
Identifying Explicit Features for Sentiment
Analysis in Consumer Reviews

Nienke de Boer, Marijtje van Leeuwen, Ruud van Luijk, Kim Schouten, and
Flavius Frasincar

Erasmus University Rotterdam
PO Box 1738, NL-3000 DR
Rotterdam, the Netherlands

{nien_de_boer,marijtje93}@hotmail.com

ruudvanluijk91@gmail.com

{schouten,frasincar}@ese.eur.nl

Abstract. With the number of reviews growing every day, it has be-
come more important for both consumers and producers to gather the
information that these reviews contain in an effective way. For this, a
well performing feature extraction method is needed. In this paper we
focus on detecting explicit features. For this purpose, we use grammat-
ical relations between words in combination with baseline statistics of
words as found in the review text. Compared to three investigated ex-
isting methods for explicit feature detection, our method significantly
improves the F1-measure on three publicly available data sets.

1 Introduction

In the last decade, the World Wide Web has changed enormously. E-commerce
is expanding at a rapid pace as more and more people have access to the Internet
nowadays. Because of this, the amount of reviews given on products and services
is also increasing. Some products and services have hundreds of reviews, scattered
over many websites. These reviews are a valuable source of information for both
consumers [4] and producers [15]. Since the amount of reviews is large, it is hard,
if not impossible, to read all of them and to keep track of all expressed opinions
on the different features of the product or service. Selecting a few reviews to read
may lead to a bias, so it is clear that more advanced and automated methods
for processing and summarizing reviews are needed [10].

Reviews contain characteristics of products or services, so-called features.
The literature reports several works on extracting features from texts. Some
of these methods concentrate on finding explicit features while others focus on
extracting implicit features. In this paper, we propose a new method to extract
explicit features on which reviewers have expressed their opinions, by employing
and adapting various techniques that proved useful in previous work. Where
the existing methods use either frequency counts or grammatical relations, we
propose to use both. First, we use grammatical relations between words to find
possible features. We check whether these possible features occur more often

than expected with respect to a general corpus before we annotate them as
actual features. Such an approach can help get a better precision and recall than
existing methods due to the complementarity of the used techniques.

The paper is organized as follows. We start by discussing some of the related
work in Sect. 2. In Sect. 3, we present the proposed method. In Sect. 4, the data
that is used to test the method is discussed and then in Sect. 5 the evaluation
results are presented. Last, our conclusions and suggestions for further research
are given in Sect. 6.

2 Related work

In this section we discuss some of the related work that has been done on finding
features in customer reviews. Due to space limitations, we investigate only three
existing methods which are representative for their classes: a frequency-based
approach, a statistical approach, and a (grammatical) relation-based approach.

One of the most well known methods to find explicit features is proposed by
Hu and Liu in [7]. This method first extracts the features that are frequently
mentioned in the review corpus. Since it is assumed here that explicit features are
most likely to be nouns or noun phrases, these are extracted from all sentences
and are included in a transaction file. In order to find features that people are
most interested in, Association Rule Mining [1] is used to find all frequent item
sets. In this context, an item set is a set of words or phrases that occur together.
When the final list of frequent features is known, the method extracts all opinion
words that are nearby the frequent features. To that end, it exploits the fact
that opinion words are most likely to be adjectives. The found opinion words
are used to find infrequent features, based on the idea that people often use
the same opinion words for both frequent and infrequent features. If a sentence
does not contain a frequent feature but does contain one or more opinion words,
the proposed method extracts the noun nearest to that opinion word and this
noun is stored in the feature set as an infrequent feature. A disadvantage of this
method is that nouns or noun phrases that are more used in general will also be
annotated as feature, favoring false positives. In the next paragraph we present
a method which alleviates this issue.

In the paper by Scaffidi et al. [17], a method is proposed that uses baseline
statistics of words in English and probability-based heuristics to identify features.
The main idea is that nouns that occur more frequently in the review corpus
than in a random section of English text are more likely to be features. Since
reviewers focus on a specific topic, the relevant words for that topic will occur
more in the review than in a normal English text. The probability that a certain
noun or noun phrase (a maximal length of 2 is used for a noun phrase) occurs in
a normal text as much as it does in the review is calculated. If this probability is
small, it is more probable that the noun or noun phrase is a feature. This method
has a high precision but the recall is low. For this method, it is important that the
English text that is used for determining the baseline is in the same language and

roughly the same style as the reviews. Using baseline statistics thus addresses
the discussed disadvantage of the previous method.

A major shortcoming, shared by both [7] and [17] is that only the number
of times a word occurs in all the reviews taken together matters. The methods
do not take into account the grammatical structures that are within the review
sentences, which could be useful to find infrequent features that appear seldom
in reviews as well as in general text. In [6], Hai et al. propose a method that
focuses on implicit feature identification in Chinese written reviews. However,
since explicit features are used to find implicit ones, an algorithm for finding
explicit features is also presented. In this method, all nouns and noun phrases
that are in certain grammatical dependency relations are added as explicit fea-
tures. The relations that are used here are the nominal subject relation, the
root relation, the direct object relation, and object of a preposition relation. In
this method, it is assumed that the sentences which contain an explicit feature
are already known. The method first checks whether the sentence contains an
explicit feature before it investigates the dependency relations. This makes fea-
ture extraction relatively easy and it allows for a higher recall and precision.
However, in general it is not known in advance which sentences contain features
and which sentences do not, so that precision is generally low when using this
method. Also, this method does not use information about how often nouns and
noun phrases occur at all, while this certainly is valuable information.

3 Method

In this section we propose a new method for finding explicit features by address-
ing the shortcomings identified in the previous work. For this purpose, we reuse
and adapt techniques described in [17] and [6]. Since in the first method, recall
is low but precision is relatively high, and in the second the precision is rather
low but recall is high, an ensemble method that combines these two methods
seems a logical next step. Therefore, we use the dependency relations of [6] to
obtain a high recall and the baseline statistics of [17] to obtain a high precision.

First, the proposed method analyzes dependency relations in the review sen-
tences to find possible features. This can be seen as the first step in [6]. To find
possible features, we check the grammatical structures in each of the review sen-
tences. If a word is in one of the used dependency relations, we first check if it is
a noun or part of a noun group, before we add it to the list of possible features.
This is because earlier research has shown that features which are explicitly
mentioned are most likely to be nouns [14]. We use the Stanford Parser [11] to
find the grammatical structures. Besides the dependencies mentioned by Hai et
al., we also use some additional dependencies. First the dependencies which are
used in [6] are explained. One of these dependencies is the ‘direct object’ (dobj)
dependency. We explain this dependency by the following example sentence:

“He tried to clear a table for six.”

If a word is the object of a verb, for instance the word “table” in the above
sentence, we add this word to the feature group. Also, we add the dependent word

of a ‘preposition-object’ (pobj) relationship. This relationship is often combined
with the ‘prepositional dependency’ (prep). For instance, take the next sentence,
in which one of the features is “brunch”:

“Great for groups, great for a date, great for early brunch or a nightcap.”

The dependencies prep(great, for) and pobj(for, brunch) are combined into
prep for(great, brunch). Therefore, we use both the dependencies ‘pobj’ and
all the combined dependencies such as prep for. Two other dependencies that
are used in [6] are the ‘root’ and the ‘nominal subject’ relationships. We explain
these dependencies with the help of another sentence example:

“The food is very good too but for the most part, it’s just regular food.”

The dependencies between the words of this sentence are shown in Fig. 1. Addi-
tional information regarding the various dependencies mentioned in this figure
can be found in [12]. We add nouns to the feature group which are the ‘root’
(root) of the sentence, the word the whole sentence relates to. In the example,
the root is “good”, which is not a noun, so in this case we do not add this word to
the feature group. We also add a noun to the feature group if it is the dependent
word in the ‘nominal subject’ (nsubj) relationship. In our example sentence, this
means we add the second word of the sentence, the word “food”, to the feature
group.

The dependencies we discussed so far are the original dependencies that were
used in the method which was proposed in [6], but that method is based on
Chinese written reviews. Since the data sets we use contain English reviews, it
is useful to add extra dependencies. One of the extra dependencies we add is
the dependency ‘conjunction’ (conj). This is a relation between two words which
are connected by words like “and” or “or”. In the above example sentence, the
words “good” and “food” are connected by the word “but”. Because of this,
“food” is added to the list of possible features. Furthermore, we examine the
‘noun compound modifier’ (nn). This is a dependency between two nouns, in
which first noun modifies the meaning of the second noun. The next sentence
shows an example of this dependency:

“A wonderful jazz brunch with great live jazz.”

Here, the noun “jazz” modifies the meaning of the noun “brunch”, so “brunch”
is added to the list of possible features. The last dependency we use is the ‘ap-
positional modifier’ (appos): a noun that serves to define or modify the meaning
of another noun, which is located at the left of the first noun. We explain this
with the help of another sentence:

“A gentleman, maybe the manager, came to our table, and without so much as
a smile or greeting asked for our order.”

Here the noun “manager” defines the meaning of the noun at the left of it,
the noun “gentleman”. In this case, “manager” is added to the list of possible

Fig. 1: Grammatical dependency relations

features. The pseudocode of the total process of retrieving the possible features
is shown in Algorithm 1.

Now that we have a list with possible features based on grammatical struc-
tures, we want to improve precision. The above method is likely to find a lot of
features, but it will also find a lot of non-features. If a possible feature is men-
tioned in many reviews, it is more likely to be an actual feature. At this point,
it is important to note that some words are just more common to use in English
text than others. For example, the word “lens” might not be used a lot in a
normal English text, but when it is used in a review about a digital camera, it
might be mentioned a lot more. Therefore, it could very well be a feature about
which the writer is expressing his opinion. For this reason, we check for each of
the possible features that we found using Algorithm 1 whether it occurs more
than would be expected based on a general English text. This is the main idea
that is used in [17] as well. When the word is in a list of stop words, we do not
add it as a possible feature. Also, if a found noun is more likely to be used as
a non-noun, it is probably not a feature, so those will not be added as features
as well. For example, the word “count” can be used as a noun, but it is more
probable that it is used as a verb. We check this aspect for all nouns using the
frequency counts that are provided by WordNet [13]. However, for some words,
the frequency counts are not given in WordNet or the word is not in the Word-
Net database. In such cases, we assume that the word is more likely to be used
as a noun.

To explain the idea of using baseline probabilities in more detail, we start by
focusing on single noun features only. To check whether the noun occurs more
often than expected, one needs to check whether the number of times it occurs
in the reviews is larger than the expected amount in a generic English text of the
same length. If it does occur more often, the probability that the noun occurs
exactly that often is calculated. In this case, we do not look at the word itself,
but we take the dictionary form of the word, the lemma, and count how many

times the lemma occurs. We denote by nx the number of times that lemma x
occurs in the review corpus. Thus we calculate the probability P (nx) that lemma
x occurs nx times in a general English text with N words, where N is the total
number of words in the review corpus.

To calculate this probability, the probability px that the lemma of a randomly
selected word in a generic English text equals x needs to be known first. We
use the word frequency list on conversational English from Leech et al. [9] for
this. With the provided word counts, we calculate the baseline probability by
dividing the count by the total amount of words in the general English text.
When a review word does not occur in the general English text, we assign the
average probability of words in the general English text to this word.

We can now estimate the probability that lemma x occurs nx times in the
general English text with a Poisson distribution, as we want to determine the
probability of a certain count in an interval, in our case, the entire length of
the review corpus [3]. However, to avoid numerical underflow, it is convenient
to take the logarithm of the distribution. For this, we need to apply Stirling’s
approximation to estimate ln(nx!) [16]. As a result, Eq. 1 is used to calculate
the probabilities. The last term, namely ln(

√
2π) is just a constant, and thus

not necessary when comparing probabilities.

ln(P (nx)) ' (nx − pxN)− nxln(
nx
pxN

)− ln(nx)

2
− ln(

√
2π) (1)

We can use a similar approach for calculating probabilities of noun phrases. In
order to do this, we do need to make some assumptions. First, we assume that the
occurrence of lemma x in position i is independent of whether lemma x occurs in
any other position j in a sentence. We also assume that the occurrence of lemma
x in position i is independent of i. Although these assumptions are generally not
true, it helps to simplify the problem while they have no serious consequences
for the results [19]. Because of these assumptions, the probability pb that the
bi-gram b occurs in generic English is simply px times py. In this context, a
bi-gram is a noun phrase with two nouns, the probability of occurrence of the
first word in the bi-gram is px and the probability of occurrence of the second
one is py. We can now use Eq. 1 where nx represents the number of occurrences
of the bi-gram. To obtain the probability of a tri-gram, one must first multiply
the probabilities of the single words to get px and use Eq. 1 again after that.

Now that the probabilities of a noun or bi-gram occurring with a certain
frequency are known, we select the ones with the smallest probabilities to be
features. It is important to determine how many features are added and for
this a threshold value is required. If the probability of a noun or noun phrase
is smaller than the threshold value, the noun or noun phrase is added to the
list of features. The threshold value may differ among different data sets so
this value should be trained per data set. In [17], there was only one threshold
value for single-nouns and n-grams, but there might be different optimal values
for single-noun features, bi-grams, tri-grams, et cetera, so the values should be
allowed to be different. This gives rise to a new problem, namely that there
are not many possible features that consist of three or more words (as will be

discussed in Sect. 4). Because of this, it is hard to train the threshold value
for tri-grams and higher n-grams. Therefore, it is better to apply the approach
of baseline probabilities comparison only on single-noun features and bi-grams.
Algorithm 2 shows how the probability of a noun or bi-gram occurring a given
number of times is computed.

In order to determine the best threshold value, we use training data only. As
mentioned before, the threshold values of single-nouns and bi-grams are allowed
to be different. We choose the combination of threshold values for which the F1-
value, the values that we use for evaluation, is the highest. For this, we cannot
use a gradient ascent method, since the function of the F1-values is not concave
(there are some local maxima points). Therefore, a linear search method is used
instead of the gradient ascent method. First, the probabilities computed with
Algorithm 2 are sorted. These probabilities are the possible threshold values. We
iterate over the possible threshold values by selecting the percentage of single
nouns or bi-grams that we want to add as features. The step size we use is 0.01.

Now that we have all probabilities and threshold values, we iterate over each
possible feature found with Algorithm 1 and check whether the corresponding
probability is smaller than the threshold value. If this is the case, we add the
feature to the final list of features. If the feature is a tri-gram or a n-gram
of higher degree, we add this feature to the final list without considering the
probabilities.

Algorithm 1 Generating a group of possible explicit features

Input: review sentences in the corpus
Output: a list of possible explicit features F
for each sentence s ∈ corpus do

for each word or wordgroup w ∈ s do
if w is in grammatical relationship of specified types then

if each POS tag of w is noun then
add w to F

end if
end if

end for
end for

4 Data analysis

In this section a brief overview of the used data sets is presented. Since the
performance of different algorithms depends a lot on the used data set, three
different data sets are used to train and evaluate the algorithms. The first two
data sets are from the SemEval competition [2]. The first is a set containing
reviews about restaurants [5]. The second data set contains reviews about lap-
tops. The third data set contains a collection of reviews of a set of products [8].

Algorithm 2 Calculating probabilities of single nouns and bi-grams

Input: D : a list of all words in the corpus. N : a count of all words in the corpus.
O : a list of all unique nouns in the corpus. B : a list of all bi-grams in the corpus.
px : a list of probabilities how often a word appears in an English text.
Output: PS : a list with the logarithm of the probability that a single noun occurs
exactly nx times in the review corpus with x denoting the lemma of the noun. PB :
a list with the logarithm of the probability that a bi-gram occurs exactly nb times
in the review corpus with b denoting the bi-gram.
for each word x ∈ D do

if x is a noun then
count(x) + +
if nextWord(x) is a noun then

b = concat(x, nextWord(x))
countB(b) + +

end if
end if

end for
for each word x ∈ O do

find baseline probability px
calculate the probability that the word occurs nx times, with nx = count(x):

PS(x) = (nx − px ∗N)− nx ∗ ln(nx
px∗N)− ln(nx)

2
− ln(

√
2π)

end for
for each bi-gram b ∈ B do

calculate pb = px × pnextWord(x)

calculate the probability that the bi-gram occurs nb times, with nb = countB(b):

PB(b) = (nb − pb ∗N)− nb ∗ ln(nb
pb∗N

)− ln(nb)
2
− ln(

√
2π)

end for

These products include a camera, a printer, a DVD-player, a phone and an mp3.
It turns out that the differences between these data sets are substantial. The
characteristics of these sets will now be presented in more detail.

4.1 Restaurant data set

The restaurant data set contains 3041 sentences. In these sentences, one can find
a total of 1096 unique explicit features. As can be seen in Fig. 2a, about one
third of the sentences does not contain a feature, which means that two thirds
of the sentences contain at least one feature. Since most sentences contain a
feature, it is relatively easy to find features. The features in this data set are
mostly single word features (75.44%) and bi-grams (16.84%), but 7.72% of the
features consist of 3 or more words. This is illustrated in Fig. 2b. The largest
feature is a composite of nineteen words, but this only appears one single time.

Most algorithms extract single-noun features and bi-gram features rather
well. The longer features are harder to find as the difficulty of finding a feature
increases with the amount of words it consists of. This results in most algorithms
performing well on this data set.

4.2 Laptop data set

The laptop data set has only four more sentences than the restaurant data set,
but there are 231 less unique features to be found. This means that the data set
contains only 865 unique features. As can be seen in Fig. 2a, more than half of
the sentences does not contain any feature. This is about 20%-point more than
in the restaurant data set. The distribution of the sentences that contain one or
more features is similar as in the restaurant set. The ratio between sentences with
one feature and sentences with two, three or more features is about the same.
Fig. 2b shows that there are relatively less features that consist of one single
word, but there are more bi-grams and tri-grams in this data set in comparison
with the restaurant data set.

Although some of the characteristics of this data set seem to be quite sim-
ilar to the characteristics of the restaurant data set, it is harder to get a good
performance on this data set. This is mainly caused by the fact that there are
more sentences that do not contain any features. The fact that there are more
features that consist of more than one word makes it also harder to get a good
performance.

4.3 Product data set

The product data set has very different characteristics in comparison with the
restaurant data set and the laptop data set. There are 904 more sentences in
this data set than in the restaurant data set, which gives a total of 3945 review
sentences. However, there are less features to be found. The number of unique
features in all these sentences is only 231. There are 2850 sentences without any
feature and only 1095 of the sentences contain one or more features. A visual
representation of this can be found in Fig. 2a. In this data set, most features
contain only one or two words. The corresponding percentages are respectively
63.20% and 35.43%. The largest feature in this data set has a size of four words.
In Fig. 2b the differences between the data sets are illustrated. While the product
data set has more bi-grams, there are almost no n-grams with n higher than two.
Thus an algorithm that extracts bi-grams rather well is needed here. Since the
amount of features is small and the amount of sentences without features is
rather large, it is more difficult to get a good performance on this data set. A
lower F1 can thus be expected.

Because of the different characteristics, the use of these three sets is ideal for
developing and testing an algorithm. If an algorithm performs very well on only
one of the three sets, it might not be very useful in general. Performing good on
all three data sets is a good indicator that it might perform well on other data
sets as well.

5 Evaluation

For the evaluation of the proposed method, a 10-fold cross-validation is per-
formed. For this, the available data is randomly divided in ten equally sized

Restaurant Laptop Product
0

20

40

60

80

100

R
e
la
ti
v
e
n
u
m
b
e
r
o
f
o
c
c
u
rr
e
n
c
e
s
(%

)

0 features

1 feature

2 features

3 features

> 3 features

(a) The distribution of number of features
per sentence

Restaurant Laptop Product
0

20

40

60

80

100

R
e
la
ti
v
e
n
u
m
b
e
r
o
f
o
c
c
u
rr
e
n
c
e
s
(%

)

Single noun features

Bi-grams

Tri-grams

Higher n-grams

(b) The distribution of n-grams in the data
sets

Fig. 2: Characteristics of the data sets

groups. Nine groups are used to train the threshold values. The sentences that
are in the tenth group are used as test data. We repeat this approach ten times,
with each time another group as test data. In the end, all ten groups are used as
test data once, and nine times as training data. For the evaluation of the method,
and to determine the best threshold values, we used the F1-value, which is the
harmonic mean of precision and recall.

Since the proposed method uses some of the ideas that were expressed in the
papers [17] and [6], the performance of the proposed method is compared with
the performance of these methods. Furthermore, we use the method proposed
in [7] to compare the results of the new method with. The results of the earlier
proposed methods on the different data sets can be found in Table 1. To show the
effects of the various components of the proposed method, a stepwise evaluation
is performed. The first step is to improve the two original methods of [17] and [6].

In [17], a single threshold for both single-noun features and bi-grams is used.
As argued before, it can be better to allow different threshold values for single
noun features and bi-gram features respectively. The performance of the method
as proposed in the paper, having only one threshold value, and the performance
of the extended method that allows for threshold values to be different are shown
in Table 2. It can be seen that for the laptop data set and for the product
data set, the F1-score improves by more than one percentage point when the
threshold values are allowed to be different. For the laptop data set, the increase
is caused by an increase in precision. For the product data set, both precision and
recall have increased. Results for the restaurant data set are slightly different.
Although recall has increased in this case, the F1-score is the same for both
methods. Combining the results on the different data sets, we conclude that it

Table 1: The performance of the methods proposed in the papers by Hu and
Liu [7], Scaffidi et al. [17] and Hai et al. [6]

Restaurant data set Laptop data set Product data set

Hu Scaffidi Hai Hu Scaffidi Hai Hu Scaffidi Hai

et al. et al. et al. et al. et al. et al. et al. et al. et al.

Precision 0.371 0.432 0.384 0.137 0.188 0.200 0.056 0.126 0.060

Recall 0.627 0.575 0.715 0.405 0.451 0.591 0.480 0.356 0.417

F1 0.467 0.493 0.500 0.204 0.266 0.299 0.100 0.186 0.105

is better to allow the threshold values to be different, since the F1-scores of that
method are the same or higher than the scores of the method that uses a single
threshold.

Table 2: Performance of the method proposed by Scaffidi et al. [17] with one
threshold value and the performance of the extended method that uses two
threshold values on the different data sets

Restaurant data set Laptop data set Product data set

One
threshold
value

Two
threshold
values

One
threshold
value

Two
threshold
values

One
threshold
value

Two
threshold
values

Precision 0.432 0.412 0.188 0.226 0.126 0.133

Recall 0.575 0.614 0.451 0.380 0.356 0.380

F1 0.493 0.493 0.266 0.283 0.186 0.197

Diff. in F1 +0.000 +0.017 +0.011

In [6], the used grammatical relations are the nominal-subject, the root, the
direct object, and the object of a preposition relations. This method was designed
for Chinese written reviews and for English reviews it is better to use more types
of relations. Adding the relation types ‘conjunction’, ‘appositional modifier’ and
‘noun compound modifier’ boosts the recall, but the precision declines. Since
we want to get a high recall using the grammatical dependencies and we ex-
pect precision to grow using the baseline probabilities, we use the relation types
‘conjunction’, ‘appositional modifier’ and ‘noun compound modifier’ in addition
to the relation types that were used in [6]. In Table 3 the performance of the
method proposed in [6] with the original dependencies and the performance of
the same method but with the proposed dependencies are shown.

Now, the performance of the proposed method is discussed. We evaluate the
performance of the method using only the grammatical structures used in [6] and

Table 3: Performance of the method proposed by Hai et al. [6] with the original
dependencies and the performance of the method with the proposed dependen-
cies on the different data sets

Restaurant data set Laptop data set Product data set

Dependencies Original Proposed Original Proposed Original Proposed

Precision 0.384 0.380 0.200 0.197 0.060 0.054

Recall 0.715 0.771 0.591 0.646 0.417 0.477

F1 0.500 0.509 0.299 0.303 0.105 0.098

Diff. in Recall +0.056 +0.055 +0.060

a single threshold value first. The results are shown in Table 4, with ‘original’
referring to the fact that only the grammatical structures of [6] are used. As dis-
cussed in the previous part of this section, adding more grammatical structures
may improve performance and allowing for different threshold values causes an
increase in performance as well. Therefore, we also tested the proposed method
with the additional grammatical structures and with different threshold values.
The results of the method with proposed grammatical structures are shown in
Table 4 under the heading ‘proposed’. The bottom row of each subtable shows
the difference between the F1-value of the used method in that column and the
F1-value of the proposed method that uses only one threshold value and the
original dependencies.

In Table 4 it is shown that for all data sets, the F1-measure of the method in
which more grammatical relations and different threshold values are used is the
highest. When comparing the F1-values of this method with the performance of
the existing methods as shown in Table 1, we find that our method improves
the F1-value of the methods proposed in [7], [6] and [17] on each of the used
data sets. For the restaurant data set, the F1-value of the proposed method
is 8.1%-point higher than the method proposed in [7], 5.5%-point higher than
the method proposed in [17] and 4.8%-point higher than the method proposed
in [6]. For the laptop data set, these values are 11.0%-point, 4.8%-point and
1.5%-point, respectively, and for the product data set the values are 9.1%-point,
0.5%-point and 8.6%-point, respectively.

To test whether the found differences are significant, we perform a t-test. We
also test whether the differences between the proposed method and the extended
versions of the existing methods proposed in [17] and [6] are significant. In order
to perform the tests, it is necessary to have multiple evaluations. Therefore,
we construct 30 bootstrap samples [18] for each of the used data sets. Every
bootstrap sample is expected to contain about 63.2% of the unique sentences
of the original data set. By using this sampling technique, we have obtained 30
new data sets for each of the original data sets. These new sets will be used
for method evaluation. We use the data sets as input for the existing methods,
the extended versions of the existing methods and for the proposed method. A

Table 4: The performance of the proposed method for the different combinations
on the different data sets

Restaurant data set

One threshold Two thresholds

Dependencies Original Proposed Original Proposed

Precision 0.523 0.518 0.521 0.516

Recall 0.542 0.580 0.547 0.585

F1 0.532 0.547 0.534 0.548

Diff. in F1 +0.015 +0.001 +0.016

Laptop data set

One threshold Two thresholds

Dependencies Original Proposed Original Proposed

Precision 0.242 0.235 0.279 0.269

Recall 0.415 0.442 0.354 0.377

F1 0.306 0.307 0.312 0.314

Diff. in F1 +0.001 +0.006 +0.008

Product data set

One threshold Two thresholds

Dependencies Original Proposed Original Proposed

Precision 0.132 0.131 0.140 0.139

Recall 0.271 0.285 0.290 0.305

F1 0.177 0.180 0.189 0.191

Diff. in F1 +0.003 +0.012 +0.014

one-tailed paired t-test is performed to test whether the differences between the
F1-value of the proposed method and the F1-values of the (extended) existing
methods is significantly larger than zero. The results of the test are shown in
Table 5. It shows that the F1-measure of the proposed method is significantly
higher than the F1-values of the existing methods proposed in [7], [17] and [6]
for each of the three used data sets at a 1.0% significance level. Furthermore,
the proposed method performs significantly better in terms of the F1-measure
than the extended versions of the existing methods proposed in [17] and [6] for
the restaurant and for the laptop data set. For the product data set, only the
extended version of the method proposed in [17] performs slightly better than
the proposed method.

Table 5: Results of the t-test on whether the F1-value of the proposed method
is significantly higher than the F1-values of the (extended) existing methods

Restaurant data set Laptop data set Product data set

Mean P-value Mean P-value Mean P-value

Proposed method 0.547 0.313 0.191

Hu et al. 0.470 0.000 0.207 0.000 0.104 0.000

Scaffidi et al. 0.493 0.000 0.269 0.000 0.187 0.001

Scaffidi et al. with
double threshold

0.494 0.000 0.281 0.000 0.198 1.000

Hai et al. 0.501 0.000 0.300 0.000 0.099 0.000

Hai et al. with ex-
tra dependencies

0.509 0.000 0.304 0.000 0.098 0.000

6 Conclusion

In this paper, we proposed a new method that extracts explicit features from
consumer reviews. We employed and adapted various techniques that were used
in two existing methods. The F1-value of the proposed method is higher than the
F1-values of the separate methods on three different data sets. The differences
are significant at a 1.0% significance level for a restaurant, a laptop and a product
data set. For the restaurant and for the laptop data sets, the proposed method
also performs significantly better than the extended versions of the existing
methods. For the product data set, the difference in F1-value is not significant
with respect to one of the extended versions of the earlier proposed methods but
it significantly improves on the other one.

Possible future work includes using domain knowledge, for example by em-
ploying ontologies, to find features, instead of purely statistical information. Also
of interest are implicit features which were out of scope for this research. How-
ever, when performing aspect-level sentiment analysis, it is definitely beneficial
to detect all features, not just the explicitly mentioned ones. Last, the method
now assigns the average probability for words in a review text which are not in
the general text. However, given the highly skewed, zipfian distribution of word
frequencies, this could be improved upon. For instance, if the general text corpus
is large enough, it stands to reason that all regular words are included, and that
therefore words which do not appear in the text corpus, should have a very low
probability associated to them, instead of the average probability.

Acknowledgment

The authors are partially supported by the Dutch national program COMMIT.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on Very Large
Databases (VLDB 1994). vol. 1215, pp. 487–499. Morgan Kaufmann (1994)

2. Androutsopoulos, I., Galanis, D., Manandhar, S., Papageorgiou, H., Pavlopou-
los, J., Pontiki, M.: SemEval-2014 Task 4 (March 2014), http://alt.qcri.org/
semeval2014/task4/

3. Bain, L.J., Engelhardt, M.: Introduction to Probability and Mathematical Statis-
tics, 2nd edition. Duxbury Press (2000)

4. Bickart, B., Schindler, R.M.: Internet Forums as Influential Sources of Consumer
Information. Journal of Interactive Marketing 15(3), 31–40 (2001)

5. Ganu, G., Elhadad, N., Marian, A.: Beyond the Stars: Improving Rating Predic-
tions using Review Content. In: Proceedings of the 12th International Workshop
on the Web and Databases (WebDB 2009) (2009)

6. Hai, Z., Chang, K., j. Kim, J.: Implicit Feature Identification via Co-occurrence
Association Rule Mining. In: Proceedings of the 12th International Conference on
Computational Linguistics and Intelligent Text processing (CICLing 2011). vol.
6608, pp. 393–404. Springer (2011)

7. Hu, M., Liu, B.: Mining Opinion Features in Customer Reviews. In: Proceedings of
the 19th National Conference on Artifical Intelligence (AAAI 2004). pp. 755–760.
AAAI (2004)

8. Hu, M., Liu, B.: Mining and Summarizing Customer Reviews. In: Proceedings of
10th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD 2004). pp. 168–177. ACM (2004)

9. Leech, G., Rayson, P., Wilson, A.: Word Frequencies in Written and Spoken En-
glish: based on the British National Corpus. Longman (2001)

10. Liu, B.: Sentiment Analysis and Opinion Mining. Morgan & Claypool (2012)
11. Marneffe, M.C.D., MacCartney, B., Manning, C.D.: Generating Typed Dependency

Parses from Phrase Structure Parses. In: Proceedings of International Conference
on Language Resources and Evaluation (LREC 2006). vol. 6, pp. 449–454 (2006)

12. Marneffe, M.C.D., Manning, C.D.: Stanford Typed Dependencies Manual (Septem-
ber 2008), http://nlp.stanford.edu/downloads/lex-parser.shtml

13. Miller, G., Beckwith, R., Felbaum, C., Gross, D., Miller, K.: Introduction to Word-
Net: An On-Line Lexical Database. International Journal of Lexicography 3(4),
235–312 (1990)

14. Nakagawa, H., Mori, T.: A Simple but Powerful Automatic Term Extraction
Method. In: Proceedings of the 19th International Conference on Computational
Linguistics (AAAI 2004). pp. 29–35. Morgan Kaufmann Press (2002)

15. Pang, B., Lee, L.: Opinion Mining and Sentiment Analysis. Foundations and Trends
in Information Retrieval 2(1-2), 1–135 (2008)

16. Ross, S.M.: Introduction to Probability Models, 10th edition. Academic Press
(2010)

17. Scaffidi, C., Bierhoff, K., Chang, E., Felker, M., Ng, H., Jin, C.: Red Opal: Product-
Feature Scoring from Reviews. In: Proceedings of the 8th ACM Conference on
Electronic Commerce (EC 2007). pp. 182–191. ACM (2007)

18. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-
Wesley (2005)

19. Wu, H., Salton, G.: A Comparison of Search Term Weighting: Term Relevance
vs. Inverse Document Frequency. In: Proceedings of the 4th Annual International
ACM Conference on Information Storage and Retrieval. pp. 30–39 (1981)

http://alt.qcri.org/semeval2014/task4/
http://alt.qcri.org/semeval2014/task4/
http://nlp.stanford.edu/downloads/lex-parser.shtml

	Identifying Explicit Features for Sentiment Analysis in Consumer Reviews

