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Abstract. Product entity resolution is an important part of online prod-
uct search, where product entities coming from different websites need
to be aggregated in the search results. In this paper, we propose an ap-
proach to product entity resolution using the descriptive power of an
ontology. In our algorithm, we use similarity measures that are defined
specifically for each type of product feature and learn the feature weights
by means of a genetic algorithm. In the evaluation of our algorithm, we
obtain F1-measures of 59% and 72% for two product classes that we con-
sider. The obtained results are significantly better than those obtained
from a state-of-the-art product entity resolution algorithm.
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1 Introduction

With the current increase in Web sales [5], online product search has become an
important tool for consumers on the Web. The main reasons for its popularity are
simple. First, it allows consumers to search for products they prefer. Compared
to traditional shopping, online shopping makes it easier for consumers to find
their desired product using information search facilities. Second, by comparing
several Web shop offers, consumers have a good overview of the available prices,
which allows them to choose the best bargain.

However, online product search providers, like Google Product Search and
Shopping.com, are suffering from several issues. One of these issues is that the
automatic retrieval of products is not easy, as there is some manual work involved
if one wants to display the correct product information. The reason for this is
that most products are available on more than one website, which results in
retrieving products multiple times from different Web shops. In this case, one
need an approach to automatic product entity resolution, i.e., automatically
finding duplicate products. In other words, in order to allow for comparison of
the product offers from different Web shops, it is necessary to map all the offers
found to their corresponding product. One solution to this problem is to use a
universal product domain ontology to describe products in Web shops. Although
this is an interesting approach, it falls outside the scope and goal of this paper.



Fig. 1. Duplicate products in Google Product Search

An example of the product entity resolution problem is shown in Fig. 1. The
picture shows two instances from the ‘SanDisk Sansa Clip+ 8 GB Digital player ’
on Google Product Search. Although these instances represent the same product,
they are shown as two distinct products in the search result. The reason for this
is that the information in the title and description is structured differently.

Recent semi-automatic approaches for product entity resolution are able to
obtain an F1-measure between 45% and 81% [12,13]. In order to improve these
results, in this paper, we consider the use of an ontology-based product entity
resolution approach that automatically takes into account the product specific
properties. Because product features are heterogeneous and can describe various
aspects of products, we hypothesize that a feature-based approach for product
entity resolution can improve the current state-of-the-art approaches. For de-
scribing products and their features, we make use of a product ontology that
refines an existing upper-level e-commerce ontology.

The structure of the paper is defined as follows. Section 2 explains the related
work. In Sect. 3, we describe the various aspects of our product entity resolution
framework. This is followed by the evaluation of our method in Sect. 4. Last, we
conclude our work and give directions for future research in Sect. 5.

2 Related Work

Elmagarmid et al. [8] survey the domain of entity resolution and identify several
important steps that are involved in this process. The first step mainly focuses
on the extraction, transformation, loading (ETL), and standardization of data.
The next step is field matching, which deals with the methods used to com-
pare the fields of two selected records. In this step, three types of field matching
methods are identified: character-based similarity (e.g., Levenstein), token-based
similarity (e.g., n-grams), and phonetic similarity (e.g., Soundex). The next step
describes the different duplicate detection techniques in which a set of records is
processed. The authors divided the techniques into the following types: proba-
bilistic matching, supervised learning, active learning, distance-based techniques,



rule-based techniques, and unsupervised learning. In the rest of this section, we
present a few instances of such entity resolution algorithms.

Köpcke et al. [12] perform entity resolution on product offers. This is the same
domain as we use, only instead of using all the product features, the authors of
this paper use only the title of product offers. From the title they extract the
product features, the brand, and the model. Next, an adaptive learning strategy
using three string measures is applied and a support vector machine for the entity
resolution is used. For product matching, they use two different approaches. The
Universal Product Code (UPC) is used as a reference mapping for the matching.
This gives an F1-measure of 55% for the product category non-accessories and
45% for the product category accessories. For the category TV’s, the authors
achieve a F1-measure of 69% and for the category digital cameras their approach
achieved a F1-measure of 81%. While the authors of [12] focus on only title of a
Web page, we focus on the entire set with product features. Furthermore, because
our goal is to have a fully automatic approach, we do not consider comparing our
approach to this solution, as it requires to manually create regular expressions.

In [22], the authors propose a method that determines whether two Web
pages are referring to the same person. They assess the available features, like
the URL of the Web page, most frequent names, and other text on the Web pages,
using one or more similarity measures like the cosine similarity, string similarity,
number of overlaps, Pearson’s correlation, and extended Jaccard similarity. As
this method focuses on persons and unstructured data, it is less relevant for our
approach, where we focus on products and a structured ontology.

Lee et al. [15] use relational evidence to perform Web scale entity resolution.
They divide the relational evidence in two types of evidence, negative evidence
and positive evidence. The negative evidence relies on the birds of a feather
principle, which states that entities that are not similar do not share the same
properties. Unfortunately, the birds of a feather principle does not hold when
performing entity resolution in the product domain, since product instances in
the same product class have many properties in common (e.g., display size and
display standard in the TV product class). For positive evidence the authors
make use of Wikipedia. Since Wikipedia does not describe products with detailed
feature information, we cannot use this approach.

In [3] the authors investigate entity resolution in a customer database. The
authors propose three algorithms for the propose of pairwise entity resolution.
The first is G-Swoosh, a generic brute force algorithm. The second is R-Swoosh,
where the source records are immediately discarded if a match between records
is found. The last algorithm is F-Swoosh, which uses a cache of the compared
data features to perform entity resolution. The authors report that G-Swoosh is
extremely expensive and not practical when many matches occur. The authors
also report that F-Swoosh is between 1.1 and 11.4 times faster than R-Swoosh.
The focus of the three algorithms is on entity resolution in an arbitrary domain.
This results in a general purpose matching and merging functions, which can
be implemented in any domain. We use R-Swoosh as a starting point for our
research, due to its scalability and extensibility.



3 Product Entity Resolution Platform

In this section we describe our entity resolution method for the domain of prod-
ucts, along with its implementation details. We start by giving a description of
our problem followed by a more detailed discussion on the different parts of our
solution.

3.1 Problem description

As explained in Sect. 1, Web shops use various ways to display their product
information. If this information is aggregated into one product ontology, it might
occur that the ontology contains some products more than once. With the here
proposed product entity resolution framework, we aim to solve this problem. In
order to reach this goal, we need to (i) find an efficient way to compare products,
(ii) use the extra information available from the product ontology when matching
products, and (iii) merge the matching products without losing information. The
process of ontology population is outside the scope of this paper. For this task
we refer the reader to existing literature [16,18].

3.2 Overview of the proposed approach

Our proposed solution is called Product Entity Resolution Platform (PERP) and
can be divided into two parts. The first part concerns the domain ontology, which
contains the data and the structure of the product information. The second part
covers the algorithm that employs novel matching and merging routines.

In the first part of the approach, i.e., the domain ontology, we use OWL, the
standard Web ontology language. An OWL ontology offers more expressivity
than a relational database, which is normally used in the field of entity reso-
lution [8]. Compared to relational databases, this increased expressivity allows
us to create a more precise representation of a product. For example, entity
resolution in a relational database is restricted to the predefined structure of a
row, while in an ontology one can specify different types of relations between
complex objects. The latter description makes it easier to differentiate between
products. Various synonyms for products and product features are stored in our
lexicalized domain ontology. This simplifies the instantiation of products from
the Web by covering a large set of lexical representations. Although the actual
instantiation of an ontology falls out the scope of this research, the structural
description of products using domain ontologies can be exploited in the process
of entity resolution, as we shall demonstrate.

In this paper, an extension of the GoodRelations [10] Consumer Electronics
ontology (CEO) [4] is used as the domain ontology. This ontology describes
electronic products, like televisions and digital audio players. It also defines
several property types (e.g., qualitative properties and quantitative properties)
that can be used to describe products. We extend the CEO ontology by adding
missing products, like Router and Laptop, and extending the already described
products with more product-specific properties, like the number of HDMI ports



on a television or the number of headphone ports on a digital audio player.
These extensions make the ontology more suitable for entity resolution, because
of the extra information gained by using these new features. We also extended
the Consumer Electronics ontology to support units of measurement, which is
achieved using the The Unified Code for Units of Measure ontology (UCUM) [19].
This allowed us to add units of measurements to product properties and identify
the relations between the units of measurements (e.g., meter vs. centimeter and
inch vs. centimeter). Figure 2(a) shows an excerpt of the domain ontology from
the UCUM ontology and Fig. 2(b) shows how for ‘Voltage’ the UCUM ontology
and our product ontology are linked. As we can see, this is done using the ‘Quality
value’ of UCUM and the ‘Quantitative value float’ from the CEO ontology.

The second part of our platform involves the product matching and merg-
ing routines. The foundation that underlies our approach is the R-Swoosh al-
gorithm [3]. The reason for choosing R-Swoosh is that the algorithm offers an
efficient alternative to a brute-force approach in pairwise entity resolution by de-
creasing the number of comparisons needed. It is an abstract algorithm, which
allows us to use custom match and merge functions. We did not choose for the
more scalable F-Swoosh, because we experiment on a relatively small dataset
for which caching is not needed. We use the R-Swoosh implementation of the
Stanford Entity Resolution Framework (SERF) [2].

The pseudo-code of the R-Swoosh algorithm is shown in Algorithm 1. The
requirements for the R-Swoosh algorithm are a set of records, a match function,
and a merge function. First, an empty set of records I ′ is created. After this is
done, the algorithm starts a loop that continues until there are no records left in
the original set of records I. Within the loop, the algorithm first picks the first
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Algorithm 1 The R-Swoosh algorithm [3]

Require: a set of records, I
Require: a matching function, match
Require: a merging function, merge
1: I ′ ← ∅ {set of records without duplicates}
2: while I 6= ∅ do
3: currentRecord← a record from I
4: remove currentRecord from I
5: candidate← ∅
6: for all records r′ in I ′ do
7: if match(currentRecord, r′) = true then
8: candidate← r′

9: breakfor
10: end if
11: end for
12: if candidate = ∅ then
13: add currentRecord to I ′

14: else
15: r′′ ← merge(currentRecord, candidate)
16: remove candidate from I ′

17: add r′′ to I
18: end if
19: end while
20: return I ′

record from the original set of records I and removes it from I. Next, it checks
if there is a record r′ in the set I ′ that matches the current record. If there is
a matching record r′, r′ is saved as a merging candidate of the current record.
If a merging candidate is found, it is merged with the current record and the
merging candidate record is removed from I ′ and the merged record is added to
I ′. If no merging candidate is found, the current record is added to the set I ′.
The result of the algorithm is the set of records I ′, which does not contain any
duplicate records.

3.3 Matching

In this section we describe the matching function of PERP. We start with an
explanation of the different types of data and the corresponding distance mea-
sures. This is followed by a motivation for the use of product features weights.
Last, we present the algorithm that employs the matching function.

Matching functions Product features can be roughly divided in three
categories. First, there are the qualitative properties. These properties contain
mainly categorical data, for example, the different supported data formats in dig-
ital audio players. The second category are the quantitative properties, which
contain quantitative data that differs per product instance, for example, the
number of HDMI ports on a television. Quantitative properties can also be ex-



pressed in a particular unit of measurement, for example, the weight of a prod-
uct in kilograms. The last category are the data type properties, which contain
product features that do not fit in the two previous categories. These are mainly
Boolean features (e.g., has remote control) and complex features (e.g., contrast
ratio). For each of these categories we have different matching functions. The
matching functions always return a Boolean value that indicates if two prod-
uct instances match for a particular category. Matching functions can consist of
an exact match or an approximate match between features, where the latter is
achieved by using one or more distance measures and a threshold.

The matching function of the qualitative properties is rather simple, it is an
exact match between two product features. Such a precise comparison is needed,
because these values are predefined in the domain ontology, so there is no room
for their approximation.

The quantitative values are handled differently. These are processed using two
distance measures. The first is the numerical distance measure, which is defined
as the relative difference between two values. If this distance is below a certain
threshold, the values are considered similar. In case the quantitative value is a
conjunction between a numerical value and a unit of measurement, we use the
numerical distance measure for the numerical part and an exact match for the
unit of measurement. The units of measurement are of the same magnitude in
our representation.

The data type property values are also processed using two types of distance
measures. Boolean variables are compared using the exact match from the qual-
itative values and complex values (represented as strings) are compared using
the Level 2 Jaro Winkler distance [11,17,21]. We have chosen to use this distance
because it showed to perform well compared to other distance measures when
used for string comparisons [6].

The Jaro distance is defined in Equation 1, where s1 and s2 represent two
strings, m is the number of matching characters and t is half the number of
transpositions to get from s1 to s2. The Jaro-Winkler distance is calculated using
the Jaro distance between s1 and s2, the length ` of a prefix at the beginning of
a string, and a factor p between 0 and 1 for an upwards adjustment of the score
for having a common prefix. In our case, ` is set at 4 and p is set at 0.1, which
is the optimal value reported by the used similarity measure library [6].

The Level 2 Jaro Winkler similarity in Equation 3 is somewhat different
from the regular Jaro Winkler similarity function in Equation 2. It calculates
the Jaro Winkler multiple times on contiguous subsets (wi and vj are the lists
of characters of the original input strings), which gives a more robust similarity.

djaro(s1, s2) =
1

3
(
m

|s1|
+

m

|s2|
+
m− t
m

) (1)

djw(s1, s2) = djaro(s1, s2) + (`p(1− djaro(s1, s2))) (2)

Level2jw(s1, s2) =
1

|s1|
∑

wi⊂s1

max
wj⊂s2

djw(wi, vj) (3)



Weights Because products usually have many features, an interesting issue
arises, i.e., among the products within a certain product type, some features are
far more important than others. For example, all digital audio players are able
to play MP3 files. This does not really help in the process of entity resolution,
so we need to focus on the more distinct product features for entity resolution.

To address the previous problem, we propose to use weights for the different
product features. The weights are different for each product type, since some
features (like weight) are used in multiple product types and can have a different
importance depending on the product type. The weights are decimal values
between 0.0 and 10.0.

We determine the weights using a genetic algorithm built on the Watchmaker
Framework [7], which is also used in the literature [9,14] and in the Apache
Mahout project [1]. Our fitness function is the F1-measure for a set of merged
products. We use the genetic algorithm to determine the weights for one product
type at a time. In order to run the genetic algorithm we split the data in a
training and a test set, and run the genetic algorithm on the training set.

Matching algorithm The matching functions and feature weights are used
in the matching algorithm. The matching algorithm is outlined in pseudo-code
in Algorithm 2. It executes a pairwise comparison on two records R1 and R2
containing product features that represent the same product type. In order to
run this comparison, a set of keys of product features in the records is required,
where a key is the name of the feature in the current concept. Each key has a
similarity function that operates on the corresponding data type and a weight, as
described previously. Another variable required for the algorithm is the matching
threshold. This is the minimum percentage of matching product features and it
is determined using a hill climbing procedure on the training dataset.

In lines 1 to 3 of the algorithm the variables are initialized. The first two
variables contain the weighted number of matching and non-matching product
features. The matchResult variable contains the final result, which is the per-
centage of matching product features. Lines 4 to 14 show the first loop of the
algorithm, which iterates through all the possible keys (product attributes) of
the product type in question. In lines 5 and 6 the similarity function is selected
for a certain key and the similarity is calculated for all possible pairs of values
between the two records for a certain key. This is necessary, because a record can
have multiple values for a certain key (e.g., weight in ounce and grams). Next
the algorithm loops through all the results and adds the weight to matchCount
if the result matches, otherwise, it adds the weight to noMatchCount (we sim-
ulate a multiplication with the weight here). In the last part of the algorithm
(lines 14-15) the percentage of matching values is calculated and compared to
the threshold.

3.4 Merging

The merge algorithm, shown in Algorithm 3, merges two records for a given
set of keys. It starts by checking if the two records are exactly the same. If that is
the case, one of the two records is returned. If that is not the case, the algorithm



Algorithm 2 Match function for PERP

Require: a set of keys K of a particular product class
Require: a set of matching functions S for K
Require: a set of weights W for K
Require: two records, R1 and R2
Require: a match threshold m
1: matchCount← 0
2: noMatchCount← 0
3: matchResult← 0
4: for all k ∈ K do
5: /* The weights are used in simk*/
6: results ← simk(R1k, R2k)
7: /* The simk is selected from S */
8: for all result ∈ results do
9: if result = true then

10: matchCount← matchCount + wk

11: else
12: noMatchCount← noMatchCount + wk

13: end if
14: end for
15: end for
16: matchResult = matchCount

matchCount+noMatchCount

17: return matchResult ≥ m

Algorithm 3 Merge function for PERP

Require: a set of keys K of a particular product class
Require: two records, R1 and R2
Require: R1 and R2 represent the same entity
1: if R1 = R2 then
2: return R1
3: end if
4: for all k ∈ K do
5: R1k ← R2k

6: end for
7: return R1

iterates through all the keys and adds for each key all the non-matching values
of R2 to R1. The reason to add only non-matching values is that one does not
want to have the same values twice in a record.

We chose to also include the different values for matching keys, since we do
not want to lose product relevant information. For example, if a product has a
height in centimeters and in inches, we include both measurements in the new
product. Also, in the case of contradicting product feature values, we keep both
values. For example, one Web shop might suggest that a particular television
has one HDMI port, while another Web shop might claim that it has two HDMI
ports. Subsequently processing this data, an expert could decide which one of



the conflicting values is the correct one, although this step is not required by
our platform.

4 Method Evaluation

In this section we evaluate our proposed approach. First, we analyze the structure
of our data. Then, we give the details of the evaluation set-up. We conclude this
section by reporting the evaluation results.

4.1 Structure of the data

In Sect. 3.2, we mentioned that our domain ontology was based on the GoodRela-
tions Consumer Electronics ontology [4]. This ontology does not contain any
product instances, so we had to instantiate those ourselves. As we mentioned
previously, in a production environment, ontology population should be auto-
mated [16,18]. However, in order to perform a fair evaluation of the considered
algorithms, we performed the instantiation manually. Having relatively detailed
product descriptions in our data set, the instantiation and verification of this
data turned out to be a very time consuming task, sometimes taking up to 5
hours per product instance. Consequently, we obtained a relatively small dataset,
nevertheless of similar size as reported in related work for similar reasons [20].

We gathered data for only two product classes, i.e., TV’s and Digital Audio
players, due to the tremendous effort involved in the manual instantiations.
We chose for TV’s and Digital Audio Players because of the variation in the
granularity of the available information for the two product categories. Whereas
televisions are usually described in a lot of detail, the description of Digital
Audio Players is often limited to some basic features, like color and memory
capacity. In order to ensure that we would have enough duplicates to conduct
our experiments on, we used two Web shops (BestBuy.com and NewEgg.com)
to gather the data. We chose for these websites, since they both have a wide
assortment in consumer electronics, which made it easy to find duplicates.

We instantiated in total 49 products for two product types using the data
from the two Web shops. We aimed to create a fair product distribution between
BestBuy.com and NewEgg.com, so that we would not create a bias in our results,
while at the same time have enough duplicate records for our product entity
resolution algorithm. We also aimed to get a fair distribution between duplicate
and non-duplicate records (or unique records) in order to prevent overfitting.
The different distributions are shown in Table 1. In this table, B and N stand
for the number of products from a Web shop within one category, where B is
BestBuy.com and N is NewEgg.com.

4.2 Evaluation Setup

In the evaluation we compare our method, using multiple distance measures,
feature weights, and a domain ontology, to the state-of-the-art method described



Table 1. Distribution of product instances

Duplicate Unique Total

Digital Audio Players 12 (B:6 N:6) 11 (B:5 N:6) 23
Televisions 14 (B:7 N:7) 12 (B:6 N:6) 26
Total 26 23 49

in [3], which uses no feature weights and only one distance measure, i.e., the
Jaccard distance. However, for performance reasons, both methods use the R-
Swoosh algorithm. The experiments are run separately for each product class.

In order to compensate for the small dataset, we ran our experiments 100
times. In each run, we randomly selected a training and a test set. The distri-
bution of unique and duplicate records is the same for the training and test set
and proportionately depends on the product distribution for each product class.
In each run 60% of the products are randomly assigned to the training set and
40% of the products are randomly assigned to the test set, while fulfilling the
above distribution constraint.

The genetic algorithm is run for 100 generations for each random training set.
This is only used for our own method. The method of [3] does not use weights,
so there is also no need for a genetic algorithm. The same test set is used for
both methods in each run. We tested different configurations of the crossover
rate, mutation rate, and selection method for the genetic algorithm. We varied
the crossover rate randomly from 10% up to 50% during one generation of the
algorithm. The mutation rate was set to 15% and we used the Roulette Wheel
selection as selection technique. These values were determined by using a hill-
climbing procedure on the training dataset.

The quality of the methods was measured by the F1-measure of the merged
products. We used the same measure as fitness function for the genetic algorithm.
For the F1-measure, we took a correctly merged product (duplicate records) as
a true positive, the correctly non-merged products (unique records) as a true
negative, the incorrectly merged products (merged unique records) as false pos-
itive, and the incorrectly non-merged products (non-merged duplicate records)
as false negative. We ran our experiments on a computer with an Intel Core i5
480M processor and 8 gigabyte internal memory running Windows 7.

4.3 Results

We use a two-sample two-tailed paired t-test with a 95% confidence interval to
compare our method to the benchmark method of [3] based on the F1-measure
from each run. The null hypothesis is H0 : µour = µref and the alternative
hypothesis is HA : µour 6= µref . The µour is for our method and µref is for the
reference method.

From the parameter optimization process described earlier, we used the best
parameters for both our own method and those for the benchmark method. For
our own method, the best set of parameters are a match threshold of 0.8, a



threshold for the Level2 JaroWinkler distance of 0.9 and a threshold for the nu-
merical comparison 0.9 (so a maximum difference of 10% between two numerical
values). The benchmark method has a match threshold of 0.9 and a threshold
for the Jaccard distance of 0.75. These parameters are applied for both product
classes.

When we ran the experiment, the F1-measures varied from 0.0 up to 1.0 for
both methods in both product classes. This can be easily explained by the fact
that some product instances contain more information than others. So, if a test
set contained mainly instances with little information, the F1-measure was as
expected low.

The average F1-measure over 100 runs for both algorithms can be seen in
Table 2. As seen in the table, our PERP scores significantly better than the
benchmark method on both product classes, so H0 is rejected. Another notable
fact is the difference in results between the two product classes. This is caused
by the amount of available information on one side and the feature weights in
our method on the other side. We explain this in more detail in Sect. 4.4.

Table 2. Algorithms results

F1 PERP F1 Benchmark p-value

Digital Audio Player 0.7205 0.1770 0.00001
Television 0.5945 0.5090 0.02335

4.4 Weights

Feature weights are an important aspect in our algorithm. They compensate for
poorly defined products by placing extra weight on distinct product features.
In Tables 3 and 4 the weights and the occurrence for each property for the two
product classes are displayed. The weights in this table are the weights from one
of the hundred runs, where we scored an F1-measure of 1.0.

According to Table 3 the most distinctive features of a digital audio player
are the equalizer, the number of speakers, and the display resolution. The least
distinctive features are the color of the device, if the device is energy star quali-
fied, and the playable data formats. One can note that the top quartile (average
occurrence of 7.6) features do not occur that often, while the bottom quartile
(average occurrence of 8.9) occur more often in digital audio player.

Table 4 shows the optimal weights for the television product class. In this
class the most distinctive properties are the screen refresh rate, the number
of S-Video ports, and the number of headphone ports. The least distinctive
properties are the number of component inputs, the number of HDMI ports, and
the included accessories. For this product class we also note a similar difference
as before in occurrence of property types between the top quartile (average
occurrence of 12) and the bottom quartile (average occurrence of 15.4).



Table 3. Weights and occurrences of product features for digital audio player in a
sample with a F1-measure of 1.0

Property Weight # Property Weight # Property Weight # Property Weight #

Equalizer 9.7815 1 ID3 Support 8.1945 2
Audio Interface
Type

5.4693 1
Battery Recharge
Time

3.3551 2

Speaker Quantity 9.7135 1
Number Of
Headphones Ports

7.8663 1 Data Interface Type 5.2975 1 Width 2.5119 16

Display Resolution
Horizontal

9.4167 10 USB Ports Quantity 7.7340 1 Internal Microphone 4.5916 4
Aspect Ratio
Vertical

2.4145 1

Harmonic Distortion 9.1295 3
Number Of Batteries
Required

7.0281 5
Aspect Ratio
Horizontal

4.3685 1 Height 2.1497 16

Connectivity 9.0639 14 Frequency Range 6.7174 7 Operating Time 4.3015 2
Processor Clock
Speed

2.0404 1

Storage Media 9.0590 21
Number Of HDMI
Outputs

6.5416 1 Depth 4.2516 16 RAM 1.9861 1

Radio Tuner 9.0417 7
Number Of FireWire
Ports

6.4203 1 Brand 4.1709 23
Compatible
Operating System

1.8681 9

Display Size 8.9628 9
Signal To Noise
Ratio

6.3963 1 Display Type 3.8912 10 Storage Capacity 1.2130 18

Energy Source 8.8265 1 Touchscreen 5.9332 5 Battery Run Time 3.8277 16 Body Color 0.9336 14
Display Resolution
Vertical

8.4469 9 Battery Capacity 5.8760 2 Weight 3.4892 14
Energy Star
Qualified

0.7361 1

Feature 8.3909 8
Rechargeable Energy
Source

5.7717 12
Power Requirement
Voltage

3.4545 1 Data Format 0.6197 19

Average 7.6 Average 3.4 Average 8.0 Average 8.9

Table 4. Weights and occurrences of product features for television in a sample with
a F1-measure of 1.0

Property Weight # Property Weight # Property Weight # Property Weight #

Screen Refresh Rate 9.9975 24 Radio Tuner 7.8516 2
Display Resolution
Horizontal

5.8089 23
Display Resolution
Vertical

2.3699 23

Number Of S-Video
Inputs

9.7988 1 Speaker Quantity 7.8372 12
Standby Power
Consumption

5.6496 4
Audio Output
Power

2.2447 12

Number Of
Headphones Ports

9.6010 3
is EnergyStar
Qualified

7.7690 20 USB Ports Quantity 5.3083 14 Depth 2.1499 26

Height With Stand 9.4717 26 Display Size 7.4877 26 Body Color 5.1257 11 TV Tuner 2.0144 8

Weight 9.1658 24
Usage Power
Consumption

6.6786 10 Width 5.0085 26 Width With Stand 1.8466 14

Power Requirement
Watt

8.9148 1 Feature 6.6714 20
Aspect Ratio
Horizontal

4.7661 19
Number Of HDMI
Inputs

1.7918 17

WiFi Connection 8.7001 1 Depth With Stand 6.5737 26 Response Time 3.2481 4 Brand 1.4937 26

Remote Control 8.4202 5
Number Of Optical
Audio Outputs

6.2795 5
On Screen Menu
Language

2.9610 12
Number Of
Component Inputs

1.1473 19

Connectivity 8.3424 17 Contrast Ratio 6.2387 14 Height 2.8742 26
Number Of HDMI
Ports

0.9120 8

Number Of Lan
Ports

7.9980 4
Aspect Ratio
Vertical

6.1846 19 Weight With Stand 2.5540 26 Accessory 0.6787 1

Resolution 7.8881 26 Display Type 5.8650 1
Average 12.0 Average 14.0 Average 16.5 Average 15.4

The number of feature occurrences are different between the two product
classes. The average number of occurrences for digital audio player is lower than
that of TV’s. The better performance of our method for digital audio players,
compared to our reference method, can be explained by the fact that the low
number of occurrences is compensated by the discriminative feature weights.

5 Conclusion and Future Work

In this paper we investigated the problem of product entity resolution using a
domain ontology-driven approach. Most solutions in the literature use databases
for entity resolution, while employing the extra descriptive power of ontologies
can help to obtain better results. We created a domain ontology for electronic



devices that is based on the GoodRelations [10] Consumer Electronics Ontol-
ogy [4]. Our approach is based on the state-of-the-art R-Swoosh algorithm [3],
as this approach is both extensible and scalable. We propose a novel matching
algorithm that, differently than the matching algorithm from R-Swoosh, em-
ploys product feature type-specific similarity measures, determined by the type
information stored in the product ontology. Furthermore, the proposed matching
algorithm uses weights for the duplicate detection task, in order to account for
the difference in importance among the product features.

We evaluated our algorithm on a dataset that contains two different product
classes: televisions and digital audio players. We obtained a F1-measure on the
merging of 59% on the television product class and 72% on the digital audio
player product class. These results are significantly higher than the results ob-
tained with the reference method [3]. From this, we can conclude that the use
of product feature type-specific similarity measures and product feature weights
improves the overall performance of product entity resolution.

In future work we would like to further exploit the descriptive power of an
ontology by employing negative relations to emphasize that a certain product
does not have a certain feature. Also we plan to make use of the part-whole
relations, e.g., a memory chip is part of a laptop rather than a simple property
and thus should have a higher importance in the product matching process.
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