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Introduction

* The challenge:
— to speed up querying over huge RDF datasets

e Usually assumed to be large datasets with few updates, so
we can relatively freely introduce extra indexes
— Hexastore: [VLDB 2008, Weiss, Karras & Bernstein]
* indexes on spo, sop, pso, pos, ops, osp
— RDF3X [VLDB 2008, Neumann & Weikum]
* alsoindexeson:s, p, o, sp, so, ps, po, 0s, op

. Up to now fairly classical indexing techniques

: Storing and Indexing Massive RDF Datasets. Yongming Luo, Francois Picalausa,
George H. L. Fletcher Jan Hidders and Stijn Vansummeren. In: De Virgilio, R., et al. (eds.) Semantic
Search over the Web, Data-Centric Systems and Applications, pp. 31-60. Springer, Heidelberg (2012).

 We focus on structural indexes,

— a holistic type of indexing known from XML databases to speed up
path expression evaluation



SPARQL Query Processing

Subject Predicate Object Subject Predicate Object

Sue Manages Joe Sue Type CEO

Joe Manages Larry Manages Type socialRelation
Larry Manages Sarah FriendOf Type socialRelation
Sue FriendOf John Likes Type socialRelation
John FriendOf Hiromi

Hiromi FriendOf Sarah

Find the people who are indirectly related.
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Sue Manages Joe Sue Type CEO

Joe Manages Larry Manages Type socialRelation
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Hiromi FriendOf Sarah

Find the people who are indirectly related.

Sue Larry
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Sue Hiromi
John Sarah
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SPARQL Query Processing

Subject Predicate Subject Predicate
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Joe Manages Larry Manages Type socialRelation
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SPARQL Query Processing

Subject Predicate Subject Predicate
Sue Manages Joe Sue CEO

Joe Manages Larry Manages socialRelation

Larry Manages Sarah FriendOf socialRelation

Sue FriendOf John Likes socialRelation
John FriendOf Hiromi
‘ Hiromi FriendOf Sarah

Find the people who arelindirectly related.

SELECT ?el ?e3 WHERE {
’rell :Type :socialRelation
?el ’rell ’e2 .




SPARQL Query Processing

Subject Predicate Object Subject Predicate Object

Sue Manages Joe Sue Type CEO

Joe Manages Larry Manages Type socialRelation
Larry Manages Sarah FriendOf Type socialRelation
Sue FriendOf John Likes Type socialRelation
John FriendOf Hiromi

Hiromi FriendOf Sarah

Find the people who are indirectly related.

Sue Larry
Joe Sarah
Sue Hiromi
John Sarah
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Adding join information

Subject Predicate Object Subject Predicate

CEO

anages Type

socialRelation

Sarah

Manages riendOf Type

socialRelation

ikes Type

socialRelation

Hiromi FriendOf Sarah

We mark all triples (s,, p,, o) such that their object o
occurs as the subject of some other triple (o, p,, 0,)
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Using join information

Subject Predicate Object Subject Predicate Object
Sue Type CEO
Manages Type socialRelation
Manages Sarah FriendOf Type socialRelation
Likes Type socialRelation

Hiromi FriendOf Sarah

Find the people indirectly related.

SELECT ?el ?e3 WHERE {
’rell :Type
?el ’re

ccialRelation

:socialRelation
’rel2 re3 .
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Motivation

* Traditional relational SPARQL query engines fetch triples
corresponding to individual triple patterns independently

* Rich history of introducing join information into query engines

— Join Indexes: Precompute a single join (e.g. R.a =S.b)
— Object Oriented indexes:  Precompute join of single path in class
hierarchy

— Structural Indexes (for XML and RDF):
Group nodes according to join similarity,
fixed set of edge label

* By grouping together triples that can be joined in a “similar
fashion”, we can avoid fetching useless triples from disk.

— How do we compute and store these groups?
— How can we use them to process queries?
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Real-World SPARQL Queries

Definition: The equality type of two triplest =(t,, t,, t;) and u = (u, u,, us) is
the set eqtp(t, u) ={ (i, j) | t;=u, and 1 <, j < 3} of positions where the
triples share an equal value.

t: Sue Manages Joe

u: Joe Manages Larry

eqtp(t, u) =1{(3,1), (2,2)}
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Structural Index

Definition: A structural index is an edge labeled graph (V,E), where
The nodes V are a partition of the RDF dataset
The edges E are labeled by the equality types between triples in nodes

Subject Predicate Object Subject Predicate Object

Sue Manages Joe Sue Type CEO

Joe Manages Larry Manages Type socialRelation
Larry Manages Sarah FriendOf Type socialRelation
Sue FriendOf John Likes Type socialRelation
John FriendOf Hiromi

Hiromi FriendOf Sarah




Structural Index

Definition: A structural index is an edge labeled graph (V,E), where
The nodes V are a partition of the RDF dataset
The edges E are labeled by the equality types between triples in nodes

Sue FriendOf John Sue Type CEO

Sue Manages Joe

John FriendOf  Hiromi Manages Type socialRelation

Joe Manages Larry FriendOf Type socialRelation

Hiromi FriendOf Sarah Likes Type socialRelation

Larry Manages Sarah




Structural Index

Definition: A structural index is an edge labeled graph (V,E), where
The nodes V are a partition of the RDF dataset
The edges E are labeled by the equality types between triples in nodes

{(1,1)}

Sue FriendOf John < Sue Type CEO
2,1
Sue Manages Joe {(2,1)} (2.2)
{(3,1), (2,2)}
co
John FriendOf Hiromi [< Manages Type socialRelation
Joe Manages Larry FriendOf ~ Type socialRelation
| {(2,1)
{(3,1), (2,2)} l{(Z,Z)}

Hiromi FriendOf Sarah Likes Type socialRelation

Larry Manages Sarah




Structural Index

Definition: A structural index is an edge labeled graph (V,E), where
The nodes V are a partition of the RDF dataset
The edges E are labeled by the equality types between triples in nodes

. {(1,1)}
Sue FriendOf John < Sue Type CEO
M J 2,1
Sue anages Oij {(2,1)} U (2.2))
{(3,2), (2,2)}
en O NN
John FriendOf Hiromi [< Manages Type socialRelation
Joe Manages Larry FriendOf ~ Type socialRelation
| {(2,2) )
{(3,1), (2,2)} U l{(Z,Z)}
Hiromi FriendOf Sarah Likes Type socialRelation

Larry Manages Sarah j U



Querying the Index

<

2,1
(5,1, 2.2) & (2,20}

: 5
‘IH&DJLﬂ} {(2,1)} IE!!IIIl.\u
. 6

SELECT ?el ?e3 WHERE {

’rell Type socialRelation .
?el ’rell ’e2 .
’rel2 Type socialRelation .
re2 ’rel2 ’e3 .
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Real-World SPARQL Queries

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.
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Real-World SPARQL Queries

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.

A query Q is acyclic if it has a join forest.

A join forest for Q is a forest F whose set of nodes are the triple patterns of the query.
For any pair of triple patterns p and q in Q that have a variable in common:
1. pand g belong to the same connected component of F

2. All variables common to p and g occur in every triple pattern on the path in F
fromptoq

?w Manages ?x

?w  Manages ?x. /

?’Xx  Manages ?y. ?x Manages ?y ?y FriendOf ?x
?y  FriendOf ?w.
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Real-World SPARQL Queries

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.

A query Q is acyclic if it has a join forest.

A join forest for Q is a forest F whose set of nodes are the triple patterns of the query.
For any pair of triple patterns p and q in Q that have a variable in common:
1. pand g belong to the same connected component of F

2. All variables common to p and g occur in every triple pattern on the path in F
fromptoq

?w Manages ?x

?’Xx  Manages ?y. ?x Manages ?y ?y FriendOf ?w
?y  FriendOf ?w.
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Structural Characterization

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.

[Deﬁnition: A BGP query is pure if it contains only variables. }
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Structural Characterization

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.

Theorem: Given two triples t, and u, the following are equivalent:
- tisinQ(D) if and only if uis in Q(D), for every pure acyclic BGP Q
- tissimilarto u

Consider a RDF dataset D. A triple t of D simulates a triple u of D guardedly
if for every triple t’ of D, there exists some triple u’” of D such that eqtp(t,t’) &
eqgtp(u,u’) and t’ simulates u’.
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Structural Characterization

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.

Theorem: Given two triples t, and u, the following are equivalent:
- tisinQ(D) if and only if uisin Q(D), for every pure acyclic BGP Q
- tissimilarto u

Consider a RDF dataset D. A triple t of D simulates a triple u of D guardedly
if for every triple t’ of D, there exists some triple u’” of D such that eqtp(t,t’) &
eqgtp(u,u’) and t’ simulates u’.

(Sue, FriendOf, John) >(John, FriendOf, Hiromi) > (FriendOf, Type, relation)
{(3,1), (2,2)} {(2,1)}

(Joe, Manages, Larry) > (Lary, Manages, Sarah) >(Manages, Type, relation)
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Structural Characterization

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.

Theorem: Given two triples t, and u, the following are equivalent:
- tisinQ(D) if and only if uis in Q(D), for every pure acyclic BGP Q
- tissimilarto u

Consider a RDF dataset D. A triple t of D simulates a triple u of D guardedly
if for every triple t’ of D, there exists some triple u’” of D such that eqtp(t,t’) &
eqgtp(u,u’) and t’ simulates u’.

(Sue, FriendOf, John) >(John, FriendOf, Hiromi) > (FriendOf, Type, relation)
simulates

{(3,1), (2,2)} simulates ( {(2,2)} simulates

(Joe, Manages, Larry) > (Lary, Manages, Sarah) >(Manages, Type, relation)
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Structural Characterization

Fact: Most queries posed in practice only use basic graph pattern (BGP).
99% of real-world BGP queries are found to be acyclic.

Theorem: Given two triples t, and u, the following are equivalent:
- tisinQ(D) if and only if uis in Q(D), for every pure acyclic BGP Q
- tissimilarto u

A triple t of D is similar to a triple u of D, denoted t = u, if t simulates u and u

simulates t.
(Sue, FriendOf, John) >(John, FriendOf, Hiromi) > (FriendOf, Type, relation)
similar {(3,1), (2,2)} similar {(2,1)} similar

(Joe, Manages, Larry) > (Lary, Manages, Sarah) >(Manages, Type, relation)
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Structural Index

|

Sue

FriendOf

John

Sue

Manages

Joe

John

FriendOf

Hiromi

Joe

Manages

Larry

Hiromi

FriendOf

Sarah

Larry

Manages

Sarah

Sue Type CEO

Manages Type socialRelation

FriendOf  Type socialRelation

Likes Type socialRelation
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Structural Index Storage

Ideally, the structural index is sufficiently small to be kept in main memory

{a
1) s

1(2,2)}

{(3,1), (2,2)} {(2,1)}

Each triple (subject, predicate, object) are stored as a quad (subject, predicate, object,
partition)

Subject Predicate Object Partition
Sue Manages Joe 1
Joe Manages Larry

2
Larry Manages Sarah 3
Sue FriendOf John 1




Querying the Index
Pattern1 | Pattern2 | Pattern3 | Pattern4
5 1 5 2

<

1(5,1), (2,2)} 1(2,2)}
(2,1)}

5
R EPTIRN
6

SELECT ?el ?e3 WHERE {

’rell Type socialRelation .
?el ’rell ’e2 .
’rel2 Type socialRelation .
re2 ’rel2 ’e3 .



Querying the Index
Pattern1 | Pattern2 | Pattern3 | Pattern4
5 1 5 2

-5 2 5 3 -
3,1), (2,2)} 1(2,2)}
(2,1)}

{3,1), (2,2)} {(2,1)} IE!!IIIl.ku

SELECT ?el ?e3 WHERE {

’rell Type socialRelation .
?el ’rell ’e2 .
’rel2 Type socialRelation .
re2 ’rel2 ’e3 .



Query Processing Strategies

Input: The SPARQL query
All embeddings of the query into the structural index

Patten1 | Pattern2 | Pattern3 | Patternd __
5 1 5 2

5 2 5 3

Output: A physical query plan
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Query Processing Strategies

Input: The SPARQL query
All embeddings of the query into the structural index

Pattern1 _| Pattern2__ Pattern 3

5 1 5
5 2 5

Pattern 4

Output: A physical query plan

(M1): ((Partitionl > Partition5) > (Partition2 > Partition5))
U ((Partition2 > Partition5) > (Partition3 > Partition5))

(M2):  ((Partition5 = (Partition1 U Partition2)) >
(Partition5 = (Partition2 U Partition3)))

(M3): ((Patternl = (Partition1 U Partition2 ))
(Pattern3 =~ (Partition2 U Partition3)))
Only use partitions when query optimizer deems useful



Empirical Evaluation

How do the different processing strategies compare?
Can traditional query processors benefit from this additional index?

SAINT-DB: modification of RDF-3X with structural indexes

Datasets:
— LUBM: Synthetically generated dataset of 2 million triples
— Southampton: Real-world dataset of 4 million triples

All results given in number of disk page reads



Comparison of the different strategies
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Comparison with RDF-3X

* C1: Single triple pattern
(Sue, Manages ?y)
* C2: Highly selective triple patterns in the query
(?x, Type, CEO) (?x, Manages, John)
* C3:Queries with multiple triple patterns, non selective

Processing strategy: M3

C1 C2 C3
L2 L3 Lj| L9 St S2 S,|Li L5 L6 L7 LS

SAINT-DB||116 5 163| 18 18 36 64 [238 39 47 38 7
RDF-3X || 89 5 12312 16 35 53 |194 132 39 268 7
Speed-up [(0.77 1.00 0.75(0.67 0.89 0.97 0.83]0.82 3.38 0.83 7.05 1.00

C3
Li0 Li1 Li12 Li13 Li14 L15 Li6 S3 S5 S6 S7

SAINT-DBJ|| 25 41 0 53 1519 352 288 48 410 173 175
RDF-3X || 21 30 281 109 2668 2178 1224 33 424 316 236
Speed-up (|0.84 0.73 o0 2.06 1.76 6.19 4.25 0.69 1.03 1.83 1.35

90



Comparison with RDF-3X — Best Case

1000 chains are generated for each N =3..5

Queries are chains of triple patterns of the form

(?X4, Y4 %) (%5, ?Y5, ?X3), o (PX,, 2V ?X041) n=4.7

SAINT-DBJ|[ 306 | 350 | 393 | 438
RDF-3X |[3864 (4799|5734 (6669
Speed-up |([12.63|13.71]14.59(15.23

o1



Conclusion

* We introduced a triple-based structural index
for RDF

* This index is tied to practical fragments of
SPARQL

* Our initial empirical study shows that the
approach is profitable



Future Work

Alternate Structures for storing the index and
dataset

More optimized query processing strategies

Efficient external memory and/or distributed
computation of the indexes

Extension to richer fragments of SPARQL
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