(� F7G�(�
 ?(�&����%�(��$��	����	�E("(;� �"� �����/��*� ����������� ��� ���������� �������������	0(�

Y�
$�X���	��� I9?:�������?7�FI��GII (�
 F(�����	(��"4�B;�����4�����	
�45���/�E��������(�����;MM����	(������*��0�(��M(�
 �(�3�����8(��Y�0�����(��Y������#(������,�	�����
��8(�����������D(��B����		�8(� �	
�

8�-	����(;��	����0/7-���
��	��0�����	��*��	*�������	�7��������/��*�������	0�����������(�
�	�����,�	�����
���8(���
(���X�"�7I �3��,����;��	����0�����	
��	*�������	������	0��
��� IA7 !��GII (�

 !(�3��
�����
��D(;���
������� �	� ���� ��������������*� *������ �	*�������	� �/�����(� �%%%�
����������Y��(�GF��B�������(�A7?H�� HHG(��

Modelling Patterns for Deep Web Wrapper
Generation

Thomas Kabisch and Susanne Busse

University of Technology Berlin
{tkabisch and sbusse}@cs.tu-berlin.de

Abstract. Interfaces of web information systems are highly heteroge-
neous, both in their schemas and their presentation layers. Web interface
wrappers need to understand these interfaces in order to enable interop-
eration among web information systems.
But in a particular application domain hetergeneity is limited: Web in-
terfaces of a domain share a common vocabulary and use a limited set of
layout variants. We propose web interface patterns which are character-
ized by these two aspects. These patterns can be derived from a domain
model which is structured into an ontological model and a layout model.
A clustering approach allows to automatically generate patterns from a
sample set of web interfaces.

1 Introduction

Web data sources offer a huge spectrum of information. Dynamic web data
sources are mostly accessible through two interfaces: a form-based query interface
and a result interface. Both offer an interface schema which does not need to be
similar to the underlying database schema.

In contrast to classical databases, web source interfaces are designed for hu-
man usage only. Thus each interface schema is hidden behind a representation
layer which tends to be unstructured and changes frequently. In order to make
these sources available for higher order applications or to integrate them into
federated information systems, a wrapping of these sources needs to be applied.

However, the understanding of heterogeneity of web interfaces is a challenging
problem and nearly impossible to generalize independently of the domain. Inside
an application domain the heterogeneity is limited.

Fig. 1. Examples for query- and result page fragments of airline web interfaces.

Consider the fragments of airline web interfaces in Figure 1. Intuitively these
fragments represent common patterns for web interfaces in this domain. They are
typical in two aspects: first in the used layout and second in terms of the vocab-
ulary used to describe elements. The three fields From, To, Date in the given
query interface fragment are ordered vertically and layouted closely connected.
This layout usually is significant for semantically grouped elements. Similarly
the presentation of the results is typical for the domain. Moreover the terms of
the interfaces will reappear in many other source interfaces of the domain.

This paper proposes an approach to model patterns describing web interfaces
of a domain such that the wrapper generation problem can be reduced to a
pattern matching problem. A method how to learn these patterns automatically
is also presented.

The remaining of the paper is structured as follows. Section 2 introduces do-
main metamodels to describe ontological and layout aspects of source interfaces
in a domain. Section 3 describes the model driven learning process from a sample
set of interfaces. Section 4 shows a clustering-based approach to derive patterns.
Finally in section 5 and 6 we discuss related work, conclude and give an outlook.

2 Metamodels for Web Interfaces

This section introduces a model-based approach to describe interfaces of web
information systems in a given application domain. The model corresponds to
the observation that information on a web interface is carried by two paradigms:
firstly by the used vocabulary and secondly by a specific layout. Human in-
teractors use both aspects to understand the semantic of an interface. First a
user interprets terms in their context to get knowledge about objects of inter-
est, second the arrangement of layout elements helps the user to understand the
structure of information. As an example again consider a typical flight booking
interface as depicted in Figure 1. There are labels to understand the semantic of
adjacent fields (e.g. Date). Other pages miss labels, the arrangement of elements
is sufficient for human understanding of the semantic of a field (e.g. the query
interface for a date field may be separated into three subfields (year, month,
day) with no detail labels).

Our metamodel reflects both aspects of web interface design. We define a
Layout Metamodel which generalizes possible layout variants occurring at web
information systems of an application domain and an Ontological Metamodel
describing ontological structures by terms and semantic relationships between
them.

2.1 Ontological Metamodel

The Ontological Metamodel allows for building simple ontologies in the domain
of interest. These ontologies represent terms occurring on web interfaces in form
of labels, names or instances.

(t,d)

(t,d)

*

(t,d)

(t,d)
1

Field

Domain

QueryFieldErrorGroup QueryGroup MixedGroup ResultGroup ResultField

GroupPage

PageElement

Label

Shape

Coordinates

FormShape

Style

TabShape

RowNumber
ColNumber
Headertype

Construction

Position
0..1

first nextnext

*

1

first

Alignment

type

0..1

Alignment

type

Construction

Position

1 *

*

Term

Name

TermRelation

type

*

(t,d)

isInstance isA isSyn

*

Correspondence Cluster

*

(c)

(b)

(a)

Fig. 2. Web Interface Metamodel: (a) inter-Model relations (b) Ontological Metamodel
(c) Layout Metamodel

We only consider relation types that are needed to understand web inter-
faces: isA, isSynonymTo, isInstance. The isA-relation describes semantic hi-
erarchies among terms respectively terms and instances (if exact distinction to
isInstance can not be performed). The isInstance is more precise to assign
instance terms to concept terms. Instance terms are obtained from field domains
(e.g. predefined value lists). Finally the isSynonym relationship is used to group
semantically similar terms.

2.2 Layout Metamodel

The Layout Metamodel is based on logical groups which strongly correspond
to specific structures of web interface presentations. It reflects the hierarchical
structure of web interfaces as described by [15] and others for the query inter-
faces. We generalize the model to all kinds of pages which are relevant for web
information systems. We identify three levels of structural layout building blocks
in web interfaces: Page Level, Group Level and Field Level, the latter two will
be denoted as PageElement Level. Elements of a lower level compose elements
of the next higher level. This is denoted by the AssociationClasss Composition.
As each composition is ordered each subelement has a Position attribute. In
the following we briefly describe the elements of each level.

Page Level A page is the upper most logical unit. We do not distinguish query
and result pages because there also exist intermixed forms of pages which share

properties and behavior of query and result pages (e.g. in the flight domain an
additional, dynamically created page for further selections may be used to refine
the first query step results).

PageElement Level PageElements are building blocks of pages. Each of them
is characterized by two main properties: Shape and Label. A Shape has a bound-
ing box. It can be a (TabShape) or a (FormShape) representing a tabular or a
form-style layout, respectively.

A Label refers to a text element of a page. So, it can be logical assigned
to that PageElement. Moreover each PageElement is aligned to its neighboring
PageElements (comp. Alignment). Possible alignment types are horizontal or
vertical.

Group Level Groups represent containers of fields building a higher semantic
concept. The table in Figure 1 presents a group that represents the semantic
concept of a flight description. It consists of all fields which are grouped
together. Groups can be recognized by identifying layout structures because
grouped elements are usually visualized closely together.
The distinction between query interface and result representation is accom-
plished at the group level. Thus groups are specialized into the correspond-
ing group types QueryGroup and ResultGroup. Moreover an error detec-
tion is important for page recognition, thus an additional specialization is
ErrorGroup. Finally sometimes an exact distinction of query or result is not
possible, thus we define MixedGroups to carry out this issue.

Field Level Fields are the smallest building blocks of pages. Most properties
of fields are similar to those of groups. Fields can be aligned to each other,
composed to groups and do have a label. We distinguish query interface fields
(e.g. HTML input element) and result fields (e.g. table cells). Moreover fields
are associated to a bounding box and have an assigned shape. In contrast to
groups fields can have information about the domain of possible values.

2.3 Integrated Metamodel

The integration step of both submodels allows a unified view to a domain of
deep web sources and is the basis for the later derivation of patterns which are
used to generate wrappers for the extraction of information. The integration
of both submodels is characterized by two aspects: Intermodel Correspondences
and PageElement Clusters.

Inter-Model Correspondences The Ontological Model and the Layout Model
correspond by their used terms. The Layout Model contains terms mainly
in the form of labels. All PageElement-instances do have a label which is
known in the Ontological Model of the domain. Navigating these correspon-
dence relation brings together layout and ontological information. It also
allows to address synonymous terms, specialised terms (more precise terms)
or instances.

Considering the query interface example in Figure 1 we get the labels From,
To, Date. The correspondence to the Ontological Metamodel relate these
terms to synonymous and related terms, in this case e.g. Departure Airport.

PageElement Cluster Semantically similar PageElements will be aggregated
to a cluster. This idea is inspired from [15] where such clusters are generated
for source query interfaces at field level. Consider the examples from Figure
1. Suppose the query interface is an initial centroid for a clustering. We
obtain three clusters cFrom, cTo and cDate. Fields at other query interfaces
are clustered relatively to these three initial clusters. In a next step groups
will be clustered aggregating information of field clusters. As clusters sum up
variants of layout and ontological extensions of web interfaces, the derivation
of the desired web interface patterns can be performed directly from them.

3 Model Instantiation from Sample Sets of Interfaces

The overall process of pattern learning is structured as follows:

1. Query Interface Analysis
2. Enrichment of the Ontological Model
3. Processing of Result Pages
4. Clustering of PageElements
5. Derivation of Patterns

This section describes the first three points, the next section investigates the
clustering and pattern derivation.

3.1 Query Interface Analysis

Starting point of source analysis are query interfaces of a sample set of web
interfaces. The analysis consists of some pre-processing steps, particularly a to-
kenization and a logical parsing, and a model initialization step for the layout
and the ontological model.

Tokenization Similarly to [16] we propose a layout driven tokenization of
HTML at the beginning. A token contains of a HTML source fragment and
is enriched by layout information which is hold in an attached bounding box.
The coordinates of bounding boxes are obtained from rendering by a HTML
rendering engine (cf. Figure 3).

Logical Parsing by Visual Grammar The tokenized presentation of a page
can be transformed into a logical representation which is compatible to the
given Layout Metamodel. The transformation is achieved by using a vi-
sual grammar as introduced by [16]. Visual grammars do not only recognize
strings but also analyse layout structures. This part of parsing is domain
independent because grammar Productions analyse layout structures only.

Initialization of Layout Model Having transformed interfaces they can be
inserted into layout model. At first corresponding Elements are not grouped
together. Thus after initialization the Layout Model is a collection of pages.

Fig. 3. Simple query interface and result of tokenization

Initialization of Ontological Model The Ontological Domain Model consists
of concepts/terms which constitute the domain of interest. Initially terms of
interest are labels of PageElements, Names of Elements or Instances (e.g.
obtained from predefined Selection lists). They are normalized (stemming,
stop-word removal, sorting). A heuristic divides uncommon and common
labels (if a label occurs only once in learning set it is not representative
and thus omitted in the Ontological Model). Common terms are saved and
uncommon are pruned.

3.2 Enrichment of the Ontological Model

Acquiring Semantic Information from the Web

Application of Language Patterns Specific linguistic patterns in the En-
glish language guide to semantic relationships among terms. This idea was
first stated out by Hearst [9] for the case of hyponymy. According to Hearst
the following patterns describe hyponymy among noun phrases (NP):

1. NP such as {NP , NP ,... (and | or) } NP
2. such NP as {NP ,}* {(or|and)} NP
3. NP {,NP}* {,} (and|or) other NP
4. NP {,} (including|especially) {NP,}*{or|and} NP

Hyponymy can be interpreted as instance-relationship. Thus the above given
patterns can be used to extract instances from the Web or to validate
instance candidates. The approach is based on [13]. If new instances are
searched, a query containing the hyponym and an extraction pattern is is-
sued. In the case of the attribute airport code the query "airport codes
such as" would be issued to look up potential instances. The result snippets
will contain sentences which contain instance candidates near the pattern.
In this example the first result contains the phrase airportcodes, such as
LAX where LAX can be extracted as potential instance.
The second option to use Google and linguistic patterns is the validation
of instance candidates. In this case a whole phrase containing a linguis-
tic pattern is issued (Example query: "airport codes such as LAX") The
approach applies Pointwise Mutual Information (PMI) which is a measure
for co-occurrences of two terms in information theory. It is formally defined

PMI(x, y) = log2

Pr(x, y)
Pr(x) ∗ Pr(y)

(1)

In our context the probabilities will be approximated by the number of
results returned by Google.

Wikipedia The online encyclopedia Wikipedia provides a huge corpus of texts
defining concept terms. In the case Wikipedia contains an article that de-
scribes the concept term, there is a high probability that instances are con-
tained in the article. The structure of Wikipedia can be exploited to find that
instances. Many articles contain lists encounting related instances explicitly.
Consider again the example for airport code. The related Wikipedia arti-
cle contains a list of all known airports and their codes.
This issue was subject of a prior publication [10]

The Process of Semantic Enrichment In the process of semantic enrich-
ment the technologies summarized above are exploited in different ways. We use
Web knowledge to construct the Ontological Model as described in the following
subsection.

Mining of Relationships First relationships between terms already in the ini-
tial Ontological Model will be mined. Here the language pattern based ap-
proach is used in combination with Google and Wikipedia (comp. [2], [10]).
Queries containing the above described linguistic patterns are issued against
Google in order to validate instance relationships, the PMI measure as de-
scribed above is used to validate the assumed semantic relations.

Finding additional Synonyms Synonyms are essential to enable powerful
patterns. Thus the initial model is enriched by synonyms of initial terms
from web. Synonyms are acquired from WordNet.

Finding Instances The most important process is the enrichment of the model
with new instances. Here we combine both strategies described above. If
Wikipedia articles to the retrieved concept exist, first instances from associ-
ated lists are extracted. If no sufficient list of instances can be extracted from
Wikipedia, the linguistic pattern approach against Google is facilitated.

3.3 Result Processing

Having enriched the Ontological Model in the way described the analysis of
result pages can be executed.

Generating Queries Prior to analysing the result pages need to be obtained.
Thus queries against existing query interfaces need to be performed. If in-
stances in the Ontological Metamodel or domain information at query inter-
face level allow an automatic query generation the process is done automat-
ically, otherwise a user is requested to provide useful query parameters.

Page Analysis The result analysis is different to the analysis of query interfaces
because the structure of result pages is of a higher degree of heterogeneity.
Here a comparison-based approach such as [4] will support the tokenization
and visual grammar parsing process.

Having parsed result interfaces the model instance can be updated by layout
representation and new terms found while analysing result pages. The model
now is ready for the pattern derivation process, which is based on Clustering
of semantically close PageElements.

4 Pattern Generation

So far, we have instantiated the layout and ontological model with a sample set
but do not have analyzed relationships and similarities between these instances.
Now, patterns are identified that show similarities between different web sources
(i.e. instances). The analysis consists of two steps: firstly, model instances are
clustered to identify similar elements, secondly, patterns are derived from these
clusters.

4.1 Clustering

After importing all sources of the learning set, the clustering can be accom-
plished. The clustering algorithm identifies clusters on field level, on group level
and on page level using a bottom-up approach.

“Flight#”:Field

“From”:Field “Dep”:Field

“List of Flights”:Group

“To”:Field “Arr”:Field “Orign”:Field

“Destination”:Field “Arr”:Field

“Flights”:Group

“Dep”:Field “FlightNum”:Field

cFlight

cOrig

cDest

cDep

cArr

g1 g2

cGrp12

Fig. 4. Clustering between two Interfaces

Figure 4 shows an example of identifying a cluster on group level. Using a
bottom-up approach field level clusters are identified at first. In a second step,
an aggregation to higher levels (group and page-level) is processed.

Field-Level Clusters Field-level clustering is based on ideas in [15] and [5]:
two fields belong to the same cluster if they share similar names, labels or
domains. Similarity is defined on synonyms and on linguistic methods.

Group-Level Clusters Two groups belong to the same cluster if they share
all field clusters or at least if the set of fields is a real subset of the other.

Page-Level Clustering Two pages belong to the same cluster if they share
all group clusters or at least if the set of group clusters of the one page is a
subset of the set of the other page.

Group- and Page-Level Clustering Consider the example in Figure 4. Sup-
posing all fields are clustered correctly as shown in the figure we can build up
the group level clusters. Initially, the following clusters exist at field level:
clusters = {cFlight = {”Flight#”, ”FlightNum”}, cOrig = {”From”, ”Origin”},
cDest = {”To”, ”Destination”}, cDep = {”Dep”}, cArr = {”Arr”′}}
We choose one page and try to build up higher order clusters based on groups ex-
isting on that page. Suppose we start with g1 = (Field(”#Flight”),Field(”From”),
Field(”To”), Field(”Dep”), Field(”Arr”)). In this case our initial field clusters
are all that which appear in g1.

Now, we check other groups whether their fields belong to one of the clusters
which build up the initial group and other way round. If there exist no fields
that belong to clusters of fields of other groups, a group-level cluster is found.
In the given example we would check whether the fields of g2 are in a cluster of
g1 and whether all clusters in g1 have corresponding elements in g2.

The algorithm in Figure 4.1 gives a detailed description on how to identify
group-level clusters. It consists of the following steps:

1. Take the groups of one page to initialize group-level clusters.
2. For each group of other pages check if it could be assigned to one of the

initial group-level clusters using the condition on the groups’ fields.
3. For the remaining groups that could not assigned yet, repeat step one and

two to find clusters in the remaining set.

4.2 Patterns Extraction

We can now derive a grammar representing the identified patterns. Again, we
construct the grammar bottom-up. Considering our example in Figure 4 we
derive the following productions representing semantical patterns. The grammar
extends the initial visual grammar toward domain specific tokens.

//Field Level Clusters
C_Flight ::= Field("#Flight") | Field("FlightNum")
C_Orig ::= Field("From") | Field("Origin")
C_Dest ::= Field("To") | Field("Destination")
C_Dep ::= Field("Dep")
C_Arr ::= Field("Arr")

//Group Level Cluster
C_Group12 ::= Group(C_Flight, C_Orig, C_Dest, C_Dep, C_Arr) |

Group(C_Orig, C_Dest, C_Dep, C_Arr, C_Flight)

groupClusters := ∅
restGroups := {g| ∈ Group}
// if there are remaining groups (step 3)

while restGroups 6= ∅
// initialise group-level clusters:

// all (remaining) groups of one selected page build group clusters (step 1)

choose pi from {pi|pi ∈ Page ∧ ∃g ∈ restGroups : g part of (pi)}
curCentroids := {cg|cg ∈ restGroups ∧ cg part of pi}
for each cg ∈ curCentroids

groupClusters := groupClusters ∪ {{cg}}
restGroups := restGroups − curCentroids

// for each other group check whether it can be associated to a group cluster (step 2)

for each rg ∈ restGroups

for each cg ∈ curCentroids

// curGroupCl is the set of all groups part of the cluster of cg

curGroupCl := {g ∈ gCl — gCl ∈ groupClusters ∧ cg ∈ gCl}
// it can be associated if no field belongs to another cluster

if ((∀fi ∈ rg, clfi ∈ {clfi|clfi part of cluster(fi) ∧ clfi part of pi} : clfi part of cg)

and (∀fj ∈ cg, clfj ∈ {clfj |clfj part of cluster(fj) ∧ clfj part of pi} : clfj part of rg))

then curGroupCl := curGroupCl ∪ {rg}
restGroups := restGroups − {rg}

return groupClusters

Fig. 5. Algorithm for group level clustering

4.3 Discussion

The derived grammar gives a detailed description of query interfaces and result
pages down to the level of tokens. By analyzing a set of web sources of a domain
and by clustering, we identify similarities in layout and vocabulary. Thus, the
grammar consists of many variants that can be used to generate wrappers for
other, unknown web sources.

But this is also a problem: The grammar also covers uncommon variants of
patterns. This leads to an undesirable complexity of the grammar causing an
exhausting computation time when analyzing a new page. Therefore, we make
experiments on reducing the complexity on the basis of the clustering results.
There are two possibilities for reduction:

1. a brute-force pruning of uncommon production rules: small-sized clusters
indicate uncommon patterns. Thus, these rules are removed.

2. enhancing the grammar by prioritization of production rules: rules represent-
ing large-sized clusters are checked at first when analyzing a new page, rules
determined from small-sized clusters only if no rule could be found before.

This process is accomplished in a top-down manner: A pruning of higher level
productions allows for a pruning on lower levels. As already said, the size of the
clusters controls the reduction process. Thereby, a fixed number can be used as
the threshold of a small cluster or a relative distinction can be done eliminating
rules determined from the k smallest clusters.

5 Related Work

Early work in the field of web wrapper generation investigates the extracting
structures [1], [3] and others. The main focus of these works is to recognize reg-
ular structures at result pages. Other approaches use domain specific extraction
ontologies [6]. Another direction of research concentrates on query interfaces
with focus of source integration [7], [15]. Whereas [15] develops a measure how
to integrate fields by clustering them to semantically close groups. [5] investi-
gates the special aspect of choosing a right label for fields in integrated query
interfaces. [12] brings both interfaces together, reuses information which reap-
pears in both interfaces in order to infer schemes. An interesting aspect is the
supposing of an “hidden” visual grammar, which was first published by [16].
The idea to use language patterns to mine semantic relations was first published
by [9], [2] first uses these ideas in the web context, finally [13] analyses query
interfaces for integration by language patterns. Related to these approaches are
ontology generation tools, like the Ontobuilder [11] or the DeepMiner-System
[14], which takes query interfaces as basis to generate domain ontologies. This
part is related to the semantic enrichment in our approach.

All of related work delivers solutions for aspects of the wrapping of web
information systems. They all concentrate to specific detail problems. Some of
the solutions are part of bigger systems such as the WISE-Integrator [8], but
the general focus of the work is different to our approach. To the best of our
knowledge no one presents a model based solution and a clustering based pattern
generation approach.

6 Conclusion

Even if interfaces of web sources in general are highly heterogeneous, the in-
terfaces and result pages of deep web sources of a specific domain share both
common layouts and vocabulary. This paper has shown how we can use this fact
to identify patterns at layout and ontological level to make web source wrapping
easier. We presented a model-based approach for the recognition of patterns for
web wrapper generation. The main contributions are

– an integrated view to ontological and layout-based aspects of web query
interfaces and result pages

– a clustering-based approach to learn semantic web patterns from a given set
of web sources

The patterns allow for generation of a grammar useful for the wrapping
of unknown sources by pattern matching. Moreover, it becomes easier to han-
dle changes of web interfaces due to design or schema adoptions using pattern
transformation. Thus, the re-adjustment of a wrapper is no big effort.

Currently, the pattern grammar is directly discovered from clusters. As the
clustering algorithm produces clusters for all fields of the web sources, the gram-
mar can contain many alternative rules, even if some of these rules only represent

a small amount of web sources. We proposed to improve the grammar complexity
by pruning strategies, that identifies rules representing such outliers.

The next steps of work will contain more experiments with different pruning
strategies for grammar reduction and the identification of patterns on a higher
abstraction level than fields or groups, e.g. patterns on a dialog level.

References

1. Arvind Arasu and Hector Garcia-Molina. Extracting structured data from web
pages. In SIGMOD ’03, pages 337–348. ACM Press, 2003.

2. Philipp Cimiano and Steffen Staab. Learning by googling. SIGKDD Explorations,
6(2):24–34, DEC 2004.

3. Valter Crescenzi and Giansalvatore Mecca. Automatic information extraction from
large websites. J. ACM, 51(5):731–779, 2004.

4. Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards
automatic data extraction from large web sites. In VLDB ’01, pages 109–118.
Morgan Kaufmann, 2001.

5. Eduard C. Dragut, Clement Yu, and Weiyi Meng. Meaningful labeling of integrated
query interfaces. In VLDB’2006, pages 679–690. VLDB Endowment, 2006.

6. David W. Embley, Douglas M. Campbell, Randy D. Smith, and Stephen W. Liddle.
Ontology-based extraction and structuring of information from data-rich unstruc-
tured documents. In CIKM ’98, pages 52–59. ACM Press, 1998.

7. Bin He, Kevin Chen-Chuan Chang, and Jiawei Han. Discovering complex match-
ings across web query interfaces: a correlation mining approach. In ACM SIG KDD
’04, pages 148–157. ACM Press, 2004.

8. Hai He, Weiyi Meng, Clement Yu, and Zonghuan Wu. Automatic integration of
web search interfaces with wise-integrator. The VLDB Journal, 13(3):256–273,
2004.

9. Marti A. Hearst. Automatic acquisition of hyponyms from large text corpora. In
Proceedings of the 14th Conf. on Computational linguistics, pages 539–545, 1992.

10. Thomas Kabisch, Ronald Padur, and Dirk Rother. Using web knowledge to improve
the wrapping of web sources. In ICDE Workshops, page 4, 2006.

11. Haggai Roitman and Avigdor Gal. Ontobuilder: Fully automatic extraction and
consolidation of ontologies from web sources using sequence semantics. In Proc. of
the EDBT 2006, pages 573–576, 2006.

12. Jiying Wang, Ji-Rong Wen, Fred Lochovsky, and Wei-Ying Ma. Instance-based
schema matching for web databases by domain-specific query probing. In Proc.
VLDB ’04, 2004.

13. Wensheng Wu, AnHai Doan, and Clement T. Yu. Webiq: Learning from the web
to match deep-web query interfaces. In Proc. ICDE 2006, page 44, 2006.

14. Wensheng Wu, AnHai Doan, Clement T. Yu, and Weiyi Meng. Bootstrapping
domain ontology for semantic web services from source web sites. In TES 2005,
Revised Selected Papers, pages 11–22, 2005.

15. Wensheng Wu, Clement Yu, AnHai Doan, and Weiyi Meng. An interactive
clustering-based approach to integrating source query interfaces on the deep web.
In SIGMOD ’04, pages 95–106. ACM Press, 2004.

16. Zhen Zhang, Bin He, and Kevin Chen-Chuan Chang. Understanding web query
interfaces: best-effort parsing with hidden syntax. In SIGMOD ’04, pages 107–118.
ACM Press, 2004.

Semantic Driven Service Discovery for

Interoperability in Web Information Systems �

Devis Bianchini, Valeria De Antonellis, Michele Melchiori and Denise Salvi

Università di Brescia
Dip. Elettronica per l’Automazione

Via Branze, 38
25123 Brescia - Italy

{bianchin|deantone|melchior|salvi}@ing.unibs.it

Abstract. Semantic integration and interoperability in Web Informa-
tion Systems is a major crucial issue of the recent years. Semantics is
particularly important to share and integrate information and services
in open P2P environments, where the lack of a common understanding
of the world generates the need for explicit guidance in discovering avail-
able resources. Nowadays, ontologies supply a common basis for various
research areas, wherever semantics is involved. Their use as means to
share descriptions of available resources is being investigated for content
discovery also in P2P systems and, in particular, ontology-based tech-
niques are at the core of many proposals related to service discovery. In
this paper we propose a semantic-driven service discovery approach in
a P2P scenario, where peers are organized in semantic communities for
integration and interoperability purposes. Specific ontologies are defined
to add semantics to service descriptions and to guide service discovery
among peers.

1 Introduction

Semantic integration and interoperability in Web Information Systems (WIS) is
a major crucial issue of the recent years. Distributed provisioning and invocation
of WIS functionalities is addressed through the use of services, whose integration
must be obtained by solving semantic heterogeneity of their functional interface.
Moreover, each networked enterprise provides different functionalities/services,
among which the required one should be semi-automatically detected by solving
semantic heterogeneity in their functional interfaces. Semantics is particularly
important to share and integrate information and services in open P2P envi-
ronments, where the lack of a common understanding of the world generates
the need for explicit guidance in discovering available resources. Nowadays, on-
tologies supply a common basis for various research areas, wherever semantics
is involved. Their use as means to share descriptions of available resources is

� This work has been partially supported by the ESTEEM (Emergent Semantics and
cooperaTion in multi-knowledge EnvironmEnt [7]) PRIN Project funded by the Ital-
ian Ministry of Education, University and Research.

being investigated for content discovery also in P2P systems and, in particular,
ontology-based techniques are at the core of many proposals related to service
discovery. In fact, ontology-based approaches constitute a step towards semantic
service discovery, offering the benefits of formal specifications and inferencing
capabilities. In open P2P systems, difficulties mainly arise due to the highly
dynamic nature of peer interoperability, the lack of any agreed-upon global on-
tology, as well as the necessity of distributing the computation among peers
when processing queries and searching services. Hence, effective service discovery
methods and techniques under highly dynamic and context-dependent require-
ments are primary needs for a unified framework supporting semantic service
discovery in a flexible fashion, exploiting service semantic description and flexi-
ble ontology-based matchmaking.

In this paper we propose the Semantic Driven Service Discovery approach in
an open P2P networked scenario, P2P-SDSD, where peers are organized in a se-
mantic community for integration and interoperability purposes. Ontologies over
the Web are introduced to express domain knowledge related to service descrip-
tions and to guide service discovery among peers. For community constitution,
we assume that a peer called promoter spreads out a manifesto containing a suit-
able portion of its peer ontology, expressing a core domain knowledge for possible
member aggregation. Each peer that aims at joining the community matches its
own peer ontology against the manifesto and replies to the promoter. Other-
wise, if a peer is not interested, it forwards the manifesto to the other peers
of P2P network. Once the semantic community is established, services can be
searched and exchanged between the members of the community by means of
ontology-based techniques.

The paper is organized as follows: Section 2 gives an overview of the proposed
architecture for the peer community, underlining the role of semantics; Section 3
explains the startup procedure of the community through the manifesto shar-
ing; Section 4 shows how to interoperate in the community to perform service
discovery and publishing; Section 5 compares the proposed approach with re-
lated work; finally, in Section 6 some final considerations and future work are
discussed.

2 Network architecture

The semantic community is organized like a P2P network and it is constituted by
n peers, each of them exporting its own WIS functionalities by means of services.
Each peer can play different roles: (i) to search for a given service (requester);
(ii) to propose a set of suitable services when a service request is given, through
the application of matchmaking techniques (broker); (iii) to provide a selected
service for its invocation and to publish a new service (provider). In an evolving
collaborative P2P community, a peer can contain the description of a required
service, while a different peer acts as a provider for that service, or a peer can be
both a requester and a broker. According to this general view, each peer presents
the architecture shown in Figure 1. In the following we focus on the Semantic
Peer Registry and the Service MatchMaker, without details on the Application
Program Interface, the Service Invoker and the P2P module handling inter-peer
communications.

Fig. 1. Peer architecture.

2.1 Semantic Peer Registry

Service descriptions represent functional aspects of a service, based on the WSDL
standard for service representation, in terms of service category, service func-
tionalities (operations) and their corresponding input/output messages (param-
eters). Services are stored in an extended UDDI Registry, called Semantic Peer
Registry, where besides the UDDI registry and WSDL descriptions, a peer on-
tology provides semantic knowledge related to service descriptions and a service
ontology contains semantic service descriptions with reference to the peer ontol-
ogy.

The peer ontology is constituted by:

– a Service Functionality Ontology (SFO), that provides knowledge on the
concepts used to express service functionalities (operations);

– a Service Message Ontology (SMO), that provides knowledge on the concepts
used to express input and output messages (parameters) of services.

Concepts in the peer ontology are organized according to subclass-of and
equivalent-to semantic relationships. Furthermore, the peer ontology is ex-
tended by a thesaurus providing terms and terminological relationships (as syn-
onymy, hypernymy and so on) with reference to names of concepts in the ontol-
ogy. In this way, it is possible to extend matchmaking capabilities when looking

for correspondences between elements in service descriptions and concepts in the
ontology.

In the service ontology, services are semantically represented by DL logic
expressions [4], whose elements (service category, operation names, input/output
parameter names) are properly mapped to the peer ontology. Both peer ontology
and service ontology are expressed in OWL-DL.

2.2 Service MatchMaker

The Service MatchMaker is in charge of comparing service descriptions, combin-
ing together different matchmaking models [5]: (i) a deductive model, exploiting
deduction algorithms for reasoning on service descriptions, (ii) a similarity-based
model, where retrieval metrics are applied to measure the degree of match be-
tween services. In this paper we will combine these matchmaking strategies in
the context of P2P semantic communities to improve service discovery.

Both the matchmaking models are based on jointed use of the peer ontology
and the thesaurus to classify the type of match between services (exact, partial
and mismatch) and to quantify it by means of suitable similarity coefficients, that
is, by evaluating the service similarity. Terminological relationships considered
in the thesaurus are syn for synonymy, bt (resp., nt) for broader term (resp.,
narrower term) and rt for related term. The thesaurus is exploited to compute
the Name Affinity coefficient between names of input/output parameters and
operations.

Definition 1 (Name Affinity coefficient). Given the thesaurus T H, the
Name Affinity coefficient between two terms t, t′ ∈ T H, denoted by NA(t, t′),
is: (i) 1.0 if t = t′; (ii) maxl(τ(t →l t′)) if t �= t′ ∧ t →l t′, l ≥ 1, where
t →l t′ denotes a path of terminological relationships from t to t′; (iii) 0.0
otherwise. A weight σtr ∈ [0, 1] is associated to each kind of terminological
relationship tr, in order to evaluate its implication for name affinity; in our
experimentation, σSY N = 1, σBT/NT = 0.8 and σRT = 0.5. The function
τ(t →l t′) =

∏l
k=1(σtrk

) ∈ [0, 1] defines the strength of t →l t′ as the pro-
duct of the weights of all terminological relationships in the path. Since between
two terms in the thesaurus there can exist more than one path, the one with the
highest strength is chosen.

We say that t and t′ have name affinity (t∼t′) if and only if NA(t, t′) ≥ α,
where α > 0 is a threshold given by experimental results to select only terms
with high values of the Name Affinity coefficient. The choice of the actual value
of α is done during a training phase where α is set initially to a given value
(i.e., 0.5) then this value is increased or decreased until a satisfactory trade-
off between recall and precision is obtained. That is, increasing α leads to be
more selective by identifying a name affinity between two terms only if they
are very similar according to the thesaurus. Viceversa, by decreasing α, name
affinities are established also between pairs of terms that are related by a weaker
path of terminological relationships. Name Affinity coefficient is used to extend

traditional Description Logic subsumption test (denoted by �) between two
generic terms, even if they do not belong to the peer ontology.

Definition 2 (Affinity-based subsumption test). Given an atomic concept
C in the peer ontology PO, we define the set of terms in the thesaurus that have
name affinity with the concept C as CT H = {T∈T H | T∼C}. Analogously, we
define the set of concepts of PO that have name affinity with a term T in T H
as TPO = {C∈PO | T ∈ CT H}.
Given the peer ontology PO, the thesaurus T H and a pair of terms T 1 and T 2

used in service descriptions to denote service elements, T 1 is subsumed by T 2

with respect to T H, denoted by T 1 �T H T 2, if and only if there exists C ∈ T 1
PO

and D ∈ T 2
PO such that C � D is satisfied in PO.

Note that we pose T 1 ≡T H T 2 if both T 1 �T H T 2 and T 2 �T H T 1 hold.

The deductive matchmaking model applies the affinity-based subsumption test
to service description elements considered separately (categories, operations, I/O
parameters) to classify the match between a service request R and each supplied
service S. In [5] a formal definition of the following kinds of matches is given:

Exact match, to denote that S and R have the same capabilities, that is, for
each operation in R there exists an operation in S that has: (i) equivalent
name; (ii) equivalent output parameters; (iii) equivalent input parameters.

Plug-in match, to denote that S offers at least the same capabilities of R, that
is, for each operation in R there exists an operation in S that has: (i) an
equivalent or more specific operation name; (ii) an equivalent or more specific
output parameter for each output parameter of the required operation; (iii)
a set of input parameters, each of them is equivalent or more generic than
an input parameter of the required operation; the inverse kind of match is
denoted as subsume; the rationale behind the plug-in and exact matches
is that S totally fulfills the request R if it provides all the required outputs,
but, on the other hand, R must be able to provide all the inputs needed for
the execution of S.

Intersection match, to denote that S and R have some common capabilities,
that is, there exist an operation in S and an operation in R such that: (i)
their names are related in any generalization hierarchy; (ii) there exists a
pair of I/O parameters, one from R and one from S, that are related in any
generalization hierarchy.

Mismatch, otherwise.

Service categories are initially exploited to filter out not suitable services:
only supplied services whose categories are equivalent or more specific than the
request category are selected. We consider a qualitative ranking among the kinds
of matches, that is, exact > plug-in > subsume > intersection > mismatch.

Similarity analysis is applied to quantify the match between services and it
is based on the Name Affinity coefficient. In particular, when exact/plug-in
match occurs, similarity between services is set to 1 (full similarity); if mismatch
occurs, the similarity value is set to zero; finally, when subsume and intersection

Entity-based similarity

ESim(R,S) =
2·Atot(INR,INS)

|INR|+|INS| +
2·Atot(OUTR,OUTS)

|OUTR|+|OUTS| ∈ [0, 2]

INR, INS - sets of input parameter names of R and S
OUTR, OUTS - sets of output parameter names of R and S
Atot(INR, INS) =

∑
iniR∈INR,in

j
S∈INS

NA(ini
R, inj

S)

Atot(OUTR, OUTS) =
∑

outiR∈OUTR,out
j
S∈OUTS

NA(outi
R, outj

S)

Operation similarity

OpSim(opi
R, opj

S) = NA(name opi
R, name opj

S) +
2·Atot(INiR,IN

j
S)

|INiR|+|IN
j
S|

+
2·Atot(OUT iR,OUT

j
S)

|OUT iR|+|OUT
j
S|

∈ [0, 3]

INi
R, INj

S - sets of input parameter names of the i-th operation of R and the j-th operation of S
OUT i

R, OUT j
S - sets of output parameter names of the i-th operation of R and the j-th operation of S

Functionality-based similarity

FSim(R,S) =
2·∑i,j OpSim(opiR,op

j
S)

|OP (R)|+|OP (S)| ∈ [0, 3]

OP (R), OP (S) - sets of operation names of R and S

Global similarity

GSim(R,S) = w1 · NormESim(R,S) + w2 · NormFSim(R,S) ∈ [0, 1]

w1, w2 - weights introduced to assess the relevance of each kind of similarity (w1 ∈ [0, 1] and w2 = 1−w1)
NormESim(), NormFSim() - ESim() and FSim() normalized to the range [0, 1]

Table 1. Similarity coefficients between service descriptions R (request) and S (sup-
ply).

match occur, similarity coefficients exposed in Table 1 are computed to evaluate
similarity between R and S.

Entity-based similarity coefficient ESim evaluates the similarity of all the I/O
parameters of the considered services to measure how much they are based on
the same information; Functionality-based similarity coefficient FSim compares
pairs of operations together with their corresponding I/O parameters to measure
how much the two services perform the same functionalities. Each component
in ESim() formula in Table 1 produces by construction a value belonging to
the [0,1] range, so that ESim() ∈ [0, 2]. Similarly, each component in OpSim()
formula produces by construction a value belonging to the [0,1] range, so that
OpSim() ∈ [0, 3] and, accordingly, FSim() ∈ [0, 3]. ESim and FSim are nor-
malized into the [0,1] range and combined in the Global similarity coefficient
GSim. A detailed description of similarity coefficients and their application is
given in [6].

If the value of GSim is equal or greater than a threshold δ, then R and S are
considered similar. It is noteworthy to say that these coefficients are specifically
oriented toward a comparison between service descriptions expressed in terms of
operations and corresponding I/O parameters rather than pure vectors of terms.
The result of this similarity evaluation depends on the choice of δ. Actual value
of δ is experimentally set during a training phase. Since actual values of ESim
and FSim depend on name affinity evaluation and therefore depend also on the
α value, we first set this value to obtain a satisfactory name affinity evaluation
then we vary the value of δ until an acceptable trade-off between precision and
recall is obtained on a set of training services.

The semantic matchmaking techniques can also be applied to compare ser-
vices stored on the same peer or on different peers, to identify semantic links.
In particular, a semantic link between two services is established if the kind of
match is not mismatch and the GSim value is equal or greater than threshold
δ. The semantic link is described by the kind of match and the GSim coefficient
and it is stored in the service ontology.

Two types of semantic links can be established: (i) semantic links between
services belonging to the same peer (intra-peer semantic links); (ii) semantic
links between services belonging to different peers (inter-peer semantic links);
the related peers are referred as semantic neighbors. In the following, we briefly
illustrate the process of semantic community constitution as defined in the ES-
TEEM Project [7], then focusing on inter-peer semantic link definition.

3 P2P semantic community setup

Figure 2 shows the process of semantic community constitution, where the in-
formation owned by the peers at each step is listed on the right. We denote as
Global Overlay (GO) the generic P2P network which peers potentially aiming at
joining semantic community belong to. In the P2P network, each peer knows its
own IP address. The promoter of the semantic community builds a startup mani-
festo, containing a portion of its peer ontology manually selected, apt to express
the core interests of the intended semantic community. The startup manifesto
generally will contain the upper level concepts of promoter’s Service Message
Ontology, since it contains knowledge about the domain in which the sharable
services operate. It is important that startup manifesto is limited, so it can be
easily flooded over the P2P network starting the setup process. When a peer in
GO receives the startup manifesto, it can accept or not to join the community.
In case of acceptance, the peer sends back a message to the promoter with its IP
address and becomes a candidate member. Otherwise, the peer simply ignores
the startup manifesto and forwards it to the other peers in GO, except the one
from which the startup manifesto came.

Candidate members constitute a so-called Semantic Overlay (SO), but the
community is not established yet. They know their own IP address and the
startup manifesto of the community. The promoter sends to all candidate mem-
bers the complete version of manifesto together with the list of candidate mem-
bers IP addresses. The manifesto contains both the Service Message Ontology

Fig. 2. Setup of the semantic community.

and the Service Functionality Ontology of the promoter and is sent only to candi-
date members to reduce network overload. At this point, the Semantic Commu-
nity (SC) is established and candidate members become community members.
Each peer knows its own IP address, the manifesto and the community member
current list.

Once the semantic community is established, each peer searches for its se-
mantic neighbors to establish the inter-peer semantic links. To do this, it sends
a probe service request for each service it wants to make sharable; this probe
service request contains the description of the service functional interface (cate-
gories, operations, I/O parameters). The probe service request is sent to all the
other peers of the semantic community, according to the community member list.
Each peer receiving the probe service request matches it against its own service
descriptions by applying the matchmaking techniques explained in Section 2.2
and obtains for each comparison the kind of match mt and the similarity degree
GSim. If mt is not mismatch and GSim is equal or greater than threshold δ,
they are enveloped in a message sent back to the peer from which the probe
service request came. An inter-peer semantic link is established between the two
peers, that become semantic neighbors with respect to the linked services.

In this way, each peer can build a map of its semantic neighbors, with similar
services and semantic links with them. In this phase we say that peers belong

to the Community View (CV) and know their own IP address, the community
manifesto, the community member current list and semantic neighbors.

Community can evolve when new peers join it or new services are published
on community members. To collect the list of new peers that aim at joining
the community, promoter sends again the startup manifesto on P2P network
and receives the IP addresses of new candidate members, to which the promoter
sends the community manifesto, while it sends an updated member list to all
the peers in the community. A peer that receives a new member list can repeat
the procedure to find semantic neighbors provided that the community changed.
When a community member publishes a new service, it advertises the promoter,
that triggers the semantic community; in this way, all members update their
inter-peer semantic links by means of probe service request mechanism. Note
that the semantic community and community view are established before service
requests are propagated. As explained in the next section, when a peer receives
a request, it applies matchmaking strategies to properly select a subset of its
semantic neighbors that are more suitable to serve that particular request.

4 P2P semantic community interoperation

Once the semantic community is established and inter-peer semantic links are
defined, services can be searched and exchanged between community members.
A peer p of the community can receive a service request either directly from
the Application Program Interface or from another community member. Given a
service request R, a peer p searches for suitable services in its own Semantic Peer
Registry and retrieves a list CS = {〈S1, GSim1, mt1〉, . . . 〈Sn, GSimn, mtn〉} of
services with corresponding similarity values GSimi ≥ δ and match type mti
different from mismatch.

If a service Si ∈ CS presents an exact or a plug-in match with the request,
then Si satisfies completely the required functionalities and it is not necessary to
forward the service request to semantic neighbors with respect to Si. Otherwise,
if Si presents a subsume or an intersection match with the request, the peer
p forwards the request to those peers that are semantic neighbors with respect
to Si. Peer p does not consider semantic neighbors that present a subsume or
an exact match with Si, because this means that they provide services with
the same functionalities or a subset of Si functionalities and they cannot add
further capabilities to those already provided by Si on the peer p. This phase
is repeated for every Si ∈ CS. Semantic neighbors which present inter-peer
links with any service Sj stored on p, but not included in CS, are discarded
since they are not relevant with respect to R. Each selected semantic neighbor
sn presents a set of k inter-peer semantic links with some services on p that are
suitable for R. It is described as 〈sn, {〈S1, GSim1, mt1〉 , . . . 〈Sk, GSimk, mtk〉}〉,
where S1 . . .Sk ∈ CS and have a semantic link with some services stored on sn,
featured by GSim1 . . . GSimk similarity degree and mt1 . . .mtk type of match,
respectively. Note that this formulation holds even if sn has more than one
service related to the same service Si ∈ CS.

Since the relevance of sn does not depend only on the similarity associated to
the semantic links between p and sn, but also on the similarity degree between
Si ∈ CS and R, the harmonic mean is used to combine these two aspects.
Therefore, the relevance of a semantic neighbor sn is defined as:

rsn =
1
k

msn∑

i=1

2 ∗ GSimi ∗ GSim(R,Si)
GSimi + GSim(R,Si)

(1)

Relevance values are used to rank the set of semantic neighbors in order to filter
out not relevant semantic neighbors (according to a threshold-based mechanism)
and to further constrain the request forwarding (according to a token-based
strategy).
Example. Let consider PeerA providing three services findDisease, findDia-
gnosis and findLaboratory for which the following semantic neighbors have
been found (Figure 3):

〈PeerB, {〈findDisease, 0.753, intersection〉 , 〈findDiagnosis, 1.0, exact〉}〉
〈PeerC, {〈findLaboratory, 0.7, intersection〉 , 〈findDisease, 1.0, plug− in〉}〉

Fig. 3. An example of inter-peer semantic links in the P2P community.

Let suppose that for a given request R on the PeerA, we obtain the following
list of matching services: CS = {〈findDisease,0.9,intersection〉, 〈findDia-
gnosis, 0.7,subsume〉}, while {〈findLaboratory,0.0,mismatch〉} is excluded
from CS. For what concerns findDisease, both PeerB and PeerC must be con-
sidered as semantic neighbors, since they could provide some additional capabil-
ities with respect to PeerA. Moreover, for what concerns findDiagnosis, PeerC

is not a semantic neighbor, while PeerB has a related service, that presents an
exact match with findDiagnosis. This means that PeerB has no additional
capabilities to offer with respect to those already provided by findDiagnosis
in PeerA. The resulting set of selected semantic neighbors with respect to R is
{〈 PeerC, {findDisease, 1.0, plug-in} 〉, 〈 PeerB, {findDisease, 0.753,
intersection} 〉}. The relevance values for PeerC and PeerB with respect to
the request R are then:

rPeerC =
2 ∗ 1.0 ∗ 0.9
1.0 + 0.9

= 0.947; rPeerB =
2 ∗ 0.753 ∗ 0.9
0.753 + 0.9

= 0.82 (2)

5 Related work

Service semantic description in a P2P context and semantic links between peers
based on provided services is a crucial aspect to improve effectiveness and perfor-
mance of P2P service discovery. Several proposals have been made in literature
to enable semantic-enhanced service discovery in a P2P context, not necessar-
ily based on semantic communities. In METEOR-S [10] service descriptions are
kept in UDDI Registries semantically enhanced with local domain specific on-
tologies, while a centralized registries ontology is used to classify peer registries.
During the discovery process, registries ontology is browsed to find the proper
registry to which submit the request. GloServ [1] defines a predefined skeleton
ontology, represented as a taxonomy of concepts each of them representing a
service category, that in turn is associated to a high level server. Each server
represents a P2P network of nodes organized via a Content Addressable Network
(CAN) [9]. These peers provide services belonging to the category represented
by ontological concept associated to their own server. The skeleton ontology is
a centralized structure, replicated and cached in each high level server. Service
discovery is organized in two phases: (a) browsing concept taxonomy to find the
proper high level server; (b) keyword-based search through a CAN lookup table.
Our approach does not constrain peers to use a common ontology: each peer
exploits its own peer ontology, eventually mapped to the community manifesto
to enhance peer interoperability.

DAML-S for P2P [8] considers a P2P network, where each member stores a
local DAML-S ontology to describe services; service semantic descriptions are
kept in local UDDI registries extended with DAML-S ontologies. However, no
semantic links are found between peers that provide similar services and when
a peer does not satisfy a request, a flooding mechanism is used to find suitable
services on the other peers of the network. ARTEMIS [2] defines a P2P network,
where each peer has a coarse-grained Service Functionality Ontology (SFO) to
classify services and a fine-grained Service Message Ontology (SMO) to annotate
services with medical concepts, based on medical information standards. Peer
store in a reference mediator super-peer the services they provide. A peer sends
a request to its reference mediator expressed in terms of its own ontologies;
mediator uses ontology mappings to find matching services in its local registries
and also forwards the request to other mediators. No semantic links are exploited
to prune the set of peers to which forward the request.

WSPDS [3] describes a P2P network where peers have local DAML-S on-
tologies to provide service semantics and semantic links with other peers based
on similarity between services they provide. When a request is submitted to a
peer, it searches for local matching results and forwards the request to all the
semantic neighbors, independently of the current request or the local results of
the query. Original contribution of our approach is related to the flexibility of the

matchmaking process based on both deductive and similarity-based approaches
and on the definition and exploitation of inter-peer semantic links.

6 Concluding remarks

In this paper, we proposed a semantic-based approach for service discovery in
a P2P scenario, where peers are organized in communities. Specific ontologies
(called peer ontologies) are used to add semantics to service descriptions and are
exploited during community setup to find inter-peer semantic links. These links
are used to propagate a service request between the peers of the community in
an efficient way. Implementation and experimentation of the proposed approach
are being performed in the application scenario of scientific collaboration in
medicine [7].

References

1. K. Arabshian and H. Schulzrinne. An Ontology-based Hierarchical Peer-to-Peer
Global Service Discovery System. Journal of Ubiquitous Computing and Intelli-
gence (JUCI), 2006.

2. The ARTEMIS Project: A Semantic Web Service-based P2P In-
frastructure for the Interoperability of Medical Information Systems.
http://www.srdc.metu.edu.tr/webpage/projects/artemis/.

3. F. Banaei-Kashani, C. Chen, and C. Shahabi. WSPDS: Web Services Peer-to-Peer
Discovery Service. In Proc. of the Int. Conference on Internet Computing (IC’04),
pages 733–743, Las Vegas, Nevada, USA, 2004.

4. D. Bianchini and V. De Antonellis. Ontology-based Semantic Interoperability
Tools for Service Dynamic Discovery. In IFIP Int. Conf. on Interoperability of
Enterprise Software Applications, INTEROP-ESA’05, Geneva, Switzerland, 2005.

5. D. Bianchini, V. De Antonellis, M. Melchiori, and D. Salvi. Semantic-enriched Ser-
vice Discovery. In IEEE ICDE Int. Workshop on Challenges in Web Information
Retrieval and Integration, WIRI 2006, Atlanta, Georgia, USA, 2006.

6. D. Bianchini, V. De Antonellis, B. Pernici, and P. Plebani. Ontology-based Method-
ology for e-Service discovery. Journal of Information Systems, Special Issue on
Semantic Web and Web Services, 31(4-5):361–380, June-July 2006.

7. ESTEEM Project Home Page: Emergent Semantics and cooperaTion in multi-
knowledge EnvironmEnt. http://www.dis.uniroma1.it/∼esteem/index.html.

8. M. Paolucci, K.P. Sycara, T. Nishimura, and N. Srinivasan. Using daml-s for p2p
discovery. In Proceedings of the Int. Conference on Web Services (ICWS2003),
2003.

9. S. Ratnasamy, P. Francis, M. Handley, R.M. Karp, and S. Shenker. A Scalable
Content-Addressable Network. In Proc. of the ACM SIGCOMM’01 Conference on
Applications, Technologies, Architectures and Protocols for Computer Communi-
cation, pages 161–172, San Diego, CA, USA, August 2001.

10. K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller.
METEOR-S WSDI: A Scalable Infrastructure of Registries for Semantic Publi-
cation and Discovery of Web Services. Journal of Information Technology and
Management, Special Issue on Universal Global Integration, 6(1):17–39, 2005.

Web Service Mediation Through Multi-level Views

Manivasakan Sabesan and Tore Risch

Department of Information Technology, Uppsala University, Sweden
{msabesan, Tore.Risch}@it.uu.se

Abstract. The web Service MEDiator system (WSMED) provides general
query capabilities over data accessible through web services by reading WSDL
meta-data descriptions. Based on imported meta-data, the user can define views
that extract data from the results of calls to web service operations. The views
can be queried using SQL. The views are specified in terms of declarative que-
ries that access different web service operations in different ways depending on
what view attributes are known in a query. To enable efficient query execution
over the views by automatic query transformations the user can provide seman-
tic enrichments of the meta-data with key constraints. We evaluated the effec-
tiveness of our approach over multi-level views of existing web services and
show that the key constraint enrichments substantially improve query perform-
ance.
Keywords: web service views, query optimization, semantic enrichment

1. Introduction

Web services [4] provide an infrastructure for web applications by defining sets of
operations that can be invoked over the web. Web service operations are described by
meta-data descriptions of operation signatures, using the Web Services Description
Language (WSDL) [5]. An important class of operations is to access data through
web services, e.g. Google’s web page search service [12] and the United States De-
partment of Agriculture nutrition database of foods [27]. However, web services don’t
support general query or view capabilities; they define only operation signatures.

We have developed a system, WSMED – Web Service MEDiator, to facilitate effi-
cient queries over web services. The view definitions called WSMED views are de-
fined in terms of imported WSDL descriptions of web service operations. Further-
more, multi-level WSMED views can be defined in terms of other WSMED views.
Web services return nested XML structures (i.e. records and collections), which have
to be flattened into relational views before they can be queried with SQL. The knowl-
edge how to extract and flatten relevant data from a web service call is defined by the
user as queries called capability definitions using and object-oriented query language,
WSMED query language (WQL), which has support for web service data types.

An important semantic enrichment is to allow for the user to associate with a given
WSMED view different capability definitions depending on what view attributes are
known in a query, the binding pattern of the capability definition. The WSMED query

optimizer automatically selects the optimal capability definition for a given query by
analyzing its used binding patterns. These view definitions enrich the basic web ser-
vice operations to support SQL data access queries.

A WSDL operation signature description does not provide any information about
which parts of the signature is a key to the data accessed through the operation. As we
show, this information is critical for efficient query execution of multi-level WSMED
views. Therefore, we allow the user to declare to the system all (compound) keys of a
given WSMED view, called key constraints.

This paper is organized as follows: Section two describes the architecture of
WSMED. Section three gives examples of WSMED view definitions using an exist-
ing web service and explains the capability definitions. Section four analyzes the per-
formance of a sample query to verify the effectiveness of query transformations based
on the semantic enrichments compared to conventional relational algebra transforma-
tions. Section five describes the strategies of the query processor. Section six dis-
cusses related work. Finally section seven summarizes the results and indicates future
work.

2. The WSMED System

Figure 1a, illustrates WSMED’s system components. Imported WSDL meta-data is
stored in the web service meta-database using a generic web service schema that can
represent any WSDL definition. The WSDL Importer populates the web service meta-
database, given the URL of a WSDL document. It reads the WSDL document using
the WSDL parser toolkits WSDL4J [24] and Castor [23]. The retrieved WSDL docu-
ment is parsed and automatically converted into the format used by the web service
meta-database. In addition to the general web service meta-database, WSMED also
keeps additional user-provided WSMED enrichments in its local store.

The query processor exploits the web service descriptions and WSMED enrich-
ments to process queries. The query processor calls the web service manager which
invokes web service calls using Simple Object Access Protocol (SOAP) [13] through
the toolkit SAAJ [19] to retrieve the result for the user query.

Figure 1b illustrates architectural details of the query processor. The calculus gen-
erator produces from an SQL query an internal calculus expression in a Datalog dia-
lect [18]. This expression is passed to the query rewriter for further processing to pro-
duce an equivalent but simpler and more efficient calculus expression.

The query rewriter calls the view processor to translate SQL query fragments over
the WSMED view into relevant capability definitions that call web service operations.
An important task for the query rewriter is to identify overlaps between different sub-
queries and views calling the same web service operation. This requires knowledge
about the key constraints. We will show that such rewrites significantly improve the
performance of queries to multi-level views of web services.

The rewritten query is finally translated into an algebra expression by a cost-based

optimizer that uses a generic web service cost model as default. The algebra has op-
erators to invoke web services and to apply external functions implemented in WSDL
(e.g. for extraction of data from web service results). The algebra expression is finally
interpreted by the execution engine. It uses the web service meta-database to generate
a SOAP message when a web service operation is called.

3. WSMED Views

To illustrate and evaluate our approach we use a publicly available web service to
access and search the National Nutrient Database for US Department of Agriculture
[28]. The database contains information about the nutrient content of over 6000 food
items. It contains five different operations: SearchFoodByDescriptions, CalculateNu-
trientValues, GetAllFoodGroupCodes, GetWeightMethods and GetRemainingHits.
We illustrate WSMED by the operation SeachFoodByDescriptions to search foods
given a FoodKeywords or a FoodGroupCode. The operation returns NDBNumber,
LongDescription, and FoodGroupCode as the results. The WSMED view named food
in Table 1 allows SQL queries over this web service operation.

Table 1. WSMED view food

ndb keyword descr gpcode
19080 Sweet Candies 1900
……… ……… …………… ……….

WSDL
Importer

Web Service
Manager

SQL query

WSDL
document

Query
Processor

WSMED
enrichments

Web service
 schema

Web service
 meta-database

Web
service

Results

query
rewriter

cost-based
optimizer

execution
engine

calculus
generator

view processor

Figure 1b: Query Processor Figure 1a: WSMED components

For example, the following SQL query to the view food retrieves the description of
foods that have food group code equal to 1900 and keyword ‘Sweet’:

select descr
from food
where gpcode=’1900’ and keyword =’Sweet’;

The view food is defined as follows:
create SQLview food (Charstring ndb,
 Charstring keyword,Charstring descr, Charstring gpcode)
as multidirectional
 (“ffff” select ndb, “”,descr, gpcode
 where foodDescr(“”,“”)= <ndb,descr,gpcode>)
 (“fffb” select ndb, “”,descr
 where foodDescr(“”,gpcode)= <ndb,descr,gpcode>)
 (“fbff” select ndb,descr,gpcode
 where foodDescr(keyword, “”)= <ndb,descr,gpcode>)
 (“fbfb” select ndb, descr
 where foodDescr(keyword,gpcode)
 = <ndb,descr,gpcode>)

Figure 2: WSMED view definition

A given WSMED view can access many different web service operations in differ-
ent ways. When the user defines a WSMED view he can specify the view by several
different declarative queries, called capability definitions, using an object oriented
query language called WQL having special web service oriented data types. Each ca-
pability definition implements a different way of retrieving data through web service
operations using WQL. Different capability definitions can be defined based on what
view attributes are known or unknown in a query, called the capability binding pat-
terns. The query optimizer automatically chooses the most promising capability defi-
nitions for a given query to a WSMED view. Each capability definition provides a
different way of using the web service operations to retrieve food items. The capabil-
ity binding patterns of the view food are:
1. ffff- all the attributes of the view are free in the query. That is, the query does not

specify any attribute selection value. In this case the capability definition speci-
fies that all food items should be returned.

2. fffb- a value is specified only for fourth attribute gpcode. This means that the capa-
bility definition returns all food items for a given food group code.

3. fbff- a value is specified in the query only for the second attribute keyword, i.e. all
food items associated with the given keyword are retrieved.

4. fbfb- both the values keyword and gpcode are specified in the query, finding the
relevant food items.

In our example query the binding pattern is fbfb. The capability definitions are de-
fined as declarative WQL queries that all call a function foodDescr in different ways.
The function foodDescr is defined as a WQL query that wraps the web service opera-
tion SearchFoodByDescription given two parameters foodkeywords and foodgroup-
code. It selects relevant pieces of a call to the operation SearchFoodByDescription to
extract the data from the data structure returned by the operation.
 To simplify sub-queries and provide heuristics for estimating selectivities, it is im-
portant for the system to know what attributes in the view are (compound) keys.

Therefore, the user can specify key constraints for a given view and set of attributes
by a system function declare_key, e.g.:
 declare_key(“food”, {”ndb”});
 Key constraints are not part of WSDL and require knowledge about the semantics
of the web service. In our example web service the attribute ndb is the key. The at-
tributes are specified as a set of attribute names for a given view (e.g. {“ndb”}). Sev-
eral keys can be specified by several calls to declare_key.

The query optimizer may also need to estimate the cost to invoke a capability and
the estimated size of its result, i.e. its fanout. Costs and fanouts can be specified ex-
plicitly by the user if such information is available. However, normally explicit cost
information is not available and the cost is then estimated by a default cost model that
uses available semantic information such as signatures, keys, and binding patterns to
roughly estimate costs and fanouts. Key constraints will be shown to be the most im-
portant semantic enrichment in our example, and additional costing information is not
needed.

3.1 Capability definition function

The function foodDescr, used in the capability definitions in Figure 2, has the fol-
lowing definition:

1.create function foodDescr (Charstring fkw,
2. Charstring fgc)
3. ->Bag of <Charstring ndb,Charstring descr,
4. Charstring gpcode>
5. as select re[“NDBNumber”],re[“LongDescription”],
6. re[“FoodGroupCode”]
7. from Record out, Record re
8. where out =
9. cwo(“http://ws.strikeiron.com/USDAData?WSDL”,
10. “USDAData”,
11. “SearchFoodByDescription”,
12. {fkw, fgc})
13. and re in out[“SearchFoodByDescriptionResult”];

Given a food keyword, fkw, and a group code, fgc, the function foodDescr returns a
bag of result rows extracted from the result of calling the web service operation
named SearchFoodByDescription. Any web service operation can be called by the
built-in generic function cwo (line 9). Its arguments are the URI of WSDL document
that describes the service (line 9), the name of the service (line 10), an operation name
(line 11), and the input argument list for the operation (line 12). The result from cwo
is bound to the query variable out (line 8). It holds the output from the web service
operation temporarily stored in WSMED’s local database. The system automatically
converts the input and output messages from the operation into records and sequences
where records are used to represent complex XML elements [7] and sequences repre-
sent ordered elements. In our example, the argument list holds the parameters Food-
Keywords and FoodGroupCode (line 12). The result out is a record structure from
which only the attribute SearchFoodByDescriptionResult is extracted (line 13). Ex-
tractions are specified using the notation s[k], where s is a variable holding a record,
and k is the name of an attribute.

The function foodDescr selects relevant parts of the result from the call to the op-
eration. In our example, the relevant attributes are NDBNumber, LongDescription,
and FoodGroupCode, which are all attributes of a record stored in the attribute
SearchFoodByDescriptionResult of the result record. Our example web service opera-
tion SearchFoodByDescription returns descriptions of all available food items when
both attributes foodkeywords and foodgroupcode are empty strings. On the other
hand, if foodkeywords is empty but foodgroupcode is known, the web service opera-
tion will return all food with that group code. Similarly, if foodgroupcode is empty
but foodkeywords is known, the web service operation will return all food with that
keyword. If both foodkeywords and foodgroupcode are non-empty, the operation will
return descriptions of all food items of the group code with matching keywords. This
knowledge about the semantic of the web service operation SearchFoodByDescrip-
tion is used to define the capability definition function in Figure 2.

4. Impact of key constraints

To illustrate the impact of key constraints we define two views in terms of the
WSMED view food. The view foodclasses is used to classify food items while food-
descriptions describes each food item:

create view foodclasses(ndb, keyword, gpcode)
as select ndb,keyword,gpcode from food;

create view fooddescriptions(ndb, descr)
as select ndb, descr from food;

This scenario is natural for our example web service that treats foodclasses differ-
ent from fooddescriptions. The following SQL query accesses these views.

select fd.descr
from foodclasses fc, fooddescriptions fd
where fc.ndb=fd.ndb and fc.gpcode=’1900’;

First the example query is translated by the calculus generator (Figure 1b) into a
Datalog expression:

Query(l) :- foodclasses(ndb,keyword,gpcode) AND fooddescrip-
tions (ndb,descr) AND descr=l AND gpcode=’1900’

The definitions of the views foodclasses and fooddescriptions are defined in
Datalog as1:

foodclasses(ndb, keyword, gpcode) :- food(ndb, keyword, *,
gpcode).

fooddescriptions(ndb,descry) :- food(ndb, *, descr, *).
Given these view definitions the Datalog expression is transformed by the view

processor (Figure 1b) into:
Query(l) :- food(ndb,*,*,’1900’) AND food(ndb,*,l,*).
Here the predicate food represents our WSMED view. At this point the added se-

mantics that ndb is the key of the view play its vital part. Two predicates p(k,a) and
p(k,b) are equal if k is a key and it is then inferred that the other attributes are also

1 ‘*’ means don’t care.

equal, i.e. b=a [9]. If a key constraint that ndb is the key is specified, this is used by a
query rewriter to combine the two calls to food:

Query(l) :- food(*,*,l,’1900’).
Without knowing that ndb is the key the transformation would not apply and the

system would have to join the two references to the view food in the expanded query.
The simplification is very important to attain a scalable query execution performance
as shown in Section 5.

The next step is to select the best capability definition for the query. The heuristics
is that if more than one capability definition is applicable, the system chooses the one
with the most variables bound. Since l is the query output and gpcode is given, the
binding patterns ffff and fffb both apply, and the system chooses fffb because it is con-
sidered cheaper. The call to food then becomes:

Query(l) :- l=foodDescr(“”,”1900”).
Similar to relational database optimizers, given the definition of foodDescr, a cost

based optimizer generates the algebra expression in Figure 3a, which is interpreted by
the execution engine. The apply operator (γ) calls a function producing one or several
result tuples for a given input tuple and bound arguments [14]. By contrast, Figure 3b
shows an execution plan for the non-transformed expression where the system does
not know that ndb is key. It is using a nested loop join (NLJ) to join the capability
definitions. An alternative possible better plan based on hash join (HJ) that material-
izes the inner web service call is shown in Section 5. In case no costing data is avail-
able about the capability definitions (which is the case here), the system uses built in
heuristics, i.e. a default cost model. In our case the cost based optimizer produces the
plan in Figure 3a, which is optimal for our query.

5. Query Performance

To determine the impact of semantic enrichments on query processing strategies, we
have experimented with four different kinds of query execution strategies. They are:
1. The naïve implementation does not use any semantic enrichment at all and no bind-

ing pattern heuristics. That is, no key is specified for the food view definition and
no default cost model was used. This makes the capability definition be regarded as
a black box called iteratively in a nested loop join since the system does not know

Figure 3b: Naïve execution

<ndb, descr, gpcode> <ndb, descr, gpcode> ∞ NLJ

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

γ foodDescr(“”,””) γ foodDescr(“”,gpcode)

<gpcode>

<ndb, descr, gpcode>

Figure 3a: Full semantic en-
richment

that foodDescr returns a large result set when both arguments are empty. The exe-
cution plan in Figure 3b shows the naïve plan.

2. With the default cost model the system assumes that the view food is substantially
more expensive to use when attribute gpcode is not known than when it is known,
i.e. it is cheaper to execute a capability definition where more variables are bound.
Still there is no key specified. Figure 5b illustrates the plan using nested loop join.

3. Figure 5a shows the execution plan with the default cost model and a hash join
strategy where the results from web service operation calls are materialized by us-
ing hash join to avoid unnecessary web service calls. This can be done only when
the smaller join operand can be materialized in main memory.

4. With full semantic enrichment the key of the view is specified. Figure 3a, shows
the execution plan. It is clearly optimal.

As shown in Figure 4a, the naïve strategy was the slowest one, somewhat faster than
using the default cost model with nested loop join. The default cost model with a hash
join strategy scaled significantly better, but requires enough main memory to hold the
inner call to foodDescr. Figure 4b compares the default cost model with hash join
with the performance of full semantic enrichments. The hash join strategy was around
five times slower. This clearly shows that semantic enrichment is critical for high
performing queries over multi-level views of web services.

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

0 100 200 300 400 500 600 700 800 900

Num be r of Food Ite m s

R
es

po
ns

e
Ti

m
e(

se
c)

full semantic enrichment hashjoin strategy
default cost model naïve implementation

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 100 200 300 400 500 600 700 800 900

Nu m be r of Food Ite m s

R
es

po
ns

e
Ti

m
e(

se
c)

 hash join s trategy
full semantic enrichment

Figure 4a: Performance comparison of
four query execution strategies

Figure 4b: Performance com-
parison of hash join and full
semantic enrichment execution
strategies

The diagrams are based on the experimental results in Table 2 and the experiment
was made by using the real values to actually retrieve the results through web service
operations. VG, NF, S1, S2, S3, and S4 denote the value used for parameter gpcode,

the number of food items (actual fanout), and the execution time in seconds for the
four different strategies.

With the naive strategy the system does not use any binding pattern heuristics and

will call foodDescr with empty strings (γfoodDescr(“”,””)) which produces a large
costly result containing all food items in the outer loop. This is clearly very slow.

 Table 2. Experimental results

VG NF S1 S2 S3 S4

0900 303 1985.14 1512.74 5.77 1.22
0600 390 3177.28 1848.28 5.55 1.33

1400 219 1831.05 1041.74 5.50 1.08

1100 779 4891.13 3785.30 6.22 1.69

2000 157 1655.48 777.31 5.41 0.94

0800 359 3114.28 1723.28 5.59 1.35

0400 201 1914.23 955.38 6.38 1.08

1800 517 3524.34 2452.22 5.93 1.33

2200 132 1741.51 645.03 5.62 0.93

With the default cost model strategy the system assumes that queries over the view
food produce larger results when the attribute gpcode is unknown than when it is
known. Based on this the call to foodDescr with a known gpcode value is placed in
the outer loop of a nested loop join. This clearly is a better strategy than the naïve im-
plementation.

Finally by utilizing key constraints in the WSMED view definition the system will

know that the two applications of foodDescr can be combined into one call. With this
full enrichment strategy only one web service operation call is required for execution
of the query and no hash join is needed. We notice that this is the fastest and most
scalable plan and that it needs no costing knowledge.

<ndb, descr, gpcode>

γ foodDescr(“”,””)

<ndb, descr, gpcode>
∞ HJ

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

<gpcode>

γ foodDescr(“”,gpcode)

<ndb, descr, gpcode>

γ foodDescr(“”,””)

<ndb, descr, gpcode> <ndb, descr, gpcode>
∞ NLJ

Figure 5a: Execution plan of hash join
strategy

Figure 5b: Execution plan with de-
fault cost model

6. Related Work

Preliminary results for our method of querying mediated web services were reported
in [20].

SOAP [12] and WSDL [5] provide standardized basic interoperation protocols for
web services but no query or view capabilities. The SQL 2003 standard [8][26] has
facilitates to combine SQL with XML Query language (XQuery) [3] to access both
ordinary SQL-data and XML documents stored in a relational database. By contrast,
we optimize SQL queries to views over data returned by invoking web services and
we use semantic query transformations to improve the performance.

The formal basis for using views to query heterogeneous data sources is reviewed
in [10][15][25]. As some other information integration approaches, e.g. [11][29], we
also use binding patterns as one of our semantic enrichments to access data sources
with limited query capabilities. We define semantically enriched declarative views ex-
tracting data from the results of each web service operations in terms of an object-
oriented query language. In [1] an approach is described for optimizing web service
compositions by procedurally traversing ActiveXML documents to select embedded
web service calls, without providing view capabilities.

WSMS [22] also provide queries to mediated web services. However, they concen-
trate on optimizing pipelined execution of web service queries while we utilize se-
mantic enrichments for efficient query processing over multi-level views of web ser-
vices. XLive [6] is a mediator for integrating heterogeneous sources including web
service sources with specific wrappers based on XML standards. In contrast we de-
ploy a generic wrapper that can call any web service.

In particular, unlike the other works, we show that key constraints significantly
improve performance of queries to multi-level views of web services with different
capabilities.

7. Conclusions and future work

We devised a general approach to query data accessible through web services by
defining relational views of data extracted from the result SOAP messages returned
by web service operations. Multi-level relational views of web service operations can
be defined. The system allows SQL queries over these WSMED views. The view ex-
tractions are defined in terms of an object oriented query language. The query per-
formance is heavily influenced by knowledge about the semantics of the specific web
service operations invoked and all such information is not provided by standard web
service descriptions. Therefore the user can complement a WSMED view with se-
mantic enrichments for better query performance. Our experiments showed that bind-
ing patterns combined with key constraints are essential for scalable performance
when other views are defined in terms of WSMED views.

Strategies for parallel pipelined execution strategies of web service operation calls
as in WSMS [22] should be investigated. The pruning of superfluous web service op-
eration calls is crucial for performance. The adaptive approaches in [2][17] should be
investigated where useless results are dynamically pruned in the early stage of query
execution. Currently the semantic enrichments are added manually. Future work
could investigate when it is possible to automate this and how to efficiently verify that
enrichment is valid. For example, determination of key constraints is currently added
manually, and this could be automated by querying the source. Another issue is how
to minimize the required semantic enrichments by self tuning cost modeling tech-
niques [16] based on monitoring the behavior of web service calls.

The semantic web is an emerging prominent approach for the future data represen-
tations where WSDL working groups are proposing standards to incorporate semantic
web representations [21]. It should be investigated how mediate of web services based
on such semantic web representations.

Acknowledgements
This work is supported by Sida.

References

[1] S. Abiteboul et al., Lazy query evaluation for active XML, Proc. of the 2004 ACM
SIGMOD Intl. Conf. on Managementof Data, 227–238, 2004.

[2] R. Avnur, and J. M. Hellerstein, Eddies: Continuously adaptive query processing, Proc.
SIGMOD conference, 2000.

[3] S.Boag, D.Chamberlin, M.F. Fernández, D.Florescu, J.Robie, and J.Siméon, XQuery 1.0:
An XML Query LanguageW3C Candidate Recommendation, published online at
http://www.w3.org/TR/xquery/, 2006

[4] D.Booth, H.Haas, F.McCabe, E.Newcomer, M.Champion, C.Ferris, and D.Orchard, Web
Services Architecture,W3C Working Group Note, published online at
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ , 2004

[5] E.Christensen, F.Curbera, G.Meredith, and S. Weerawarana, Web services description
language (WSDL) 1.1., W3C, http://www.w3.org/TR/wsdl, 2001.

[6] T.Dang Ngoc, C.Jamard, and N.Travers , XLive : An XML Light Integration Virtual En-
gine, Proc. of BDA, 2005

[7] D.C. Fallside, and P.Walmsley, XML Schema Part 0: Primer Second EditionW3C Rec-
ommendation, published online at http://www.w3.org/TR /xmlschema-0/, 2004

[8] A.Eisenberg, and J.Melton, SQL/XML is Making Good Progress, ACM SIGMOD Re-
cord, 31(2), June 2002

[9] G. Fahl, and T. Risch, Query Processing over Object Views of Relational Data, The
VLDB Journal , 6(4), 261-281, 1997.

[10] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.Rajaraman, Y. Sagiv, J.D. Ullman,
V. Vassalos, and J.Widom, The TSIMMIS Approach to Mediation: Data Models and
Languages, In Journal of Intelligent Information Systems, 8(2): 117-132, 1997

[11] H.Garcia-Molina, J.D Ullman, and J.Widom, Database Systems: The Complete Book,
ISBN 0-13-098043-9, Prentice Hall, 1047-1069, 2002.

[12] Google SOAP Search API (Beta), published online at http://code.google.com/apis
/soapsearch/

[13] M.Gudgin, M.Hadley, N.Mendelsohn, J.Moreau, and H.Frystyk Nielsen, SOAP Version
1.2 Part 1: Messaging Framework,W3C Recommendation, published online at
http://www.w3.org/TR/soap12-part1/ ,2003

[14] L.M.Haas, D. Kossmann, E. Wimmers, and J .Yang, Optimizing queries across diverse
data sources, Proc. Very Large Database Conference(23rd VLDB), 1997

[15] A.L.Halevy, Answering queries using views: A survey, VLDB Journal, 4(10), 270-294,
2001.

[16] Z.He, B.S.Lee, and R.Snapp, Self-Tuning Cost Modeling of User-Defined Functions in
an Object-Relational DBMS, ACM Transactions on Database Systems, 30(3), 812-853,
2005.

[17] Z.G.Ives, A.Y.Halvey, and D.S.Weld, Adapting to Source Properties in Processing Data
Integration Queries, Proc. SIGMOD conference, 2004

[18] W. Litwin, and T. Risch, Main Memory Oriented Optimization of OO Queries using
Typed Datalog with Foreign Predicates, Proc. IEEE Transactions on Knowledge and
Data Engineering, 4(6), pp. 517-528, 1992

[19] SAAJ Project, published online at https://saaj.dev.java.net/
[20] M.Sabesan, T.Risch, and G.Wikramanayake, Querying Mediated Web Services, Proc. 8th

International Information Technology Conference (IITC 2006), 2006
[21] Semantic Web Activity, W3C Technology and Society domain, published online at

http://www.w3.org/2001/sw/
[22] U.Srivastava, J.Widom, K.Munagala, and R.Motwani, Query Optimization over Web

Services, Proc Very Large Database Conference(VLDB 2006), 2006
[23] The Castor Project, published online at http://www.castor.org/index.html
[24] The Web Services Description Language for Java Tool kit(WSDL4J), published online

http://sourceforge.net/projects/wsdl4j
[25] J.D.Ullman, Information Integration Using Logical Views, Proc. 6th International Con-

ference on Database Theory (ICDT ’97), 19-40, 1997.
[26] XML-Related specifications (SQL/XML), published online at http://www.sqlx.org/SQL-

XML-documents/5FCD-14-XML-2004-07.pdf, 2005
[27] Web Service USDAData, published online http://ws.strikeiron.com/USDAData?

DOC&page=proxy
[28] WSDL document for USDAData web service, published online http://ws.strikeiron.com/

USDAData?WSDL
[29] V.Zadorozhny, L.Raschid, M.E.Vidal, T.Urban, and L.Bright, Efficient Evaluation of

Queries in a Mediator for WebSources, Proc. of the 2002 ACM SIGMOD international
conference on Management of data, 85-96, 2002.

S­FrameWeb: a Framework­Based Design Method for
Web Engineering with Semantic Web Support

Vítor Estêvão Silva Souza1, Thiago Wotikoski Lourenço1,
Ricardo de Almeida Falbo1, Giancarlo Guizzardi1,2

1 Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514
29075­910 Vitória – ES, Brazil

2 Laboratory for Applied Ontology, Polo Tecnologico, Via Solteri, 38
38100 Trento, Italy

{vitorsouza, twotikoski}@gmail.com, falbo@inf.ufes.br, guizzardi@loa­cnr.it

Abstract. The Web Engineering area is evolving fast. Many methods and
frameworks to support Web Information Systems (WISs) development have
already been proposed. Particularly, the use of frameworks and container­based
architectures is state­of­the­practice. Motivated by this scenario, we have
proposed a method for designing framework­based WISs called FrameWeb.
However, we should consider that the Semantic Web has been gaining
momentum in the last few years. The idea is that the information on the Web
should be available in machine­processable formats so that software agents
could reason with it. This paper presents an extension to FrameWeb, called S­
FrameWeb, that aims to support the development of Semantic WISs.

Keywords: Web Engineering, Web Information Systems, Frameworks,
Semantic Web.

1 Introduction

The Semantic Web is being considered the future of the World Wide Web (WWW).
Coined by Berners­Lee [1], the term represents an evolution of the current WWW,
referred by some as the “Syntactic Web”. In the latter, information is presented in a
way that is accessible only to human beings, whereas in the former data is presented
both in human­readable and machine­processable formats, in order to promote the
development of software agents that would help users carry their tasks on the Web.

However, for Berners­Lee's vision to become a reality, Web authors and developers
must add semantic annotations to their Web Applications. This is neither an easy nor
a small task and support from tools and methods is needed.

Methods already exist for the development of Web Information Systems (WISs),
such as WAE [2], OOWS [3] and OOHDM [4]. In this context, we proposed a method
for the design of WISs that are based on frameworks, called FrameWeb (Framework­
Based Design Method for Web Engineering) [5]. FrameWeb proposes a basic

architecture for developing WISs, a set of activities and a UML profile for a set of
design models that brings concepts used by some categories of frameworks. The idea
is that the use of FrameWeb would further improve team productivity by using a
modeling language that would allow designers to produce diagrams that represent
framework concepts, and developers (maybe, in the future, CASE tools) to directly
translate these diagrams to code [5].

To help developers build WISs with semantic annotations, we decided to work on
an extension of FrameWeb, called S­FrameWeb. The idea is to incorporate into the
method activities and guidelines that drive the developer in the definition of the
semantics of the WISs, resulting in a “Semantic Web­enabled” application.

This paper presents S­FrameWeb, and it is organized as follows: section 2 discusses
some issues concerning WebE and the Semantic Web and briefly presents FrameWeb.
Section 3 presents S­FrameWeb and how it proposes to build “Semantic Web­
enabled” applications. Section 4 discusses related work. Finally, section 5 presents our
conclusions and potential future work.

2 Web Engineering and the Semantic Web

Web Engineering (WebE) has been defined as “the establishment and use of
engineering principles and disciplined approaches to the development, deployment
and maintenance of Web­based Applications” [6]. WebE was conceived at a time
when Web Applications (WebApps) were developed in an ad­hoc manner, without a
methodology or software process to support developers. Nowadays, however, there are
many methods, such as WAE [2], OOWS [3] and OOHDM [4], that are being used.

Also, technologies for codifying WebApps have evolved. The use of frameworks to
support the construction of complex Web Information Systems (WISs) is state­of­the­
practice. Container­based architectures, such as the most recent version of the Java
Enterprise Edition [7] standard, also borrow many concepts from these frameworks.
Both frameworks and container­based architectures promote the reuse of a commonly
used application infrastructure and improve productivity.

There are many different frameworks available for coding WISs. However, it is
possible to separate them into few categories organized by purpose [5]. Table 1 lists
four of these categories: Front Controller [8], Decorator, Object/Relational (O/R)
Mapping [9] and Dependency Injection frameworks [10]. Other kinds of frameworks
include: Aspect­Oriented Programming frameworks, Authentication & Authorization
frameworks, Search engines, etc.

Table 1. Frameworks that form a commonly used infrastructure for Web Applications.

Framework Purpose

Front Controller Also known as MVC frameworks, defines an architecture
that separates the functionality of a WebApp from its
presentation based on the Model­View­Controller pattern [11].

Framework Purpose

Decorator Based on the Decorator design pattern [11], automates the
task of making every web page of the site have the same layout
(header, footer, navigation bar, colors, images, etc).

Object/Relational (O/R)
Mapping

Provides automatic and transparent persistence of objects to
tables of a RDBMS using meta­data that describe the mapping
between both worlds [9].

Dependency Injection Allows the developer to program to interfaces [10] and
specify the concrete dependencies in a configuration file. The
idea is that classes that depend on services from different tiers
would declare an association with an interface instead of the
concrete implementation. This facilitates, for instance, the
replacement of the real service class with a mock object for unit
testing.

These frameworks can substantially change the architecture and the components
that must be developed for a WIS. That motivated the proposition of the Framework­
based Design Method for Web Engineering (FrameWeb). The interested reader should
refer to [5] and [12] for detailed information. FrameWeb proposes:

 A standard architecture for Web Applications that integrates with those
frameworks by separating their concerns into different packages;

 A UML profile suited for the construction of four kinds of design models
that represent framework components from different packages: Domain
Model, Persistence Model, Navigation Model and Application Model [12];

 Although FrameWeb does not prescribe a software process, allowing
organizations to use the process that suits them best, it suggests that use
cases and class diagrams are used during requirement analysis.

FrameWeb's standard architecture divides the system into three main tiers, as
shown in Figure 1. The Presentation Logic tier contains elements related to Web­
based user interfaces. The Controller package gathers the action classes that
integrate with the Front Controller framework, while the View package contains Web
pages, style sheets, images and other files related with the exhibition of information.

The Business Logic tier also contains two packages: Domain and Application. The
former includes classes that represent domain concepts modeled during requirement
analysis. The latter comprises classes that implement functionalities represented as
use cases during that same stage.

The last tier regards Data Access. The Persistence package contains classes that
communicate with the Object/Relational (O/R) Mapping framework to create,
retrieve, update and delete domain objects from the persistence store. FrameWeb
suggest the use of the Data Access Object pattern [8] for this package.

The dependency associations in figure 1 show how these packages interact. User
stimuli come from View components and reach the Controller classes by means of
the MVC framework. The action classes in Controller call methods from
Application classes, which manipulate Domain objects and also depends on the

Persistence of these objects. Associations stereotyped as <<weak>> represent loose
coupling. For instance, the packages in the Presentation tier do not create and
manipulate domain objects directly, but use them to display data or pass them around
as parameters, using a domain­driven approach1.

Fig. 1. FrameWeb's standard architecture for WIS [5].

To model classes and other components that belong to the different packages of the
standard architecture, FrameWeb uses UML's lightweight extension mechanism to
create a profile for designing four different kinds of diagrams [12] during system
design, which are summarized in Table 1. All of them are based on UML's class
diagram, but represent components from different packages that integrate with
different frameworks. Interested readers should refer to [12] for further details.

Table 2. Diagrams built during the design of a WIS using FrameWeb.

Diagram Purpose

Domain Model Represents domain classes modeled during analysis, complemented
with platform­dependent information (attribute types, association
navigabilities, etc.) and O/R mappings (which are more easily
represented in this model instead of the Persistence Model because the
attributes are modeled here).

Guides the implementation of classes from the Domain package and
also the configuration of the O/R framework.

Persistence Model Shows DAO classes that are responsible for the persistence of
domain objects and the existence of specific queries to the database.
Every domain class that requires persistence should have a DAO
interface and an implementation for each persistence technology used.

Guides the codification of the DAOs, which belong to the
Persistence package, and the creation of specific database queries
on the O/R framework.

1 In this context, the domain­driven approach (referred to as model­driven approach by the
framework's documentation) consists of using an instance of a domain class as wrapper for its
attributes when they are passed as parameters.

Diagram Purpose

Navigation Model Displays components from the presentation tier, such as web pages,
HTML forms, templates, binary files and action classes, and their
relationships among themselves.

Guides the implementation of action classes (Controller
package), other view components (View package) and the
configuration of the Front Controller framework.

Application
Model

Models the interfaces and classes that implement use case
functionalities and the dependency chain from the action classes
(which depend on them) until the DAOs (which they depend on).

Guides the codification of classes from the Application package
and the configuration of the Dependency Injection framework.

FrameWeb provides a way for modeling WIS that is suited for those based on
frameworks. There is no indication, however, on how to provide semantic annotations
that could make the WIS available for Semantic Web agents to reason with it.
Reasoning means that software agents are able to understand the information
presented by Web pages and take sensible actions according to a goal that was
previously given. The most usual way for agents to understand the contents of a
website is by semantically annotating the pages using formal knowledge
representation structures, such as ontologies.

An ontology is an engineering artifact used to describe a certain reality, plus a set
of explicit assumptions regarding the intended meaning of its vocabulary words [13].
Along with ontology representation languages such as OWL [14], they are able to
describe information from a website in formal structures with well­defined inference
procedures that allow software agents to perform tasks such as consistency checking,
establish relation between terms, systematic classification and infer information from
explicitly defined information in this structure.

If the ontology is built (using one of many methodologies for their construction
[15]) and given the availability of tools such as OILEd2 and Protégé3, the annotation
of static Web pages with OWL has become a straightforward task.

However, few websites are composed strictly by static pages. What is commonly
seen is Web pages being dynamically generated by software retrieving information
on­the­fly from data repositories such as relational databases. These data­intensive
websites have the advantage of separating data and layout, but also have limitations
such as being invisible to search engines and not being comprehensible by software
agents [16]. Thus, an automated way of annotating dynamic Web pages is needed.

One way to do that is, when a Web page is requested at the Web server, it must
recognize if the request comes from a human agent or a software agent. In the latter
case, instead of generating a HTML human­readable Web page, the server should
return a document written in an ontology specification language (e.g. OWL)
containing meta­data about the information that would be conveyed in the page.

2 http://oiled.man.ac.uk/
3 http://protege.stanford.edu/

Although the solution seems appropriate, many aspects still need to be addressed,
such as: how are the agents supposed to find the Web page? How will they know the
correct way to interact with it? For instance, how will they know how to fill in an
input form to submit to a specific request?

Hepp [17] advocates that semantic annotation of static or dynamic data is not
enough and that the original vision of the Semantic Web can only be achieved by the
utilization of Semantic Web Services. A Web Service is “a software system designed
to support interoperable machine­to­machine interaction over a network” [18]. Web
Services provide a nice way for software agents to interact with other systems,
requesting services and processing their results.

Many researchs are now directed to the use of Web Services on the Semantic Web.
Semantic Web Services are formed by adding semantic annotations to Web Services
so they become interpretable by software agents. Meta­data about the service are
written in a markup language, describing its properties and capacities, the interface
for its execution, its requirements and the consequences of its use [19]. Many tasks are
expected to be automated with this, including service discovery, invocation,
interoperation, selection, composition and monitoring [20].

3 Semantic FrameWeb

The main goal of S­FrameWeb is to make WISs “Semantic Web­enabled”. This
should be accomplished by the Front Controller framework, which identifies if
requests come from human or software agents. In the former case, the usual Web page
is presented, while in the latter, an OWL document is returned.

To fulfill its purpose, S­FrameWeb adds three new steps to FrameWeb's software
process: domain analysis, ontology design and ontology implementation. A suggested
software process is shown in figure 2. These steps are further discussed next.

3.1 Domain Analysis

To bring a WIS to the Semantic Web it is imperative to formally describe its domain.
As stated in section 2, the most usual way of doing this is by constructing an ontology.
S­FrameWeb indicates the inclusion of a Domain Analysis activity in the software
process for the development of a domain ontology (we don't use the term “domain
model” to avoid confusion with FrameWeb's Domain Model).

Domain Analysis is “the activity of identifying the objects and operations of a class
of similar systems in a particular problem domain” [21, 22]. When a software is built,
the purpose is to solve a problem from a given domain of expertise, such as medicine,
sales or car manufacturing. If the domain is analyzed prior to the analysis of the
problem, the knowledge that is formalized about the domain can be reused when
another problem from the same domain needs a software solution [22].

Fig. 2. The software process suggested by S­FrameWeb.

For a diagrammatic representation of the ontology, S­FrameWeb uses OMG's4
Ontology Definition Metamodel (ODM) [23], “a language for modeling Semantic
Web ontologies in the context of MDA” [24]. ODM defines an ontology UML profile
that allows developers to represent ontologies in UML class diagrams.

The output of Domain Analysis is an ontology that represents concepts from the
problem domain. The ontology's diagram can be reused in the Requirement Analysis
phase to produce the application's conceptual model, which will later be refined and
become FrameWeb's Domain Model (FDM) during system design.

Table 3 summarizes the evolution of the models throughout the software process.

Table 3. Models produced by the software process suggested by S­FrameWeb

Activity Artifact What the model represents

Domain
Analysis

Domain Ontology Concepts from the domain to which the
software is being built. Modeled in ODM, but
converted to OWL for deployment.

Requirement
Analysis

Conceptual Model Concepts that are specific to the problem
being solved. Modeled in ODM.

System
Design

FrameWeb's Domain
Model (FDM)

Same as above plus OR mappings. Modeled
using S­FrameWeb's UML profile.

Coding OWL code OWL representation of FDM, without OR
mappings.

Figure 3 shows the conceptual model for a very simple culinary recipes WIS called
“Cookbook”. This application includes the registry of recipes and a simple search
feature. After the domain of culinary was analyzed and an ontology modeled, the
conceptual model was built in ODM using only the classes that were required for this
particular application.

The stereotype <<OntClass>> indicates domain classes, <<ObjectProperty>>
models associations between domain classes, <<DataType>> represents XML data
types and <<DatatypeProperty>> models associations between classes and data types.

4 Object Management Group – http://www.omg.org/ontology/

The reader accustomed with UML conceptual models may notice that associations
are represented as classes in ODM. This is because in OWL, associations are
independent from classes and, for instance, can form their own subsumption hierarchy.
More on ODM's semantics can be found at [23].

Fig. 3. The conceptual model for the Cookbook application.

3.2 Ontology Design

During the design phase of the software process, FrameWeb prescribes the
construction of a Domain Model (referred to as FDM), which shows classes that
represent concepts from the problem domain and their object/relational mappings.

S­FrameWeb proposes an extension to this diagram, mixing both FrameWeb's and
ODM's UML profiles to build FDM. Based on the conceptual model, the designer
should simplify ODM's syntax and add the OR mappings. Figure 4 shows the FDM
for the Cookbook application. We can see that <<DataType>> elements were replaced
by class attributes (this should happen only in simple cases – for instance, when they
do not participate in a subsumption hierarchy or when the datatype is not structured)
and that some mappings were included ({not null} and {cascade=all} [12]).

3.3 Ontology Implementation

Finally, at the coding phase, the domain ontology and the FDM should be coded in
OWL and deployed into the WIS. In this context, “deploy” means placing the OWL

file in a predetermined location so the Front Controller framework can read it.
Because the models are represented in ODM, their codification in OWL are
straightforward (ODM proposes graphical representations for OWL constructs) and, in
the near future, probably this can be automated by CASE tools.

Fig. 4. S­FrameWeb's Domain Model for the Cookbook application.

During the execution of the WIS, the Front Controller provides an infrastructure
that identifies when the request comes from a software agent, reads both ontology's
and FDM's OWL files and responds to the request based on the execution of an action
and reasoning over the ontologies. Since existing Front Controller frameworks do not
have this infrastructure, a prototype of it was developed and is detailed next.

3.4 Front Controller Infrastructure

To experiment S­FrameWeb in practice, we have extended the Struts2 framework5 to
recognize software agents requests and respond with an OWL document, containing
the same information it would be returned by that page, but codified as OWL
instances. Together with the OWL files for the domain ontology and the FDM,
software agents can reason about the data that resulted from the request.

Figure 5 shows this extension and how it integrates with the framework. The
client's web browser issues a request for an action to the framework. Before the action
gets executed, the controller automatically dispatches the request through a stack of
interceptors, following the pipes and filters architectural style. This is an expected
behavior of Struts2 and most of the framework's features are implemented as
interceptors (e.g., to have it manage a file upload, use the fileUpload interceptor).

An “OWL Interceptor” was developed and configured as first interceptor of the
stack. When the request is passing through the stack, the OWL Interceptor verifies if a
specific parameter was sent by the agent in the request (e.g. owl=true), indicating that
the action should return an “OWL Result”. If so, it creates a pre­result listener that
will deviate successful requests to another custom­made component that is
responsible for producing this result, which we call the “OWL Result Class”. Since

5 http://struts.apache.org/2.x/

this result should be based on the application ontology, it was necessary to use an
ontology parser. For this purpose, we chose the Jena Ontology API, a framework that
provides a programmatic environment for many ontology languages, including OWL.

Fig. 5. S­FrameWeb's Front Controller framework extension for the Semantic Web.

Using Jena and Java's reflection API, the OWL Result Class obtains all accessor
methods (JavaBeans­standardized getProperty() methods) of the Action class that
return a domain object or a collection of domain objects. These methods represent
domain information that is available to the client (they are called by the result page to
display information to the user on human­readable interfaces). They are called and
their result is translated into OWL instances, which are returned to the client in the
form of an OWL document.

4 Related Work

As the acceptance of the Semantic Web idea grows, more methods for the
development of “Semantic Web­enabled” WebApps are proposed.

The approach which is more in­line with our objectives is the Semantic
Hypermedia Design Method (SHDM) [25]. SHDM is a model­driven approach for the
design of Semantic WebApps based on OOHDM [4]. SHDM proposes five steps:
Requirement Gathering, Conceptual Design, Navigational Design, Abstract Interface
Design and Implementation.

Requirements are gathered in the form of scenarios, user interaction diagrams and
design patterns. The next phase produces a UML­based conceptual model, which is
enriched with navigational constructs in the following step. The last two steps concern
interface design and codification, respectively.

SHDM is a comprehensive approach, integrating the conceptual model with the
data storage and user­defined templates at the implementation level to provide a
model­driven solution to WebApps development. Being model­driven facilitates the
task of displaying agent­oriented information, since the conceptual model is easily
represented in OWL.

While the approach is very well suited to content­based WebApps, WIS which are
more centered in providing functionalities (services) are not as well represented by
SHDM. The proposal of FrameWeb was strongly motivated by the current scenario
where developers are more and more choosing framework or container­based

Client (Web
Browser)

Result

Action class

I
owl

I
1

I
2

I
n

...
Pre-result Listeners

architectures to create applications for the Web. S­FrameWeb builds on top of
FrameWeb to provide semantics to these functionality­based WebApps.

5 Conclusions and Future Work

S­FrameWeb suggests a software process that facilitates the development of Semantic
WISs by automating certain tasks concerning the generation of semantic annotations
on dynamic Web pages. However, the following limitations have already been
identified and are bound to future work:

 Software agents must know how to find the Web pages. Pages that are
linked by others can be found by search engines, but that is not the case with
the ones that represent the request for a service. The research on Web Service
discovery could provide some insight on this issue;

 Agents must speak a common language to understand Web pages. If an
instance of “table” is returned, how will the agent know if it's a “piece of
furniture”, “a systematic arrangement of data usually in rows and columns”6
or any other meaning? The use of top­level ontologies, such as Dolce7,
should be considered for this matter;

 Works in the area of Semantic Web Services [19, 20, 26] suggest another
way to deal with the issue of annotation of WISs. S­FrameWeb should be
implemented to use Web Services in the future to compare both approaches;

 The infrastructure prototype was developed for the Struts2 framework and
currently has some limitations that have to be addressed. Other frameworks
should be extended so S­FrameWeb can be used in different platforms.

Acknowledgments. This work was accomplished with the financial aid of CAPES, an
entity of the Brazilian Gov't dedicated to scientific and technological development.

References

1. Berners­Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001) n.
284, p. 34­43

2. Conallen, J.: Building Web Applications with UML. 2nd edn. Addison­Wesley (2002)
3. Fons, J.; Valderas, P.; Ruiz, M.; Rojas, G.; Pastor, O: OOWS: A Method to Develop Web

Applications from Web­Oriented Conceptual Models. Proceedings of the 7th World
Multiconference on Systemics, Cybernetics and Informatics (SCI), Orlando, USA (2003)

4. Schwabe, D., Rossi, G.: An Object Oriented Approach to Web­Based Application Design.
Theory and Practice of Object Systems 4 (4). Wiley and Sons (1998)

5. Souza, V. E. S., Falbo, R. A.: FrameWeb: A Framework­based Design Method for Web
Engineering. Proceedings of the Euro American Conference on Telematics and Information
Systems, Faro, Algarve, Portugal (2007)

6 Merriam­Webster Online Dictionary (http://www.m­w.com)
7 More about Dolce at http://wonderweb.semanticweb.org/deliverables/documents/D18.pdf

6. Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: A New Discipline
for Development of Web­based Systems. Proceedings of the First ICSE Workshop on Web
Engineering. IEEE, Australia (1999)

7. Shannon, B.: JavaTM Platform, Enterprise Edition (Java EE) Specification, v5. Sun
Microsystems (2006)

8. Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies.
Prentice Hall / Sun Microsystems Press (2001)

9. Bauer, C., King, G.: Hibernate in Action. 1st edn. Manning (2004)
10. Fowler, M.: Inversion of Control Containers and the Dependency Injection Pattern

(http://www.martinfowler.com/articles/injection.html). Captured on July 19th (2006)
11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object­Oriented Software. Addison­Wesley (1994)
12. Souza, V. E. S., Falbo, R. A.: A Language for Modeling Framework­based Web

Information Systems. Proceedings of the 12th International Workshop on Exploring
Modeling Methods in System Analysis and Design. Trondheim, Norway (2007)

13. Guarino, N.: Formal Ontology and Information Systems. Proceedings of the 1st
International Conference on Formal Ontologies in Information Systems. IOS Press. Trento,
Italy (1998) p. 3­15.

14. W3C: OWL Web Ontology Language Guide, fev. 2004 (http://www.w3.org/TR/owl­
guide/). Captured on: November 13th (2006)

15. Gomez­Perez, A., Corcho, O., Fernandez­Lopez, M.: Ontological Engineering. Springer
(2005)

16. Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data­intensive Web Sites into the
Semantic Web. Proceedings of the 2002 ACM symposium on Applied computing. ACM.
Madrid, Spain (2002) p. 1100­1107

17. Hepp, M.: Semantic Web and semantic Web services ­ Father and Son or Indivisible
Twins? IEEE Internet Computing. IEEE (2006) v. 10, n. 2, p. 85­88

18. W3C: W3C Glossary and Dictionary (http://www.w3.org/2003/glossary/). Captured on:
January 23rd (2007)

19. McIlraith, S. A., Son, T. C., Zeng, H.: Semantic Web Services. Intelligent Systems. IEEE
(2001) v. 16, n. 2, p. 46­53

20. Narayanan, S., McIlraith, S. A.: Simulation, Verification and Automated Composition of
Web Services. Proceedings of the 11th international conference on World Wide Web. ACM.
Hawaii, USA (2002) p. 77­88

21. Neighbors, J. M.: Software Construction Using Components. Ph.D. Thesis. Department of
Information and Computer Science, University of California, Irvine (1981)

22. Falbo R. A., Guizzardi, G., Duarte, K. C. : An Ontological Approach to Domain
Engineering. Proceedings of the 14th International Conference on Software Engineering
and Knowledge Engineering (SEKE'2002). Ischia, Italy (2002). pp. 351­ 358

23. OMG: Ontology Definition Metamodel Specification (http://www.omg.org/cgi­
bin/doc?ad/06­05­01.pdf). Captured on: January 29th (2007)

24. Đurić, D.: MDA­based Ontology Infrastructure. Computer Science and Information
Systems. ComSIS Consortium (2004) vol. 1, issue 1

25. Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. First Latin American
Web Conference (LA­Web). IEEE­CS Press. Santiago, Chile (2003)

26. Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business­to­Business
E­Commerce Lifecycle. Proceedings of the 11th International World Wide Web Conference
(WWW 2002). Hawaii, USA (2002)

Personalizing Bibliographic Recommendation under

Semantic Web Perspective1

Giseli Rabello Lopes, Maria Aparecida Martins Souto,

Leandro Krug Wives, José Palazzo Moreira de Oliveira

Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)

Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brasil

{grlopes, souto, wives, palazzo}@inf.ufrgs.br

Abstract. This paper describes a Recommender System for scientific articles in

digital libraries for the Computer Science researchers’ community. The system

employs the Dublin Core metadata standard for the documents description, the

XML standard for describing user profile, which is based on the user’s

Curriculum, and on service and data providers to generate recommendations.

The main contribution of this work is to provide a recommendation mechanism

based on the user academic curriculum reducing the human effort spent on the

profile generation. In addition, this article presents and discusses some

experiments that are based on quantitative and qualitative evaluations.

Keywords: Recommender System, User profile, Digital library, Semantic Web.

1 Introduction

Today, the scientific publications can be electronically accessed as soon as they are

published on the Web. The main advantage of open publications is the minimization

of the time and the space barriers inherent to the traditional publication process. In

this context, Digital Libraries (DLs) have emerged as the main repositories of digital

documents, links and associated metadata. This is a change in the publication process

and has encouraged the development of automatic systems to rapidly explore and

obtain required information. EPrints [10], DSpace [22], Kepler [16], CITIDEL [4] and

BDBComp [12] are examples, among others. Usually, users with different knowledge

levels, experiences and interests receive the same information as the answer to their

queries. Aiming to avoid these problems, Recommender Systems in DLs have been

proposed and developed (e.g., ARIADNE, ResearchIndex, CyberStacks and ARP).

The Recommender Systems involve information personalization. The

personalization is related to the ways in which information and services can be

tailored to match the specific needs of a user or a community [3]. The human-centered

demand specification is not an easy task. One experiences this difficulty when trying

to find scientific papers in a good indexing and retrieval system such Scholar Google.

1 This work was partially supported by the project Pronex FAPERGS, grant 0408933, and

Project PerXML CNPq, grant 475743/2004-0. The first and the last authors are partially

supported by CNPq.

The query formulation is complex and the fine tuning of the user requirements is a

time-consuming task. Few researchers have enough time to spend some hours a week

searching for, eventually, new papers in theirs specific research area. This

functionality, the query specification, may be reached by the analysis of the user

activities, history, information demands, etc.

This article presents a Recommender System to Computer Science researchers and

academics. The information and service provided by the system are based on the

Lattes Curriculum Vitae (Lattes CV) [13], a system that registers all the researcher’s

academic activities and publications with a XML output. The main contribution of

this work is to provide a recommendation mechanism based on the user academic

curriculum reducing the human effort spent on the profile generation.

The article is organized as follows. We start giving an overview of the background

literature and concepts, then the recommender system and detail its architecture and

techniques. Finally, we present some quantitative and qualitative experiments to

evaluate and validate our system and discuss the results and conclusions of our work.

2 Background

The semantic Web technologies promote an efficient and intelligent access to the

digital documents on the Web. The standards based on metadata to describe

information objects have two main advantages: computational efficiency during the

information harvesting process and interoperability among DLs. The first is a

consequence of the increasing use of Dublin Core (DC) metadata standard [8]; the

latter has been obtained as a result of the OAI initiative (Open Archives Initiative)

[17]. DC metadata standard was conceived with the objective of defining a minimal

metadata set that could be used to describe the available resources of a DL. This

standard defines a set of 15 metadata (Dublin Core Metadata Element Set - DCMES).

Table 1 shows these elements and their associated descriptions.

Table 1. Dublin Core Metadata Element Set, adapted from [8].

Element Name Description

dc:title A name given to the resource.

dc:creator An entity primarily responsible for making the content of the resource.

dc:subject A topic of the content of the resource.
dc:description An account of the content of the resource (e.g., abstract).

dc:publisher An entity responsible for making the resource available.

dc:contributor An entity responsible for making contributions to the content of the resource.
dc:date A date of an event in the lifecycle of the resource (typically, dc:date will be

associated with the creation or availability of the resource).

dc:type The nature or genre of the content of the resource.
dc:format The physical or digital manifestation of the resource.

dc:identifier An unambiguous reference to the resource within a given context (e.g., URL).

dc:source A reference to a resource from which the present resource is derived.
dc:language A language of the intellectual content of the resource.

dc:relation A reference to a related resource.

dc:coverage The extent or scope of the content of the resource (typically, dc:coverage will
include spatial location).

dc:rights Information about rights held in and over the resource.

The main goal of OAI is to create a standard communication way, allowing DLs

around the world to interoperate as a federation [21]. The DL metadata harvesting

process is accomplished by the OAI-PMH protocol (Open Archives Initiative

Protocol for Metadata Harvesting) [18], which defines how the metadata transference

between two entities, data and service providers, is performed. The data provider acts

by searching the metadata in databases and making them available to a service

provider, which uses the gathered data to provide a specific service.

Considering that a Recommender System concerns with information

personalization, it is essential that it copes with user profile. In our work, the user

profile is obtained from the user’s curriculum vitae, i.e., Lattes CV. The Lattes CV is

a Brazilian Research Council (CNPq) initiative and offers a standard database of

researchers and academics curricula. The platform is used: (i) to evaluate the

competency of researchers and academics for grant concession; (ii) to select

committees’ members, consulting people and counselors; and (iii) to assist the

evaluation processes of research and post-graduate courses. Thus, all the research

personnel must have an updated CV in order to submit research projects or to receive

any kind of support from the agencies. It is the main instrument to support the

researcher evaluation, as the CV is publicly accessible at the CNPq site the data may

be verified by the research community. As a consequence this is the best source for

the user profile creation.

Table 2. Lattes CV Metadata Element Subset, adapted from [13].

Metadata Category Description

Personal information This category contains general information about the user. Some metadata

are:
- cv:name

- cv:personal-address

- cv:professional-address

University degrees This category contains user’s information about his/her academic degrees.
Some metadata are:

- cv:graduation-level (Undergraduate, Master graduate, and PhD.

graduate)
- cv:graduation-year

- cv:monograph-title

- cv:monograph-keywords
- cv:monograph-area

- cv:monograph-advisor

Language proficiency This category contains information about the languages that user has any
proficiency. Some metadata are:

- cv:language

- cv:language-skill (reading, writing, speaking, comprehension)
- cv:language-skill-level (good, reasonable or little)

Bibliographic production This category provides user’s information about his/her bibliographic

publications in proceedings, journals, book chapters, etc. Some metadata are:
- cv:article-title

- cv:article-keywords
- cv:article-language

- cv:article-year

Table 2 shows a Lattes CV metadata elements subset. It presents the categories

used in this work to support the recommendation process and their associated

descriptions. To better comprehension, the prefix “cv:” is used in this work to

reference the metadata elements.

According to [11], there are three different methodologies used in Recommender

Systems to perform recommendation: (i) content-based, which recommends items

classified accordingly to the user profile and early choices; (ii) collaborative filtering,

which deals with similarities among users’ interests; and (iii) hybrid approach, which

combines the two to take advantage of their benefits. In our work, the content-based

approach is used, once the information about the user is taken from the Lattes CV and

is matched with the DC metadata that best describes the articles of a DL.

The recommendation process can be perceived as an information retrieval process,

in which user’s relevant documents should be retrieved and recommended. Thus, to

perform recommendations, we can use the classical information retrieval models such

as the Boolean Model, the Vector Space Model (VSM) or the Probabilistic Model [20,

1, 9]. In this work, the VSM was selected since it provides satisfactory results with a

convenient computational effort. In this model, documents and queries are

represented by terms vectors. The terms are words or expressions extracted from the

documents and from queries that can be used for content identification and

representation. Each term has a weight associated to it to provide distinctions among

them according to their importance. According to [19] the weights can vary

continuously between 0 and 1. Values near to 1 are more important while values near

to 0 are irrelevant.

The VSM uses an n-dimensional space to represent the terms, where n corresponds

to the number of distinct terms. For each document or query represented, the weights

represent the vector’s coordinates in the corresponding dimension. The VSM

principle is based on the inverse correlation between the distance (angle) among term

vectors in the space and the similarity between the documents that they represent. To

calculate the similarity score, the cosine (Equation 1) can be used. The resultant value

indicates the relevance degree between a query (Q) and a document (D), where w

represents the weights of the terms contained in Q and D, and t represents the number

of terms (size of the vector). This equation provides ranked retrieval output based on

decreasing order of the ranked retrieval similarity values [19].

() ()∑∑

∑

==

=

⋅

⋅
=

t

k
dk

t

k
qk

t

k
dkqk

ww

ww

DQSimilarity

1

2

1

2

1),(

(1)

The same equation is widely used to compare the similarity among documents, and

similarly, in our case, Q represents the user profile and D the documents descriptors

that are harvested in the DL (see Section 3.2 for details). The term weighting scheme

is very important to guarantee an effective retrieval process.

The results depend crucially of the term weighting system chosen. In addition, the

query terms selection is fundamental to obtain a recommendation according to the

user necessities. Our research is focused in the query terms selection and weighting.

Any person that experienced a bibliographical retrieval may evaluate the process

complexity and the difficulty to find the adequate articles. The central idea is to

develop an automated retrieval and recommendation system where the price for the

user is limited to the submission of an already existing Lattes XML CV at

subscription time. For a researcher from a country without a similar CV system it will

be necessary to substitute the XML CV upload for a Web extracting module that will

try to recover the needed metadata from Web pages and, perhaps, from the Scholar

Google or other equivalent systems.

3 The Recommender System

Our system focuses on the recommendation of scientific articles to the Computer

Science community. The information source to perform recommendations is the

Brazilian Computer Science Digital Library (BDBComp) [2], while the user profile is

obtained from a Lattes CV subset. However, any DL repository providing DC

metadata and supporting the OAI-PMH protocol can be used as a source. An

alternative to the user profile generation is under development. This alternative

approach is composed by an information retrieval system to gather data from personal

homepages and other data sources in order to replace the Lattes CV where the Lattes

personal data is not be available.

A DL repository stores digital documents or its localization (web or physical), and

the respective metadata. A DL data provider allows an agent to harvest documents

metadata through the OAI-PMH protocol. Our system handles the documents

metadata described with XML in DC standard. The Lattes CV and the DC metadata

are described as an XML standard document according to the W3C XML Schema,

which can be found in [15] for the Lattes CV and in [7] for the DC standard.

3.1 The Recommender System Architecture

In this section we present the architecture elements of our system and its

functionalities (Fig. 1). To start the process, the users must supply their Lattes CV in

the XML version to the system. Whenever a user makes its registration in the system

and sends his Lattes CV (1), the XML Lattes to Local DB module is activated and the

information about the user’s interests is stored in the local database named User

Profile (2). Then the Metadata Harvesting module is activated to update the local

database Articles Metadata. This module makes a request to a DL data provider to

harvest specific document metadata. It receives an XML document as response (3)

and the XML DC to local DB module is activated (4). This module extracts the

relevant metadata to perform the recommendations from the XML document and

stores it in the local database named Articles Metadata (5). Once the user profile and

the articles metadata are available in the local database, the Recommendation module

can be activated (6). The focus is to retrieve articles of a DL that best matches the

user profile described through the Lattes CV (7).

YearLanguageitleKeywordOrTt wwww ..=

Fig. 1. The recommender system architecture.

3.2 The Recommendation Model

As stated before, the recommendation is based on the VSM model. The query vector

is built with the terms parsed from: (i) the cv:monograph-title and cv:monograph-

keywords of the user university degrees; and (ii) cv:article-title and cv:article-

keywords of the bibliographic productions in Lattes CV (table 2). The parser ignores

stop-words [5] (a list of common or general terms that are not used in the information

retrieval process, e.g., prepositions, conjunctions and articles). The parser considers

each term of the cv:monograph-title and cv:article-title as a single word. On the other

hand, in both cv: monograph-keywords and cv:article-keywords, the terms are taken

integrally, as single expressions.

The query vector terms weights are build up according to the Equation 2. This

equation considers the type of the term (keyword or title), the language and the year

of the publication (monograph or article). Keyword terms are considered more

important than the titles and have higher weights assigned. Publications written in a

language in which the user has more reading proficiency are more valorized (higher

weight), and the terms obtained from the most recent university degree and

productions are assigned a more important weight than the less recent ones.

 (2)

The weights WKeywordOrTitle, WLanguage and WYear are calculated with Equation 3.

() 







−

−
−−=

1

1
.11 min

n

w
iwi (3)

In this equation, Wi varies according to the type of weight we want to compute. To

illustrate, in the experimental evaluation (Section 4), for WKeywordOrTitle, Wmin was 0.95,

and i is 1 for keywords and 2 for title terms. For WLanguage, Wmin was 0.60 and i is 1 if

the language-skill-level is “good”, 2 for “reasonable” and 3 for “few”. For WYear,

Wmin was 0.55 and i vary from 1 to n, where n is the interval of years considered,

being 1 the highest and n the lowest. In the experimental evaluation it was considered

the interval between 2006 and 2003. However, if the interval is omitted, it will be

considered as between the present year and the less recent year (the smallest between

cv:graduation-year and cv:article-year).

If wmin is not informed, the default value will be used (presented in Equation 4). In

this situation, Equation 3 is reduced to Equation 5.

n
w default

1
min = (4)

n

in
wi

1+−
= (5)

Once the query vector is build, the documents vector terms and the respective

weights must be defined. The adopted approach was (tf x idf), i.e., the product of the

term frequency and the inverse document frequency [19]. This approach allows

automatic term weights assignment for the documents retrieval. The term frequency

(tf) corresponds to the number of occurrences of a term in the document. The inverse

document frequency (idf) is a factor that varies inversely with the number of the

documents n to which a term is assigned in a collection of N documents (typically

computed as log (N/n)).

The best terms for content identification are those able to distinguish individuals

ones from the remainder of the collection [19]. Thus, the best terms correspond to the

ones with high term frequencies (tf) and low overall collection frequencies (high idf).

To compute tf x idf, the system uses the DC metadata dc:title and dc:description to

represent the documents content. Moreover, as our system deals with different

languages, the total number of documents will vary accordingly. After building the

query and documents vectors, the system is able to compute the similarities values

among the documents and the query according to Equation 1.

4 Experimental Evaluation

In order to evaluate the recommender system, we have asked for the Lattes CV from a

group of individuals of our Institution entailed to different research teams of different

Computer Science research areas, such as Information Systems and Theory of

Computation. As response, a group of 14 people send us their Lattes CV, whose

information were loaded in the User Profile local database. The Articles Metadata

local database was loaded with metadata of all digital documents stored in BDBComp

Digital Library up to June of 2006, totalizing 3,978 articles from 113 conferences

editions.

After, 20 recommendations were generated by the system for each participant,

considering individual’s university degrees and bibliographic production information

present in the Lattes CV. This information corresponded just to the last three years

(i.e., 2003 to 2006). Each recommendation had the following attributes extracted: title

(dc:title), authors (dc:creator), URL (dc:identifier), idiom (dc:language), publication

year (dc:date), conference (dc:source) and abstract (dc: description).

Two evaluations were performed. The first was based on the hypothesis that the

best articles to describe the profile of a researcher should be those produced by the

researcher himself. Since we had information about the articles written by each author

(from the curriculum), we can match the items recommended to those that were

actually written by them. This evaluation was accomplished by the recall and

precision metrics that is a standard evaluation strategy for information retrieval

systems [20, 1]. The recall is used to measure the percentage of relevant documents

retrieved in relation to the amount that should have been retrieved. In the case of

document categorization, the recall metric is used to measure the percentage of

documents that are correctly classified in relation to the number of documents that

should be classified. Precision is used to measure the percentage of documents

correctly recovered, i.e., the number of documents correctly retrieved divided by the

number of documents retrieved.

As the profiles can be seen as classes and the articles as items to be classified in

these profiles, we can verify the amount of items from the author that are correctly

identified (i.e., classified) by the user profile. As we have many users (i.e., many

classes), it is necessary to combine the results. The macroaverage presented in

Equation 6 was designed by D. Lewis [14] to perform this specific combination (“the

unweighted mean of effectiveness across all categories”), and was applied by him in

the evaluation of classification algorithms and techniques.

n

X
gemacroavera

n

i i∑ == 1 (6)

In this formula, Xi is the recall or the precision, depending on the metric we want

to evaluate, of each individual class (user in our case) and n is the number of classes

(users). Thus, the macroaverage recall is the arithmetic average of the recalls

obtained for each individual, and the macroaverage precision is the arithmetic

average of the precisions obtained for each individual.

Given that the users are not interested in its own articles as recommendations, we

performed another evaluation that takes in to account only the items from others

authors. Then, 15 recommendations were presented to each individual ranked on the

relative grade of relevance generated by the system In this rank, the article with the

highest grade of similarity with the user profile was set as 100% relevant and the

others were adjusted to a value relative to it. In this case, each author was requested to

evaluate the recommendations generated to them assigning one of the following

concepts (following the bipolar five-point Likert scale): “Inadequate”, “Bad”,

“Average”, “Good”, and “Excellent”, and were also asked to comment the results.

The following section presents the results obtained.

5 Analysis of the experiments

The first experiment was designed to evaluate the capability of the system to correctly

identify the user profile (i.e., to represent its research interests), since we believe that

the best articles to describe the user profile are those written by themselves, as stated

before. To perform such evaluation, we identified the number of articles that each

author had at BDBComp. After that, we employed the recall metric to evaluate the

number of articles recovered for each author and combined them with the

macroaverage equation explained before.

We have found a macroaverage recall of 43.25%. It is important to state that each

author received 20 recommendations. This is an acceptable value as the query

construction was made automatically without human intervention. It happened to be

lower than it should be if we have used more than the last three years of information

stored in the Lattes CV. Thus, articles related to the previous research interest areas

were not recommended as the objective of the system resumed on the

recommendation of articles associated to recent research interest areas of the users.

Other important consideration is that the recommendation ranking was generated with

a depreciation degree that was dependent on the publication year and on the user

language proficiency, as explained in the previous section. As the time-slice

considered corresponds to a small part of the full conference period stored in the

BDBComp, not all articles are good recommendations since the research profile

changes along the time.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

first match top 5 top 10 top 15

Inadequate Bad Average Good Excellent

Fig. 2. Users’ evaluations of the recommendations.

Figure 2 presents the results of the second experiment, which was based on the

users’ qualitative evaluation of the recommended articles. On this experiment each

user received 15 recommendations and evaluated them according to one of the

following concepts: “inadequate”, “bad”, “average”, “good” and “excellent”. The

results were grouped into the categories “first match”, “top 5”, “top 10”, and “top 15”,

and are presented in Figure 2.

Analyzing these results, it is possible to observe that, if we only consider the first

article recommended (the “first match”), the number of items qualified as “excellent”

is greater than the others (i.e., 42.86%) and none of them were classified as

“inadequate”. This strengthens the capability of the system on performing

recommendations adjusted to the present user’s research interests. We have also

grouped the concepts “good” and “excellent” into a category named “positive

recommendation” and the concepts “bad” and “inadequate” into a “negative

recommendation” group, so we could obtain a better visualization and comprehension

of the results (Fig. 3).

0%

10%

20%

30%

40%

50%

60%

first match top 5 top 10 top 15

Negative Recommendation Average Positive Recommendation

Fig. 3. Grouped users’ evaluations.

We could perceive that the positive recommendations, considering only the “first

match”, are superior (57.14%) in relation to the negative ones (7.14%). The same

behavior can be perceived in the “top 5” and “top 10” categories, the

recommendations had a negative evaluation only in the “top 15” category, and that

probably happened because as the number of recommendations grows, the number of

correct recommendations falls. It is clear that the automated procedure here adopted is

adequate for an alert recommender system. Our proposal is to add to the BDBComp

an automated alert system that periodically sends to the user a list of the most relevant

papers recently published in some of the nearly 35 Brazilian computer symposiums

and 64 co-organized local events.

It is important to observe that today BDBComp has a limited coverage of the

Computer Science area and it may have negatively influenced the quality of the

recommendations. This was perceived in the commentaries made by some users, such

as “[…] I suppose that the generation of such results is a very complex task, as I

worked with two distinct areas and mixed with even more themes. Besides, the two

fields in which I have more publications have a very limited group of people working

in this subjects here in Brazil. To conclude, considering such circumstances, the list

of recommendations is good.”, and “I can conclude that: (a) there are not many

articles in my research area in BDBComp; or (b) I have not correctly described my

articles metadata in Lattes CV”. In a near future all the SBC (Brazilian Computer

Society) sponsored conferences will be automatically loaded [6].

Further, in our tests the authors that have changed their research area in the last

three years have negatively qualified the recommendations. In the next experiments a

variable time threshold and different depreciation values will be employed and the

temporal component will be exhaustively analyzed.

6 Conclusion

This article presented a Recommender System to researchers and academics of the

Computer Science area. In current days, in which the recovery of relevant digital

information on the web is a complex task, such systems are of great value to minimize

the problems associated to the information overload phenomena, minimizing the time

spent to access the right information.

The main contribution of this research consists on the heavy utilization of

automated CV data provider and in the use of a Digital Library (DL) metadata to

create the recommendations. The system was evaluated with BDBComp, but it is

designed to work with the open digital library protocol OAI-PMH, then it may be

easily extended to work with any DL that supports this mechanism. The same occurs

with the Curriculum Vitae, the system will be able to receive any XML-base CV data.

Presently, the system uses the Lattes CV format, but it can be extended to support

other formats or to analyze information about the user stored on tools like Scholar

Google and DBLP. Alternatively the operational prototype offers the possibility to the

user to load the CV data via an electronic form.

The developed system will have many applications. One of them is the

recommendation of articles to support the learning process, especially on eLearning

systems. Thus, the student could log into a specific distance or electronic learning

environment supported by this system and receive recommendations of articles

containing actualized relevant material to complement its current study topic.

References

1. Baeza-Yates, R.; Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley,

Wokingham, UK (1999)

2. BDBComp: Biblioteca Digital Brasileira de Computação,

http://www.lbd.dcc.ufmg.br/bdbcomp/, Nov. (2006)

3. Callan, Jamie et al.: Personalisation and Recommender Systems in Digital Libraries. Joint

NSF-EU DELOS Working Group Report. May (2003)

4. CITIDEL: Computing and Information Technology Interactive Digital Educational

Library, http://www.citidel.org/, Nov. (2005)

5. CLEF and Multilingual information retrieval, http://www.unine.ch/info/clef/, Institut

interfacultaire d'informatique, University of Neuchatel (2005)

6. Contessa, Diego Fraga; Oliveira, José Palazzo Moreira de: An OAI Data Provider for

JEMS. Proceedings of the ACM DocEng 2006 Conference, Amsterdam. Oct. (2006) 218-

220

7. DC-OAI: A XML schema for validating Unqualified Dublin Core metadata associated

with the reserved oai_dc metadataPrefix,

http://www.openarchives.org/OAI/2.0/oai_dc.xsd, Mar. (2005)

8. Dublin Core Metadata Initiative, http://dublincore.org, Sept. (2005)

9. Grossman, David A.: Information retrieval: algorithms and heuristics.

2nd ed. Dordrecht: Springer, 332p. (2004)

10. Gutteridge, C.: GNU EPrints 2 overview, Jan. 01 (2002)

11. Huang, Z. et. al.: A Graph-based Recommender System for Digital Library. In: JCDL’02.

Portland, Oregon (2002)

12. Laender, A. H. F.; Gonçalves, M. A.; Roberto, P. A.: BDBComp: Building a Digital

Library for the Brazilian Computer Science Community. In: Proceedings of the 4th

ACM/IEEE-CS Joint Conference on Digital Libraries, Tucson, AZ, USA (2004) 23-24

13. Lattes-CNPq: Plataforma Lattes - Conselho Nacional de Desenvolvimento Científico e

Tecnológico, http://lattes.cnpq.br/, Mar. (2005)

14. Lewis, D. D. : Evaluating text categorization. In Proceedings of Speech and Natural

Language Workshop. Defense Advanced Research Projects Agency, Morgan Kaufmann.

(1991) 312-318.

15. LPML-CNPq. Padronização XML: Curriculum Vitae, http://lmpl.cnpq.br/lmpl/?go=cv.jsp,

Mar. (2005)

16. Maly, K.; Nelson, M.; Zubair, M.; Amrou, A. ; Kothamasa, S.; Wang, L.; Luce, R.: Light-

weight communal digital libraries. In Proceedings of JCDL'04, Tucson, AZ (2004) 237-

238

17. OAI: Open Archives Initiative, http://openarchives.org, Oct. (2005)

18. OAI-PMH: The Open Archives Initiative Protocol for Metadata Harvesting,

http://www.openarchives.org/OAI/2.0/openarchivesprotocol.htm, Nov. (2005)

19. Salton, Gerard; Buckley, Christopher.: Term-Weighting Approaches in Automatic Text

Retrieval, Information Processing and Management: an International Journal, v.24, Issue

5, 513-523. (1988)

20. Salton, Gerard; Macgill, Michael J.: Introduction to Modern Information Retrieval. New

York: McGRAW-Hill. 448p. (1983)

21. Sompel, H. V. de; Lagoze, C.: The Santa Fe Convention of the Open Archives Initiative.

D-Lib Magazine, [S.l.], v.6, n.2, Feb. (2000)

22. Tansley, R.; Bass, M.; Stuve, D.; Branschofsky, M.; Chudnov, D.; McClellan, G.; Smith,

M.: DSpace: An institutional digital repository system. In Proceedings of JCDL'03,

Houston, TX. (2003) 87-97

An OWL-Based Approach Towards
Representing Time in Web Information Systems

Viorel Milea1, Flavius Frasincar1, Uzay Kaymak1, and Tommaso di Noia2

1 Erasmus University Rotterdam, Netherlands
Burgemeester Oudlaan 50, 3062 PA Rotterdam
{milea, frasincar, kaymak}@few.eur.nl

2 Politecnico Di Bari, Italy
via E. Orabona, 4 - 70125 Bari

t.dinoia@poliba.it

Abstract. In this paper we present an approach towards representing
dynamic domains by means of concrete domains and perdurants. This
approach is based on Description Logic and enables the representation
of time and time-related aspects such as change in ontologies. The ap-
proach taken in this paper focuses on two main goals that need to be
achieved when talking about time in ontologies: representing time itself
and representing temporal aspects. We employ an explicit representation
of time and rely on the internal method for the purpose of reflecting
the changing aspects of individuals over time. We also present a proof
of concept for the developed approach. This consists of a system that
extracts the relevant information regarding company shares from ana-
lyst recommendations and uses this aggregate information to generate
buy/hold/sell signals based on predefined rules.

1 Introduction

One of the challenges posed by the Semantic Web is dealing with temporal
aspects in a variety of domains, such as knowledge reasoning. While the Web
Ontology Language (OWL) is the preferred alternative for representing domain
knowledge, currently the language offers only little support for representing tem-
poral information in ontologies. In this paper we present an approach for repre-
senting dynamic domains by means of concrete domains and perdurants. This
approach is based on Description Logics (DL) and enables the representation of
time and time-related aspects such as change in ontologies.

The approach we take in this paper focuses on two main goals that need to
be achieved when talking about time in ontologies: representing time itself (in
the form of dates, times, etc.) and representing temporal aspects (changing indi-
viduals, temporal knowledge, etc.). The representation of time is rather straight
forward, and relates to making the latter available in the ontology in the form of
dates, hours, minutes, etc. This type of representation allows for more (seman-
tically) useful time representations such as instants and intervals. We talk here
about an explicit representation of time, as this representation allows the usage

of temporal operators and combining the latter for obtaining new expressions [1].
Representing time in such a manner allows the use of the 13 Allen relations [2] in
combination with temporal intervals. The symbiosis between the time intervals
and Allen’s relations represents the concrete domain employed for the current
purpose. Representing time is an essential feature of a language that seeks to
represent dynamic domains. However, this representation must be supported by
means of consistently expressing temporal aspects, such as change, in ontologies.
Two approaches are possible for this purpose, namely the internal and the ex-
ternal method [1]. In this paper we employ the internal method for the purpose
of reflecting the changing aspects of individuals over time. This method relates
to representing entities (perdurants) in a unique manner at different points in
time. The actual individual is then nothing more than the sum of its (temporal)
parts. Following the approach taken in [3], we implement this representation
by making use of time slices (the temporal parts of an individual) and fluents
(properties that hold between timeslices).

The remainder of this paper is organized as follows. In section 2 we present
a detailed description of the TOWL language. An extended example of the pos-
sible use(s) of the language is presented in section 3. Section 4 provides some
concluding remarks and suggestions for further research.

2 The TOWL Language

The focus of this section is on introducing the concepts necessary for describing
time and change in ontologies. The resulting ontology language, TOWL, is a
symbiosis of the SHOIN (D) description logic and its extension. This extension
consists of a concrete domain that represents time and the perdurantist approach
towards modeling the changing aspects of entities through time. The first part of
this section consists of a more general overview of the TOWL language, while in
the second part the afore mentioned language is formally introduced by means
of describing its syntax and semantics.

2.1 Introducing TOWL

The TOWL ontology language is intended to be an extension of the current Web
Ontology Language (OWL), and thus an extension of the SHOIN (D) descrip-
tion logic. The thus obtained language allows the representation of knowledge
beyond the constraints of a static world, enabling the representation of dynamic
entities that change (some) traits through time by expressing them as perdu-
rants. A number of powerful time relations/operators, as described by Allen [4],
are available for the purpose of reasoning with time.

The Concrete Domain: Intervals and Allen’s Relations
A concrete representation of time is available in TOWL through time inter-
vals, modeled as a concrete domain. A time interval is defined as a pair of time
points and is available in TOWL through the towl:TimeInterval class. The ends

of an interval, represented as time points, are available in TOWL through the
towl:TimePoint class. Following the reasoning in [5], time points are modeled as
reals, and a time interval It can thus formally be defined as a pair (t1, t2) with
t1, t2 ∈ R. A proper interval is then defined as a pair (t1, t2) where t1 < t2. Inter-
vals are related by Allen’s thirteen relations: equals, before, after, meets, met-by,
overlaps, overlapped-by, during, contains, starts, started-by, finishes, finished-by.
These relations are exhaustive and mutually exclusive [5], i.e. for each pair of
intervals there exists at least one relation holding true between them and, re-
spectively, for each pair of intervals there exists at most one relation that holds
true amongst them. It should be noted that all of Allen’s 13 relations can be
expressed in terms of the endpoints of intervals and the set of predicates {<,=},
the only two predicates of the concrete domain, that apply to all reals.

Perdurants in TOWL Ontologies
The concrete domain approach for representing time provides a good founda-
tion towards representing change in ontologies. For this purpose the following
TOWL concepts are introduced following the reasoning in [3]: towl:TimeSlice,
towl:tsTimeSliceOf, towl:fluentObjectProperty, towl:fluentDatatypeProperty and
towl:tsTime. The temporal parts of a perdurant are described as timeslices, and
each of these timeslices is an individual of type towl:TimeSlice. They can be
regarded as snapshots (slides) of an individual at a particular moment (interval)
in time. The period of time for which each individual timeslice holds true is
described as a pair (t1, t2) from the concrete domain and is associated to the
timeslice through the towl:tsTime property. In case the temporal information
does not regard an interval, but a single time point, then this time point can also
be associated to the timeslice through the towl:tsTime property. The individual
that is described by each particular timeslice over a time interval It, i.e. the per-
durant, is indicated by means of the towl:tsTimeSliceOf property. Finally, times-
lices are connected through (subproperties of) the towl:fluentObjectProperty re-
lation while the association between timeslices and literals is indicated by the
towl:fluentDatatypeProperty.

Advantages of this Approach
The advantages of the approach presented here are twofold. First, unlike previ-
ous approaches [3, 6–8], the current approach provides the means to represent
both time in its quantitative nature, as well as temporal entities. Each of the
previous approaches mentioned here focusses on only one of these aspects, such
as [7] where the main focus is on representing time in its quantitative meaning
by employing concrete domains. Other approaches that try to tackle the same
problem, such as [8] where time is made available through an ontology of time,
offer little to no support for automated temporal reasoning, thus bringing the
discussion to the second advantage of the representation we chose for the pur-
pose of representing time. Since all concepts are modeled at language level, this
provides the basis for designing appropriate algorithms that will enable temporal
reasoning with regard to both meanings of time as underlined here: quantita-

tive time (order, duration, etc.) as well as temporal entities (change, temporally
bounded existence, evolution, etc.).

2.2 TOWL: Syntax and Semantics

In this subsection we formally introduce the syntax and semantics of the TOWL
language. This presentation only includes the additional syntax and semantics of
TOWL. Figure 1 gives an overview hereof. A further specification of the TOWL
concepts is given in Figure 2, where the extensional semantics of the newly
defined language is presented. Finally, the OWL schema of TOWL is presented
in Figure 3, in OWL abstract syntax.

C, D −→ TS | (towl:TimeSlice)
TE | (towl:TimeEntity)
It | (towl:TimeInterval)
Pt | (towl:TimePoint)
` | (rdfs:Literal)
TS v ∀FOP.TS | (towl:fluentObjectProperty)
TS v ∀FDP.` | (towl:fluentDatatypeProperty)
TS v ∀TSOts.C | (towl:tsTimeSliceOf)
TS v ∀Tts.(It t Pt) | (towl:tsTime)
It v ∀Sti.Pt | (towl:tiStart)
It v ∀Eti.Pt | (towl:tiEnd)
Pt v ∀Dtp.` | (towl:tpDate)

Fig. 1. TOWL syntax rules

functional properties : TSOts, Tts, Sti, Eti, Dtp .
(TS)I = {a ∈ ∆I | TSOts(a) ∈ ∆I}
(It)

I = {a ∈ ∆I | Sti(a) = x1, Eti(a) = x2 and Dtp(x1) < Dtp(x2)}
(Pt)

I = {a ∈ ∆I | Dtp(a) ∈ `}
(∀Tts.It)

I = {a ∈ (TS)I | ∀b ∈ ∆I : (a, b) ∈ (Tts)
I → b ∈ (It)

I}
(∀Tts.Pt)

I = {a ∈ (TS)I | ∀b ∈ ∆I : (a, b) ∈ (Tts)
I → b ∈ (Pt)

I}
(∀FOP.TS)I = {a ∈ (TS)I | ∀b ∈ ((TS)I \{a}),∃t1, t2 ∈ (It)

I :
(a, b) ∈ (FP)I , a ∈ TI.t1, b ∈ TI.t2 → t1 = t2}

(∀FDP.`)I = {a ∈ (TS)I | ∀(a, b) ∈ (FDP)I → b ∈ `}
(∀TSOts.C)I = {a ∈ (TS)I | ∀b ∈ ∆I : (a, b) ∈ (TSOts)

I → b ∈ CI}

Fig. 2. TOWL semantics

When compared with the original fluents approach [3] that stands at the
basis of the approach we present here, a number of additional features have been

incorporated in the language, thus adding to its flexibility and expressiveness.
One of these features is allowing the association of time slices not only with
intervals, but also with time points, a representation essential for systems as
the one described in this paper. Additionally, we make a distinction between
two different types of fluent properties: datatype fluent properties, that point to
objects of type rdfs:Literal, and object fluent properties that point to objects, i.e.
actual timeslices of individuals present in the ontology. The case of the datatype
fluent property is special in that it does not require a timeslice of a specific type
of literal, but it may point to the actual value itself.

3 An Extended Example

In this section we present an example of how the TOWL language can provide for
added value. For this purpose we sketch a system that uses last minute news for
the generation of buy/hold/sell signals based on market consensus. The system
consists of five parts, reflecting the essential components of the system: 1) the
financial TOWL ontology - the ontology used to store all knowledge relevant to
the system, 2) information extraction, the component that extracts the relevant
knowledge from news messages, 3) ontology update - the actual updating of the
ontology with the new information, 4) query evaluation - an important part of
the process of answering queries regarding the current state of the world as de-
scribed in the financial TOWL ontology and, finally, 5) the actual application
that generates buy/hold/sell signals on an on-demand basis derived from the
domain knowledge modeled in the ontology.

3.1 The Financial TOWL Ontology

For the purpose of this example a simple TOWL financial ontology has been
developed. The schema of this ontology consists of a Company class, the class
of all companies that are of relevance in the ontology, a CompanyAdvice class
that denotes the advices issued by experts regarding companies, and a class
AdviceType defined by means of its only three instances buy, hold and sell -
the actual recommendation(s) of the expert for some company. Additionally,
a number of properties have been defined that further specify the meaning of
classes. The property hasName indicates the actual name of the individuals of
type Company, the property adviceType relates all individuals of type Compa-
nyAdvice to individuals of type AdviceType, while the property priceTarget12
indicates, for all individuals of type CompanyAdvice, the expected price over 12
months, as formulated in a particular advice. Finally, two fluent properties ’con-
nect’ timeslices of individuals of type Company to corresponding timeslices of
individuals of type CompanyAdvice. The adviceIssuedBy property indicates the
company that has issued a particular advice and the adviceIssuedFor property
indicates the company for which the particular advice has been issued. A for-
mal representation of this ontology is given in Figure 4, in OWL abstract syntax.

Ontology(TOWL
Class(TimeSlice)
Class(TemporalEntity)
Class(TimeInterval partial TemporalEntity)
Class(TimePoint partial TemporalEntity
restriction(complementOf(TimeInterval)))
DisjointClasses(TimeSlice TemporalEntity)

ObjectProperty(fluentObjectProperty Symmetric)
domain(TimeSlice)
range(TimeSlice))

DatatypeProperty(fluentDatatypeProperty Symmetric)
domain(TimeSlice)
range(rdfs:Datatype))

ObjectProperty(tsTimeSliceOf Functional
domain(TimeSlice)
range(complementOf(unionOf(TimeSlice TemporalEntity rdfs:Literal))))

ObjectProperty(tsTime Functional
domain(TimeSlice)
range(TemporalEntity))

DatatypeProperty(tiStart Functional
domain(TimeInterval)
range(TimePoint))

DatatypeProperty(tiEnd Functional
domain(TimeInterval)
range(TimePoint))

DatatypeProperty(tpDate Functional
domain(TimePoint)
range(xsd:dateTime)))

Fig. 3. OWL Schema of TOWL

3.2 Information Extraction

The information extraction phase is responsible for providing the system with
the necessary input in the form of processed knowledge from news messages. For
this example we focus on a particular type of news - analyst recommendations -
in the form of buy/hold/sell signals, sometimes accompanied by a price target.
In this example we use the following three news messages.

Ontology(finTOWL
Class(Company)
Class(CompanyAdvice)
EnumeratedClass(AdviceType buy hold sell)
DisjointClasses(Company CompanyAdvice AdviceType)

DatatypeProperty(hasName
domain(Company)
range(xsd:String))

ObjectProperty(adviceType Functional
domain(CompanyAdvice)
range(AdviceType))

ObjectProperty(adviceIssuedBy super(fluentObjectProperty) Functional
domain(restriction(tsTimeSliceOf(allValuesFrom Advice)))
range(restriction(tsTimeSliceOf(allValuesFrom Company))))

ObjectProperty(adviceIssuedFor super(fluentObjectProperty) Functional
domain(restriction(tsTimeSliceOf(allValuesFrom Advice)))
range(restriction(tsTimeSliceOf(allValuesFrom Company))))

DatatypeProperty(priceTarget12 Functional
domain(CompanyAdvice)
range(xsd:double)))

Fig. 4. The Financial TOWL Ontology

News1

(MarketAdvices.com) New York(7-17-2006) - Mark Hebeka of Standard & Poors
reiterates his buy recommendation for the American bank and insurance com-
pany Citigroup. The 12-months target price for Citigroup is reiterated at 55 USD.

News2

(MarketAdvices.com) New York (1-19-2007) - The analysts of Goldman Sachs
reiterate their hold recommendation for the American bank and insurance com-
pany Citigroup (ISIN: US1729671016 / Symbol: C). The 12-months target price
for Citigroup is 59 USD.

News3

(MarketAdvices.com) New York (1-29-2007) - Analyst Frank Braden of Stan-
dard & Poors reiterates his buy recommendation for the American bank and
insurance company Citigroup (ISIN:US1729671016 / Symbol: C). A price target
was not provided.

For all of the three news messages, a feature selection has been performed,
and the selected features have been highlighted in the examples above. An anal-
ysis of the News1 example provides the following: 17/7/2006, the date when
the advice was issued and thus the date starting at which the advice holds true,
Standard and Poor’s, the company that has issued the advice, Citigroup, the
company for which the advice was issued, buy, the advice type, and 55 USD,
the value of the 12-months target price for one Citigroup share according to the
expectation of the analysts at Standard and Poor’s. This process is repeated for
each of the news messages.

3.3 Knowledge Base Update

Having performed the extraction phase, the resulting knowledge relevant to the
domain is modeled explicitly in the knowledge base (KB). The way in which
this can be achieved is presented below, in OWL abstract syntax, for each of the
news messages previously processed. One assumption is that static knowledge
regarding the three companies involved is already present in the ontology, and
modeled as presented in Figure 5.

Ontology(finTOWL
Individual(iCitigroup
type(Company)
value(name “Citigroup”ˆˆxsd:String))

Individual(iStandardPoors
type(Company)
value(name “Standard and Poor’s”ˆˆxsd:String))

Individual(iGoldmanSachs
type(Company)
value(name “Goldman Sachs”ˆˆxsd:String))

Fig. 5. Static individuals of finTOWL

News1
For the purpose of representing the information contained in the first news mes-
sage, a number of timeslices have to be created of the individuals StandardPoors,
Citigroup and CompanyAdvice. This results in three timeslices, one for each of
the aforementioned individuals: iSandP TS1, iCitigroup TS1 and finally iCi-
tiAdvice1 TS1 for the CitiAdvice1 individual. The beginning of the period in
which the advice holds true is modeled as an individual of type TimePoint that
contains the relevant xsd:dateTime object: iTP1. Finally, the timeslice of the

advising company, iStandardPoors TS1 is associated with the timeslice of the
issued advice, iCitiAdvice TS1, through the adviceIssuedBy property. Similarly,
the timeslice of the company that received the advice, iCiti TS1 is associated
with the timeslice of the received advice - iCitiAdvice TS1, through the adviceIs-
suedFor property. It should be noted that at the moment this knowledge became
available, no additional information is available on the duration of this advice,
hence only the starting moment of this advice has been modeled as an individ-
ual of type TimePoint. This representation is summarized in Figure 6, where a
model of the News1 news message is given in OWL abstract syntax. As soon
as a new advice is issued by Standard and Poor’s for the company Citigroup,
the duration of the new advice will be known and will equal the time between
the already known starting point (iTP1) and the time point at which the new
advice has been issued. Thus, the tsTime property will not have an argument of
type TimePoint, but of type TimeInterval as soon as this information becomes
available. This is the case after the issuing of a new advice by Standard and
Poor’s for Citigroup, as in the News3 news message. The concrete changes in
the KB, that ideally are automatically performed, are illustrated in Figure 7.

3.4 Query Evaluation

The most basic operations that the TOWL language enables become evident
through the queries that may be posed upon the system. These queries form an
essential part of the rules used to determine the final output (the buy/hold/sell
signals). In this section we present some examples of queries and how the results
of these queries can be inferred by the system.

A number of four query examples are presented below, where the most rele-
vant part referring to time or some aspect of time is in bold:

IEX 1 Was any advice for Citigroup issued after Goldman Sachs issued an ad-
vice for Citigroup on January 19th, 2007?

IEX 2 Was any advice for Citigroup issued while the Goldman Sachs advice
for Citigroup issued on January 19th, 2007 was holding?

IEX 3 When were the last two buy advices issued for Citigroup?

IEX 4 Was there any positive (buy) advice for Citigroup in January 2007?

The first query example, IEX 1, relates to comparing individuals of type
TimePoint, whether they individuals are present individually or as part of a
TimeInterval object, i.e. as argument of the tiStart or tiEnd of an individual
of type TimeInterval. First, the specific advice issued by Goldman Sachs on
January 19th 2007 should be identified as the individual iCitiAdvice2 TS1 of
type TimeSlice. Next, the moment in time when this advice was issued must
be retrieved; this moment in time is the argument of the tpDate property of

iCitiAdvice2 TS1 in case this property is defined, or the argument of the tiS-
tart property in case this property is defined. Next, all advices that have been
issued after the date of January 19th, 2007 must be retrieved. These advices
are individuals of type TimeSlice for which the property tsTimeSliceOf has an
argument of type CompanyAdvice. The property adviceIssuedFor of the previ-
ously selected individuals must point to a timeslice of Citigroup. Additionally,
one of the properties tpDate (in the case of a TimePoint) or tiStart (in the case
of a TimeInterval) must be defined, and the argument of this property should
be strictly larger than January 19th, 2007. If the set of individuals satisfying all
these constraints is not empty, then the answer to this query is positive.

A similar procedure can be applied for answering the remaining query ex-
amples (2 through 4) by trying to find a set of individuals that satisfies the
constraints specified in the query. A special case is the query example IEX 3,
where the answer to this query is not of Boolean type, but consists of a set of
date objects. In order to answer this query, the set of buy advices for Citigroup
must be selected and ordered according to the date these advices were issued.
Then, the arguments of the tpDate properties or of the tiStart properties should
be returned.

3.5 Application

At application level, the basic query examples described in the previous section
can be combined for the purpose of generating buy/hold/sell signals based on
predefined rules. A simple example of such a rule is given below.

APR 1 “If a buy advice is issued for a company while another buy advice holds,
then buy”.

A possible way of firing this rule reduces to checking, each time a new buy
advice is issued for some company X, whether another buy advice holds true
for X. If this is the case, then generate a buy signal. Of course, this rule does
not say anything about the situation in which there are already two buy advices
still holding true for company X when a third buy advice is issued, but in this
case we just assume that the already generated (buy) signal is not changed, or
perhaps it is reiterated.

The trading signal generation system based on TOWL can also be used to
generate buy/hold/sell signals based on more complex rules, such as in rule
APR 2. Here we assume that advices are of the form -1, 0, 1 for sell, hold and
buy, respectively, and the final result returned by SY STADV can be rounded
to the nearest whole number. The m, n and p variables represent prespecified
weights specific to each company that issued an advice.

APR 2 “Companies X, Y, Z issued advices A, B, C for company W. For each
point in time the advice issued by the system, is a weighted average of the three

Individual(iStandardPoors TS1
type(TimeSlice)
value(tsTimeSliceOf StandardPoors)
value(tsTime iTP1))

Individual(iCitigroup TS1
type(TimeSlice)
value(tsTimeSliceOf iCitigroup)
value(tsTime iTP1))

Individual(iTP1
type(TimePoint)
value(tpDate ”17/7/2006”ˆˆxsd:date))

Individual(iCitiAdvice1
type(CompanyAdvice)
value(adviceType buy)
value(priceTarget12 ”55”ˆˆxsd:double))

Individual(iCitiAdvice1 TS1
type(TimeSlice)
value(tsTimeSliceOf iCitiAdvice1)
value(tsTime iTP1)
value(adviceIssuedBy iStandardPoors TS1)
value(adviceIssuedFor iCitigroup TS1))

Fig. 6. A TOWL representation of News1

Individual(iTI1
type(TimeInterval)
value(tiStart iTP1)
value(tiEnd iTP3))

Individual(iStandardPoors TS1
value(tsTime iTI1))

Individual(iCitigroup TS1
value(tsTime iTI1))

Individidual(iCitiAdvice1 TS1
value(tsTime iTI1))

Fig. 7. Ontology update after News3 has been issued

individual advices: SY STADV = (mA + nB + pC)/(m + n + p) if all three com-
panies have an advice for W at time T”.

4 Conclusions and Further Research

This paper presents a new ontology language that allows the expression of time
and change in ontologies: the TOWL language. Two aspects of time are deemed
essential: the actual/concrete time and the concept of change. The TOWL lan-
guage offers the possibility of representing both these aspects in ontologies and
offers a consistent way of expressing the changing aspect of the entities in some
world by means of perdurants. Although the concept of concrete domains or
fluents is not new, the symbiosis between the two is unique in representing time
and change in KR languages. Moreover, the original approach described in [3]
has been extended towards added expressivity and increased flexibility, while the
perdurants syntax has a basic underlying semantics. There are however a number
of issues requiring attention in further research, such as cardinality restrictions
on fluents with regard to overlapping timeslices.

Acknowledgement

The authors are supported by the EU funded IST STRP Project FP6 - 26896:
Time-determined ontology-based information system for realtime stock market
analysis. More information is available on the official website3 of the project.

References

[1] Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30 (2000) 171–210

[2] Allen, J.F., Ferguson, G.: Actions and events in interval temporal logic. Journal
of Logic Computation 4 (1994) 531–579

[3] Welty, C., Fikes, R., Makarios, S.: A reusable ontology for fluents in owl. In:
Proceedings of FOIS, IOS Press (2006) 226–236

[4] Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26
(1983) 832–843

[5] Lutz, C.: The Complexity of Description Logics with Concrete Domains. PhD
thesis, RWTH Aachen (2002)

[6] Artale, A., Franconi, E.: Introducing temporal description logics. In: TIME ’99:
Proceedings of the Sixth International Workshop on Temporal Representation and
Reasoning, Washington, DC, USA, IEEE Computer Society (1999) 2

[7] Baader, F., Hanschke, P.: A scheme for integrating concrete domains into con-
cept languages. Technical Report RR-91-10, Deutsches Forschungszentrum für
Künstliche Intelligenz (1991)

[8] Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Transactions
on Asian Language Information Processing (TALIP) 3 (2004) 66–85

3 http://www.towl.org

Optimising XML-Based Web Information
Systems

Colm Noonan and Mark Roantree

Interoperable Systems Group, Dublin City University, Ireland -
{mark,cnoonan}@computing.dcu.ie

Abstract. Many Web Information Systems incorporate data and ac-
tivities from multiple organisations, often at different geographical (and
cultural) locations. Many of the solutions proposed for the necessary in-
tegration in Web Information Systems involve XML as it provides an
interoperable layer between different information systems. The impact
of this approach is the construction of large XML stores and often there
is a need to query XML databases. The work presented in this paper
supports the web computing environment by ensuring that this canoni-
cal representation (XML) of data can be efficiently processed regardless
of potentially complex structures. Specifically, we provide a metamodel
to support query optimisation for Web Systems that employ XPath.

Key words: XML Query Optimisation, XPath, Web Information Systems

1 Introduction

As today’s Web Information Systems (WIS) often incorporate data and processes
from multiple organisations, the concept of data everywhere is more evident. Fur-
thermore, this distribution and diversity of information will increase as we move
towards ambient, pervasive and ubiquitous WIS computing. There has been over
20 years of research into interoperability for information systems and it is likely
that many of the solutions proposed for the necessary integration in the WIS
environment will involve XML as it provides an interoperable layer between dif-
ferent information systems. The effect of this approach is the construction of
large XML stores (referred to as XML databases from now on), together a need
to efficiently query these XML databases. In fact, it is often suitable to retain
this information in XML format due to its interoperable characteristics or be-
cause source organisations have chosen XML as their own storage method. Our
motivation is to support the WIS computing environment by ensuring that the
canonical representation (XML) of data has the sufficient query performance.
Our approach is to provide an XML metamodel to manage the metadata neces-
sary and support query optimisation for WIS applications.

In the WIS environment, the canonical model must be semantically rich
enough to represent all forms of data structure and content. However, XML
databases perform badly for many complex queries where the database size is

large or the structure complex and thus, some form of indexing is required
to boost performance. The index-based approach provides an efficient evalua-
tion of XPath queries against target XML data sets. Given an XPath query, a
query processor must locate the result set that satisfies the content and struc-
tural conditions specified by the query. Suitable indexing structures and query
processing strategies can significantly improve the performance of this match-
ing operation. There are numerous index-based query processing strategies for
XML databases [2, 3, 9, 15, 16], although many fail to support the thirteen XPath
axes as they concentrate on the child, descendant and descendant-or-self
axes [15, 16].

1.1 Contribution and Structure

In this paper, we present a metamodel for XML databases that models three
levels of abstraction: the lowest layer contains the index data; the metamodel
layer describes the database (tree) and the meta-metamodel layer describes the
schema (tree). However, for this paper we do not describe the third layer. This
provides for an advanced schema repository (or system catalog in the relational
sense) that is extended to hold index information for query optimisation. We also
demonstrate our query processing strategy by discussing methods for evaluation
of XPath axes and provide details of experiments to assess the merits of this
approach.

The paper is structured as follows: in §2, we provide the concepts and ter-
minology used in our metamodel; in §3, we provide details of the metamodel,
and the extended metamodel containing index data; the algorithms that use the
metamodel to assist the query optimisation process are described in §4; in §5, we
describe the results of our experiments while in §6 we discuss similar approaches;
and finally in §7, we offer conclusions.

2 XML Tree Fundamentals

For this work, we examined XML trees and schemas and sought to formalise the
relationships between them. An attempt at providing some form of structure
and statistics for semi-structured sources was proposed in [6] where the authors
defined a concept called DataGuides (described later in this paper). We have
created a more extensive metadata description of both data and schema trees
and differ in the set of allowable paths. In this section, we define our terminology
and specify the relationships between metadata and data structures.

2.1 Terminology

We refer to the XML data tree as the database; the schema tree as the schema;
and later in the paper, we describe a higher level of abstraction: the meta-
schema. In figure 1(a), two schemas are illustrated (actual sub-trees from the

dblp

article

authoryeartitle

dblp

inproceedings

titletitlecitecite title

label sup sup i

i sub

a) Schema segments

b) XML Database

dblp

article

yeartitleauthoryeartitleauthor
yeartitleauthor

‘George
Markowsky’

‘1978’‘Slide Search.’ ‘Bruce G.
Lindsay’

‘Database
Snapshots’ ‘1980’ ‘George W.

Reitwiesner’
‘Binary
Arithmetic’

‘1960’

Fig. 1. Mapping Across Schema and Data Trees

dblp schema) and in figure 1(b), a database is illustrated for the first of these
schemas. We begin with a description of the schema.

XML schemas are tree structures containing paths and nodes, with the root
node being the entry point to the tree. A tree-path that begins at the root
node, continuing to some context node is called a FullPath. Tree-paths need
not be unique in XML trees1 but in our metamodel, each FullPath instance is
unique. In figure 1(a), the node title has the FullPath //dblp/article/title.
Unlike [1, 6], we do not recognise sub-paths ie. those paths not connected to the
document root.

Property 1 A Schema S contains a set of FullPaths {P}, with one or more
instances in the database.

The schema is divided into levels with the root at the topmost level (level 0).
Each node has 0 or more child nodes, with child nodes also having 0 or more
children (at one level greater than the parent). Rather than use the term sub-
tree, we chose the term Family to refer to all child and ancestor nodes for a
given context node. Thus, the Family for the root is the entire tree, with all
other nodes having smaller families.

1 There are multiple path instances in the dblp schema.

Property 2 Each Node N at level(x) is the Head of a Family F of connected
nodes at levels (x+1),(x+2),...(x+n).

In 1(a), the article Family is small (3 children) while the inproceedings
Family is larger with child and descendant nodes.

Property 3 A Family F is a set of FullPaths with a common ancestor node.

The term Twig is used to refer to a Family with some members missing
(a pruned Family). This is useful where a Family is very large and one wishes
to reduce the size of the Family sub-tree (perhaps for querying performance
reasons). The term Twig has been used in the past (eg. [4])to refer to data sub-
trees returned as a result of queries and our usage of the term is not dissimilar
here.

Property 4 A Twig T is a subset of some Family F.

XML databases are instances of XML schemas. Specifically, they have one
or more instances of the FullPath construct, and by extension contain Families
and Twigs. For example, the article Family in figure 1(a) has three instances in
figure 1(b).

Similar to many other projects that focus on XPath and XQuery optimisa-
tion, we developed an indexing system to both prune the tree space and perform
the subsequent query processing. Unlike these approaches, we adopt a more tra-
ditional database approach of specifying an Extended Schema Repository (ESR)
for the XML database and provide a common interface to the repository. The
metadata features of the schema repository (i.e. FullPath and Level structures)
are the principle constructs for query optimisation. These structures describe the
database schema, together with some statistics for the data in the tree. In the
Extended section of the ESR, we store physical data taken from the XML tree
and used to form indexes to boost query performance.

3 The XML Metamodel

In this section we provide an overview of the two main layers of the ESR: index
data and metadata.

3.1 XML Index Data

When the XML database is parsed, all nodes are given {preorder,level} pairs
to uniquely identify them. Please refer to our earlier work on indexing XML
databases [7] for a detailed discussion on the indexing scheme and to [11] for a
description of the object-based interface to index data. This segment of the ESR
contains the base and level indexes. To improve efficiently in evaluating XPath
location steps along the thirteen XPath axes, a Level index is employed.

– The BASE Index
– The PreOrder and Level values, together with node parent are recorded.
– Type is used to distinguish between elements and attributes.
– The name and value of the node.
– FullPath is the entire path to the leaf node (direct relationship to FullPath

structure.
– The DocID in the event that the database contains multiple documents.
– Position This refers to the position of this data item across the level and

is determined by counting all nodes at this level with smaller preorder value.
– The LEVEL Index
– The Level value.
– An ordered sequence of PreOrder values occurring at a given level in the

data tree.

3.2 XML Metadata

The purpose of the XML Metadata layer is to describe, through the FullPath
and Level meta-objects, the structure and content of the XML database. As this
is the main construct for query optimisation, its content was heavily influenced
by algorithms for the 13 XPath axes [13]. In addition, every FullPath entry has
a relationship with a Level object, providing information about the size of the
level in the data tree.

– The FullPath Structure
– FullPath.
– NodeCount is the number of instances of this FullPath.
– DocID is necessary where the database contains multiple documents.
– name is the name of the leaf node (part of FullPath).
– Type attribute is one of Element, Attribute or Root.
– Level records the depth of this node.
– PreorderStart is the first preorder value for this node.
– PreorderEnd is the last preorder value for this node.
– LeftPos is smallest PreOrder value at this level for this FullPath (only in-

stances of this FullPath).
– RightPos is the biggest PreOrder value at this level (only instances of this

FullPath).
– Children is the number of child nodes (in the data tree).
– Descendants is the number of descendant nodes (in the data tree) excluding

child nodes.
– The Level Structure
– Level is the level number (identical to Level in FullPath).
– LeftPos is smallest PreOrder value at this level.
– RightPos is the biggest PreOrder value at this level.
– NodeCount is the number of nodes at this level (in the data tree).

A further level of meta-metadata is described elsewhere [12] and is used
processing view data.

4 XPath Query Processing

Algorithms for evaluating location steps against prominent XPath axes are pre-
sented here and in [8], we provide algorithms for the entire set of 13 XPath Axes.
In brief, our optimisation strategy is to prune the search space using both the
query structure and axes properties and then apply content filtering for both
content and arbitrary nodes.

– Step 1: Structure Prune. A sub-tree is extracted using the content and
arbitrary nodes and is specific to the particular axis.

– Step 2: Context Filter. Where the context node has a predicate, this is used
to filter the remaining sub-tree. For some axes (eg. Following and Preceding)
this function involves a single lookup, while other axes (eg. Descendant and
Ancestor), it requires a reading of each node in the sub-tree and this step is
merged with Step 3 for performance reasons.

– Step 3: Axis Prune. Those nodes that do not evaluate to the Axis properties
are filtered.

– Step 4: Arbitrary Filter. Where the arbitrary node has a predicate, this
is used to filter the final result set.

Algorithm 1 PrecedingAxis (Query Q)
Require: Parsed Q provides context node con and arbitrary node arb
1: Vector resultset = null
2: int startSS = Min(FullPath.getPreStart(Q,arb))
3: int endSS = Max(FullPath.getPreEnd(Q,con))
4: if hasPredicate(con) then
5: endSS = Max(BaseIndex.getPre(Q,con))
6: end if
7: arbPreOrd = startSS // and now we need the corresponding preorder for con
8: conPreOrd = Min(FullPath.getPreStart(Q,con))
9: while arbPreOrd < endSS do

10: if IsAncestor(arbPreOrd, conPreOrd) != TRUE then
11: if supportsPredicate(Q, arbPreOrd) then
12: resultset.add(arbPreOrd) // if no predicate, always add to resultset
13: end if
14: end if
15: arbPreOrd = BaseIndex.getnextPre(arbPreOrd)
16: conPreOrd = BaseIndex.getnextPre(conPreOrd)
17: end while
18: return resultset // a set of preorder values

4.1 Preceding Axis

The preceding axis contains all nodes in the same document as the context node
that are before the context node in document order, excluding ancestor nodes of

the context node. Consider the query in example 1 to retrieve all title elements
preceding the last mastersthesis (context node) element for the named author
(arbitrary node).

Example 1. //mastersthesis[child::author = ‘Peter Van Roy’]/preceding::title

In the PrecedingAxis Algorithm, Q is an object of type Query, variables
con and arb are strings while StartSS, endSS, arbPreOrd and conPreOrd are
preorder values. Lines 2 and 3 perform the Structure Prune step using two sin-
gle lookup functions. For Preceding queries, Context Filter is separated from
Axis Prune as Context Filter requires a single lookup function and reduces
the search space further (in this case) by moving the end point backwards. In
lines 7 and 8, we obtain the initial {context,arbitrary} preorder pair. Lines 9 to
17 read through all nodes in the search space, testing for Preceding and pred-
icate evaluations each time. In prior work [9], we demonstrated that functions
IsPreceding, IsFollowing, IsDescendant and IsAncestor each execute with
optimal efficiency given our index structure (nodes as {preorder,level} pairings).
BaseIndex.getnextPre is passed a preorder value and returns the next value
by checking its type against the FullPath index.

Algorithm 2 FollowingAxis (Query Q)
Require: Parsed Q provides context node con and arbitrary node arb
1: Vector resultset = null
2: int startSS = Min(FullPath.getPreStart(Q,con))
3: int endSS = Max(FullPath.getPreEnd(Q,arb))
4: if hasPredicate(con) then
5: startSS = Min(BaseIndex.getPre(Q,con))
6: end if
7: arbPreOrd = startSS // no need for context preorder value
8: while arbPreOrd < endSS do
9: if supportsPredicate(arbPreOrd) then

10: resultset.add(arbPreOrd) // if no predicate, always add to resultset
11: end if
12: arbPreOrd = arbPreOrd + BaseIndex.getSizeOfSubTree(startSS)
13: end while
14: return resultset

4.2 Following Axis

The following axis contains all nodes in the same document as the context node
that are after the context node in document order, excluding descendant nodes
of the context node. An XPath expression to retrieve all volume (arbitrary)
elements with a value of 2 after the first incollection (context) element in the
DBLP dataset is displayed in example 2.

Example 2. //incollection/following::volume[self::volume = ‘2’]

The Following axis is similar to that of Preceding in that the Structure
Prune and Context Filter steps are alike. However, the Axis Prune step
uses the getSizeOfSubTree function (demonstrated in [9] to execute efficiently)
is used to perform a jump within the search space. This jump ignores all descen-
dants of the arbitrary node.

4.3 Ancestor Axis

The ancestor axis contains all ancestors of the context node. Consider the query
in example 3 to retrieve all book elements (arbitrary node) that are ancestors
of the year (context node) element with the given value.

Note that the algorithm creates a more refined search space (actually multiple
sub-trees) than for the Preceding axis and thus, the Prune Structure step
is inside a for-next loop. The algorithm begins by creating a set of FullPaths
that meet the structure specified in Q, and then for each FullPath the algorithm
will generate a result. Lines 3 and 4 preform the Structure Prune step using
two lookup functions. Steps 2-4 are merged as all require a traversal of the sub-
tree(s).

Example 3. //year[self::node() = ‘1998’]/ancestor::book

Algorithm 3 Ancestor(Query Q)
Require: Parsed Q provides context node con and arbitrary node arb
1: Vector resultset = null
2: for each Fullpath do
3: int startSS = FullPath.getPreStart(Q,con)
4: int endSS = FullPath.getPreEnd(Q,con)
5: conPreOrd = startSS
6: arbPreOrd = Min(FullPath.getPreStart(Q,arb))
7: while conPreOrd < endSS do
8: if IsAncestor(conPreOrd,arbPreOrd) == TRUE then
9: if supportsPredicate(Q, conPreOrd) then

10: if supportsPredicate(Q, arbPreOrd) then
11: resultset.add(arbPreOrd)
12: end if
13: end if
14: end if
15: arbPreOrd = BaseIndex.getnextPre(arbPreOrd)
16: conPreOrd = BaseIndex.getnextPre(conPreOrd)
17: end while
18: end for
19: return resultset

5 Details of Experiments

Experiments were run using a 3.2GHz Pentium IV machine with 1GB memory on
a Windows XP platform. Algorithms were implemented using Java virtual ma-
chine (JVM) version 1.5. The Extended Schema Repository was deployed using
an Oracle 10g database (running the Windows XP Professional operating sys-
tem, with a 3GHz Pentium IV processor and 1GB of RAM). The eXist database
(version 1.0b2-build-1107) operated on a machine with an identical specification
to that of the Oracle server to ensure an equal set of experiments. The default
JVM settings of eXist were increased from -Xmx128000k to -Xmx768000k to
maximise efficiency. All experiments used the DBLP dataset [14], containing 3.5
million elements, 400k attributes with 6 levels and a size of 127mb.

Table 1. DBLP Queries

XPath Matches

Q1 //title[. = ‘A Skeleton Library.’]/ancestor::inproceedings 1

Q2 //year[self::node() = ‘1998’]/ancestor-or-self::book 32

Q3 //mastersthesis[child::author = ‘Peter Van Roy’]/preceding::title 77

Q4 //incollection/following::volume[self::volume = ‘2’] 3,123

Q5 /dblp/descendant::phdthesis 72

Q6 /descendant-or-self::article[* = ‘Adnan Darwiche’] 6

Q7 //book/parent::title 0

Q8 /dblp/phdthesis[* = ‘1996’] 4

Q9 /dblp/descendant::book[child:author = ‘Bertrand Meyer’] 13

Q10 //article/@rating 61

Table 1 presents our XPath query set and for each query, we provide the
number of results returned by the DBLP dataset. Each query is executed eleven
times with execution times recorded in milliseconds (ms), together with the
number of matches. The times were averaged with the first run eliminated to
ensure that results are warm cache numbers.

Table 2 displays the execution times for eXist, the Extended Schema Repos-
itory (ESR), and in the final column the factor at which the ESR out-performs
eXist. A value of 1 indicates that both are equal and anything less than 1 indi-
cates that the ESR is slower than eXist. The range from 0.84 to 69.0 indicates
that that at best, we were 69 times faster than eXist.

For queries Q3 and Q4, the eXist query processor failed to return any results
as it does not support the following and preceding axes. The features of our
metamodel allow us to quickly identify queries with paths not supported in the
target database (see query Q7). For query Q6, we achieved a speed up of 69, as
the eXist query processor is inefficient at processing predicates containing wild-
cards on frequently occurring nodes scattered throughout the database (i.e. the
article node occurs 111,609 times throughout DBLP). In contrast, our pro-
cessing strategy allows us to quickly filter for any predicate. Query Q8 contains

Table 2. Query Results

eXist (ms) ESR (ms) Factor

Q1 989.2 86.0 11.5

Q2 6,419.8 535.7 12.0

Q3 143.9

Q4 1,265.5

Q5 140.7 167.2 0.84

Q6 28,533.2 413.4 69.0

Q7 149.6 57.4 2.6

Q8 123.9 119.3 1.04

Q9 414.4 147.3 2.8

Q10 233.1 38.9 6.1

a wildcard and while the ESR was slighter faster for this query, we encountered
instances where eXist out-performs the ESR as it can efficiently process pred-
icates with wildcards on nodes that are clustered into a very small segment of
the XML database.

For queries Q1 and Q2, we obtain improvements ranging from 11.5 to 12.
The eXist database cannot process predicates on these queries efficiently as the
context nodes have a very high frequency scattered throughout the database (i.e.
for Q2 the year node occurs 328,831 times in DBLP). Although year nodes are
scattered throughout the database, the getNextPre function provides us with
direct access to them. Furthermore, our pruning and filtering techniques use
metadata information within the FullPath index to quickly identify the relevant
search space along the ancestor axis, or over any wide search space.

Queries Q5, Q9 and Q10 do not contain any predicates and the improvements
range from 0.84 to 6.1. These are less impressive as queries without predicates
bypass our optimisation steps 2 and 4. The ESR performs best against queries
with selective predicates as they allow us to quickly prune and filter the database
using all four optimisation steps. Query Q5 performs marginally better with
eXist as the few phdthesis nodes in the database are clustered closely together.

6 Similar Approaches

In this work, optimisation takes place at the axes level, an approach also taken
in [5] whereby recording minimal schema information (preorder, postorder and
level values), they provide a significant optimisation for XPath axes. However,
they do not employ the different levels of abstraction presented here and thus,
operations such as GetPreStart and GetPreEnd for the FullPath object (to limit
the search space) are not easily computable.

One of the earliest effort at generating schema information for semi-structured
sources was in [6] where the authors introduced the concept of a DataGuide.
They are used by query processing strategies to limit or prune the search space
of the target database. However, DataGuides do not provide any information

about the parent-child relationship between database nodes and unlike our ap-
proach, they cannot be used for axis navigation along an arbitrary node. In [10],
they overcame this problem by augmenting their DataGuide with a set of in-
stance functions that keep track of parent-child relationships between nodes
although [10] was an early indexing schema that did not cover all categories of
XML queries.

The FIX index [16] is based on spectral graph theory. During the initial
parsing of the XML dataset, FIX calculates a vector of features based on the
structure of each twig pattern found in the dataset. These features are used as
keys for the twig patterns and stored in the index. During query processing,
the FIX processor converts a twig query into a feature vector and subsequently
searches the index for the required feature vector.

Experiments illustrate that FIX has strong path pruning capabilities for high
selectivity queries (i.e. queries that query a small portion of an XML document),
especially on highly unstructured XML documents (e.g. TreeBank). However,
results also indicate that FIX is poor at processing low selectivity queries, espe-
cially when the target database is highly structured. Furthermore, FIX supports
only the child, descendant, descendant-or-self and self axes and does
not support the evaluation of queries containing the text, node, comment and
processing-instruction functions. In contract, we provide algorithms for the
full set of XPath axes [8].

Perhaps the most significant work in this area can be found in [2] where they
compile a significant amount of metadata to support the optimisation process
but also provide a full query processor that optimises at the level of query rather
than the level of location path as we do. This facilitates an access-order selection
process where more than one location path can be processed simultaneously.
Furthermore, they can process queries in both top-down and bottom-up direc-
tions, thus, providing a further level of optimisation based on the query type and
database statistics. However, we have discovered improvements can be achieved
by fine-tuning the axes algorithms. In §4, we illustrated how optimisation steps
differ for each axis and in some cases, it was necessary to merge these steps.

7 Conclusions

In this paper, we introduced our metamodel for XML databases and demon-
strated how it could be used to optimise XPath queries by rewriting the axes
algorithms. Our experiments were conducted against the eXist database as many
web sources indicated that eXist outperformed its competitors. Two important
characteristics in the engineering of WIS applications is that they are interop-
erable and can be viewed at different levels of abstraction. XML an provide
the platform for interoperability as it acts as a canonical model for heteroge-
neous systems and by using a metamodel approach, it has been shown to assist
the integration process. We discovered that using a metamodel with different
functioning layers facilitated well-engineered algorithms but also greater perfor-
mances due to the type of information stored at each level. While similar efforts

in this area have demonstrated long build times for their indexes, we reported
relatively small build times in our earlier work on constructing XML indexes [7].
This is extremely useful in our current area of research: managing updates for
XML databases.

References

1. Aboulnaga A., Alameldeen A. and Naughton J. Estimating the Selectivity of XML
Path Expressions for Interney Scale Applications. Proceedings of the 27th VLDB
Conference, Morgan Kaufmann, pp. 591-600, 2001.

2. Barta A., Consens M. and Mendelzon A. Benefits of Path Summaries in an XML
Query Optimizer Supporting Multiple Access Methods. Proceedings of the 31st
VLDB Conference, Morgan Kaufmann, pp 133-144, 2005.

3. Boulos J. and Karakashian S. A New Design for a Native XML Storage and Indexing
Manager. Proceedings of EDBT 2006, LNCS vol. 3896, pp. 755-772, 2006.

4. Bruno N., Srivastava D., and Koudas N. Holistic Twig Joins: Optimal XML Pattern
Matching. Proceedings of SIGMOD 2002, ACM Press, 2002.

5. Grust T. Accelerating XPath Location Steps. Proceedings of ACM SIGMOD Con-
ference, pp.109-120, ACM Press, 2002.

6. Goldman R. and Widom J. DataGuides: Enabling Query Formulation and Opti-
misation in Semisztructured Databases. Proceedings of the 23rd VLDB Conference,
Morgan Kaufmann, pp 436-445, 1997.

7. Noonan C., Durrigan C. and Roantree M. Using an Oracle Repository to Accelerate
XPath Queries. Proceedings of the 17th DEXA conference, LNCS vol. 4080, pp.
73-82, Springer, 2006.

8. Noonan C. The Algorithm Set for XPath Axes. Technical Report ISG-06-03, Dublin

City University, November 2006.

at: URL http://www.computing.dcu.ie/∼isg/technicalReport.html.
9. O’Connor M., Bellahsene Z. and Roantree M. An Extended Preorder Index

for Optimising XPath Expressions. Proceedings of 3rd XSym, LNCS Vol. 3671,
Springer, pp 114-128, 2005.

10. Rizzolo F. and Mendelzon A. Indexing XML Data with ToXin. Proceedings
of the 4th WebDB Workshop, pp. 49-54, 2001.

11. Roantree M. The FAST Prototype: a Flexible indexing Algorithm using
Semantic Tags. Technical Report ISG-06-02, Dublin City University, January
2006.
at: URL http://www.computing.dcu.ie/∼isg/technicalReport.html.

12. Roantree M. and Noonan C. A Metamodel Approach to XML Query Opti-
misation (submitted for publication). Proceedings of the 11th ADBIS Confer-
ence, 2007.

13. The XPath Language,
at: URL http://www.w3.org/TR/xpath, 2006.

14. Suciu D. and Miklau G. University of Washingtons XML Repository.
at: URL http://www.cs.washington.edu/research/xmldatasets/, 2002.

15. Weigel F. et al. Content and Structure in Indexing and Ranking XML. Pro-
ceedings of the 7th WebDB Workshop, pp. 67-72, 2004.

16. Zhang N. et al. FIX: Feature-based Indexing Technique for XML Docu-
ments. Proceedings of the 32nd VLDB Conference, pp.359-370, 2006.

	WISM2007 start.pdf
	Program committee
	Workshop organizers

	wism2007-1.pdf
	wism2007-2.pdf
	wism2007-3.pdf
	wism2007-4.pdf
	wism2007-5.pdf
	1 Introduction
	2 Web Engineering and the Semantic Web
	3 Semantic FrameWeb
	3.1 Domain Analysis
	3.2 Ontology Design
	3.3 Ontology Implementation
	3.4 Front Controller Infrastructure

	4 Related Work
	5 Conclusions and Future Work
	1.Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientiﬁc American (2001) n. 284, p. 34-43
	2.Conallen, J.: Building Web Applications with UML. 2nd edn. Addison-Wesley (2002)
	3.Fons, J.; Valderas, P.; Ruiz, M.; Rojas, G.; Pastor, O: OOWS: A Method to Develop Web Applications from Web-Oriented Conceptual Models. Proceedings of the 7th World Multiconference on Systemics, Cybernetics and Informatics (SCI), Orlando, USA (2003)
	4.Schwabe, D., Rossi, G.: An Object Oriented Approach to Web-Based Application Design. Theory and Practice of Object Systems 4 (4). Wiley and Sons (1998)
	5.Souza, V. E. S., Falbo, R. A.: FrameWeb: A Framework-based Design Method for Web Engineering. Proceedings of the Euro American Conference on Telematics and Information Systems, Faro, Algarve, Portugal (2007)
	6.Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: A New Discipline for Development of Web-based Systems. Proceedings of the First ICSE Workshop on Web Engineering. IEEE, Australia (1999)
	7.Shannon, B.: JavaTM Platform, Enterprise Edition (Java EE) Specification, v5. Sun Microsystems (2006)
	8.Alur, D., Crupi, J., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies. Prentice Hall / Sun Microsystems Press (2001)
	9.Bauer, C., King, G.: Hibernate in Action. 1st edn. Manning (2004)
	10.Fowler, M.: Inversion of Control Containers and the Dependency Injection Pattern (http://www.martinfowler.com/articles/injection.html). Captured on July 19th (2006)
	11.Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley (1994)
	12.Souza, V. E. S., Falbo, R. A.: A Language for Modeling Framework-based Web Information Systems. Proceedings of the 12th International Workshop on Exploring Modeling Methods in System Analysis and Design. Trondheim, Norway (2007)
	13.Guarino, N.: Formal Ontology and Information Systems. Proceedings of the 1st International Conference on Formal Ontologies in Information Systems. IOS Press. Trento, Italy (1998) p. 3-15.
	14.W3C: OWL Web Ontology Language Guide, fev. 2004 (http://www.w3.org/TR/owl-guide/). Captured on: November 13th (2006)
	15.Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering. Springer (2005)
	16.Stojanovic, L., Stojanovic, N., Volz, R.: Migrating data-intensive Web Sites into the Semantic Web. Proceedings of the 2002 ACM symposium on Applied computing. ACM. Madrid, Spain (2002) p. 1100-1107
	17.Hepp, M.: Semantic Web and semantic Web services - Father and Son or Indivisible Twins? IEEE Internet Computing. IEEE (2006) v. 10, n. 2, p. 85-88
	18.W3C: W3C Glossary and Dictionary (http://www.w3.org/2003/glossary/). Captured on: January 23rd (2007)
	19.McIlraith, S. A., Son, T. C., Zeng, H.: Semantic Web Services. Intelligent Systems. IEEE (2001) v. 16, n. 2, p. 46-53
	20.Narayanan, S., McIlraith, S. A.: Simulation, Verification and Automated Composition of Web Services. Proceedings of the 11th international conference on World Wide Web. ACM. Hawaii, USA (2002) p. 77-88
	21.Neighbors, J. M.: Software Construction Using Components. Ph.D. Thesis. Department of Information and Computer Science, University of California, Irvine (1981)
	22.Falbo R. A., Guizzardi, G., Duarte, K. C. : An Ontological Approach to Domain Engineering. Proceedings of the 14th International Conference on Software Engineering and Knowledge Engineering (SEKE'2002). Ischia, Italy (2002). pp. 351- 358
	23.OMG: Ontology Definition Metamodel Specification (http://www.omg.org/cgi-bin/doc?ad/06-05-01.pdf). Captured on: January 29th (2007)
	24.Đurić, D.: MDA-based Ontology Infrastructure. Computer Science and Information Systems. ComSIS Consortium (2004) vol. 1, issue 1
	25.Lima, F., Schwabe, D.: Application Modeling for the Semantic Web. First Latin American Web Conference (LA-Web). IEEE-CS Press. Santiago, Chile (2003)
	26.Trastour, D., Bartolini, C., Preist, C.: Semantic Web Support for the Business-to-Business E-Commerce Lifecycle. Proceedings of the 11th International World Wide Web Conference (WWW 2002). Hawaii, USA (2002)

	wism2007-6.pdf
	wism2007-7.pdf
	wism2007-8.pdf

