
Optimising XML-Based Web Information
Systems

Colm Noonan and Mark Roantree

Interoperable Systems Group, Dublin City University, Ireland -
{mark,cnoonan}@computing.dcu.ie

Abstract. Many Web Information Systems incorporate data and ac-
tivities from multiple organisations, often at different geographical (and
cultural) locations. Many of the solutions proposed for the necessary in-
tegration in Web Information Systems involve XML as it provides an
interoperable layer between different information systems. The impact
of this approach is the construction of large XML stores and often there
is a need to query XML databases. The work presented in this paper
supports the web computing environment by ensuring that this canoni-
cal representation (XML) of data can be efficiently processed regardless
of potentially complex structures. Specifically, we provide a metamodel
to support query optimisation for Web Systems that employ XPath.

Key words: XML Query Optimisation, XPath, Web Information Systems

1 Introduction

As today’s Web Information Systems (WIS) often incorporate data and processes
from multiple organisations, the concept of data everywhere is more evident. Fur-
thermore, this distribution and diversity of information will increase as we move
towards ambient, pervasive and ubiquitous WIS computing. There has been over
20 years of research into interoperability for information systems and it is likely
that many of the solutions proposed for the necessary integration in the WIS
environment will involve XML as it provides an interoperable layer between dif-
ferent information systems. The effect of this approach is the construction of
large XML stores (referred to as XML databases from now on), together a need
to efficiently query these XML databases. In fact, it is often suitable to retain
this information in XML format due to its interoperable characteristics or be-
cause source organisations have chosen XML as their own storage method. Our
motivation is to support the WIS computing environment by ensuring that the
canonical representation (XML) of data has the sufficient query performance.
Our approach is to provide an XML metamodel to manage the metadata neces-
sary and support query optimisation for WIS applications.

In the WIS environment, the canonical model must be semantically rich
enough to represent all forms of data structure and content. However, XML
databases perform badly for many complex queries where the database size is

large or the structure complex and thus, some form of indexing is required
to boost performance. The index-based approach provides an efficient evalua-
tion of XPath queries against target XML data sets. Given an XPath query, a
query processor must locate the result set that satisfies the content and struc-
tural conditions specified by the query. Suitable indexing structures and query
processing strategies can significantly improve the performance of this match-
ing operation. There are numerous index-based query processing strategies for
XML databases [2, 3, 9, 15, 16], although many fail to support the thirteen XPath
axes as they concentrate on the child, descendant and descendant-or-self
axes [15, 16].

1.1 Contribution and Structure

In this paper, we present a metamodel for XML databases that models three
levels of abstraction: the lowest layer contains the index data; the metamodel
layer describes the database (tree) and the meta-metamodel layer describes the
schema (tree). However, for this paper we do not describe the third layer. This
provides for an advanced schema repository (or system catalog in the relational
sense) that is extended to hold index information for query optimisation. We also
demonstrate our query processing strategy by discussing methods for evaluation
of XPath axes and provide details of experiments to assess the merits of this
approach.

The paper is structured as follows: in §2, we provide the concepts and ter-
minology used in our metamodel; in §3, we provide details of the metamodel,
and the extended metamodel containing index data; the algorithms that use the
metamodel to assist the query optimisation process are described in §4; in §5, we
describe the results of our experiments while in §6 we discuss similar approaches;
and finally in §7, we offer conclusions.

2 XML Tree Fundamentals

For this work, we examined XML trees and schemas and sought to formalise the
relationships between them. An attempt at providing some form of structure
and statistics for semi-structured sources was proposed in [6] where the authors
defined a concept called DataGuides (described later in this paper). We have
created a more extensive metadata description of both data and schema trees
and differ in the set of allowable paths. In this section, we define our terminology
and specify the relationships between metadata and data structures.

2.1 Terminology

We refer to the XML data tree as the database; the schema tree as the schema;
and later in the paper, we describe a higher level of abstraction: the meta-
schema. In figure 1(a), two schemas are illustrated (actual sub-trees from the

dblp

article

authoryeartitle

dblp

inproceedings

titletitlecitecite title

label sup sup i

i sub

a) Schema segments

b) XML Database

dblp

article

yeartitleauthoryeartitleauthor
yeartitleauthor

‘George
Markowsky’

‘1978’‘Slide Search.’ ‘Bruce G.
Lindsay’

‘Database
Snapshots’ ‘1980’ ‘George W.

Reitwiesner’
‘Binary
Arithmetic’

‘1960’

Fig. 1. Mapping Across Schema and Data Trees

dblp schema) and in figure 1(b), a database is illustrated for the first of these
schemas. We begin with a description of the schema.

XML schemas are tree structures containing paths and nodes, with the root
node being the entry point to the tree. A tree-path that begins at the root
node, continuing to some context node is called a FullPath. Tree-paths need
not be unique in XML trees1 but in our metamodel, each FullPath instance is
unique. In figure 1(a), the node title has the FullPath //dblp/article/title.
Unlike [1, 6], we do not recognise sub-paths ie. those paths not connected to the
document root.

Property 1 A Schema S contains a set of FullPaths {P}, with one or more
instances in the database.

The schema is divided into levels with the root at the topmost level (level 0).
Each node has 0 or more child nodes, with child nodes also having 0 or more
children (at one level greater than the parent). Rather than use the term sub-
tree, we chose the term Family to refer to all child and ancestor nodes for a
given context node. Thus, the Family for the root is the entire tree, with all
other nodes having smaller families.

1 There are multiple path instances in the dblp schema.

Property 2 Each Node N at level(x) is the Head of a Family F of connected
nodes at levels (x+1),(x+2),...(x+n).

In 1(a), the article Family is small (3 children) while the inproceedings
Family is larger with child and descendant nodes.

Property 3 A Family F is a set of FullPaths with a common ancestor node.

The term Twig is used to refer to a Family with some members missing
(a pruned Family). This is useful where a Family is very large and one wishes
to reduce the size of the Family sub-tree (perhaps for querying performance
reasons). The term Twig has been used in the past (eg. [4])to refer to data sub-
trees returned as a result of queries and our usage of the term is not dissimilar
here.

Property 4 A Twig T is a subset of some Family F.

XML databases are instances of XML schemas. Specifically, they have one
or more instances of the FullPath construct, and by extension contain Families
and Twigs. For example, the article Family in figure 1(a) has three instances in
figure 1(b).

Similar to many other projects that focus on XPath and XQuery optimisa-
tion, we developed an indexing system to both prune the tree space and perform
the subsequent query processing. Unlike these approaches, we adopt a more tra-
ditional database approach of specifying an Extended Schema Repository (ESR)
for the XML database and provide a common interface to the repository. The
metadata features of the schema repository (i.e. FullPath and Level structures)
are the principle constructs for query optimisation. These structures describe the
database schema, together with some statistics for the data in the tree. In the
Extended section of the ESR, we store physical data taken from the XML tree
and used to form indexes to boost query performance.

3 The XML Metamodel

In this section we provide an overview of the two main layers of the ESR: index
data and metadata.

3.1 XML Index Data

When the XML database is parsed, all nodes are given {preorder,level} pairs
to uniquely identify them. Please refer to our earlier work on indexing XML
databases [7] for a detailed discussion on the indexing scheme and to [11] for a
description of the object-based interface to index data. This segment of the ESR
contains the base and level indexes. To improve efficiently in evaluating XPath
location steps along the thirteen XPath axes, a Level index is employed.

– The BASE Index
– The PreOrder and Level values, together with node parent are recorded.
– Type is used to distinguish between elements and attributes.
– The name and value of the node.
– FullPath is the entire path to the leaf node (direct relationship to FullPath

structure.
– The DocID in the event that the database contains multiple documents.
– Position This refers to the position of this data item across the level and

is determined by counting all nodes at this level with smaller preorder value.
– The LEVEL Index
– The Level value.
– An ordered sequence of PreOrder values occurring at a given level in the

data tree.

3.2 XML Metadata

The purpose of the XML Metadata layer is to describe, through the FullPath
and Level meta-objects, the structure and content of the XML database. As this
is the main construct for query optimisation, its content was heavily influenced
by algorithms for the 13 XPath axes [13]. In addition, every FullPath entry has
a relationship with a Level object, providing information about the size of the
level in the data tree.

– The FullPath Structure
– FullPath.
– NodeCount is the number of instances of this FullPath.
– DocID is necessary where the database contains multiple documents.
– name is the name of the leaf node (part of FullPath).
– Type attribute is one of Element, Attribute or Root.
– Level records the depth of this node.
– PreorderStart is the first preorder value for this node.
– PreorderEnd is the last preorder value for this node.
– LeftPos is smallest PreOrder value at this level for this FullPath (only in-

stances of this FullPath).
– RightPos is the biggest PreOrder value at this level (only instances of this

FullPath).
– Children is the number of child nodes (in the data tree).
– Descendants is the number of descendant nodes (in the data tree) excluding

child nodes.
– The Level Structure
– Level is the level number (identical to Level in FullPath).
– LeftPos is smallest PreOrder value at this level.
– RightPos is the biggest PreOrder value at this level.
– NodeCount is the number of nodes at this level (in the data tree).

A further level of meta-metadata is described elsewhere [12] and is used
processing view data.

4 XPath Query Processing

Algorithms for evaluating location steps against prominent XPath axes are pre-
sented here and in [8], we provide algorithms for the entire set of 13 XPath Axes.
In brief, our optimisation strategy is to prune the search space using both the
query structure and axes properties and then apply content filtering for both
content and arbitrary nodes.

– Step 1: Structure Prune. A sub-tree is extracted using the content and
arbitrary nodes and is specific to the particular axis.

– Step 2: Context Filter. Where the context node has a predicate, this is used
to filter the remaining sub-tree. For some axes (eg. Following and Preceding)
this function involves a single lookup, while other axes (eg. Descendant and
Ancestor), it requires a reading of each node in the sub-tree and this step is
merged with Step 3 for performance reasons.

– Step 3: Axis Prune. Those nodes that do not evaluate to the Axis properties
are filtered.

– Step 4: Arbitrary Filter. Where the arbitrary node has a predicate, this
is used to filter the final result set.

Algorithm 1 PrecedingAxis (Query Q)
Require: Parsed Q provides context node con and arbitrary node arb
1: Vector resultset = null
2: int startSS = Min(FullPath.getPreStart(Q,arb))
3: int endSS = Max(FullPath.getPreEnd(Q,con))
4: if hasPredicate(con) then
5: endSS = Max(BaseIndex.getPre(Q,con))
6: end if
7: arbPreOrd = startSS // and now we need the corresponding preorder for con
8: conPreOrd = Min(FullPath.getPreStart(Q,con))
9: while arbPreOrd < endSS do

10: if IsAncestor(arbPreOrd, conPreOrd) != TRUE then
11: if supportsPredicate(Q, arbPreOrd) then
12: resultset.add(arbPreOrd) // if no predicate, always add to resultset
13: end if
14: end if
15: arbPreOrd = BaseIndex.getnextPre(arbPreOrd)
16: conPreOrd = BaseIndex.getnextPre(conPreOrd)
17: end while
18: return resultset // a set of preorder values

4.1 Preceding Axis

The preceding axis contains all nodes in the same document as the context node
that are before the context node in document order, excluding ancestor nodes of

the context node. Consider the query in example 1 to retrieve all title elements
preceding the last mastersthesis (context node) element for the named author
(arbitrary node).

Example 1. //mastersthesis[child::author = ‘Peter Van Roy’]/preceding::title

In the PrecedingAxis Algorithm, Q is an object of type Query, variables
con and arb are strings while StartSS, endSS, arbPreOrd and conPreOrd are
preorder values. Lines 2 and 3 perform the Structure Prune step using two sin-
gle lookup functions. For Preceding queries, Context Filter is separated from
Axis Prune as Context Filter requires a single lookup function and reduces
the search space further (in this case) by moving the end point backwards. In
lines 7 and 8, we obtain the initial {context,arbitrary} preorder pair. Lines 9 to
17 read through all nodes in the search space, testing for Preceding and pred-
icate evaluations each time. In prior work [9], we demonstrated that functions
IsPreceding, IsFollowing, IsDescendant and IsAncestor each execute with
optimal efficiency given our index structure (nodes as {preorder,level} pairings).
BaseIndex.getnextPre is passed a preorder value and returns the next value
by checking its type against the FullPath index.

Algorithm 2 FollowingAxis (Query Q)
Require: Parsed Q provides context node con and arbitrary node arb
1: Vector resultset = null
2: int startSS = Min(FullPath.getPreStart(Q,con))
3: int endSS = Max(FullPath.getPreEnd(Q,arb))
4: if hasPredicate(con) then
5: startSS = Min(BaseIndex.getPre(Q,con))
6: end if
7: arbPreOrd = startSS // no need for context preorder value
8: while arbPreOrd < endSS do
9: if supportsPredicate(arbPreOrd) then

10: resultset.add(arbPreOrd) // if no predicate, always add to resultset
11: end if
12: arbPreOrd = arbPreOrd + BaseIndex.getSizeOfSubTree(startSS)
13: end while
14: return resultset

4.2 Following Axis

The following axis contains all nodes in the same document as the context node
that are after the context node in document order, excluding descendant nodes
of the context node. An XPath expression to retrieve all volume (arbitrary)
elements with a value of 2 after the first incollection (context) element in the
DBLP dataset is displayed in example 2.

Example 2. //incollection/following::volume[self::volume = ‘2’]

The Following axis is similar to that of Preceding in that the Structure
Prune and Context Filter steps are alike. However, the Axis Prune step
uses the getSizeOfSubTree function (demonstrated in [9] to execute efficiently)
is used to perform a jump within the search space. This jump ignores all descen-
dants of the arbitrary node.

4.3 Ancestor Axis

The ancestor axis contains all ancestors of the context node. Consider the query
in example 3 to retrieve all book elements (arbitrary node) that are ancestors
of the year (context node) element with the given value.

Note that the algorithm creates a more refined search space (actually multiple
sub-trees) than for the Preceding axis and thus, the Prune Structure step
is inside a for-next loop. The algorithm begins by creating a set of FullPaths
that meet the structure specified in Q, and then for each FullPath the algorithm
will generate a result. Lines 3 and 4 preform the Structure Prune step using
two lookup functions. Steps 2-4 are merged as all require a traversal of the sub-
tree(s).

Example 3. //year[self::node() = ‘1998’]/ancestor::book

Algorithm 3 Ancestor(Query Q)
Require: Parsed Q provides context node con and arbitrary node arb
1: Vector resultset = null
2: for each Fullpath do
3: int startSS = FullPath.getPreStart(Q,con)
4: int endSS = FullPath.getPreEnd(Q,con)
5: conPreOrd = startSS
6: arbPreOrd = Min(FullPath.getPreStart(Q,arb))
7: while conPreOrd < endSS do
8: if IsAncestor(conPreOrd,arbPreOrd) == TRUE then
9: if supportsPredicate(Q, conPreOrd) then

10: if supportsPredicate(Q, arbPreOrd) then
11: resultset.add(arbPreOrd)
12: end if
13: end if
14: end if
15: arbPreOrd = BaseIndex.getnextPre(arbPreOrd)
16: conPreOrd = BaseIndex.getnextPre(conPreOrd)
17: end while
18: end for
19: return resultset

5 Details of Experiments

Experiments were run using a 3.2GHz Pentium IV machine with 1GB memory on
a Windows XP platform. Algorithms were implemented using Java virtual ma-
chine (JVM) version 1.5. The Extended Schema Repository was deployed using
an Oracle 10g database (running the Windows XP Professional operating sys-
tem, with a 3GHz Pentium IV processor and 1GB of RAM). The eXist database
(version 1.0b2-build-1107) operated on a machine with an identical specification
to that of the Oracle server to ensure an equal set of experiments. The default
JVM settings of eXist were increased from -Xmx128000k to -Xmx768000k to
maximise efficiency. All experiments used the DBLP dataset [14], containing 3.5
million elements, 400k attributes with 6 levels and a size of 127mb.

Table 1. DBLP Queries

XPath Matches

Q1 //title[. = ‘A Skeleton Library.’]/ancestor::inproceedings 1

Q2 //year[self::node() = ‘1998’]/ancestor-or-self::book 32

Q3 //mastersthesis[child::author = ‘Peter Van Roy’]/preceding::title 77

Q4 //incollection/following::volume[self::volume = ‘2’] 3,123

Q5 /dblp/descendant::phdthesis 72

Q6 /descendant-or-self::article[* = ‘Adnan Darwiche’] 6

Q7 //book/parent::title 0

Q8 /dblp/phdthesis[* = ‘1996’] 4

Q9 /dblp/descendant::book[child:author = ‘Bertrand Meyer’] 13

Q10 //article/@rating 61

Table 1 presents our XPath query set and for each query, we provide the
number of results returned by the DBLP dataset. Each query is executed eleven
times with execution times recorded in milliseconds (ms), together with the
number of matches. The times were averaged with the first run eliminated to
ensure that results are warm cache numbers.

Table 2 displays the execution times for eXist, the Extended Schema Repos-
itory (ESR), and in the final column the factor at which the ESR out-performs
eXist. A value of 1 indicates that both are equal and anything less than 1 indi-
cates that the ESR is slower than eXist. The range from 0.84 to 69.0 indicates
that that at best, we were 69 times faster than eXist.

For queries Q3 and Q4, the eXist query processor failed to return any results
as it does not support the following and preceding axes. The features of our
metamodel allow us to quickly identify queries with paths not supported in the
target database (see query Q7). For query Q6, we achieved a speed up of 69, as
the eXist query processor is inefficient at processing predicates containing wild-
cards on frequently occurring nodes scattered throughout the database (i.e. the
article node occurs 111,609 times throughout DBLP). In contrast, our pro-
cessing strategy allows us to quickly filter for any predicate. Query Q8 contains

Table 2. Query Results

eXist (ms) ESR (ms) Factor

Q1 989.2 86.0 11.5

Q2 6,419.8 535.7 12.0

Q3 143.9

Q4 1,265.5

Q5 140.7 167.2 0.84

Q6 28,533.2 413.4 69.0

Q7 149.6 57.4 2.6

Q8 123.9 119.3 1.04

Q9 414.4 147.3 2.8

Q10 233.1 38.9 6.1

a wildcard and while the ESR was slighter faster for this query, we encountered
instances where eXist out-performs the ESR as it can efficiently process pred-
icates with wildcards on nodes that are clustered into a very small segment of
the XML database.

For queries Q1 and Q2, we obtain improvements ranging from 11.5 to 12.
The eXist database cannot process predicates on these queries efficiently as the
context nodes have a very high frequency scattered throughout the database (i.e.
for Q2 the year node occurs 328,831 times in DBLP). Although year nodes are
scattered throughout the database, the getNextPre function provides us with
direct access to them. Furthermore, our pruning and filtering techniques use
metadata information within the FullPath index to quickly identify the relevant
search space along the ancestor axis, or over any wide search space.

Queries Q5, Q9 and Q10 do not contain any predicates and the improvements
range from 0.84 to 6.1. These are less impressive as queries without predicates
bypass our optimisation steps 2 and 4. The ESR performs best against queries
with selective predicates as they allow us to quickly prune and filter the database
using all four optimisation steps. Query Q5 performs marginally better with
eXist as the few phdthesis nodes in the database are clustered closely together.

6 Similar Approaches

In this work, optimisation takes place at the axes level, an approach also taken
in [5] whereby recording minimal schema information (preorder, postorder and
level values), they provide a significant optimisation for XPath axes. However,
they do not employ the different levels of abstraction presented here and thus,
operations such as GetPreStart and GetPreEnd for the FullPath object (to limit
the search space) are not easily computable.

One of the earliest effort at generating schema information for semi-structured
sources was in [6] where the authors introduced the concept of a DataGuide.
They are used by query processing strategies to limit or prune the search space
of the target database. However, DataGuides do not provide any information

about the parent-child relationship between database nodes and unlike our ap-
proach, they cannot be used for axis navigation along an arbitrary node. In [10],
they overcame this problem by augmenting their DataGuide with a set of in-
stance functions that keep track of parent-child relationships between nodes
although [10] was an early indexing schema that did not cover all categories of
XML queries.

The FIX index [16] is based on spectral graph theory. During the initial
parsing of the XML dataset, FIX calculates a vector of features based on the
structure of each twig pattern found in the dataset. These features are used as
keys for the twig patterns and stored in the index. During query processing,
the FIX processor converts a twig query into a feature vector and subsequently
searches the index for the required feature vector.

Experiments illustrate that FIX has strong path pruning capabilities for high
selectivity queries (i.e. queries that query a small portion of an XML document),
especially on highly unstructured XML documents (e.g. TreeBank). However,
results also indicate that FIX is poor at processing low selectivity queries, espe-
cially when the target database is highly structured. Furthermore, FIX supports
only the child, descendant, descendant-or-self and self axes and does
not support the evaluation of queries containing the text, node, comment and
processing-instruction functions. In contract, we provide algorithms for the
full set of XPath axes [8].

Perhaps the most significant work in this area can be found in [2] where they
compile a significant amount of metadata to support the optimisation process
but also provide a full query processor that optimises at the level of query rather
than the level of location path as we do. This facilitates an access-order selection
process where more than one location path can be processed simultaneously.
Furthermore, they can process queries in both top-down and bottom-up direc-
tions, thus, providing a further level of optimisation based on the query type and
database statistics. However, we have discovered improvements can be achieved
by fine-tuning the axes algorithms. In §4, we illustrated how optimisation steps
differ for each axis and in some cases, it was necessary to merge these steps.

7 Conclusions

In this paper, we introduced our metamodel for XML databases and demon-
strated how it could be used to optimise XPath queries by rewriting the axes
algorithms. Our experiments were conducted against the eXist database as many
web sources indicated that eXist outperformed its competitors. Two important
characteristics in the engineering of WIS applications is that they are interop-
erable and can be viewed at different levels of abstraction. XML an provide
the platform for interoperability as it acts as a canonical model for heteroge-
neous systems and by using a metamodel approach, it has been shown to assist
the integration process. We discovered that using a metamodel with different
functioning layers facilitated well-engineered algorithms but also greater perfor-
mances due to the type of information stored at each level. While similar efforts

in this area have demonstrated long build times for their indexes, we reported
relatively small build times in our earlier work on constructing XML indexes [7].
This is extremely useful in our current area of research: managing updates for
XML databases.

References

1. Aboulnaga A., Alameldeen A. and Naughton J. Estimating the Selectivity of XML
Path Expressions for Interney Scale Applications. Proceedings of the 27th VLDB
Conference, Morgan Kaufmann, pp. 591-600, 2001.

2. Barta A., Consens M. and Mendelzon A. Benefits of Path Summaries in an XML
Query Optimizer Supporting Multiple Access Methods. Proceedings of the 31st
VLDB Conference, Morgan Kaufmann, pp 133-144, 2005.

3. Boulos J. and Karakashian S. A New Design for a Native XML Storage and Indexing
Manager. Proceedings of EDBT 2006, LNCS vol. 3896, pp. 755-772, 2006.

4. Bruno N., Srivastava D., and Koudas N. Holistic Twig Joins: Optimal XML Pattern
Matching. Proceedings of SIGMOD 2002, ACM Press, 2002.

5. Grust T. Accelerating XPath Location Steps. Proceedings of ACM SIGMOD Con-
ference, pp.109-120, ACM Press, 2002.

6. Goldman R. and Widom J. DataGuides: Enabling Query Formulation and Opti-
misation in Semisztructured Databases. Proceedings of the 23rd VLDB Conference,
Morgan Kaufmann, pp 436-445, 1997.

7. Noonan C., Durrigan C. and Roantree M. Using an Oracle Repository to Accelerate
XPath Queries. Proceedings of the 17th DEXA conference, LNCS vol. 4080, pp.
73-82, Springer, 2006.

8. Noonan C. The Algorithm Set for XPath Axes. Technical Report ISG-06-03, Dublin

City University, November 2006.

at: URL http://www.computing.dcu.ie/∼isg/technicalReport.html.
9. O’Connor M., Bellahsene Z. and Roantree M. An Extended Preorder Index

for Optimising XPath Expressions. Proceedings of 3rd XSym, LNCS Vol. 3671,
Springer, pp 114-128, 2005.

10. Rizzolo F. and Mendelzon A. Indexing XML Data with ToXin. Proceedings
of the 4th WebDB Workshop, pp. 49-54, 2001.

11. Roantree M. The FAST Prototype: a Flexible indexing Algorithm using
Semantic Tags. Technical Report ISG-06-02, Dublin City University, January
2006.
at: URL http://www.computing.dcu.ie/∼isg/technicalReport.html.

12. Roantree M. and Noonan C. A Metamodel Approach to XML Query Opti-
misation (submitted for publication). Proceedings of the 11th ADBIS Confer-
ence, 2007.

13. The XPath Language,
at: URL http://www.w3.org/TR/xpath, 2006.

14. Suciu D. and Miklau G. University of Washingtons XML Repository.
at: URL http://www.cs.washington.edu/research/xmldatasets/, 2002.

15. Weigel F. et al. Content and Structure in Indexing and Ranking XML. Pro-
ceedings of the 7th WebDB Workshop, pp. 67-72, 2004.

16. Zhang N. et al. FIX: Feature-based Indexing Technique for XML Docu-
ments. Proceedings of the 32nd VLDB Conference, pp.359-370, 2006.

