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Introduction
• Terminology:  

• properties (e.g., Color) 
• values (e.g., Red) 
• facets, e.g., 
• Color:Red	
  

• Color:Red	
  

• WiFi:true	
  

• Price:64.00



Introduction

Assumptions 
• Facets: 

• Qualitative (nominal, boolean)  
• Numeric (integer, double) 

• Numeric facets treated differently



Introduction
• Faceted search vs keyword-based search 

• browsing 
• progressive query refinements



Introduction
• Faceted search vs keyword-based search 

• browsing 
• progressive query refinements

• Open issues 
• too many facets to be shown at once 
• usually fixed, manually curated, facet list 
• not optimal due to changing queries
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Our approach 
• ranks properties and their corresponding 
• query dependent 
• employs impurity measures 
• weighting scheme for coverage bias
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Specificity: An Example

Bob Brand:Nokia

Audio Formats:MP3

Brand:Samsung	
  

Audio	
  Formats:MP3
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Search sessions 
• Selected facets is the query 
• Disjunctive vs conjunctive semantics, e.g. 

• Brand:Apple	
  

• Brand:Samsung	
  

• Color:Black
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Search sessions 
• User can perform drill-down or drill-up 
• Roll-up can occur when a user: 

• deselect last remaining facet 
• selects an additional qualitative facet 
• broadening numeric range
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Property Scores (qualitative properties)  
 
 
 
 

aspect of the proposed algorithms. However, in order to
be useful in practice, for most Web shops, it is important
that the proposed solutions are fast and have a low time
complexity.

3. FACET OPTIMIZATION ALGORITHM
Before discussing the details of our approach, we need

to elaborate on the assumptions and the used terminol-
ogy. From the perspective of user interface design, we dis-
tinguish between two main facet types: qualitative facets
(e.g., WiFi:true) and numeric facets (e.g., Lowest price

(e):64.00). We further distinguish between two types of
qualitative facets: nominal facets and Boolean facets. Nomi-
nal facets are, for example, those for the property Display

Type, and can have any nominal value. Boolean facets are
for instance Multitouch, and have only three options from
an interface perspective: true, false, or No preference.
Unlike previous studies, as discussed in Section 2, our

approach treats numeric facets di↵erently than qualitative
facets. When creating facets from source data (e.g., tabular
data), every unique property-value combination is converted
into a facet. For numeric facets, the same process is applied.
However, numeric values can be widely dispersed, especially
in large data sets. For facets, however, that would lead to
a list of possibly hundreds of di↵erent values. One way to
deal with that is to create predefined, fixed ranges of values
and use these as facets. However, it is never certain whether
the predefined ranges will match the user’s preferences. Fur-
thermore, fixed ranges can become useless when a result set
has only products that fall into one predefined range. For
our approach, we have chosen to let the user define custom
ranges of values to select. In a product search engine, such
custom ranges can be represented using a slider widget. From
a technical point of view, however, these custom ranges are
considered as selecting a set of facets in one click, i.e., each
numeric value is still represented as a separate facet.

3.1 Search Sessions
A query in a search session is defined as a collection of

previously selected facets. We have decided to apply dis-
junctive semantics to a selection of facets within a property.
For facets across di↵erent properties, we use a conjunctive
semantics. For example, selecting the facets Brand:Samsung,
Brand:Apple, and Color:Black results in (Brand:Samsung

OR Brand:Apple) AND Color:Black. Several e-commerce
stores on the Web (e.g., Amazon.com and BestBuy.com)
use the same principle, which, from a user experience point-
of-view, is very intuitive.

Our approach assumes that users can undertake two types
of actions: drill-down and roll-up. A drill-down is defined
as an action of selecting one or more facets, leading to a
reduction of the result set size. A roll-up action increases the
result set size, which is likely to happen when the user notices
that the selected facets are too strict. A roll-up action can
be achieved in three ways: (1) selecting a qualitative facet
from a property for which a selection already exists (e.g.,
adding Brand:Samsung to a query containing Brand:Apple),
(2) deselecting the only selected facet of a property, and (3)
broadening a numeric range. From this point on, we use the
notations described in Table 1, which will be described in
further details in the next few sections.
Figure 2 summarize the complete search session flow as-

sumed in our approach. Throughout the search session, we

assume that there exists a single target product du that the
user wants to find, and that the user will eventually be able
to find it. Although the user may not know the name of the
product, (s)he will be able to identify it by means of the
characteristics of the product (Fdu). The process starts with
a complete result set containing all products from the catalog
D and an empty user query q. Our approach then initiates
two processes, i.e., (1) computing the property scores and (2)
computing the facet scores, discussed in Section 3.2 and 3.3,
respectively. When the system completes, the user view is
updated showing the properties and facets in the computed
order.
In the next step, the user evaluates the result set size. If

the result set size is too large to scan manually (|Dq| > n),
the user will continue to drill-down. Otherwise, the user will
scan the result set and check if the target product is found.
If the target product is found, the search session is completed
and considered successful. The user will perform a roll-up
in the case that the desired product was not found, which
will increase the result set size and the same process repeats
again.

3.2 Computing Property Scores
We now discuss the details of computing property scores,

shown as one of the first two processes in Figure 2. The
outcome of the property scores is used to first sort the prop-
erties, after which the facet scores, discussed in the next
section, are used to sort the values within each property. In
Figure 3, we zoom into the main steps of computing the
property score. As shown by the diagram, the score for each
property is computed separately and can thus be done in
parallel.

3.2.1 Disjoint Facet Counts
We designed the proposed algorithm in such a way that

more specific facets and properties are ranked higher than
others. To support the algorithm in identifying more specific
facets, we introduce the disjoint facet count. This metric is
used to compute the score for qualitative properties. The
disjoint facet count is the number of products from the result
set matching each facet f of property p. The classical facet
count for a facet f , for a given query q, is defined as:

count(f, q) = |Dq \Df | =
X

d2Dq

(
1 if f 2 Fd

0 if f /2 Fd

(1)

The disjoint facet count is then defined as:

disjointCount(f, q) =
X

d2Dq

(
1 if Fp \ Fd ⌘ {f}
0 otherwise

(2)

where p is the property of facet f , f 2 Fp, and {f} is
the singleton set containing f . More general facets such as
Audio Formats:MP3 will thus have a low disjoint count, as
most products that have this facet also support other audio
formats besides MP3. On the other hand, facets from the
property Brand are likely to have relatively high counts, as
most products are associated to only one brand.

In Table 2 we show the tabular product data of a data sam-
ple that was taken from our evaluation dataset from [19]. The
table also shows how the tabular data has been transformed
into facets and the corresponding final scores.

aspect of the proposed algorithms. However, in order to
be useful in practice, for most Web shops, it is important
that the proposed solutions are fast and have a low time
complexity.

3. FACET OPTIMIZATION ALGORITHM
Before discussing the details of our approach, we need

to elaborate on the assumptions and the used terminol-
ogy. From the perspective of user interface design, we dis-
tinguish between two main facet types: qualitative facets
(e.g., WiFi:true) and numeric facets (e.g., Lowest price

(e):64.00). We further distinguish between two types of
qualitative facets: nominal facets and Boolean facets. Nomi-
nal facets are, for example, those for the property Display

Type, and can have any nominal value. Boolean facets are
for instance Multitouch, and have only three options from
an interface perspective: true, false, or No preference.
Unlike previous studies, as discussed in Section 2, our

approach treats numeric facets di↵erently than qualitative
facets. When creating facets from source data (e.g., tabular
data), every unique property-value combination is converted
into a facet. For numeric facets, the same process is applied.
However, numeric values can be widely dispersed, especially
in large data sets. For facets, however, that would lead to
a list of possibly hundreds of di↵erent values. One way to
deal with that is to create predefined, fixed ranges of values
and use these as facets. However, it is never certain whether
the predefined ranges will match the user’s preferences. Fur-
thermore, fixed ranges can become useless when a result set
has only products that fall into one predefined range. For
our approach, we have chosen to let the user define custom
ranges of values to select. In a product search engine, such
custom ranges can be represented using a slider widget. From
a technical point of view, however, these custom ranges are
considered as selecting a set of facets in one click, i.e., each
numeric value is still represented as a separate facet.

3.1 Search Sessions
A query in a search session is defined as a collection of

previously selected facets. We have decided to apply dis-
junctive semantics to a selection of facets within a property.
For facets across di↵erent properties, we use a conjunctive
semantics. For example, selecting the facets Brand:Samsung,
Brand:Apple, and Color:Black results in (Brand:Samsung

OR Brand:Apple) AND Color:Black. Several e-commerce
stores on the Web (e.g., Amazon.com and BestBuy.com)
use the same principle, which, from a user experience point-
of-view, is very intuitive.

Our approach assumes that users can undertake two types
of actions: drill-down and roll-up. A drill-down is defined
as an action of selecting one or more facets, leading to a
reduction of the result set size. A roll-up action increases the
result set size, which is likely to happen when the user notices
that the selected facets are too strict. A roll-up action can
be achieved in three ways: (1) selecting a qualitative facet
from a property for which a selection already exists (e.g.,
adding Brand:Samsung to a query containing Brand:Apple),
(2) deselecting the only selected facet of a property, and (3)
broadening a numeric range. From this point on, we use the
notations described in Table 1, which will be described in
further details in the next few sections.
Figure 2 summarize the complete search session flow as-

sumed in our approach. Throughout the search session, we

assume that there exists a single target product du that the
user wants to find, and that the user will eventually be able
to find it. Although the user may not know the name of the
product, (s)he will be able to identify it by means of the
characteristics of the product (Fdu). The process starts with
a complete result set containing all products from the catalog
D and an empty user query q. Our approach then initiates
two processes, i.e., (1) computing the property scores and (2)
computing the facet scores, discussed in Section 3.2 and 3.3,
respectively. When the system completes, the user view is
updated showing the properties and facets in the computed
order.
In the next step, the user evaluates the result set size. If

the result set size is too large to scan manually (|Dq| > n),
the user will continue to drill-down. Otherwise, the user will
scan the result set and check if the target product is found.
If the target product is found, the search session is completed
and considered successful. The user will perform a roll-up
in the case that the desired product was not found, which
will increase the result set size and the same process repeats
again.

3.2 Computing Property Scores
We now discuss the details of computing property scores,

shown as one of the first two processes in Figure 2. The
outcome of the property scores is used to first sort the prop-
erties, after which the facet scores, discussed in the next
section, are used to sort the values within each property. In
Figure 3, we zoom into the main steps of computing the
property score. As shown by the diagram, the score for each
property is computed separately and can thus be done in
parallel.

3.2.1 Disjoint Facet Counts
We designed the proposed algorithm in such a way that

more specific facets and properties are ranked higher than
others. To support the algorithm in identifying more specific
facets, we introduce the disjoint facet count. This metric is
used to compute the score for qualitative properties. The
disjoint facet count is the number of products from the result
set matching each facet f of property p. The classical facet
count for a facet f , for a given query q, is defined as:

count(f, q) = |Dq \Df | =
X

d2Dq

(
1 if f 2 Fd

0 if f /2 Fd

(1)

The disjoint facet count is then defined as:

disjointCount(f, q) =
X

d2Dq

(
1 if Fp \ Fd ⌘ {f}
0 otherwise

(2)

where p is the property of facet f , f 2 Fp, and {f} is
the singleton set containing f . More general facets such as
Audio Formats:MP3 will thus have a low disjoint count, as
most products that have this facet also support other audio
formats besides MP3. On the other hand, facets from the
property Brand are likely to have relatively high counts, as
most products are associated to only one brand.

In Table 2 we show the tabular product data of a data sam-
ple that was taken from our evaluation dataset from [19]. The
table also shows how the tabular data has been transformed
into facets and the corresponding final scores.
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for facet selection as follows:

giniImpurity(p, q) =

1�
X

f2Fp

 
disjointCount(f, q)P

g2Fp
disjointCount(g, q)

!2

(3)

where p 2 Pqualitative and q ⇢ F , with the fraction denom-
inator being the total number of products from the result
set associated to a a single facet from property p. It should
be noted that since the relative frequency of products is
represented by the fraction in Equation (3), the measure is
independent of the number of products associated to values
by means of property p.

3.2.3 Scoring Numeric Properties
For numeric properties, we have chosen to use the knowl-

edge about the distribution of the numeric values for comput-
ing property scores. It is fairly straightforward to imagine
that it may be useful to drill-down using a numeric prop-
erty when the values for the result set are widely dispersed.
When the facets are nearly uniformly distributed over the
complete range of values, a drill-down using a user-defined
range would lead to a large reduction of the result set. On
the other hand, when most of the values are similar, such as
in the example of having a result set with products of the
same price range, drilling down using a numeric property
will hardly reduce the result set size and thus be ine↵ective
to use. For assessing the dispersion of numeric facets, we
employ the Gini coe�cient [4]. We adapt the original Gini
index for use in our context:

giniCoe�cient(p, q) =

1
m

0

BB@m+ 1� 2

0

BB@

mP
i=1

(m+ 1� i)fi

mP
i=1

fi

1

CCA

1

CCA (4)

=
2
Pm

i=1 ifi
m
Pm

i=1 fi
� m+ 1

m

given fi 2 F ⇤
p for i = 1 to m

F ⇤
p = {fi | fi 2 Fp \ Fd, d 2 Dq, fi  fi+1}
m = |F ⇤

p |
p 2 Pquantitative

where F ⇤
p represents the values for numeric property p for the

products in the result set, indexed in non-decreasing order
(fi  fi+1), with fi being the facet ranked at index i.

In Table 2 we give the Gini coe�cients for the considered
properties. From the table we can also conclude that the
Gini for Lowest Price (e) is higher, suggesting that the
values for that property are more dispersed than those of
Diagonal Screen Size (inch). Similar to the Gini impu-
rity for qualitative facets, the Gini coe�cient for properties
is independent of the number of products that have this
property.

3.2.4 Product Count Weighting
With the Gini impurity and the Gini coe�cient, we now

have metrics to score both qualitative and numeric proper-
ties. As mentioned in the previous sections, this score is
independent from the number of products on which it is
based. This could possibly lead to problems, as properties

that occur within few products will obtain a relatively high
score. To compensate for this, we introduce the product
count weighting. The product count weighting is used to
normalize the Gini indices, resulting in the final property
score. Additionally, it provides a way to cope with missing
values, as properties with many missing associations will be
ranked lower. We define the final property score as:

propertyScore(p, q) = gini(p, q) ·
X

f2Fp

disjointCount(f, q)
|Dq|

(5)
where gini is either the Gini impurity or the Gini coe�cient
(depending on the property type). The term with which gini
is multiplied is the product count weighting term. Table 2
shows the product count weighting for each property.

3.3 Computing Facet Scores
We now discuss the details of computing facet scores,

shown as one of the first two processes in Figure 2. For
numeric properties, value ordering is neglected, as these are
often represented with a slider widget in user interfaces. For
qualitative properties our approach employs the facet count
from Equation (1), ranking facets descending on count, per
property. As the target product is unknown to the system,
this will increase the chance that a facet matching the target
product is placed on top.
In the evaluation, we compare our approach to the one

proposed in [9]. To have an honest comparison, we have
implemented a version of their method that includes the same
facet sorting as our algorithm, as the authors themselves
have neglected this aspect. The di↵erence in results can thus
be completely accounted to property sorting.

4. EVALUATION
In this section, we discuss the evaluation of our proposed

approach. The evaluation is based on simulated user sessions,
where the simulation framework is derived from previous
literature and solid theoretical foundations.

4.1 Experimental Framework
Figure 4 gives an overview of the concepts that underlie

the evaluation framework. In our experimental setup, one
simulation process represents an individual search session,
which we will refer to as an experiment. Each experiment
contains the selection of one drill-down model, one ordering
scheme, and one target product. Furthermore, some of the
drill-down models and ordering schemes contain stochastic
aspects. Therefore each experiment is repeated 50 times, in
order to reduce the variability of results. For each experiment
we record six di↵erent metrics. For the target products, we
have decided to use every product in our data set as a target
product du, in order to get the most reliable results from the
data that we have available.

4.1.1 Drill-Down Models
There are three drill-down models that we consider, based

on the ones proposed in [10, 12]. In the Least Scanning
Drill-Down Model, MS , the user u scans the list of facets F
starting from the top. When u encounters a facet f 2 Fdu

(a facet associated with the target product), (s)he will select
that facet without further scanning.

The Best Facet Drill-Down Model, MB , assumes that when
u is searching for du and is scanning F , u identifies the single
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for facet selection as follows:

giniImpurity(p, q) =

1�
X

f2Fp

 
disjointCount(f, q)P

g2Fp
disjointCount(g, q)

!2

(3)

where p 2 Pqualitative and q ⇢ F , with the fraction denom-
inator being the total number of products from the result
set associated to a a single facet from property p. It should
be noted that since the relative frequency of products is
represented by the fraction in Equation (3), the measure is
independent of the number of products associated to values
by means of property p.

3.2.3 Scoring Numeric Properties
For numeric properties, we have chosen to use the knowl-

edge about the distribution of the numeric values for comput-
ing property scores. It is fairly straightforward to imagine
that it may be useful to drill-down using a numeric prop-
erty when the values for the result set are widely dispersed.
When the facets are nearly uniformly distributed over the
complete range of values, a drill-down using a user-defined
range would lead to a large reduction of the result set. On
the other hand, when most of the values are similar, such as
in the example of having a result set with products of the
same price range, drilling down using a numeric property
will hardly reduce the result set size and thus be ine↵ective
to use. For assessing the dispersion of numeric facets, we
employ the Gini coe�cient [4]. We adapt the original Gini
index for use in our context:

giniCoe�cient(p, q) =

1
m

0

BB@m+ 1� 2

0

BB@

mP
i=1

(m+ 1� i)fi

mP
i=1

fi

1

CCA

1

CCA (4)

=
2
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i=1 ifi
m
Pm

i=1 fi
� m+ 1

m

given fi 2 F ⇤
p for i = 1 to m

F ⇤
p = {fi | fi 2 Fp \ Fd, d 2 Dq, fi  fi+1}
m = |F ⇤

p |
p 2 Pquantitative

where F ⇤
p represents the values for numeric property p for the

products in the result set, indexed in non-decreasing order
(fi  fi+1), with fi being the facet ranked at index i.

In Table 2 we give the Gini coe�cients for the considered
properties. From the table we can also conclude that the
Gini for Lowest Price (e) is higher, suggesting that the
values for that property are more dispersed than those of
Diagonal Screen Size (inch). Similar to the Gini impu-
rity for qualitative facets, the Gini coe�cient for properties
is independent of the number of products that have this
property.

3.2.4 Product Count Weighting
With the Gini impurity and the Gini coe�cient, we now

have metrics to score both qualitative and numeric proper-
ties. As mentioned in the previous sections, this score is
independent from the number of products on which it is
based. This could possibly lead to problems, as properties

that occur within few products will obtain a relatively high
score. To compensate for this, we introduce the product
count weighting. The product count weighting is used to
normalize the Gini indices, resulting in the final property
score. Additionally, it provides a way to cope with missing
values, as properties with many missing associations will be
ranked lower. We define the final property score as:

propertyScore(p, q) = gini(p, q) ·
X

f2Fp

disjointCount(f, q)
|Dq|

(5)
where gini is either the Gini impurity or the Gini coe�cient
(depending on the property type). The term with which gini
is multiplied is the product count weighting term. Table 2
shows the product count weighting for each property.

3.3 Computing Facet Scores
We now discuss the details of computing facet scores,

shown as one of the first two processes in Figure 2. For
numeric properties, value ordering is neglected, as these are
often represented with a slider widget in user interfaces. For
qualitative properties our approach employs the facet count
from Equation (1), ranking facets descending on count, per
property. As the target product is unknown to the system,
this will increase the chance that a facet matching the target
product is placed on top.
In the evaluation, we compare our approach to the one

proposed in [9]. To have an honest comparison, we have
implemented a version of their method that includes the same
facet sorting as our algorithm, as the authors themselves
have neglected this aspect. The di↵erence in results can thus
be completely accounted to property sorting.

4. EVALUATION
In this section, we discuss the evaluation of our proposed

approach. The evaluation is based on simulated user sessions,
where the simulation framework is derived from previous
literature and solid theoretical foundations.

4.1 Experimental Framework
Figure 4 gives an overview of the concepts that underlie

the evaluation framework. In our experimental setup, one
simulation process represents an individual search session,
which we will refer to as an experiment. Each experiment
contains the selection of one drill-down model, one ordering
scheme, and one target product. Furthermore, some of the
drill-down models and ordering schemes contain stochastic
aspects. Therefore each experiment is repeated 50 times, in
order to reduce the variability of results. For each experiment
we record six di↵erent metrics. For the target products, we
have decided to use every product in our data set as a target
product du, in order to get the most reliable results from the
data that we have available.

4.1.1 Drill-Down Models
There are three drill-down models that we consider, based

on the ones proposed in [10, 12]. In the Least Scanning
Drill-Down Model, MS , the user u scans the list of facets F
starting from the top. When u encounters a facet f 2 Fdu

(a facet associated with the target product), (s)he will select
that facet without further scanning.

The Best Facet Drill-Down Model, MB , assumes that when
u is searching for du and is scanning F , u identifies the single
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for facet selection as follows:

giniImpurity(p, q) =

1�
X

f2Fp

 
disjointCount(f, q)P

g2Fp
disjointCount(g, q)

!2

(3)

where p 2 Pqualitative and q ⇢ F , with the fraction denom-
inator being the total number of products from the result
set associated to a a single facet from property p. It should
be noted that since the relative frequency of products is
represented by the fraction in Equation (3), the measure is
independent of the number of products associated to values
by means of property p.

3.2.3 Scoring Numeric Properties
For numeric properties, we have chosen to use the knowl-

edge about the distribution of the numeric values for comput-
ing property scores. It is fairly straightforward to imagine
that it may be useful to drill-down using a numeric prop-
erty when the values for the result set are widely dispersed.
When the facets are nearly uniformly distributed over the
complete range of values, a drill-down using a user-defined
range would lead to a large reduction of the result set. On
the other hand, when most of the values are similar, such as
in the example of having a result set with products of the
same price range, drilling down using a numeric property
will hardly reduce the result set size and thus be ine↵ective
to use. For assessing the dispersion of numeric facets, we
employ the Gini coe�cient [4]. We adapt the original Gini
index for use in our context:

giniCoe�cient(p, q) =

1
m

0

BB@m+ 1� 2

0

BB@

mP
i=1

(m+ 1� i)fi

mP
i=1

fi

1

CCA

1

CCA (4)

=
2
Pm

i=1 ifi
m
Pm

i=1 fi
� m+ 1

m

given fi 2 F ⇤
p for i = 1 to m

F ⇤
p = {fi | fi 2 Fp \ Fd, d 2 Dq, fi  fi+1}
m = |F ⇤

p |
p 2 Pquantitative

where F ⇤
p represents the values for numeric property p for the

products in the result set, indexed in non-decreasing order
(fi  fi+1), with fi being the facet ranked at index i.

In Table 2 we give the Gini coe�cients for the considered
properties. From the table we can also conclude that the
Gini for Lowest Price (e) is higher, suggesting that the
values for that property are more dispersed than those of
Diagonal Screen Size (inch). Similar to the Gini impu-
rity for qualitative facets, the Gini coe�cient for properties
is independent of the number of products that have this
property.

3.2.4 Product Count Weighting
With the Gini impurity and the Gini coe�cient, we now

have metrics to score both qualitative and numeric proper-
ties. As mentioned in the previous sections, this score is
independent from the number of products on which it is
based. This could possibly lead to problems, as properties

that occur within few products will obtain a relatively high
score. To compensate for this, we introduce the product
count weighting. The product count weighting is used to
normalize the Gini indices, resulting in the final property
score. Additionally, it provides a way to cope with missing
values, as properties with many missing associations will be
ranked lower. We define the final property score as:

propertyScore(p, q) = gini(p, q) ·
X

f2Fp

disjointCount(f, q)
|Dq|

(5)
where gini is either the Gini impurity or the Gini coe�cient
(depending on the property type). The term with which gini
is multiplied is the product count weighting term. Table 2
shows the product count weighting for each property.

3.3 Computing Facet Scores
We now discuss the details of computing facet scores,

shown as one of the first two processes in Figure 2. For
numeric properties, value ordering is neglected, as these are
often represented with a slider widget in user interfaces. For
qualitative properties our approach employs the facet count
from Equation (1), ranking facets descending on count, per
property. As the target product is unknown to the system,
this will increase the chance that a facet matching the target
product is placed on top.
In the evaluation, we compare our approach to the one

proposed in [9]. To have an honest comparison, we have
implemented a version of their method that includes the same
facet sorting as our algorithm, as the authors themselves
have neglected this aspect. The di↵erence in results can thus
be completely accounted to property sorting.

4. EVALUATION
In this section, we discuss the evaluation of our proposed

approach. The evaluation is based on simulated user sessions,
where the simulation framework is derived from previous
literature and solid theoretical foundations.

4.1 Experimental Framework
Figure 4 gives an overview of the concepts that underlie

the evaluation framework. In our experimental setup, one
simulation process represents an individual search session,
which we will refer to as an experiment. Each experiment
contains the selection of one drill-down model, one ordering
scheme, and one target product. Furthermore, some of the
drill-down models and ordering schemes contain stochastic
aspects. Therefore each experiment is repeated 50 times, in
order to reduce the variability of results. For each experiment
we record six di↵erent metrics. For the target products, we
have decided to use every product in our data set as a target
product du, in order to get the most reliable results from the
data that we have available.

4.1.1 Drill-Down Models
There are three drill-down models that we consider, based

on the ones proposed in [10, 12]. In the Least Scanning
Drill-Down Model, MS , the user u scans the list of facets F
starting from the top. When u encounters a facet f 2 Fdu

(a facet associated with the target product), (s)he will select
that facet without further scanning.

The Best Facet Drill-Down Model, MB , assumes that when
u is searching for du and is scanning F , u identifies the single
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Expert-Based Greedy Count Kim et al. Our approach

user e↵ort:

# clicks (Xc) 4.0 28.2 19.7 2.3
# clicks std dev 1.24 18.65 14.04 0.68
prop scan e↵ort (Xp) 0.0538 0.1914 0.0630 0.0267
prop scan e↵ort std dev 0.0273 0.0891 0.0351 0.0124
facet scan e↵ort (Xf ) 0.1462 0.2438 0.4550 0.2111
facet scan e↵ort std dev 0.0908 0.0952 0.1516 0.1718

other measures:

computation time (ms) 4 23, 386 49, 818 187
computation time std dev 3.7 26, 832.4 45, 129.9 74.9
successful sessions (%) 100.00% 100.00% 100.00% 100.00%

(a) Least Scanning Drill-Down Model
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user e↵ort:

# clicks (Xc) 1.5 1.5 1.5 1.5
# clicks std dev 0.52 0.52 0.52 0.52
prop scan e↵ort (Xp) 0.3474 0.7232 0.5804 0.2399
prop scan e↵ort std dev 0.2607 0.2091 0.1939 0.2257
facet scan e↵ort (Xf ) 0.4659 0.4796 0.4946 0.4547
facet scan e↵ort std dev 0.2730 0.2736 0.2695 0.2764

other measures:

computation time (ms) 2 25 1, 507 160
computation time std dev 0.9 213.2 638.1 61.9
successful sessions (%) 100.00% 100.00% 100.00% 100.00%

(b) Best Facet Drill-Down Model
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user e↵ort:

# clicks (Xc) 30.7 62.9 59.8 18.8
# clicks std dev 20.05 27.98 20.01 9.77
prop scan e↵ort (Xp) 0.1220 0.1681 0.1524 0.2268
prop scan e↵ort std dev 0.0232 0.0255 0.0297 0.0261
facet scan e↵ort (Xf ) 0.3904 0.4842 0.5443 0.3075
facet scan e↵ort std dev 0.0599 0.1100 0.0325 0.0308

other measures:

computation time (ms) 16 118, 155 113, 336 2, 843
computation time std dev 12.6 72, 772.1 53, 871.0 2, 094.0
# rollups mean 10.7 10.0 16.6 6.2
successful sessions (%) 90.96% 64.00% 79.53% 99.07%

(c) Combined Drill-Down Model

Table 3: Results for all drill-down models with n = 10, ↵ = 0.9, and maximum 100 iterations. The number of
roll-up actions is only applicable to the Combined Drill-Down Model, as this is the only model that simulates
users making faulty facet selections.
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Conclusions
• We proposed an facet ordering approach 
• Two Gini-based measures for qualitative and 

numeric properties 
• Compared to other (automatic) approaches: 

• faster 
• needs less roll-ups 
• higher % successful sessions


