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Abstract. The temporal dimension has been recognized as an integral
feature of many Semantic Web applications, but there are significant
differences in how ontology authors choose to represent changes in time.
We present a temporal conceptual model for OWL DL ontologies that
allows the expression of fluent properties, i.e., properties that change in
time, that is both representation-agnostic and serializable for the various
available representation schemes. We also provide Kala, a reference im-
plementation developed in Java, that can be used to generate temporal
ontologies, convert between temporal ontologies in different representa-
tion schemes, and develop new applications such as temporal querying
or visualization tools.
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1 Introduction

The ability to identify trends and make predictions is of critical importance
for successful trading in financial markets. The increase in prominence of so-
phisticated, low-latency algorithmic trading systems has spurred development
of technologies such as news analytics for the timely extraction of information
that is relevant to the identification of market opportunities [24]. The Seman-
tic Web, and OWL in particular, provide the technology to represent, manage,
share, and reason over self-describing data, but these representations tend to be
synchronic, i.e., they lack the crucial time dimension.

One reason for the lack of temporality in existing ontologies is that, while
much effort has gone into providing support for temporal features at the repre-
sentational level, there seems to be a lack of a shared, representation-agnostic
model at the conceptual level, which is where user requirements commonly need
to be met. Here, we consider the conceptual level to be the level at which humans
may express and interpret information that closely relates to the perceived real
world, the level that captures the essential semantics of temporal ontologies. In
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contrast, we consider the representational level to describe the organization of
the information for representation and storage as computer data, typically as en-
tities and relationships between entities, supported by a representation-specific
vocabulary to express the individual data items. We shall refer to the concep-
tualization of temporal ontologies as the temporal conceptual model, and to the
specification on the representational level as the temporal representation scheme.

Existing representation schemes are generally not directly compatible, and
one result of the focus on representation schemes is that it greatly reduces the
interoperability of various temporal implementations. Given the high conversion
barriers, the ability to share and reuse data — a core objective of the Seman-
tic Web — suffers. Secondly, the authors and users of temporal ontologies are
directly exposed to the details of the particular representation scheme, which
makes the development and use of temporal ontologies a cumbersome, complex,
and error-prone process. Lastly, the focus on specific representation schemes re-
sults in applications that operate on temporal ontologies becoming tightly bound
to a particular logical structure and implementation. This discourages the devel-
opment of such applications, because their potential audience will be limited to
the users of a particular representation scheme. Examples of these applications
are temporally-enhanced reasoning, querying, and visualization.

Our focus will be on the introduction of concepts that form the building
blocks of the semantics for temporally enhanced ontologies. The temporal con-
ceptual model is designed to be mappable to selected representation schemes
in OWL DL; that is, these representation schemes can be expressed in the
SHOIN (D) description logic, and are fully compatible with the SROIQ(D)
description logic employed by OWL 2. The model is, itself, composed of two
orthogonal partitionings: one that describes the time domain, while the other
describes fluent properties. Fluent properties, first described in the earliest litera-
ture on computer learning and artificial intelligence by McCarthy and Hayes [21],
represent properties and relationships that may change with time.

Fluent properties form a suitable focal point for the exploration of a temporal
conceptual model for a number of reasons. Firstly, the concept is immediately
familiar: one does not have to stretch the imagination to think of examples of
properties and relationships that change over time; a person’s address, employer,
and even favorite soccer team are all subject to such change — in fact, it may
be more difficult to conceive examples of properties and relationships that cat-
egorically do not change over time! Secondly, fluent properties are conceptually
simple: in effect, they represent ternary relations that simply extend the famil-
iar binary relations with a fixed role for the third operand, the time interval.
Thirdly, they are useful; as we have argued above, fluent properties allow for
the evolution of an ontology to be expressed, examined, queried, and visualized.
Lastly, fluent properties are already supported, in some form, through existing
representation schemes.

This paper is structured as follows. Section 2 presents background on tempo-
ral models in general and the current state of temporal ontologies in particular.
After this, in Sect. 3, we present the formal description of the proposed temporal
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conceptual model. An example implementation is provided in Sect. 4, followed
by an evaluation of the implementation in Sect. 5. Lastly, we give our concluding
remarks and identify possible future work in Sect. 6.

2 Representations of Temporality

The topic of data temporality has enjoyed great prolificacy: the scientific litera-
ture is rich in discussions of temporality, from philosophical treatises of time to
discussions of temporal infrastructures and reasoning. Historically, this interest
stems from the importance of time in many real-world applications, from logging
and scheduling systems to biomedical databases and algorithmic trading.

Much of the early research on data temporality has focused on the field of
temporal databases, a topic with similarities to temporal ontologies, and one that
is considerably more mature. In fact, a striking resemblance to the current state
of temporal ontologies may be gleaned from past reports on the field of temporal
databases. Pissinou et al., in their report [27] on a 1992 ARPA/NSF workshop
that was aimed specifically at identifying problems within the field of temporal
database technology, conclude that the many different custom extensions to the
relational model, each intended to serve very specific user needs regarding tem-
poral support, and the resulting lack of a common terminology, infrastructure,
and conceptual model for temporal databases, are primary reasons for reduced
adoption of temporal database technology; similarly, we find that the field of
temporal ontologies faces the same issues. The researchers and participants also
identify the ad-hoc nature of many applications extended to include temporal
information and the understandable resistance to replace existing applications
with full-fledged temporal database technology as obstacles in the development
and adoption of a standard for temporal databases, and conclude that there is
a need for open architectures that allow for easy conversions between different
representations.

In response to such findings, a consensus temporal query language specifi-
cation, TSQL2 [28], was developed, but the specification, despite strong ini-
tial ISO interest, failed to catch on: by the time that SQL:1999 was formally
published, the specification had failed to meet the committee’s requirements
and could not be included in the language standard, and SQL vendor inter-
est waned. Eventually, however, a number of key ideas from TSQL2 found
their way into the SQL:2011 specifications [22]. Of these ideas, the concepts of
valid-time (“application-time tables”) and transaction-time (“transaction-time
tables”) have proved particularly useful: valid-time marking the time that a fact
is held to be true, and transaction-time marking the time that a fact is known
in the database. The approach to temporality in databases, then, typically re-
solved to marking tuples with valid-time and transaction-time timestamps, and
this formed the basis for the general temporal database model (see, e.g., the
conceptual model by Jensen et al. [16], the survey of temporal databases by
Özsoyoğlu and Snodgrass [26], and the survey of temporal entity-relationship
models by Gregersen and Jensen [11]).
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With the development of the Semantic Web and its primary languages, the
Resource Definition Language (RDF) and the Web Ontology Language (OWL),
came efforts to represent temporal information in these languages. The Tempo-
ral RDF [12] language extension and its related query language T-SPARQL [10]
form the main solution approach to introduce time to RDF. Unfortunately, Tem-
poral RDF is not compatible with OWL DL because of its use of RDF reification.
Compounding this problem is the snapshot-based entailment mechanism of Tem-
poral RDF, which expands any temporal statement defined over a time interval
into a series of temporal statements defined over each time instant contained by
the interval, and the lack of available serializations, for example to RDF/XML.

Another approach is ontology versioning [17], in which “snapshots” of the on-
tology are created for each state of the ontology during its development. Unsur-
prisingly, this comes at the cost of significant data redundancy. Moreover, its sup-
port for particular classes of queries (e.g., “when is fact S true in the database?”)
is limited. However, the approach may also be used to model transaction-time,
and may then be considered to be completely orthogonal to other (generally
valid-time) approaches discussed here. The application of ontology versioning,
therefore, may be appropriate in some cases where transaction-time needs to be
modeled in addition to valid-time, but, perhaps, at low enough resolution so as
to reduce the impact of data redundancy.

There have also been proposals to extend description logics with valid-time;
see, e.g., the surveys by Artale and Franconi [2] and Lutz et al. [20]. Such tempo-
ral description logics are generally based on the ALC description logic [8]. These
extensions are generally not compatible with OWL: the decidability of tempo-
ral description logics is compromised when the language is extended to the full
description logics of SHOIN (D) for OWL DL or SROIQ(D) for OWL 2 [3].
Opting for temporal description logics would also mean giving up on the rich
toolset developed for the OWL language, such as editors and reasoners.

Representation schemes for modeling temporality in OWL DL ontologies
generally follow either the reification1 approach or the 4D-fluents approach. In
the reification approach, a property instance is reified, that is, converted into
a proper instance, and the original property’s subject and object instances, or
subject instance and datatype value, are then related to the newly reified relation
through conventional property assertions to retain the information expressed
by the original 〈subject,property, object〉 or 〈subject,property, value〉 triples.
However, since we are now able to specify the reified property as the subject or
object of additional triples, we effectively gain the ability to express properties
that are ternary, quaternary, or generally n-ary in nature. The general approach
of reification is, therefore, appropriately named n-ary relations [25].

At first glimpse, the reification approach seems appropriate for adding a
ternary component, e.g., valid time, to any property assertion, and develop tem-
poral ontologies based on temporally qualified properties. The reification ap-
proach is not without problems, however. One problem is the proliferation of

1 Note that the reification representation scheme is not the same as the RDF reifica-
tion, the latter being not available in OWL DL.
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objects, namely one for each reified property assertion; related to this is the
problem of providing meaningful names to the reified properties, or, alterna-
tively, dealing with objects that may not have meaningful names. Another prob-
lem is the reduction of OWL reasoning capabilities over ontologies with reified
properties; property semantics such as inverses or cardinalities are difficult or
impossible to describe for reified properties in a general reasoning context.

In contrast to reification, the 4D-fluents approach [29] does not associate
property assertions with valid-time intervals directly, but instead opts to have
temporal properties hold between timeslices of entities, a timeslice being defined
as the temporal facet of some entity as it “occupies” some interval in time. In or-
der to be consistent, both subject and object timeslices must be compatible, that
is, occupy the same interval in time. An important advantage of the 4D-fluents
approach over the reification approach is that properties retain their semantics
in reasoning contexts: for example, we may trivially define the inverse of a fluent
property, as well as symmetry and transitivity; something that is not straight-
forward in the reification approach. The 4D-fluents approach, however, suffers
from worse object proliferation than the reification approach in the general case.

The 4D-fluents approach has inspired several implementations. tOWL [23]
employs the 4D-fluents approach and combines it with concrete domains and
Allen’s interval algebra [1] to allow the expression of temporal restrictions.
SOWL [5], a spatio-temporal representation, uses the 4D-fluents approach as
its temporal component. A reinterpretation of the 4D-fluents approach is imple-
mented by the MUSING project [19], which focuses on adoption of the approach
in the context of a reasoning architecture. Baratis et al. propose the 4D-fluents
approach, combined with Allen’s interval algebra, as the basis for TOQL [4].

Both approaches employ strategies that force conceptual concessions that
conflict with intuitive understanding: the reification representation scheme mod-
els properties as classes, property assertions as instances, and prevents the user
from specifying qualifiers for property semantics; the 4D-fluents representation
scheme retains the property semantics, but requires the user to view instances
as “spacetime-worms” and accept the conceptual implications that such a view
necessitates. Converting a synchronic ontology with only static properties to a
temporal ontology with dynamic properties is thus a cumbersome, error-prone
process, as is the conversion between representation schemes. The lack of work
on conceptual models for temporal ontologies in the literature indicates the need
for improvements in this area.

3 The Temporal Conceptual Model

In this section we describe the proposed temporal conceptual model. Section 3.1
describes the time model. Section 3.2 builds on the time model to present the
fluents model.
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3.1 The Time Model

The time model extends the OWL model by introducing time instants and time
intervals (the so-called temporal primitives), as well as assertions that relate these
primitives to one another or assign to them discrete timestamp values. These
temporal primitives and assertions form the building blocks for time models of
varying expressive power and complexity.

The time model allows primitives to be declared explicitly through primitive
declarations. Such declarations may or may not translate to OWL class mem-
bership declarations when serializing to a representation scheme R, depending
on whether R represents time instants or time intervals as individuals or, in-
stead, represents them directly as datatype values. The following axioms declare
the anonymous individual :t1 to be a time instant, and the named individual
period2013Q1 to be an interval. We use a syntax that closely resembles the
OWL Abstract Syntax in order to concisely express concepts in a familiar way.

TimeDeclaration(TimeInstant(_:t1))

TimeDeclaration(TimeInterval(period2013Q1))

The “before” relation between time instants t1 and t2 can be explicitly ex-
pressed in the temporal conceptual model, as shown below:

TimeInstantRelationAssertion(_:t1 _:t2 <)

Interval endpoint assertions relate time intervals to time instants: they spec-
ify that some time interval i1 starts at a time instant ts or ends at a time instant
te. To preserve consistency, the assertion of interval endpoints ts and te as, re-
spectively, the start and the end time instants of time interval i implies that
ts < te holds. The following axioms declare the time interval period2013Q1
to start at time instants :t1 and cal2013:jan1, and end at time instant
:t2. Furthermore, the time interval year2013 has the same start instant as
period2013Q1. Note that :t1 and cal2013:jan1 can be inferred to refer to
the same time instant.

IntervalStartAssertion(period2013Q1 _:t1)

IntervalStartAssertion(period2013Q1 cal2013:jan1)

IntervalEndAssertion(period2013Q1 _:t2)

IntervalStartAssertion(year2013 _:t1)

Relations between time intervals are necessarily of a more complex nature
than those between instants, because any two time intervals are not necessarily
disjoint. Allen’s work on interval relations [1] provides an algebra with useful
qualities, and we have adopted the algebra to provide a mapping of relations
between time intervals that is both jointly exhaustive and mutually exclusive.
The time model allows interval relations to be expressed through the use of
TimeIntervalRelationAssertions. As an example, consider the facts that :i1
meets (m) :i2, and that :i1 contains (di) :i3. The following statements
assert these facts in the model:

TimeIntervalRelationAssertion(_:i1 _:i2 m)

TimeIntervalRelationAssertion(_:i1 _:i3 di)
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In order to support timestamp values, we introduce instant time assertions.
We have chosen to use the xsd:dateTime type to represent timestamp values,
as it is already commonly used in OWL ontologies; however, the rather more
complex time types introduced by the OWL-Time ontology [14] may also be
considered in later versions. The InstantTimeAssertion represents the asso-
ciation of a time instant with a particular timestamp. For example, to express
that :t1 is associated with June 5th, 2013, 6:42:23 PM in the Central Euro-
pean Summer Time (CEST: UTC+02:00) time zone, we declare the following
assertion:

InstantTimeAssertion(_:t1

"2013-06-05T18:42:23.000+02:00"^^xsd:dateTime)

3.2 The Fluents Model

The fluents model extends the OWL model by allowing the expression of flu-
ent properties. These fluent properties resemble the standard OWL object and
datatype properties, but assertions of these properties are additionally quali-
fied with intervals from the time model previously introduced, indicating the
(valid-time) interval that the fact is held to be true.

Like regular properties, fluent properties are named resources; that is, they
can be referenced through identifiers that, in turn, may be extended to full URIs.
They should not be considered OWL entities, however, for the simple reason that
fluent properties are not part of the OWL specifications. It is important to note
that the sets of regular properties and fluent properties are disjoint: no regular
property may be used as a fluent property in the temporal conceptual model,
and vice versa. One compelling reason for this separation is semantics: when a
particular property is recognized to be a fluent property, its ability to change
its value over time can be seen to be an intrinsic quality; declaring the property
in a non-temporal context removes this ability and creates a contradiction. An-
other, more technical, reason is that neither the reification nor the 4D-fluents
representation schemes allow for regular properties to be used as fluent proper-
ties, and vice versa: in the reification scheme, this would result in an OWL DL
property and an OWL DL class sharing the same identifier, which is strictly pro-
hibited by the standard; and in the 4D-fluents representation scheme, this would
violate the domain and range restrictions on fluent properties: fluent datatype
properties are restricted to domains of timeslice individuals, and fluent object
properties are restricted to both domains and ranges of timeslice individuals.

The temporal conceptual model provides fluent property declarations to al-
low the ontology author to declare fluent properties explicitly. The manner in
which these declarations are expressed in the eventual representation schemes is
dependent on the details of the particular serialization. As an example, consider
the following axioms, which declare a fluent object property ceoOf and a fluent
datatype property hasTitle:

FluentsDeclaration(FluentObjectProperty(ceoOf))

FluentsDeclaration(FluentDataProperty(hasTitle))
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The ontology author may wish to specify domain and range restrictions for
fluent properties to restrict their use in ways that enforce correctness. These
work similar to domain and range restrictions on regular properties: i.e., the
domain of fluent object and datatype properties may be restricted to any class
expression, as may the range of fluent object properties, and the range of fluent
datatype properties may be restricted to any data range. The hasTitle fluent
datatype property, for example, may be restricted as follows:

FluentDataPropertyDomain(hasTitle Person)

FluentDataPropertyRange(hasTitle DataOneOf(

"Mr."^^xsd:string "Mrs."^^xsd:string "Ms."^^xsd:string))

As with regular properties, sequences of multiple domain or range restrictions
on fluent properties are interpreted to represent the intersection of those domain
or range restrictions.

A fluent object property assertion expresses the fact that a relation holds
between two individuals during a particular time interval. Similarly, a fluent
datatype property assertion expresses the fact that an attribute value holds for
a particular individual during a particular time interval.

As fluent property assertions are at the heart of the temporal conceptual
model, we shall provide a formal definition. Let us first define the concept of a
snapshot reduction of a temporal ontology:

Definition 1. Let T = 〈Tp, <〉, where Tp is a set of time instants and < is a
binary relation on the set Tp that is at least a strict partial order, be a linear,
ordered time domain. Let OT be a temporally enhanced ontology over T . Then,
a snapshot reduction OT

t of OT at time t ∈ Tp is a non-temporal ontology that
represents OT at time t.

We can now formally define fluent object property assertions as follows:

Definition 2. Let C be the set of all class expressions. Let T = 〈Tp, <〉, where
Tp is a set of time instants and < is a binary relation on the set Tp that is
at least a strict partial order, be a linear, ordered time domain. Let OT be a
temporally enhanced ontology over T . Let fOP : D −→ R, D ⊆ C, R ⊆ C be a
fluent object property, and let OP : D −→ R be the non-temporal interpretation
of fOP . Then, a fluent object property assertion, faOP = 〈s, fOP , o, i〉, s ∈ D,
o ∈ R, i = 〈ts, te〉, ts ∈ Tp, te ∈ Tp, ts < te is said to hold between ts and te
if there exists an object property assertion aOP = 〈s,OP, o〉 in every snapshot
reduction OT

t of OT , ts ≤ t < te.

The formal definition of fluent datatype property assertions follows similarly,
but is omitted for reasons of conciseness.

Using fluent property assertions, the ontology author may now express facts
about individuals that only hold during a particular time interval. For example,
in order to express that sam was the CEO of ibm during interval :i1, and that
mary was to be addressed as “Ms.” during interval :i2, we add the following
axioms:
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FluentObjectPropertyAssertion(sam ceoOf ibm _:i1)

FluentDatatypePropertyAssertion(mary hasTitle

"Ms."^^xsd:string _:i2)

4 Reference Implementation

To illustrate the use of our temporal conceptual model, we have developed Kala
– Kālá being the Sanskrit word for time – as a proof-of-concept implementation.
Kala is a Java Application Programming Interface (API) to aid the development
of applications that need to create, manipulate, or query temporal ontologies at
the conceptual level. It is based on the OWL API [15] and aims to have a design
and interface that is familiar to users of that library. Like the OWL API, it
provides an axiom-centric view of the (temporal) ontology, as opposed to the
RDF triple-centric view of APIs such as Jena [6]. This axiom-centric view allows
developers to utilize the library without concern for representation issues, in
particular those related to parsing and serialization. Additionally, extending the
OWL API will aid the later development of plug-ins for Protégé [18], a mature
and widely-used ontology editor.

In order to guide the extension of the OWL API with temporal constructs,
we pose two strong requirements:

1. The newly introduced temporal constructs must be completely separated
from the constructs already supported by the OWL API in order to ensure
the orthogonality of the non-temporal ontology and the temporal model; and

2. Kala must be compatible with custom implementations of the OWL API.

The orthogonality of the non-temporal components of the ontology and the
temporal model is crucial for the correct functioning of the temporal model
as an abstraction. We cannot, for example, decide that time instants and time
intervals are subclasses of OWL individuals: time instants and time intervals are
not necessarily represented as individuals in the representation scheme, and we
need to restrict the operations that are permitted on these special entities in
order to ensure that the temporal model will always have a correct mapping to
the representation schemes. A statement such as, for example, “Bob is a friend
of time instant t1” does not make much sense in this context. Similar arguments
hold for the fluent properties.

The compatibility with custom implementations of the OWL API is similarly
crucial in the context of such developments as OWL database backends (for an
examplar OWL database backend, see OWLDB [13]). In order to support custom
implementations, we implement the extended functionality through the use of
the Decorator design pattern [9]. We implement the additional Kala functionality
by providing Decorators for the following three OWL API interfaces:

The ontology. The OWL API views an OWLOntology, essentially, as a collec-
tion of OWLAxioms and OWLAnnotations. It provides methods to query these



10

axioms and annotations, directly or through convenience methods, and col-
laborates with other objects to change the contents of this internal collec-
tion. Introducing new categories of axioms, then, necessitates extending the
OWLOntology in such a way that it can also store these new axioms, but
without altering its existing behavior.

The data factory. The OWL API OWLDataFactory presents the interface for
producing the entities, class expressions, and axioms that form the build-
ing blocks of the OWL ontology. The OWLDataFactory follows the Factory
design pattern [9]. We extend the existing OWLDataFactory to support the
construction of the entities and axioms of the temporal conceptual model.

The ontology manager. The OWLOntologyManager, lastly, is responsible for
the creation, loading, saving, and manipulation of ontologies. Since we need
to create a new type of ontology, the temporal ontology, we will need to
extend the behavior of the OWLOntologyManager so that it can properly
manage these temporal ontologies.

Parsing and serialization are performed through the Parser and Serializer

interfaces, respectively. Each has a representation-scheme-specific specialization
(e.g., FluentsSerializer), and all are initialized with data on the capabilities
and vocabulary of the chosen representation through the RepresentationScheme
object. The Parser follows the Builder design pattern [9]: it iterates through a
provided OWLOntology object that represents the temporal ontology using a par-
ticular representation scheme, and builds and modifies structures that together
represent the eventual TemporalOntology as it goes. The Serializer, on the
other hand, is implemented as a Visitor that visits every TemporalAxiom in the
ontology and serializes it as one or more OWL axioms. The insight here is that all
TemporalAxioms can be serialized independently of one another (something that
is not true for parsing, where generally multiple OWL axioms must be parsed in
combination in order to extract a single TemporalAxiom). The Serializer in-
ternally stores the set of generated axioms, and produces an OWLOntology from
this set when the createOntology() method is called.

In order to raise awareness of the project and, hopefully, spur future devel-
opments, we have made the source code for Kala available on GitHub [7]. Due
to space limitations, the details of the parsing and serialization algorithms can
be found online at http://tinyurl.com/qhw273a.

5 Evaluation

We evaluate the temporal conceptual model — and Kala, our reference imple-
mentation — by representing a complex business process. The choice of a fitting
scenario for our evaluation needs to satisfy three requirements. Firstly, the sce-
nario must, naturally, convey temporal semantics that necessitate the utilization
of a temporal model. Secondly, the complexity of the scenario must be sufficient
to allow a range of expression types to be illustrated. Lastly, the scenario must
present a relevance for the economic domain to prove its utility. One scenario
fitting these requirements is found in the literature on tOWL. Illustrating the
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expressive power of tOWL, Milea et al. [23] present a historical account of the
Leveraged Buy-Out (LBO) process for Alliance Boots GmbH, a multinational
pharmaceuticals and retailing group that was formed through the 2006 merger
of the Boots group and Alliance UniChem. In what was to be the largest LBO
in European business history, two hedge funds, Kohlberg Kravis Roberts & Co
(KKR) and Terra Firma, vied to acquire the company during the months of
March and April of 2007, with the former emerging with the winning bid and,
thus, the acquisition of Alliance Boots. Section 5.1 shows the modeling of this
LBO process in the proposed conceptual model and Sect. 5.1 shows its serializa-
tion in two representation schemes.

5.1 Modeling the LBO Process

For reasons of conciseness, we refer the reader to the original paper [23] for the
detailed representation of the LBO example, and limit ourselves to the definitions
of fluent properties at the TBox level and the assertions of fluent properties and
temporal entities at the ABox level. The authors identify four main stages of the
LBO process: 1. Early Stage, 2. Due Diligence, 3. Bidding, and 4. Acquisition.
These stages are pairwise disjoint in time and jointly exhaustive over the lifetime
of the LBO process. Furthermore, the LBO process does not necessarily progress
through the stages in a linear manner, and it may be aborted at any point in
time.

TBox level. At the TBox level we find the conceptual information representing
the Company type and its subtypes, HedgeFund and Target; the Stage type and
its subtypes, EarlyStage, DueDiligence, and so on; and the various restrictions
that enforce the validity of the representation. The TBox level is also where the
fluent properties are defined. We present two such fluent properties: earlyStage,
which temporally relates any LBOProcess to its EarlyStage; and inStage, which
temporally relates any Company to any Stage of an LBOProcess in which it
is involved. Finally, we present their respective restrictions. Using the syntax
introduced in Sect. 3.2:

FluentsDeclaration(FluentObjectProperty(earlyStage))

FluentObjectPropertyDomain(earlyStage LBOProcess)

FluentObjectPropertyRange(earlyStage EarlyStage)

FluentsDeclaration(FluentObjectProperty(inStage))

FluentObjectPropertyDomain(inStage Company)

FluentObjectPropertyRange(inStage Stage)

ABox level. The ABox contains the assertional information related to any par-
ticular LBO process. Here, we find representations of participating companies,
alliance boots, kkr, and terrafirma; the instantiation of the LBO process
we wish to represent, lbo1; and its various stages, es1 and so on. Additionally,
we represent the temporal relations between these entities, define the temporal
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primitives involved, and assign discrete time values. To represent, for example,
the following news snippet of information:

Buyout firm Terra Firma mulls Boots bid
(Sun Mar 25, 2007 8:42 EDT)

we use the syntax introduced in Sects. 3.1 and 3.2:

TimeDeclaration(TimeInterval(i1))

TimeDeclaration(TimeInstant(t1))

IntervalStartAssertion(i1 t1)

InstantTimeAssertion(t1

"2007-03-25T08:42:00-04:00"^^xsd:dateTime)

FluentObjectPropertyAssertion(lbo1 earlyStage es1 i1)

FluentObjectPropertyAssertion(alliance_boots inStage es1 i1)

FluentObjectPropertyAssertion(terrafirma inStage es1 i1)

5.2 Serialization to OWL DL representation schemes

We present the serializations of the temporal ontology discussed above to OWL
DL representations of both the reification approach as well as the 4D-fluents
approach below.

The reification representation. In the reification representation scheme, the
declaration of a fluent property is serialized as a class declaration and property
declarations for its subject and object relations. The serializer also specifies prop-
erty restrictions for the subject and object relations and sets domain and range
restrictions for the subject and object relations. An example for the earlyStage
fluent object property is given below.

Class(earlyStage partial restriction(holds(someValuesFrom Interval)))

SubClassOf(earlyStage

restriction(earlyStageToProcess(someValuesFrom LBOProcess)))

SubClassOf(earlyStage

restriction(processToEarlyStage(someValuesFrom EarlyStage)))

ObjectProperty(earlyStageToProcess domain(earlyStage)

range(LBOProcess))

Func(earlyStageToProcess)

ObjectProperty(processToEarlyStage domain(earlyStage)

range(EarlyStage))

Func(processToEarlyStage)

Fluent property assertions are reified as anonymous individuals. Linking the
subject, object, and interval to the fluent property is then done through a series
of regular property assertions. The example below shows the serialization of
linking the lbo1 to its es1 through a fluent object property assertion:
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Individual(_:a1 type(earlyStage) value(earlyStageToProcess lbo1)

value(processToEarlyStage es1) value(holds i1))

The 4D-fluents representation. The 4D-fluents representation differs from
the original tOWL example [23] in a small number of ways. Firstly, the explicit
class declarations for timeslice classes do not appear in the output. In the original
serialization, for example, the class of all timeslices of the Early Stage is defined
as in the following snippet (presented in OWL Abstract Syntax), which also
shows the use of the explicit class description in the specification of an object
property:

Class(EarlyStage_TS complete

restriction(timeSliceOf(someValuesFrom EarlyStage)))

ObjectProperty(earlyStage

domain(LBOProcess_TS)

range(EarlyStage_TS))

This explicit class description is then used in axioms such as object property
range restrictions. We do not generate such explicit class declarations for the
timeslice classes and use the property restrictions directly in the expressions of
such axioms, instead:

ObjectProperty(earlyStage

domain(restriction(timeSliceOf(someValuesFrom LBOProcess))

range(restriction(timeSliceOf(someValuesFrom EarlyStage)))

This alternate specification of the earlyStage property, however, conveys the
same information as the original, but in a more compact manner.

At the ABox level, we introduce timeslices for every individual that partici-
pates in a fluent property. These timeslices are currently represented by anony-
mous individuals in the serialization, but otherwise follow the same serializa-
tion pattern as the original tOWL example. Timeslices are introduced for every
unique combination of the individual participating in a fluent property and the
time interval over which that fluent property holds. If an individual participates
in multiple fluent properties over the same time interval, no additional timeslices
are created, but instead, the same timeslice is reused for each fluent property.
As an example, consider the timeslice relating to lbo1:

Individual(_:a1 type(TimeSlice) value(timeSliceOf lbo1)

value(earlyStage _:a2) value(dueDiligence _:a3)

value(bidding _:a4) value(abort _:a5))

6 Conclusion

In this paper, we have shown how the problem of defining the temporal concep-
tual model for OWL DL ontologies can be broken down into the definition of a
time model that is orthogonal to the static ontology, and a fluents model that
combines aspects of the static ontology and the time model to define the fluent
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properties. The concept of orthogonality was of key importance in allowing the
concepts and expressivity of the time model and the fluents model to be es-
tablished independently, which further allows the temporal conceptual model to
be both simple and expressive. We have developed a reference implementation,
Kala, with the goal of extending the OWL API with the additional constructs
in a manner that closely resembles the design philosophy behind that library.

As future work, Kala could be extended in several ways. Adding the ability
to produce a snapshot reduction, i.e., a regular OWL DL ontology that is repre-
sentative of a temporal ontology at a particular time, would allow the temporal
ontology to interact with existing tools such as OWL DL reasoners and query
languages. Similarly, the access methods and internal data structures could be
improved to provide greater convenience for users, for example by allowing the
inspection of the evolution of a particular property’s values over time. Such ex-
tensions could, finally, be used to develop applications on top of Kala. Tools such
as temporal reasoners, temporal query languages, and temporal visualizations
can benefit from Kala, as the functionality provided by these would represent a
powerful argument to justify the use of the more complex temporal ontologies.
For the ontology author, plugins for Integrated Development Environments such
as Protégé, based on Kala, would allow the convenient development of temporal
ontologies without considering the details of a particular representation scheme.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of
the ACM 26(11), 832–843 (1983)

2. Artale, A., Franconi, E.: A survey of temporal extensions of description logics.
Annals of Mathematics and Artificial Intelligence 30(1-4), 171–210 (2000)

3. Artale, A., Lutz, C.: A correspondence between temporal description logics. Jour-
nal of Applied Non-Classical Logics 14(1-2), 209–233 (2004)

4. Baratis, E., Petrakis, E., Batsakis, S., Maris, N., Papadakis, N.: TOQL: tempo-
ral ontology querying language. In: 11th International Symposium on Advances
in Spatial and Temporal Databases (SSTD 2009), pp. 338–354. Springer-Verlag,
Berlin (2009)

5. Batsakis, S., Petrakis, E.G.M.: SOWL: spatio-temporal representation, reasoning
and querying over the Semantic Web. In: 6th International Conference on Semantic
Systems (I-Semantics 2010). p. 15. ACM Press, New York, NY (2010)

6. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the Semantic Web recommendations. In: 13th International
World Wide Web conference on Alternate track papers & posters. pp. 74–83. ACM
Press, New York, NY (2004)

7. De Ridder, S.: owl-kala. http://www.github.com/owl-kala/owl-kala
8. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: Reasoning in description logics.

Principles of Knowledge Representation 1, 191–236 (1996)
9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: abstraction and

reuse of object-oriented design. Springer, Berlin (2001)
10. Grandi, F.: T-SPARQL: A TSQL2-like temporal query language for RDF. In: 1st

International Workshop on Querying Graph Structured Data (GraphQ 2010) or-



15

ganized in conjunction with the 14th East-European Conference on Advances in
Databases and Information Systems (ADBIS 2010). pp. 21–30 (2010)

11. Gregersen, H., Jensen, C.S.: Temporal entity-relationship models: a survey. IEEE
Transactions on Knowledge and Data Engineering 11(3), 464–497 (1999)

12. Gutierrez, C., Hurtado, C.A., Vaisman, A.: Introducing time into RDF. IEEE
Transactions on Knowledge and Data Engineering 19(2), 207–218 (2007)

13. Henß, J., Kleb, J., Grimm, S., Bock, J.: A database backend for OWL. In: 5th In-
ternational Workshop on OWL: Experiences and Directions (OWLED 2009) (2009)

14. Hobbs, J.R., Pan, F.: An ontology of time for the Semantic Web. Transactions on
Asian Language Information Processing 3(1), 66–85 (2004)

15. Horridge, M., Bechhofer, S.: The OWL API: A Java API for working with OWL
2 ontologies. In: 5th International Workshop on OWL: Experiences and Directions
(OWLED 2009) (2009), http://ceur-ws.org/Vol-529/owled2009_submission_

29.pdf
16. Jensen, C.S., Soo, M.D., Snodgrass, R.T.: Unifying temporal data models via a

conceptual model. Information Systems 19(7), 513–547 (1993)
17. Klein, M., Fensel, D.: Ontology versioning on the Semantic Web. In: International

Semantic Web Working Symposium (SWWS 2001). pp. 75–91. Springer-Verlag,
Berlin (2001)

18. Knublauch, H., Fergerson, R.W., Noy, N.F., Musen, M.A.: The Protégé OWL plu-
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