# **ASPECT-LEVEL SENTIMENT ANALYSIS:** Implicit Features Detection in Consumers Reviews

Kim Schouten

schouten@ese.eur.nl

**Flavius Frasincar** 

Franciska de Jong

(frasincar@ese.eur.nl) (f.m.g.dejong@eshcc.eur.nl)









- People like to voice their opinion
- This is especially true on the Web
- We specifically focus on user-generated reviews
  - (e.g., Amazon, Yelp, etc.)
- These data can be harnessed for business purposes
  - For consumers, it is an important source of information when looking to purchase something
  - For producers, it is a valuable source of consumer feedback
    - Usually honest
    - Free!

• The aim of Aspect-Level Sentiment Analysis is to find a quadruple

(s, g, h, t)

- s = sentiment score
- g = the target on which the sentiment is expressed
- h = the holder: the one expressing the sentiment
- t = the time when the sentiment was expressed

- Traditionally, sentiment analysis is performed at document or sentence level
- Assumption that only one topic is discussed there
- Why not look for the actual topics being discussed and attach sentiment scores to those?
- This is called aspect-based sentiment analysis

- Usually one document or sentence describes one entity
- However, multiple facets or aspects are described for that entity within a document, often with conflicting sentiment scores:
  - "The pizza was perfect, but the waiters were rude"
- Aspects can be fine-grained (pro: very detailed)
  - "pizza" and "waiters"
- Or coarse-grained (pro: easier to compare across reviews)
  - "food" and "service"
- Aspect-based sentiment analysis has two main tasks: finding aspects, and finding their sentiment scores

- Both fine-grained and coarse-grained aspects can be implicit
- Since coarse-grained aspects are more general and abstract, these tend to be implied more often than fine-grained aspects
- Coarse-grained aspects are also referred to as aspect categories

# ASPECT-LEVEL SENTIMENT ANALYSIS: Coarse-grained Aspect Detection in Consumers Reviews

Kim Schouten

schouten@ese.eur.nl

**Flavius Frasincar** 

Franciska de Jong

(frasincar@ese.eur.nl) (f.m.g.dejong@eshcc.eur.nl)









# Coarse-grained Aspect Detection Method

- Our intuition is that certain words are expected to co-occur a lot with certain coarse aspects (e.g., 'delicious' -> food, 'expensive' -> price)
- Hence, if we encounter those words, we can predict that these related coarse aspects are present in that sentence
- By looking at the co-occurrence of each word in a sentence with each of the possible coarse aspects, we can compute a score for each aspect

# Coarse-grained Aspect Detection Method Annotated sentences



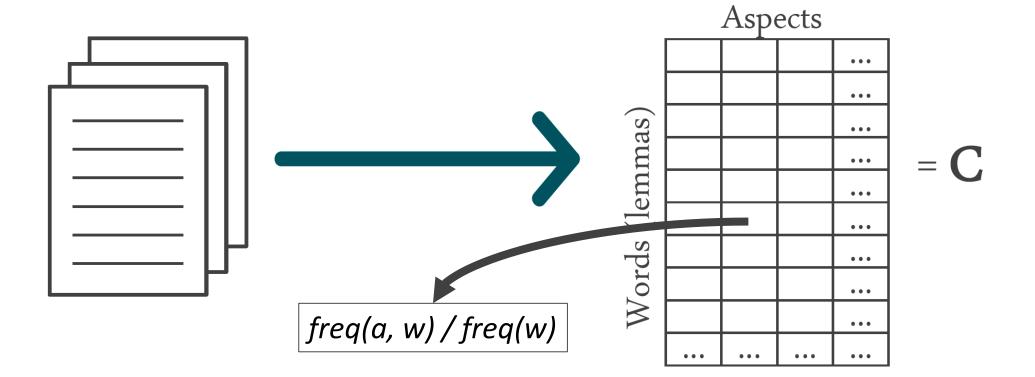
<sentence id="1458">

<text>Our agreed favorite is the orrechiete with sausage and chicken (usually the waiters are kind enough to split the dish in half so you get to sample both meats).</text>

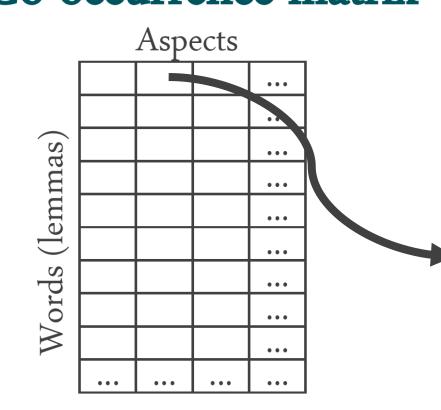
<aspectTerms>

<aspectTerm term="orrechiete with sausage and chicken" polarity="positive" from="27" to="62"/>

<aspectTerm term="waiters" polarity="positive" from="76" to="83"/> <aspectTerm term="meats" polarity="neutral" from="152" to="157"/> <aspectTerm term="dish" polarity="neutral" from="113" to="117"/> </aspectTerms>


<aspectCategories>

<aspectCategory category="food" polarity="positive"/>


- <aspectCategory category="service" polarity="positive"/>
- </aspectCategories>

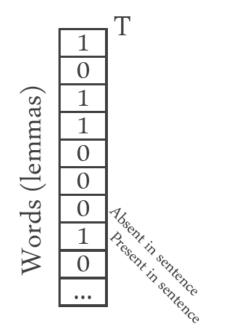
</sentence>

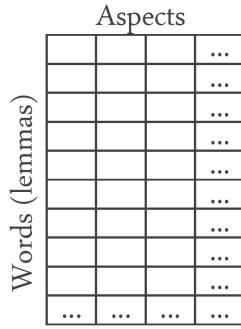
# Training Phase – Creating C Annotated sentences Co-occurrence matrix



# Training Phase – Pruning C Co-occurrence matrix




Using simple linear search, two threshold variables (*min\_cooc* and *min\_freq*) are optimized


freq(a, w) / freq(w) > min\_cooc
freq(w) > min\_freq

Only entries that satisfy both constraints are retained in **C** 

Processing unseen data Simply put: **A** = **SC** 

#### Unseen sentence Co-occurrence matrix







Any aspect that has a score is assigned to the sentence

## Results

- Two data sets with restaurant reviews
  - First one has ~3800 sentences with 4 different aspect categories
  - Second one has ~1300 sentences with 13 different aspect categories
- One data set with laptop reviews
  - (~1700 sentences with 82 different aspect categories)

|               | Precision | Recall | $F_1$ | SemEval best F <sub>1</sub> |
|---------------|-----------|--------|-------|-----------------------------|
| Restaurants 1 | 66.7%     | 73.9%  | 70.1% | 85.3%                       |
| Restaurants 2 | 64.7%     | 62.2%  | 63.4% | 61.9%                       |
| Laptops       | 40.1%     | 42.3%  | 41.4% | 49.6%                       |

 Very good performance for a relatively simple method that uses no advanced machine learning techniques

# Alternative SVM

- Trained a basic bag-of-words model SVM classifier
  - One (binary) SVM model for each aspect
  - Per sentence determine whether that coarse aspect is present or not
- Results on the same data:

|               | Precision | Recall | $F_1$ | <b>Co-occurrence</b> <i>F</i> <sub>1</sub> | SemEval best F <sub>1</sub> |
|---------------|-----------|--------|-------|--------------------------------------------|-----------------------------|
| Restaurants 1 | 81.3%     | 75.2%  | 78.1% | 70.1%                                      | 85.3%                       |
| Restaurants 2 | 77.5%     | 57.7%  | 66.1% | 63.4%                                      | 61.9%                       |
| Laptops       | 60.9%     | 34.7%  | 44.2% | 41.4%                                      | 49.6%                       |

 Very good performance for a relatively simple method that uses no advanced machine learning techniques

# On-going and future work

- Use of ontologies or other knowledge bases to make use of domain knowledge
  - Move towards a more concept-driven, or semantics-driven form of aspectlevel sentiment analysis
- Use of more advanced machine learning techniques
  - Latent Dirichlet Allocation might be used to find coarse aspect
  - Recurrent Neural Networks (with LSTM)

# QUESTIONS?