
An Agent-Oriented Approach to the Integration of
Information Sources

Michael Christoffel, Guido Wojke, Sebastian Werner, Rina Rezek, Su Xu

Institute for Program Structures and Data Organization
Universität Karlsruhe

76128 Karlsruhe, Germany
+49 721 608-{4069, 3911}

{christof,wojke,werners,rezekr,xu}@ipd.uni-karlsruhe.de

Abstract. The success of the Internet and the World Wide Web opened new
ways of information supply. While more and more information sources become
available, people are faced with the problem of information overload. New
kinds of information systems are needed. They give people searching for infor-
mation the opportunity to participate in the new development and profit from
the new information sources that become available through the Web. A special
challenge for Web information system modeling arises from the openness of the
system: Everything is liable to change, and information sources come and go
without further notice. In this paper, we present an approach to a flexible in-
formation system that is able to adapt to a dynamic environment. We present
the agent-oriented architecture of the information system and the realization of
this system in the application domain of scientific literature.

1 Introduction

In the modern society, information has become a very important good. Many profes-
sions depend on the steady supply of actual information; just think of scientists, jour-
nalists, managers, and even politicians. In the same time as the demand on informa-
tion begun to increase, the success of the Internet and the World Wide Web opened
new ways of information supply. Very often, people searching for information can do
this without leaving their work desk, just using a standard Web browser. Information
may either be contained directly in some static Web pages or contained in databases
but accessible through a Web interface. Even information that is not available online
can usually be searched and ordered electronically through the World Wide Web.

These statements are especially true in the field of scientific literature. Here, the
Internet also opened new ways of search and delivery of scientific literature. The
monopoly of the local library and the local book seller in scientific literature supply is
broken. Not only is it possible to reach libraries, book sellers, and publishing houses
world-wide through the Internet, completely new services have appeared such as
bibliographic databases, technical report services and delivery services. More and
more publications are published electronically, and the number of electronic books
and journals is rapidly growing.

However, people searching for information are often faced with the problem of in-
formation overload. Most people are not able to survey the huge amount of informa-
tion services and sources available, nor are they able to compare and estimate them in
order to find out which sources are best for their special demand. Moreover, finding
and selecting services and sources is not the only problem. Although services are
accessible through the Internet using standard protocols such as HTTP, the user has to
learn for each service separately how to use it. Not only contents, but also site struc-
ture, query language, and format and media types may change from one service to
another. A special complication arises from the fact that the Internet is dynamic and
open. So all conditions can change from one moment to another, and information
services can vanish and new services appear without any notice.

In a typical situation, a user has to access more than one information service in a
sequence in order to perform a search for information. In addition to the problem of
knowing the most appropriate services, he/she has to learn how to use each single
service. The combination of results received from different sources has to be done
manually, often done by some ‘copy and paste’ actions.

However, searching information can be expensive not only in time but also in
money. Together with the commercialization of the Internet, we can observe that new
services and information sources tend to become commercial, too. We are witnesses
of the development of world-wide information markets, where the value of informa-
tion is determined by the law of supply and demand.

In this paper, we present an approach for a system for the integration of informa-
tion contained in different information sources in the Web. This integration system is
based on the model of an open information market. In order to ensure scalability and
robustness, the integration system is distributed itself, consisting of a large number of
autonomous agents. The agents communicate using only standard Web protocols and
implementing Web services.

The work presented in this paper is supported by German research association
(DFG) as a part of the national German research offensive “Distributed Processing
and Delivery of Digital Documents (V3D2)”.

We continue as follows. In the following section, we will give more details on the
open market model and the architecture of the integration system. In section 3, we
will introduce the most important agent types from a connectional point of view. In
section 4, we will present the realization of the agent infrastructure. Thereafter, we
will demonstrate the implementation of the selected agent types in section 5. In sec-
tion 6, we will shortly introduce the remaining agent types needed for the integration
system. Due to the limited space, we cannot give a detailed introduction. In section 7,
we will give a short overview on related work. We will finish this paper with a con-
clusion.

2 Architecture

The integration system described in this paper is based on the model of an open mar-
ket. Consequently, information services and users of the system are treated as provid-
ers and customers in this market. Providers and customers are free to leave the market
at their own decision; in the same way, new providers and customers may enter the

market. The market participants may be distributed anywhere in the world, as long as
they are connected to the Internet. Between customers and providers the integration
system acts as a market infrastructure. We call this infrastructure the UniCats envi-
ronment, where UniCats stands for “a Universal Integration of Catalogs based on an
Agent-supported Trading and Wrapping System”. A more detailed description on this
market-based model can be found in [3].

The UniCats environment consists of a society of autonomous and communicative
UniCats agents. Same as the market participants, UniCats agents can be distributed on
any computers, but must have a connection to the Internet. Agents are free to enter
and leave the market on their own. It is even possible that UniCats agents are created
and controlled by different organization, and this will be necessary when the envi-
ronment becomes very large. The concept of UniCats agents is not limited to a special
operating system or programming language. As long as they follow the same proto-
cols, they will be able to interact. It is possible to have several distinct UniCats envi-
ronment. In this case, there is no relation between the agents in different environ-
ments.

The behavior of an agent is determined by its agent type. However, the agent type
only determines the behavior of the agent towards other agents; it does not restrict the
implementation of the agent, e.g., the algorithms applied. At the moment, 13 different
agent types have been created, and this will not be the end of the line. It is possible for
every user to create new agent types and add them to a new or existing environment,
even at runtime.

Agents working together can form groups of agents. There is no restriction on the
location of the members of a group. An agent can be a member of any number of
groups (including zero). Agents are free to enter and leave groups, or to create new
groups.

While groups support the logical collaboration of agents, communities serve the
physical collaboration. A community is the conjunction of the agents located at one
computer node. An agent is member of exactly one community. A community may
host any number of agents. Communities are a mere technical construct, primarily
introduced for resource sharing. It is not necessary that agents of a community build
groups or even know each other. Agents may also move from one community to an-
other.

There are four different ways of communications among the agent of one UniCats
environment:

 Agent communication works between two agents.
 Group communication works between an agent and a group of agents.
 Community communication works between an agent and a community of agents.
 System communication works between communities and is outside the control of

the agents.

Communication may be secure. For each message, an agent can decide whether it is
necessary to encrypt the message or not.

In the next section, we will give an example of a possible application of the Uni-
Cats environment and introduce the agent types needed for the integration of informa-
tion from Web sources in the field of scientific literature.

3 Agents for Information Integration

Although the architecture of the UniCats environment is more general and could be
used in different applications, it has been created for information integration. The
flexibility of our approach lies in the fact that the necessary capabilities are divided
among different agent types and agents of different types may (and must) collaborate
in order to perform their tasks. However, the type of an agent only determines the
other agent types an agent can interact with, not the particular agents. So an agent will
adapt itself to the current environment and react to changes. It will never depend on
the presence of an individual communication partner, but will be able to find alterna-
tives in the case that an agent drops out.

For information integration, at least five different agent types are needed:

Provider Agents. These agents are the interface of the provider to the system. Pro-
vider agents are tailored to one provider, however, it is possible that several provider
agents serve one and the same provider. When a provider agent receives incoming
queries from other agents, these queries are transformed into the native query lan-
guage of the provider. This can be done by filling out a Web form or by invoking a
Web service, depending on the available interfaces of the provider. The results re-
ceived from the providers are transformed into the uniform language of the environ-
ment, which is a superset of Dublin Core, the metadata standard in the digital library
field. The Provider Agents also performs additional services such as query validation,
monitoring, and optimization.

Provider Selection Agents. These agents assist in finding the most appropriate pro-
viders for a customer’s demand. They hold profiles of the providers actually available
in the market. Typical criteria used for the matching function are the location of the
provider, the offered services, languages, and estimated cost.

Integration Agents. These agents send a query to several provider agents in parallel
and integrate the received results to a single result list. The post-processing operations
include duplicate elimination, result fusion, and thematic grouping.

Customer Agents. These agents are the representatives of the customers in the sys-
tem. They provide each registered customer a personal workspace, where the cus-
tomer can perform queries and receive results, examine past queries and results, and
make annotations. The customer agent assists the customer in query formulization,
selects appropriate providers with the help of a Provider Selection Agent, plans query
execution, sends queries with the help of the Integration Agent, and presents the re-
sults to the customer. There is also a forum function so that customers working with
the same Customer Agent can exchange experiences and found results.

Customer Interface Agents. These agents are the interface of the customer to the
system. Same as a Customer Agent, a Customer Interface Agent can be used by sev-
eral customers at the same time. The Customer Interface Agent holds information of
the customers regarding their preferred ‘look and feel’ for the customer interface.
Customer Interface Agents control the login procedure and provide a view on the
personal workspace. A customer may use different Customer Interface Agents for the
connection to the same Customer Agent. For example, he/she may have a favorite

Customer Interface Agent for his/her desktop computer, but use another Customer
Interface Agent when he/she is on a business travel and has to contact the UniCats
system with a mobile device. The same way, it is also possible to apply different
Customer Agents using the same Customer Interface Agent.

providers

PA provider agents PA PA PA PA PA PA PA

U
ni

C
at

s e
nv

iro
nm

en
t

integration agents IA IA IA

PSA PSA PSA provider selection agents

customer agents CA CA

CIA CIA CIA CIA CIA customer interface agents

customers

Fig. 1. The UniCats environment as an integration system

Figure 1 contains a UniCats environment with the five agent types described. In a
typical scenario, a customer logs in at a Customer Interface Agents (CIA) and con-
tacts a Customer Agent (CA), which opens the personal workspace for the customer.
When the Customer Agent performs queries on behalf of the customers, it contacts a
Provider Selection Agents (PSA) for recommendations about those providers suitable
for the given query of the customer. Then the Customer Agent sends the query to-
gether with a list of the selected providers to an Integration Agent (IA). The Integra-
tion Agent sends the query in parallel to the Provider Agents (PA), which translate the
incoming query into the native protocol of the provider and re-translates the delivered
results into the common protocol. The Integration Agent collects the incoming results
from the different information sources and integrates them to one result list. The final
result list is sent back to the Customer Agent, which presents the results to the cus-
tomer with the help of the Customer Interface Agent.

It is important to consider that this is only one possible interaction. A more com-
plex scenario may contain many customers who operate with the system at the same
time, the combination of several queries (including order and delivery) and involve
more agents of different agent types.

Agent Container Administration
Module

Communication
Module

Web
Service

Interface

External
Communication

Secure
Communication

Security
Module

Fig. 2. The UniCats community

4 Agent Infrastructure

We implemented the UniCats environment using Java programming language. This
brings the advantage that our agents can run platform-independent on most com-
puters. There is also a large set of free tools and class libraries available. However,
the development of agents does not depend on the chosen programming language. It
is also possible to implement agents using other platforms and languages, and these
agents will work together in one environment. We tested this with a sample environ-
ment encompassing different hardware platforms and agents written in seven different
programming languages in order to prove that our approach is feasible to cross-
language applications, which is necessary especially for the connection to legacy
systems.

Figure 2 shows the basic structure of a UniCats community. The community con-
sists of an agent container and five modules. The agent container can hold any num-
ber of UniCats agents, sharing resources. Agents can be added and deleted at runtime.
It is also possible for agents to migrate from one agent community to another.

Administration Module. The administration module is the main module of the com-
munity. It is responsible for the initialization of the community and controls startup
and shutdown of the agents.

Communication Module. The communication module is responsible for the commu-
nication of all agents in the community and manages outgoing and incoming mes-
sages.

External Communication Module. While messages directed to an agent inside the
own community are forwarded to this agent on a direct way, the Communication
Module delegates messages that are supposed to be delivered outside the community
to the External Communication Module. Similarly, the External Communication
Module receives all messages coming from outside the community and forwards them
to the Communication Module. The sending agent can decide whether the encryption
of the message is necessary or not.

Secure Communication Module. When secure communication is necessary, the
secure communication module invokes a certificate exchange with the community of
the receiver and generates a common key by means of the Diffie Hellman Protocol.
The Secure Communication Module encrypts all messages sent to this community
using the common key.

Security Module. The security validates certificates of the own or other community.
It is also able to issue new certificates which are signed with the digital signature of
the community.

Any communication between different UniCats communities is operated by web ser-
vices. Each community has a Web Service Interface, which is controlled by the Ex-
ternal Communication Module. This way, every message transmitted included all
parameters is automatically converted to an XML document which is delivered to the
receiver Web service using standard Internet protocols. The use of Web Service as
transport layer is the main reason for the ability of the UniCats system to build cross-
platform applications. Another advantage is that we can overcome the firewall prob-
lem. While many network administrators close Internet ports for security reason,
UniCats is not touched by this, because the Web service communication uses only
those standard ports accessible at every system.

While messages sent through Web services are usually stateless, it is necessary in
many cases to have longer sequences of messages exchange between two or more
agents that belong together. All these messages can be assigned to a context desig-
nated by a context id. For each message sent or received, the agent can decide
whether this message is to be saved and assigned to a context. Contexts can be ar-
ranged in a work queue. The agent can access the contexts in the work queue (more
precisely, the work objects which contain a reference to a context together with some
additional information about the execution) either in a sequence or directly by the
context id. The agent can also remove context from the queue. It is also possible to set
triggers on the work queue that watch time passing or any event. For example, a work
object could automatically alarm the agent when a timeout occurred.

Each module and each agent has an assigned graphical interface, the control panel.
The control panels are used to survey and administer one community. They are hier-
archically structured with the administration control panel as the parent frame (Figure
3). In addition to the direct control through the control panel, it is also possible to
configure the agents and the community with human-readable configuration files.
Most commands can also be applied without the need of the graphical interface
through a text-based command prompt.

For a more detailed description on the UniCats community, compare [6].

Fig. 3. The control panel

5 Implementation

The agent types described in section 3 have been implemented as extensions of an
abstract agent class. This abstract class provides the necessary functionality for the
agent in order to interact with the community and the agent container, basic messages
such as interactions with other agents and group management, and work queue han-
dling. It also provides a basis class for the agent control panel.

Provider Agent. The major design goal for a Provider Agent is to provide a uniform
access to a provider without restricting the autonomy of this provider. Provider agents
are tailored for some special provider. However, writing a Provider Agent manually
for each provider is a hard and expensive undertaking. Moreover, for each change at
the provider or its interface, a new provider agent has to be created. Because of that,
we implemented a general Provider Agent class that can be adapted to a special pro-
vider by configuration.

The Provider Agent consists of several modules. The Coordinator oversees each
query in the work queue and checks whether the agent (or the customer) is allowed to
access the provider. The query is handed over to the Query Processor, which checks
whether the query can be executed and which attributes are to be extracted.

In general, these attributes are distributed in several web pages. It is also possible
that an attribute can be found in more than one Web page. For each query, the Plan
Processor generates a plan how the needed attributes can be extracted with minimal

cost. The plan is based on an abstract graph of the result pages, which is obtained
from the source description which describes the structure of the provider’s Web site.
This source description can be created automatically or semi-automatically (compare
[5]).

The query plan is given to the Extractor which sends the query to the provider,
loads the result pages, and extracts the attributes out of the HTML code using XPath
expressions and regular expressions contained in the query plan. The Result Processor
creates a result list from the received results and gives this result list to the Coordina-
tor, which sends the results back to the agent that sent the query. If the result set is
very extensive, the result list is not sent back completely but in smaller portions.

If the provider offers a Web service interface, the work of the Provider Agent is
much easier, because the planning and extraction process can be skipped.

Provider Selection Agent. The selection of appropriate providers is done on the base
of a provider’s profile which is collected by Metadata Management and contained in
the Metadata Repository. Each query in the work queue is accepted by the Coordina-
tor which hands each valid query over to Query Handling. The query is examined
against each available profile using a matching function, and a value of correspon-
dence is calculated, depending on the attributes and the weights. The results are
ranked according to the value of correspondence and handed over to the Coordinator,
which sends the recommendations back to the agent that sent the query.

Integration Agent. The Integration Agent forwards each query contained in the work
queue to the listed Provider Agents. As soon as the first results come in, the Integra-
tion Agent starts duplicate elimination and grouping and sends the processed results
to the requesting agent. When new results are received, they are merged with the
previously received results. This way, the customer never has to wait long for the first
results and can work with the first results while result integration still continues, but
can be sure to get the complete result set in the final.

Duplicate elimination is based on k-way sorting (compare [9]). This way, the deci-
sion whether two documents can be treated as equal can be based on the comparison
of different attribute sets. Documents marked as duplicates are merged together so
that the information about the document contained in different places can be pre-
served. After duplicate elimination, the documents contained in the result list are
grouped into different result groups (e.g., the results of a query for ‘Java’ could be
divided in groups dealing with South Asia, coffee, or programming languages).
Grouping is based on keyword lists that are generated from those results received
first.

Customer Agent. Customer Agents hold a profile and the personal workspace for
each customer. Observing the behavior of a customer, they can learn the areas of
his/her interests. They can use the background knowledge about the customers to
assist in query formulization, e.g., they can give advice or automatically fill out fields.
However, the customer has the full control about the content over his/her profile and
can overwrite all settings in an expert mode.

A complex query may be divided in several single queries. For each query, the
Customer Agent can ask a Provider Selection Agent for recommendations about ap-
propriate providers or base its decision on their own knowledge about the providers
contacted previously. The Customer Agent either contacts a Provider Agent directly

or uses an Integration Agent to contact several providers in parallel. The results which
come in incrementally are either forwarded to the Customer Interface Agent to be
presented to the customer or combined with other results in order to process complex
queries.

Customers can exchange notes and share queries and results with other customers.
This can be initiated by the customers themselves or by the Customer Agent which
can give recommendations about other users with similar interests.

Customer Interface Agent. The Customer Interface Agent is responsible for the
connection at the interface to the customers. This connection is done by the Customer
Interface Connection module. This module also holds the setup of the customers for
the ‘look and feel’ of the interface. Until now, three different customer interfaces have
been created: A Java application, a HTML site, and a WML site (compare Figure 4).
We are also working on an interface based on virtual reality environment using the
metaphor of a library building, but this interface is not yet connected to the UniCats
system (compare [4]).

Fig. 4. Different customer interfaces: HTML and WML

6 Other Agent Types

In addition to the agent types which are the focus of this paper, several other agent
types have been developed:

Customer Authentication Agents. These agents hold databases with the registered
customers including customer id, passwords, and access level. Although it is possible
for a customer to access the system with a guest account, it is advantageous for a
customer to be registered. Registered customer can access more services than guests
and have a personal workspace. It is also possible to give different access rights to
different personal. For example, in a university library systems professors tend to

have some more rights than students, and these tend to have more rights than non-
members of the university. Customer Authentication Agents are called by the Cus-
tomer Interface Agents during the login processing and issue an electronic customer
passport for the individual customer that describes the identity and the access level of
the customer.

Agent Authentication Agents. These agents work similar to the Customer Authenti-
cation Agents, but certify the identity of an agent by issuing an agent passport. These
agent passports can be used to assure trust exchanged between agents which do not
know each other.

Customer Organization Agents. These agents are the representatives of customer
organizations to the systems, e.g., universities, research associations, or companies.
Customer Organization Agents can perform queries in behalf of their members in
order to make use of special conditions granted by the providers for the customer
organizations.

Billing Agents. These agents hold registries of financial transactions performed
within the system. The hold accounts for each registered agent, where incomes and
expenses are booked. These incomes and expenses can result from internal transac-
tions between the agents or from transactions of the agents with external facilities.

Payment Agents. These agents are the connection of external financial facilities to
the system. The most important task of the Payment Agents is to support payment
transactions between customers and providers. Customers can settle a bill to the Uni-
Cats system using his/her preferred payment method, and then the UniCats system
pays the bill to the provider using another payment method. This way, it is not neces-
sary to have direct contact between customer and provider and the market model can
be preserved.

Agent Naming Agents and Group Naming Agents. These agents provide a name
service for agents and agent groups.

System Administration Agent. These agents can be used to monitor the environment
or a part of the environment and react in the case of a failure.

7 Related Work

There are a number of projects working in the field of the integration of information
sources in the field of scientific literature. In this section, we want to introduce some
of these approaches.

The Stanford Digital Library Project aims in the integration of autonomous dis-
tributed collections with a central architecture. Core of the architecture is the InfoBus
where all collections are linked together and which is implemented using CORBA.
Search is based on complete metadata catalogues and full text glossaries of all partici-
pating collections [1]. Communication is based on the SDLIP protocol [11]. A large
set of tools have been developed for this architecture. Although there is a general
protocol stack that covers different purposed including billing and payment, the re-

quirements for recourses that can be linked to the system are high. So they must pro-
vide online access to their databases or at least provide a complete metadata set of the
documents available. Another disadvantage of this centralized approach is the missing
robustness that can cripple the entire system when important components fall out.

The University of Michigan Digital Library aims in the integration of collections
by an infrastructure of software agents [7]. The agent infrastructure has been realized
using CORBA. For communication, a set of protocols have been developed which are
oriented on KQML. The main paradigm for the agent interactions are negotiations [8].
In addition to task-specific and independent agents such as user interface agents, task
planning agents, mediator agents, and collection interface agents, there are also cen-
tral and unique architecture elements. The agent-oriented approach opens the way to a
flexible, extensible, and robust system. However, the direct access to the connected
resources is necessary, which makes the agent system not suitable for an electronic
commerce environment. Major functions such as result integration and resource selec-
tion are still missing.

The focus of the Daffodil project is the development of high-level search possibili-
ties on distributed, heterogeneous collections and information services [10]. The Daf-
fodil system consists of a (not distributed) set of software agents. Inter-agent commu-
nication is based on KQML. Additional to the user interface and wrappers which form
the interface to the collections, there are three types of agents: tactics which perform
simple searches such as metadata and full text search, stratagems for complex
searches such as author search, and strategies which assist in the choice of the appro-
priate stratagems. Daffodil succeeds in covering the heterogeneity of the underlying
sources. However the problem of selecting the right provider is now transferred to a
higher layer, because the user has to choose the right stratagems for his/her search.
The user also has no influence in search execution. Since the agents are suited to the
resources that are availably in the system, any extensions need a re-implementation of
the agents.

The aim of the MeDoc project was the creation of a distributed electronic library
in the field of computer science [2]. The project underlies a layered architecture
which consists of user interfaces, brokers, and provider interfaces. The communica-
tions betweens the layers is done by an extension of HTTP. All documents are sup-
posed to be transferred to special document servers. MeDoc supports electronic com-
merce features, so the use of the system and the access to the documents can be
charged. MeDoc supports a flexible and robust structure for the access to distributed
information sources. However, the requirements to providers are very high, since both
a direct access to the databases and the presence of a full metadata catalog are neces-
sary. An integration service which could be used to integrate and combine results
from different sources is missing.

8 Conclusions

In this paper, we presented an approach for a system for the integration of information
from distributed information sources of scientific literature supply. The basic concepts
are the model of an open information market and the capability of increasing flexibil-

ity, extensibility, and robustness by distributing the functionality to different software
agents. Using only standard protocols, it is possible to create cross-platform applica-
tions where individual agents can be implemented by independent organizations.

Beside an extension of the system, the main focus on future work should be in-
creasing the performance. The choice of Java programming language, the extensive
use of XML as data format, and the communication through Web services cause a
relatively high utilization of resources. The performance can be increased, if agents
collaborating together are on the same community, so that external communication is
not needed. However, in general, it cannot be guaranteed that agents working together
are on the same computer node. In this case, secure communication should only be
applied when it is really necessary.

We see a solution for the performance problem in groups of agents of the same
type, which share work. The agent joint in this kind of group have to organize this
work sharing automatically. In experiments we want to find out, where in the envi-
ronment bottlenecks can appear and how load balancing could be reached.

References

1. Baldonado, M., Chang C.-C., Gravano L., Paepcke A.: The Stanford Digital Library
Metadata Architecture. In: International Journal of Digital Libraries 1(2), pp. 108-121
(1997)

2. Boles, D., Dregger, M., et. al.: The MeDoc System – a Digital Publication and Reference
Service for Computer Science. In: Barth, A., Breu, M., et al. (eds.): Digital Libraries in
Computer Science: The MeDoc Approach, Spring LNCS 1392, pp. 12-19 (1998)

3. Christoffel, M.: Information Integration as a Matter of Market Agents. In: Proceedings of
the 5th International Conference on Electronic Commerce Research, Montreal (2002)

4. Christoffel, M., Schmitt, B.: Accessing Digital Libraries as Easy as a Game. In: Kathy
Börner, Chaomei Chen (eds.): Visual Interfaces to Digital Libraries, Springer LNCS 2539,
pp. 25-38 (2002)

5. Christoffel M., Schmitt, B., Schneider J.: Semi-Automatic Wrapper Generation and Adap-
tation: Living with Heterogeneity in a Market Environment. In: Proceedings of the 4th In-
ternational Conference on Enterprise Information Systems, Ciudad Real, pp. 60-67 (2002)

6. Christoffel M., Wojke G., Gensthaler M.: How Many Small Libraries Can Be a Large
Library. In: Proceedings of the 5th Russian Conference on Digital Libraries, St. Petersburg
(2003)

7. Durfee, E., Kiskis, D., Birmingham, W.: The Agent Architecture of the University of
Michigan Digital Library. In: Huhns M., Singh, M. (eds.): Readings in Agents, Morgan
Kaufman, pp. 98-108 (1998)

8. Durfee, D. Mullen, T., Park, S., Vidal, J, Weinstein, P.: The Dynamics of the UMDL
Market Society. In: Proceedings of the 2nd Workshop on Cooperative Information Agents,
Paris (1998)

9. Feekin, A., Chen, Z.: Duplicate Detection Using k-Way Sorting Method. In: Proceedings
of the ACM Symposium on Applied Computing, Como, pp. 323-327 (2000)

10. Fuhr, N., Gövert, N., Klas, C.-P.: An Agent-Based Architecture for Supporting High-
Level Search Activities in Federated Digital Libraries. In: Proceedings of the 3rd Interna-
tional Conference Asian Digital Libraries, Seoul, pp. 247-254 (2000)

11. Paepcke, A., Brandriff, R, et al.: Search Middleware and the Simple Digital Library Inter-
operability Protocol. In: Dlib Magazine 6(3) (2000)

