An Approach to Heterogeneous Data
Translation based on XML Conversion

Paolo Papotti and Riccardo Torlone

Dipartimento di Informatica e Automazione
Universita Roma Tre
{papotti,torlone }@dia.uniroma3.it

Abstract. In this paper, we illustrate a preliminary approach to the
translation of Web data between heterogeneous formats. This work fits
into a larger project whose aim is the development of a tool for the man-
agement of data described according to a large variety of formats used on
the Web and the (semi)automatic translation of schemes and instances
from one model to another. Data translations operate over XML repre-
sentations of instances and rely on a uniform representation of models
that we call metamodel. The metamodel shows structural diversities and
dictates the needed transformations. Complex translation can be derived
by combining a number of predefined basic functions performing XML
transformations expressed in XQuery. Practical examples are provided
to show the effectiveness of the approach.

1 Introduction

Very often, data cooperation and interchange between different organizations
is made difficult by the fact that little or no advance standardization exists
and data is stored under different formats in distinct heterogeneous sources [1].
Therefore the need arises for an integrated management of heterogeneous data
descriptions that allows for easy and flexible data translation from a format to
another [6]. This problem is related to, but different from, the problems of data
integration [4] and schema matching [20]. Recently, various aspects of the data
translation problem has been largely studied in the context of the relational
model [9,10] or in more general settings [16,18,19]. However, it is widely rec-
ognized that a general solution able to cope the large diversity of the various
formats available is a very difficult task [5].

In this framework, the final goal of our research project is the development
of a tool for the management of data available on the Web described according
to a large variety of formats and models and the (semi)automatic translation
of schemes and instances from one model to another. The tool can be seen as
an implementation of the “ModelGen” operator proposed by Bernstein in the
context of Model Management Systems [5].

In principle, the set of models managed by the tool should include the ma-
jority of the formats used to represent data in Web-based applications: semi-
structured models, schema languages for XML, specific formats for e.g. scientific

data, and even traditional conceptual data models. Actually, the set of models
is not fixed a priori in the environment we have in mind. A new model M should
be definable by the user at run-time and translations for M should be derived
by the system with limited user intervention.

Recently, we have proposed a tool for the management and the automatic
translation of schemes between the majority of formats and models used to
represent data in Web-based applications [21, 22].

The approach relies on a novel notion of metamodel, expressed in XML,
that embeds, on the one hand, the main primitives adopted by different schema
languages for XML [15] and, on the other hand, the basic constructs of traditional
database conceptual and logical models [13].

This metamodel provide a uniform representation of models that allows the
identification of differences between primitives used in the various models. Then,
translations are automatically derived by combining a set of predefined and
standard translations between individual primitives.

In this paper, we present a preliminary approach that, building on the trans-
lation derived at scheme-level, aims at generating a corresponding translation
at instance-level. This translation operates over serialized XML representations
of data. XML data is then transformed to agree with the constructs allowed in
the target model. Finally, it is deserialized into the specific syntax of the target.
The transformation phase is performed by combining a number of predefined
basic functions expressed in XQuery [11]. A number of practical examples are
presented to show the effectiveness of the approach.

The rest of the paper is organized as follow. In Section 2 we provide a general
overview of our approach to model management. In Section 3 we present a new
technique for data translation and in Section 4 we illustrate a complete example
of translation. Finally, in Section 5 we discuss some open issues and sketch future
direction of research.

2 A metamodel approach to Model Management

Let us first clarify our terminology. In our framework, we identify four levels of
abstractions. At the bottom level we have actual data (or instances) organized
according to a variety of (semi) structured formats (relational tables, XML,
HTML, scientific data format and so on). At the second level we have schemes,
which describe the structure of the instances (a relational schema, a DTD, an
XML schema or one of its dialects [15], etc.). Then, we have different formalisms
for the description of schemes, which we call models hereinafter (e.g., the rela-
tional model, the XML schema model or even a conceptual model like the ER
model). Finally, we use the term metamodel to mean a general formalism for the
definition of the various models.

In this framework, a translation is defined as follows: given two models M;
and My represented by the metamodel, a set of data D; (the data source) of a
scheme Sy (the source scheme) for My (the source model), a translation of D

(S1) into Ms is a set of data Dy (the data target) of a scheme Sy (the target
scheme) for My (the target model) containing the same information as D;.!

Our approach relies on a metamodel notion made of a set of metaprimitives.
Each metaprimitive captures one basic abstraction principle used in some data
model [21]. Examples of metaprimitives are: class, attribute, base type, relation-
ship, sequence, generalization, disjoint union, key, foreign key, and so on. In this
framework, a model is defined as a set of primitives, each of which is classified ac-
cording to a metaprimitive of the metamodel. For instance the relational model
offers the table primitive which is an instance of the metaprimitive relationship
over basic domains.

In [21,22] we have proposed a technique and a tool for the management of
XML based data model (that is, data models expressed in XML) and the trans-
lation of schemes from one model to another. The scheme translation technique
makes use of an internal concept, called supermodel, which is used by the system
as a reference for the translations. Intuitively, a supermodel is a model (that is,
like the other models, an instance of the metamodel) maintained automatically
by the system that “subsumes” each other model [21]. The translation process of
a scheme can be then seen as composed of a number of steps. First, the scheme
is expressed in an internal representation. We are using XML since it is a widely
accepted standard for data exchange and allows the description of information
at different levels of abstraction. Second, the scheme is translated into the su-
permodel. This is actually a trivial task since, by definition, every scheme of any
model is a scheme of the supermodel. Then, the scheme is transformed by trans-
lating primitives used in the source scheme that are not allowed in the target
model. This is clearly the more involved step. Therefore, the scheme we have
obtained is converted into a format compatible with the target model, but still
in the internal representation, and finally translated into the specific syntax of
the target model. Again, this last phase is rather trivial.

Note that, with this approach, it suffices to define translations from the su-
permodel to every other model in order to implement all the possible translations
between models. It follows that the number of required translations is linear in
terms of the number of models, instead of quadratic, as it would be if the pro-
cess had to be specified for each pair of models. As the number of primitives is
limited, it is possible to predefine a number of basic translations, which can be
composed to build more complex translations.

As a first concrete example of scheme translation, let us consider the Order
XML Schema reported on the left hand side of Figure 1 (clearly, it does not re-
quire an XML conversion) and assume that we need to convert this scheme into a
DTD. Assume that the metamodel of reference contains the following metaprim-
itives: element, attribute, ordered sequence, unordered sequence, choice, base
types, cardinality, inheritance, key constraint, and foreign key constraint. Then,
the corresponding scheme in the supermodel is reported on the right hand side of

1 We stress the fact that we are interested into the translation of a data source into a
different representation rather than the derivation of a mapping between heteroge-
nous data sources.

the same figure . In this step the various primitives have been converted into the
corresponding metaprimitives. For instance, the primitive all of XML Schema
has been turned into the metaprimitive unordered sequence.

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
rderType"/>
<xsd:complexType name="OrderType">
<xsd:sequence>
<xsd:element name="destination" type="USAddress"/>
<xsd:element name="items" type="Items"/>
</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>
<xsd:complexType name="USAddress">
<xsd:all>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" typ sd:string"/>

<xsd:element name="zip" type="xsd:decimal"/>
</xsd:all>
:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

:complexType>
<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="10">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" typ
<xsd:element nam
<xsd:element name="USPrice" type="xsd:decimal"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

sd:string” />

<META source="xsd">
<element name="Order" t
<sequence cardinality:

e="OrderType">
>

<element name="destination" type="USAddress" cardinality="1:1">
>

<unorderedSequence cardinalit)
<element name="street" type="string" cardinality="1:1" />
<element name="city" type="string" cardinali
<element name="zip" type="decimal" cardinali
</unorderedSequence>
<attribute name="country" type="string" cardinality="0:1">
<fixed>US</fixed>
</attribute>
</element>
<element name="items" type="Items" cardinality="1:
<sequence cardinality="1:1">
<element name="item" cardinality:
<sequence cardinality="1:1">
<element nam roductName" type="string" cardinality="
<element nam uantity” type="integer" cardinality-
<element nam ISPrice" type="decimal" cardinalit
</sequence>
</element>
</sequence>
</element>
</sequence>
<attribute name="orderDate" type="date" cardinality="0:1" />
</element>
<IMETA>

10"

"1t />

Fig. 1. An XML Schema and its representation in the supermodel

The left hand side of Figure 2 shows the scheme of the supermodel produced
by the tool as the translation of the scheme of Figure 1 into the DTD model.
The final target scheme is reported on the right hand side of the same figure.
Note that, for instance, the unordered sequence used to define the structure
of the element destination of the source has been transformed into an ordered
sequence, since unordered sequences are not representable by a DTD.

<META source="xsd" target="dtd">
<element name="Order" root="true">
<sequence cardinality="1:1">
<element name="destination" cardinality="1:1">
<sequence cardinality="0:N">
<element name="
<element nam
<element name='

"string" cardinality

<IDOCTYPE Order[
<IELEMENT Order (destination,items)>

</sequence> <IELEMENT destination (street,city,zip)>
<attribute name="country" type="string" cardinality=" :Etgmgx¥ z\‘{ye?;é?é::‘)rx}:))
;g:(?i?):i3><m)@d> <iELEMENT zip (#PCDATA)>
</element> <IELEMENT items (item*)>

<IELEMENT item (productName,quantity, USPrice)>
<IELEMENT productName (#PCDATA)>
<IELEMENT quantity (#PCDATA)>

<IELEMENT USPrice (#PCDATA)>

<IATTLIST Order orderDate CDATA #MPLIED>
<IATTLIST destination country CDATA #FIXED "US">
1>

<element name="items" cardinality="1
<sequence cardinality="1:1">
<element name="item" cardinality="0:N">
<sequence cardinality="1:1">
<element name="productName" type="string" cardinality="1:1" />
<element name="quantity" type="string" cardinality: 1" />
<element name="USPrice" type="string" cardinality='
</sequence>
</element>
</sequence>
<l/element>
</sequence>
<attribute name="orderDate" type="string" cardinality="0:1" />
</element>
</META>

Fig. 2. The translation of the scheme in Figure 1

The transformation of the cardinality from 0:10 to O:N is a clear example of
a “semantic loss” due to the limited expressiveness of the target model. In this
case, the system stores information about the loss externally, in a file associated
with the target scheme. We call this extra information the residual of the scheme.
With this solution, it is possible to reverse the translation using the residual.

In the rest of the paper, we illustrate an approach to data translation that,
building on the above translation scheme, aims to generate a corresponding
translation at instance-level.

3 Data translation

According to the schema translation process, data translation requires a number
of phases. First, data is automatically serialized into XML preserving the original
structure (a simple example is given in Figure 3). Then, XML data is transformed
into a structure that matches with the target scheme (expressed in XML format)
produced by the scheme translation process. Finally, data is transformed into the
final format according to the specific syntax of the target model. The first and the
last phases are rather easy, usually supported by systems, and not always needed
when source and/or target are already represented in XML. Therefore, they will
not discussed further. We concentrate now our attention on the transformation
phase where data, expressed in XML, is restructured according to the target
model.

<table name="Employees”>
<tuple>
<SSN>32</SSN>
Employees <Name>Paul</Name>
<Dept>Sales<Dept>
SSN Name Dept Salary <Salary>40K<Salary>
</tuple>
32 Paul Sales 40K - <tuple>
44 Anne Press 30K <SSN>44</SSN>
<Name>Anne</Name>
<Dept>Press<Dept>
<Salary>30K<Salary>
</tuple>
</table>

Fig. 3. An example of serialization

3.1 An approach to model translation

The transformation method proceeds by analyzing the scheme S, of the input
data in the supermodel (see above). For each primitive C used in Sy, the sys-
tem verifies whether the corresponding metaprimitive C is allowed in the target
model. If this is not the case, it tries to convert instances of C into a format of
another primitive (or a set thereof) available in the target model.

This work is supported by a set of predefined basic procedures p that imple-
ments rather standard translations between constructs. Each of these procedures
has indeed two components: a schema-level function fg, which performs trans-
lations of metaprimitives, and a function f;, which operates at instance level by
transforming actual data according to the translations operated by fs. Specif-
ically, these functions must satisfy the following consistency criterium: given a
procedure p[fs, f1], for each scheme S and each instance I of S, it is the case
that f7(I) is an instance of fg(5). Both fs and f; generate residual information
(that is, components that have been lost in the translation), as explained above.
Representatives of such procedures will be presented in more detail in Section
3.2.

The technique is specified in the algorithm reported in Figure 4. This al-
gorithm generates the target scheme and a transaction ¢, made of a sequence
of functions fr, that translates any instance of the source scheme into a valid
instance for the target scheme.

Algorithm 1

Input: A scheme Ss of a model Ms, the residual ms of Ss (if available),

a library of procedures L = {p1[f&, fil, ..., pelfE, fF]}, and the target model M;

Output: A transaction t, a scheme St for My, and the residual m¢ of St

begin

(1) Set a temporary scheme S to the source scheme Ss;

(2) Set t to the empty transaction;

(3) while there is a primitive C in S such that the corresponding metaprimitive C is
not allowed in M; do

(4) if there exists a procedure p;[f&, fi] in L such that f& translates C to
a metaprimitive (or a set thereof) allowed in M

(5) then \x direct translation *\

(6) S = f5(S); * apply f5 to S *\ ,

(7) add to my the residual generated by fg;

(8) t =t, fi; * append fi tot ¥\

9) else

(10) if there exists a procedure p;[f, fi] in L such that f& translates C to

a metaprimitive (or a set thereof) not allowed in M;
and the analysis of m. prevents infinite loops;

(11) then \x try to find an intermediate translation *\
(12) S = f5(5); * apply fs to S *\ _
(13) add to m: the residual generated by f&;
(14) t =t,f7; * append fi to t *\
(15) else
(16) abort the translation and notify the user;
end while
(17)Sy = S; * S becomes the target scheme *\
end

Fig. 4. The translation algorithm

There are a number of important aspects to point out about this algorithm.
First, in step (4) it may happen that more than one procedure available in L
can perform the needed translation. For instance, it is well known that there
are several ways to translate generalizations into other primitives. A possible
solution in this case is the introduction of a request for user intervention in
order to make a choice between the various possibilities. Also, ambiguity can be
solved by introducing a (partial) preference order between procedures.

Another point is in step (10): a scheme translation function fg could translate
a metaprimitive C into a metaprimitive that is not allowed in M;. The rationale
here is that if we are not able to translate directly into M;, we try to translate C
into an intermediate metaprimitive that is not allowed in the target model but
for which there could exist a translation towards the target. Consider for instance
the translation from the Entity-Relationship model into a DTD representation.
In this case, generalizations can be first translated into relationships (which are
not directly representable in a DTD). Then, relationships can be easily translated
into elements and attributes of a DTD. It is easy to see however that, proceeding
in this way, we can enter into infinite loops. In order to prevent this situation,
the method verifies whether the selected procedure introduces a metaconstruct
that has been previously deleted. This can be done by analyzing the residual
generated until that point.

It’s important to note that a procedure translating a metaprimitive does
not always requires a data translation. Assume, for example, that we need to
translate a scheme S with a cardinality constraint of type (1,10) to a model that
allows only cardinalities of the form (1,1), (1,n) and (0,n). In this case S needs
to be modified but this change does not affect data. On the other hand, many
metaprimitives need data manipulation, like the creation of identifiers.

As a final comment, we note that this main algorithm can be improved in
several points. In particular, a final optimization step can be introduced on the
output transaction by eliminating redundant or useless functions and by finding
a better execution order. This is subject of current work.

3.2 Basic procedures

In this section we illustrate some examples of basic procedures used by the
Translation Algorithm reported in Figure 4. They are used within the super-
model, where the system matches models definition and selects metaprimitives
to be transformed, as described in Algorithm 1. We recall that each procedure
is composed by two functions, one operates at scheme level and the other at
instance level.

1. Nesting of complex elements. This procedure nests elements according
to referential integrity constraints between them.
fs: it nests an element definition F; into another element definition Fs,
deletes the corresponding integrity constraint, and stores the performed
translation in the residual.

fr: it groups and nests instances of F; into the corresponding instance of Ey
and deletes the reference between them.

. Unnesting of complex elements. The procedure flats nested elements
and introduces integrity constraints between them.

fs: it unnests a complex element E; nested into another element F, by
moving the definition of F; at the same level of E5 and introducing a foreign
key between them. It also stores the performed translation in the residual.

f1: it moves instances of E; outside the instance of Fs.

. Key creation. It generates identifiers for elements making use of Skolem
functors [14] if the element contains at least an atomic element or an at-
tribute, otherwise making use of counters.

fs: it adds a key constraint K to an element F and stores the performed
translation in the residual.

fr: it invents a value for each instance of F using either a Skolem functor or
a counter, and assigns it to the instance as unique identifier.

. Add/Remove namespaces. This pair of procedures add/remove informa-
tion on the domain of the names used in a scheme.

fs: it adds/deletes the namespace definition, retriving/storing this informa-
tion from/in the residual.

fr: it does nothing on instances.

. Cardinality range extension. As we have said in Section 2, cardinalities
are used at different levels of precision in the various models. This procedure
changes the actual value of a cardinality to an undefined value and has no
effect on instances.

fs: it changes the cardinality definitions from a number, different from 0 or
1, to the undefined value N and stores information on the old values in the
residual.

fr: it does nothing on instances.

. Cardinality range restriction. Differently from the previous procedure,
this procedure implies some involved transformation on the instances. As an
example, consider the transformations needed to convert an n-ary relation-
ship to a binary one.

fs: it changes values that express cardinality in the element definition and
stores information on the deleted values in the residual.

f1: it applies transformation on the instances of the elements with the mod-
ified cardinality, grouping and splitting element instances according to the
new values.

. Transformation of ordered sequences in unordered ones. The proce-
dure performs the translation adding a new attribute that codes the order.
fs: it changes the ordered sequence definition to unordered, introduces a
new attribute and stores the performed translation in the residual.

fr: it adds an atomic element that takes an integer coding the original posi-
tion on the element in the ordered sequence.

. Transformation of generalization hierarchies. The procedure removes
generalizations and translates them in other primitives.

fs: there are several ways to translate generalizations (e.g., using relation-

ships or grouping elements) and the user can choose the preferred one. The
procedure stores information on the performed translation and on the re-
moved elements in the residual.
fr: it performs modification on the instances according to the choice done
at scheme level.

9. Add generalization. This procedure adds the definition of a generalization
making use of residual information of the scheme (if any).
fs: it adds a generalization between elements making use of information
stored in the residual.
fr: it adds a generalization instance for each set of element instances that
share the same identifier.

Scheme unnnesting
Input: A scheme Ss with nested elements and its residual
Output: A scheme St without nested elements and its residual
begin

set S to the empty scheme;

Data unnnesting
Input: An instance Is with nested data, the scheme Ss of Is
for each element ex in Ss do Out!)ut: An instance It without nested data
if ex is a complex element begin .
then set | to the empty instance;
for each element ex in Is do

case ex of i ox i ? } ¢
is nested in a complex element ec: ! e>'(1|s a complex elemen
copy ex in S outside ec; then
case ex of

add to ex a foreign key kr for ec;

is not nested: is nested in a complex element ec:

copy exin S; copy each occurrence of ex in | outside ec;
end case add to each occurrence of ex the key of ec;
else *\ex is atomic *\ is not nested and contains an atomic element ea:
case ex of copy each occurrence of ex in [;

end case

is nested in a complex element ec: . 3 .
else *\ex is atomic *\

copy ex in S inside ec;

is not nested: s copy in | each occurrence of ea;
copy exin S; ell] Jor g |]
end case eliminate intermediate elements;

It =1; * | becomes the target instance *\
end

end for

eliminate intermediate elements;

St = S; * S becomes the target scheme *\
end

Fig. 5. An example of basic procedure

As a concrete example, we now present in more detail the unnesting proce-
dure. Unnesting is a rather common issue in data conversion: how to flat a nested
scheme arises when, for instance, we need to store XML data into a relational
database. This problem has been largely debated in the literature [12]. Here, we
just show intuitive algorithms, based on combination of elementary operations
over XML data. All the complex elements must contain an identification key,
or have to preliminary be processed by the key creation procedure. With this
approach the unnesting translation is completely reversible: system just needs
to apply the nesting procedure to returns the original scheme and data. The
first function, in the left hand side of Figure 5, takes as input a scheme Sy and
outputs a scheme S;, where nested elements are converted into flat ones. The
second, in right hand side of the same figure, works on data: takes as input an
instance I, of the scheme S, and outputs an instance I; of the scheme S;.

4 An example of translation

In this section we present a complete translation from the XML Schema model
to the relational model. The input instance and the corresponding scheme are
reported in Figure 6.

<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<xsd:element name = "Dept" >
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "Emps" >
<xsd:complexType>
<xsd:sequence>
<xsd:element name = "Emp*
maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Empl|D*
type="xsd:integer"/>
<xsd:element name="EmpName*
type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

<xsd:element name="DeptName" type="xsd:string"/>
<xsd:element name="CreationDate” type="xsd:date"/>

<Dept>
<DeptName>Storage</DeptName>
<CreationDate>1999-01-07</CreationDate>
<Emps>
<Emp>
<EmplID>37</EmplID>
<EmpName>Paul</EmpName>
</Emp>
<Emp>
<EmplD>48</EmpID>
<EmpName>Andrew</EmpName>
</Emp>
</Emps>
</Dept>

Fig.6. An XML schema and one of its instances

The source scheme is transformed in the supermodel scheme reported in the

left hand side of Figure 7. The system

Algorithm reported in Figure 4.

<META source="XSD">
<element name="Dept">
<sequence occurs="1:1">
<element name="DeptName" type="string" occurs="1:1"/>
<element name="creationDate" type="date" occurs="1:1"/>
<element name="Emps" occurs="1:1">
<sequence occurs="1:1">
<element name="Emp" occurs="1:N">
<sequence occurs="1:1">
<element name="EID" type="integer" occurs="1:1"/>
<element name="EName" type="string" occurs="1:1"/>
</sequence>
</element
</sequence>
</element>
</sequence>
</element>
</IMETA>

applies to this scheme the Translation

<META source="Relational">
<element name="Dept" occurs="0:N">
<attribute name="DeptName" occurs="1:1" type="string"/>
<attribute name="CreationDate" occurs="1:1" type="string"/>
<attribute name="Dept-New-Key" type="key" occurs="1:1"/>
</element>

<element name="Emp" occurs="0:N">

<attribute name="Dept-Emp-Key" type="string">
<keyref name="Dept-Emp-Key-Est" refer="Dept-New-Key"/>

</attribute>
<attribute name="EmpOrder" occurs="1:1" type="integer"/>
<attribute name="EmpID" occurs="1:1" typ tring"/>
<attribute name="EmpName" occurs="1:1" type="string"/>

</element>

</IMETA>

Fig. 7. The translation of the scheme in Figure 6 in the Supermodel

The system performs three main transformations:

— the creation of a key for the elements not having it;

— the unnesting of elements using the procedure described in Section 3.2;

— the transformations of ordered sequences into unordered ones (that become
tables in the target model);

The result scheme is reported on the right hand side of Figure 7. At the end
of the algorithm, the system renames primitives generating the target scheme in
relational format reported in Figure 8. Finally, the ¢ translation is applied to the
source instance I, generating the target data in Figure 8, ready to be serialized
into a database.

<field name="DeptName" occurs="1:1" type="string"/>
<field name="CreationDate" occurs="1:1" type="string"/>
<field name="Dept-New-Key" type="key" occurs="1:1"/>
<ltuple>
</table>

<table name="Emp">
<tuple>
<field name="Dept-Emp-Key" type="string">

<ffield>
<field name="Emp-New-Key" type="key" occurs="1:1" />
<field name="EmpOrder" occurs="1:1" type="integer" />

<field name="EmpID" occurs= type="string" />
<field name="EmpName" occurs="1:1" type="string" />

<keyref name="Dept-Emp-Key-Est" refer="Dept-New-Key"/>

<Dept>
<database> <tuple>
<table name="Dept"> <DeptName>Storage</DeptName>
<tuple> <CreationDate>1999-01-07</CreationDate>

<Dept-New-Key>sk1(Storage,1999-01-07)</Dept-New-Key>
</tuple>
</Dept>

<Emp>

<tuple>
<Dept-Emp-Key>sk1(Storage,1999-01-07)</Dept-Emp-Key>
<Emp-New-Key>sk2(37,Paul)</Emp-New-Key>
<EmpOrder>1</EmpOrder>
<EmpID>37</EmpID>
<EmpName>Paul</EmpName>

</tuple>

<tuple>
<Dept-Emp-Key>sk1(Storage,1999-01-07)</Dept-Emp-Key>
<Emp-New-Key>sk2(48, Andrew)</Emp-New-Key>
<EmpOrder>2</EmpOrder>

</tuple>
</tabli> <EmplD>48</EmplD>
</database> </<tErr|1p>Name>Andrew</EmpName>
uple:
</Emp>

Fig. 8. The final result of the translation of the scheme and the instance in Figure 6

5 Discussion and future work

In this paper, we have presented an approach to the translation of Web data
between heterogeneous formats. This translation operates over a XML represen-
tation of data and is derived by combining a number of predefined basic functions
performing XML transformations.

It should be said that a number of conceptual aspects related to data trans-
lations have not been addressed in this paper. In particular, the analysis of
translation quality. In [2,3] we have proposed several properties that “good”
translations should enjoy. The more relevant are correctness and minimality.
The former establishes that the output is valid in the target model, the lat-
ter expresses the fact that does not exist shorter translations. We are currently
studying how these properties can be verified in the framework presented here.

From a practical point of view, we are currently extending our tool (whose
preliminary version has been presented in [22]) with the proposed approach for

data translation. Different implementations are under development. One of these
solutions is a combination of XQuery and DOM. The tool manages schemes
translations between models using DOM representations and performs XML
data transformations by means of iterative queries expressed in XQuery over
materialized temporary results. The tool is completely modular, so we are also
implementing basic procedures in XSLT [8]. At the moment, the tool is able to
fully translate schemes and data between various formats (XML Schema and
some of its dialects [15], DTD, Entity-Relationship, Relational) and we are ex-
tending the tool with other models for Web data (Araneus [17] and WebML [7]).

We intend to improve the technique presented in this paper. We are partic-
ularly interested in the introduction of an optimization phase to be performed
over data translation, which is clearly the most expensive task.

References

1. S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

2. P. Atzeni and R. Torlone. Schema Translation between Heterogeneous Data Mod-
els in a Lattice Framework. In Sizth IFIP TC-2 Working Conference on Data
Semantics (DS-6), Atalanta, pages 218-227, 1995.

3. P. Atzeni and R. Torlone. Management of Multiple Models in an Extensible
Database Design Tool. In Fifth International Conference on Extending Database
Technology (EDBT ’96), Lecture Notes in Computer Science 1057, Springer—
Verlag, pag. 79-95, 1996.

4. C. Batini, M. Lenzerini, and S. B. Navathe. A Comparative Analysis of Method-
ologies for Database Schema Integration. In ACM Computing Surveys 18(4), pages
323-364, 1986.

5. P. A. Bernstein. Applying Model Management to Classical Meta Data Problems.
CIDR 2003 (available at http://www-db.cs.wisc.edu/cidr/)

6. P. A. Bernstein, A. Y. Levy, and R. A. Pottinger. A Vision for Management of
Complex Models. SIGMOD Record, 29(4):55-63, December 2000.

7. S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and M. Matera. Design-
ing Data-Intensive Web Applications. Morgan Kaufmann, 2003.

8. J. Clark. XSL transformations (XSLT) specification. W3C Document, November
1999. http://www.w3.org/

9. R. Fagin, P. G. Kolaitis, and L. Popa. Data exchange: getting to the core. In 22nd
ACM Symposium on Principles of Database Systems, San Diego, pages 90-101,
2003.

10. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data Exchange: Semantics and
Query Answering. In 9th Int. Conference on Database Theory, Italy, pages 207224,
2003.

11. M. Fernandez, A. Malhotra, J. Marsh, M. Nagy, and N. Walsh. XQuery 1.0 and
XPath 2.0 Data Model. W3C Document, November 2003. http://www.w3.org/

12. D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDMBS.
IEEE Data Engineering Bulletin, 22(3): 27-34, 1999.

13. R.B. Hull and R. King. Semantic database modelling: survey, applications and
research issues. ACM Computing Surveys, 19(3):201-260, September 1987.

14

15.

16.

17.

18.

19.

20.

21.

22.

R. Hull and M. Yoshikawa. ILOG: Declarative Creation and Manipulation of Ob-
ject Identifiers. In 16th International Conf. on Very Large Data Bases, Brisbane,
pages 455-468, 1990.

D. Lee and W. W. Chu. Comparative Analysis of Six XML Schema Languages.
SIGMOD Record, 29(3):76-87, 2000.

S. Melnik, E. Rahm, and P. A. Bernstein. Rondo. A Programming Platform for
Generic Model Management. In ACM SIGMOD International Conference on Man-
agement of Data, San Diego, pages 193—-204, 2003.

P. Merialdo, P.Atzeni, and G. Mecca. Design and development of data-intensive
web sites: The araneus approach. ACM Trans. on Internet Technology, 3(1): 49-92,
2003.

L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernndez, and R. Fagin. Translating
Web Data. In 28th International Conf. on Very Large Data Bases, Hong Kong,
pages 598-609, 2002.

R. Pottinger and P. A. Bernstein. Merging Models Based on Given Correspon-
dences. In 29th International Conf. on Very Large Data Bases, Berlin, pages 826—
873, 2003.

E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334-350, 2001.

R. Torlone and P. Atzeni. A Unified Framework for Data Translation over the
Web. In Second International Conference on Web Information System Engineering
(WISE 2001), Kyoto, IEEE Computer Society Press, pages 350-358, 2001.

R. Torlone and P. Atzeni. Chameleon: an Extensible and Customizable Tool for
Web Data Translation. In 29th International Conference on Very Large Data Bases
(VLDB 2003), Berlin, pages 1085-1088, 2003.

